y Vrije Universiteit Brussel

Faculty of Engineering
Department of Electronics and Informatics — ETRO
Master Program of Applied Computer Science

Design Patterns for
the Web Semantics Design Method

Thesis submitted in partial fulfilment of the requirements for the degree of
Master of Applied Computer Science

Le Van Huyen

Promoter: Prof. Dr. Olga De Troyer

2009 - 2010

Acknowledgements

First of all, | would like to thank my promoter Rrdr. Olga De Troyer, for her
valuable advices, support, patience and encourageme

| would like to thank Thanh Hoa Province and HongcDJniversity, Vietham for
their financial support. | also want to thank Vrlmiversiteit Brussel (VUB) for
accepting me as a student and VUB’s staffs forrthelp when | arrived at the
university.

| would also like to thank my family’s members fdhneir love, patient, and
encouragement during two years | study far awam fileem.

Finally, I thank my friends who have helped me avitnen | needed it and always
were beside me to encourage me to finish my thesis.

Abstract

Design Patternsin the Web Semantics Design Method

Le Van Huyen
Vrije Universiteit Brussel, 2010

The Web Semantics Design Method (WSDM) is a metlogyoto develop web
application. WSDM uses models throughout its methogly to represent both
information requirements and the conceptual strectliask models are used to model
the tasks that users want to perform with the systé&/hen modeling these tasks,
designers are often faced with the same type &btager and over again. However,
each time the designers, normally, have to modsehasks from scratch. In order to
foster re-use of tasks in different contexts of, uask patterns have been introduced
as abstractions that should be instantiated faracplar context. A process for using,
adapting and applying task patterns in the Conegfidesign phases of WSDM has
been studied and developed. In particular, it élldemonstrated how patterns can be
used for the establishment of tasks in WSDM. Initamid a case study will illustrate
the applicability of patterns in WSDM. Furthermoregme patterns have been
discovered, formalized and applied.

Table of Contents

ANEFOAUCTION L. ———— e 1
1.1. WSDM and Design PatterNSccuuieeeiiiiiiii e eee e e e e 1
1.2. Research ODJECHIVES.........ccoo e 1
1.3. TRESIS SITUCIUIE ...oevviiiiiie e i e e e e e e et eneee e e e e e e e aaees 2

1T (o | N =1 (=] o TN 4
2.1. EVOIUution Of PAtternSuuuuiiiiiceeeeeiii e e e eeeeeeeeeeannes 4
A - Q= 1] TS 7

2.2.1. Definition of Task Patterns...........ccceeeiiiiiiiiiiiiiiiie e 7

2.2.2. Task MOeliNg........uuiiiiiiii e 8

2.2.3. An example of the Use of Patterns for therUsask Model 10
2.3. Benefit Of USING PALtEINSoeiiiiiieeeeeee e 11

. Web Semantics Design Methodocceeeemmriiiiii e 13
I 200 I 1 1 o o [1 o 1] o I SR 13
3.2. Mission Statement SPeCIfiCAtiONcowmmeeeeeeereeiiiie e et e e e eeens 14
3.3. AUAIENCE MOAEIING uuuiuiiiiiiiitett oo beeeeeeeeeas 15

3.3.1. Audience ClassSifiCation..............cveeeeruiiiiiiiieee e 15
3.3.2. Audience Class Characterization......ccccece..ooveevuiviiiiiiieieeeeeeeeeeeiainnnns 6.1
G B @] gTed=T o1 LU= LI DTS (o | o IS 16
3.4.1. Task and Information MOdeliNg.........cccaaaiiiiiiiiiiieeeeee 16
3.4.2. Navigational DeSIgNccooiiiiiieeeeee e 18
3.5. Implementation DeSIgN......c...uuuii i e e e e eeenaens 18
3.5.1. Site StrUCIUIE DESIGN......cceeiiieii s eteeeteteeeeeeeeeeeeeeeeeeeeeeaeeeeaaaaaaans 18
3.5.2. Presentation DeSigN........ccuuiiiiiiiiiiicie e 19
3.5.3. Logical Data DeSIgNccueiiiiiaiieeieeee e 19
3.6. IMPIEMENTALIONceeei e e 20

. Integrating Design Patterns in WSDM...... oo 22
vt I [1 o o 11 [£ [o PRSPPI 22
4.2. Pattern DefiNitioN...........uuiiii e e e e e 23

4.2.1. Pattern and NOtatioN............uuiiieeeemeeiiie e eeeeee 24
4.2.2. The ODbJeCt ChUNKS...........oiiiiiee i s oottt e e e e e e e e e e eeennnas 24
4.2.3. The Navigational Model................coemmmiiiiiiiiiiiiiiiiiiiiieeeeeeeee e 25
4.3. The Process of Pattern Applicationccccoeevviiiiiiieeciiiie e 25
A4, EXAMPIE .. a e as 26
O RS Y= [T o [IR 26
4.4.2. AQAPLALION ...ttt 26

4.5. Summary Method ... e 30

5. A LISt Of PAIEINS ..ot e e n e e e ee e e e e eeeeeeennnes 31
5.1. REQIStEr PaAtterINcciiiiiii e e e et e e e e et see e e e e e eeaaa s 31
5.2. LOGIN Pattern......cooo i ceeiee ettt e et e e e e e e e e e e e 33
IRC T ST 1 =T ox g | =] o PO 34
5.4. Update Item Information Pattern ..ot 36
5.5. Display Item Information Patterncceeee.uoieoiiiiiiii e eeee 38
5.6. Confirm or Cancel Patternoccceeeriiiii i eeeee 39
5.7. Add ItemM Patternoooo i 41
5.8. Delete Items Pattern............uuuuuimmmm e e eeeeeaananes 42
5.9. ShOW ReSUILS Patternccooiiiiiiieeeeeeeece e e 45
5.10. BrOWSE PalterIMNoiiiiiiiiieeeeett s ettt ettt e e e et e e e e e ebnmen e e eeees 46
5.11. Simple Search Pattern........... ... cccecemiiiiiiiiiiiiieieeeeeeee e 47
5.12. Advanced Search Patternooicoeeeereeiei e 49

B. CASE STUAY ...eeeeiieiiiiiiiiiieeee et ettt ettt ettt ettt et e e e e eaeaeaeeaaaaaaaaannnnnnnnnnnn 51
6.1. MISSION STAEMENT.....ccii i it eemmmme et e e e e reenneeeenne 51

B.1.0. PUIMPOSE ..ottt ettt e e et e e e e e e e e e e eennaas 51
6.1.2. Target AUAIENCEcovuiieieiiei e e e e 51
B.1.3. SUDJECT ... e 51
6.2. AUAIENCE MOAEIINGuuuuiiiiiiiiiintt oot beeeeeeeeeas 51
B.2. 1. ACHVITIES ..oeieeeiiiiiiiie e e e e ettt s s e e e e e e e e e e eneenneeeenene 51
6.2.2. People INVOIVEd ... 52
6.2.3. AUAIENCE ClASSES.....cceieeeiieeeeiiieeeeit et eee e 53
6.2.4. Audience class hierarchy ... 54
6.2.5. Audience Class Characterization......cccccceeeeeeveeeeeeeevieeeiiiiiiiinneeeeee 4.5
6.3. Conceptual DESIGNcoooiiiiiie s e 55
6.3.1. Task and Information Modeling.........cceueeuiiiiiiiiiii e, 55
6.3.2. Navigational DeSIgNcccooaeeeee e 61
6.4. Implementation DeSIgNccooiieeeeee e 62
6.4.1. Site SIrUCtUre DESIONiiiiees s e e e e et e e e e et e e e e e eata e e e e eeennnaes 62
6.4.2. Presentation DeSIGNuuuuiiiieiiiiiiiiieieieeeee e 63
6.4.3. Logical Data DeSIgN..........iiiiiiiiiee e e e 64
6.5. IMPIEMENTALION ..o e e e e e e e e e 65
7. Related WOTK......coooeeee e 66
8. CONCIUSIONS ... ettt e e et e e e e e e e e e aaaaaeeaaeaeeeesennnns 68

Tableof Figures

Figure 1. Alexandrian Form of a Pattern (Alexander, Ishikawval., 1977).............. 4
Figure 2. Task typesS in CTT ..o cemmmm e e e e e et e e e e e 8
Figure 3. Interface of the Search Pattern (Sinnig, 2004) cue..cceeeeeeeeiiaiiiiiiiiiannns 10
Figure 4. Task Specification of the Search Pattern (Sinmd@43..............c..cceeee. 11
Figure 5. Overview of WSDM method ... 14
Figure 6. Task typesS in WSDMccoiiiiiiiiiii ettt e e e e 17
Figure 7. Example task pattern and the notation ... oooeriiiiiiiiiccicnnnnnnnn. 24
Figure 8. Object Chunk “Select One [tem”ccoovicee e 24
Figure 9. The Navigational Model for the task “Select Onenite......................... 25
Figure 10.Task Model for the task “Select and View Book imation” 26
Figure 11.0bject Chunk “Select BOOK”............cooviiiieeeiie e 27
Figure 12.0bject Chunk “Display BOOK INfO”cooiiiiiiiiiiiieeiee 27
Figure 13.The fully instantiated task model for the task I&é& and View Book
1] (0] 1 7= 11 (0] o U UUPPPPUPP 28
Figure 14.The task navigational model for the task “Seleod a&/iew Book
INFOIMALION" ...t 29
Figure 15.The notation for a “pattern COmponNeNnt”..........ccccceeieeriiiiiieeeeeiiee e eeeens 29
Figure 16.The task navigational model with the “task compdhen...................... 29
Figure 17.Task Model for the task “RegiSter”......... .o eeeriiieeeeeiiiiiieeeeeiiieeeeeennns 32
Figure 18.0bject Chunk “Enter User Information”..........cccccooeeeiiiiiee, 32
Figure 19.Task navigation for the task “Register”cccceeeoiiiriiiiiiiieeecee e, 33
Figure 20.Task Model for the task “Login”..........cccomeeeeeeeeeee e 34
Figure 21.0bject Chunk “Enter Account Information”.......c.cc.....coovviiiieeeveinnnnnn. 34
Figure 22.Task navigation for the task “Register” ... 34
Figure 23.Task Model for the task “Select One ltem”cccoovviiiiiiiiieeeiiiniinnne. 35
Figure 24.Task Model for the task “Select Multiple Items”............ccccoeeeeevininnnnnn. 35
Figure 25.0bject Chunk “Select One Item”ccceemmeiiiiiieeeeeeeeeeee e 35
Figure 26.0bject Chunk “Select Multiple temS”..........ccceeeriii e, 35
Figure 27.Task navigation for the task “Select One Item’cccoviiiiiiinneeenn, 36
Figure 28.Task navigation for the task “Select Multiple ltéms..............c.coeeeen. 36
Figure 29.Task Model for the task “Update Item Information”.................c..oeee. 37
Figure 30.0bject Chunk “Update Item Information”cccccooveiiiiiiiiieeeeeiieneee, 37
Figure 31.Task navigation for the task “Update Item Inforroati........................... 37
Figure 32.Task Model for the task “Display Item Information’.....................c...e 38
Figure 33.Task Model for the task “Display Multiple Item Infoation”.................. 38

Figure 34.0bject chunk “Display Item Information”ccceceeeiiiiiiiiiiieee e 38

Figure 35.0bject chunk “Display Multiple Item Information” a...........ccccceeeeeeennnnn. 39
Figure 36.Task navigation for the task “Display Item Informoat’.......................... 39

Figure 37.Task navigation for the task “Display Multiple Itesrimformation” 39

Figure 38.Task Model for the task “Confirm or Cancel”c.......coooiiiieevinnnnnnnn. 40
Figure 39.0bject Chunk “Ask Confirmation” ..o 40
Figure 40.Task navigation for the task “Confirm or Cancelm...........cccccceeveeeennnn. 40
Figure 41.Task Model for the task “Add Item” ... 41
Figure 42.0bject chunk “Add Item INfO”ccooveii i, 42
Figure 43.Task navigation for the task “Add Item”.............cooiiiiiiiiiieeeeee 42
Figure 44.Task Model for the task “Delete One Item”........cc....c..eviiiiiviiiiiiniiieenne. 43
Figure 45.Task Model for the task “Delete Multiple ItemS”..............cccoevviiieeerennn. 43
Figure 46.0bject chunk “Delete ONe ItemM.............oimmmmeeeeeiiiiiiiiiiieeeeeeeeeeeeeeeeeaeas 44
Figure 47.0bject Chunk “Delete Multiple ItemS”ccoeeeeiiiiieeiiiice e, 44
Figure 48.Task navigation for the task “Delete One ltem”...........ccccceviiiiiinnnnnnn. 44
Figure 49.Task navigation for the task “Delete Multiple Itéms..........ccccccoeeeeen. 44

Figure 50.Task Model for the task “Show ResSults”ccccooiiiiii s 45
Figure 51.0bject chunk “Display Multiple Items Information’............................. 45

Figure 52.Task navigation for the task “Show ReSUltS”ccccc.evviiiiiiiiiiiiiiiiiiieeee. 46
Figure 53.Task Model for the task “BrowSe”oicceeeiiiiiiiiiiiiiiiieieeeeeeeee e a7
Figure 54.Task navigation for the task “Browse”.........o.ceeeeeeriiieeeeeiiiieeeeeennnnn 47
Figure 55.Task Model for the task “Simple Search”...........ccccccoiviiiiiiiiiicnne, 48
Figure 56.0bject Chunk “Enter KeYWOrds”ccocoveieeeciiiie e e e 48
Figure 57.Task navigation for the task “Simple Search”..................c.evvviiiviieenee. 48
Figure 58.Task Model for the task “Advanced Search”eveeeeeveiiiiineeenennnnn... 49
Figure 59.0bject Chunk “Enter Search Criteria” ... 50
Figure 60.Task navigation for the task “Advanced Search!........................ccee. 50
Figure 61.The activities and people involved...........ccceeee 52
Figure 62.Audience Class Hierarchy for the Bookshop online.................ccooees 54

Figure 63.Task Model for the task “Create new book”c....ccovviiiiieiiiinennnee, 55
Figure 64.0bject Chunk “Add Book INfO” ... 56
Figure 65.0bject Chunk “Ask Confirmation”coicccieiieeeieiiee e 57
Figure 66.The fully instantiated task model for the task é&te new Book™........... 57

Figure 67.Task navigation for the task “Add Item”..........cccccooi i, 57
Figure 68.Task navigation for the task “Create new BooK'................cccooevivvnnnen. 58
Figure 69.Task Model for the task “View history Orders”............cccccveeveeevevnnnnnnnn. 58
Figure 70.0bject Chunk “LiSt Orders”.........cooeeiiiiiieeeeeie e 59

Vi

Figure 71.0bject Chunk “Display Order INfO”............e e 59
Figure 72.0bject Chunk “Select an Order”
Figure 73.The fully instantiated task model for the task éwihistory Orders”...... 60

Figure 74.The task navigational model for the task “Viewtbig Orders” 60
Figure 75.Conceptual Structural Model............coooviiiiiiiiii e 61
Figure 76.Visitor Navigational Trackcooooiiim oo 61
Figure 77.Main Conceptual Navigation StrucCture.........ccccccevvvviieeeeieiiiiieeeeeeiee, 62
Figure 78.Site SIruCtUre DeSIGNccuiiiiiiiiiiiiiieeeeeeeieieeeee et e e 63
Figure 79.The Presentation DeSIgN.........ccceiiiiiiii i e 64
Figure 80.The homepage of the WEDSItEmmeeieeeeeeeeee e 65

Vil

List of Abbreviations

WSDM: Web Semantics Design Method
CTT: Concurrent Task Trees

HCI: Human Computer Interaction

Ul: User Interface

GUI: Graphical User Interface

viii

Introduction

1. Introduction

1.1. WSDM and Design Patterns

The goal of this Master Thesis is investigate tieotetical approach of integrating
design patterns into the WSDM process. In WSDM,ceeld use design patterns to
accelerate the design and development process.instance, in the sub-phase
Presentation Design we could easily use some egisiser interface patterns (login,
paging, breadcrumb patterns, etc.) to presentrifognnation to the users. However,
before the designer can use these user interfabep@iterns, at the Conceptual
Design level, the designers have to create taskelmdtat express the sequence of
tasks and the information required within thes&ga3his Conceptual Design phase
play an important role in WSDM since it does nolyaefine what end-users can do
and find on the web site (by means of the task mspdmut also is the basis for
creating the navigational model and the structdrthe web site. Also in this phase,
patterns could be a useful addition as many websitpport similar tasks. Therefore,
in this thesis, | will investigate the use of tgsitterns in th&€onceptual Desigphase.
A proposal approach will be given for using taskgras in WSDM.

In the first step of the Conceptual Design phas&\&DM, the designers have to
create task models that represent the interactatwden users and the system. As,
many web applications offer the same kind of fumwiity (e.g., searching for
something, showing details of something, order sbimg, etc.) some of these tasks
or their subtasks may occur again and again irmifft projects. The question here is
if we can create a pattern for each of these taskissave them in a task library for
reusing in different projects. Then, whenever aigtes faces the same or similar
problem, he can just select and pick the most gpujaed pattern and can model the
task without having to start from scratch.

1.2. Research Objectives

The research in this thesis covers topics thasmomgly related to the design of tasks
models through the use of tasks patterns. Theretbee following issues will be
examined in detalil:

» Defining task patterns

Introduction

* Proposing a process to integrate design patteto3NW$SDM
» Afirst list of task patterns for WSDM

» A case study, which demonstrates the use of dgsiiarns in WSDM

1.3. Thesis Structure

The thesis is structured as follows:

This thesis has eight chapters including this ohidsion chapter. The following
chapters are divided into two parts. In the firattpthe background about Design
Patterns and WSDM is covered (chapter 2, and 3).sHtond part (chapter 4, 5, 6, 7
and 8) is research part. These chapters are bsefiymarized as follows.

Chapter 2 introduces the concept of patterns, tb&igon of patterns and the current
state of the art. This chapter briefly describeudlimw patterns have been developed
and used in software engineering as well as inevgneering.

Chapter 3 covers the background information abo8DM. A brief overview of all
design phases of WSDM is given.

Chapter 4 is the main chapter of this thesis inctvliiesign patterns are integrated into
WSDM. The process of defining and integrating tasiterns in WSDM will be
discussed in detail.

Chapter 5 presents a first list of task patterm®sE patterns are used in the case study.

Chapter 6 is about the case study in which thega®of integrating design pattern in
WSDM will be illustrated in the design of a real wapplication. An e-commerce
website will be created by using the method progasehapter 4.

Chapter 7 presents related work. Similar studiesrasearch on using patterns in web
engineering are addressed.

Finally, chapter 8 will end this Master Thesis bggenting general conclusions and
by giving possible future work.

Part |

Background

Design Pattern

2. Design Pattern

2.1. Evolution of Patterns

The notion of patterns was introduced in the fiefdarchitecture by Christopher
Alexander and his colleagues in “A Pattern Langiigééexander, Ishikawa et al.,
1977) and “The Timeless Way of Building” (Alexand&®79). They explained the
nature of patterns as follows:

“Each pattern describes a problem that occurs aued over again in our environment,
and then describes the core of the solution to pinablem, in such a way that you can
use this solution a million times over, withoutred@ing it the same way twice

Thus, patterns explicitly focus on a problem withinontext of use and guide designers
on when, how, and why a solution can be appliette&s are practical and describe
instances of “good” design while embodying highelgarinciples and strategies.

In (Alexander, Ishikawa et al., 1977) a patterdefined as follows:

“A design pattern is a three-part rule, which exgges a relation between a certain
context, a problem and a solution. The pattermishort, at the same time a thing and
the rule which tells us how to create that thingg asthen we must create it.”

It is noteworthy that his definition of pattern tmes not only on a solution for a
problem, but also stresses the relevance of theexbrmA context here means that a
pattern should be applicable in different situatiaich leads to a generic solution
for a certain problem. Furthermore, the definitionludes that a pattern also has to
offer rules when and how to use it.

Pattern Marms

Fattern Children Patiern Number

Alexandrian

Pattesn Parenis
Pattem

Design Problem

" Design Probiem
Explanation

Design Sclution
Expianation

Dasign Solution

Figure 1. Alexandrian Form of a Pattern (Alexander, Ishikagtal., 1977)

Design Pattern

Another contribution of Alexander was the introdoictof a metapattern. He wrote a
systematic catalog of patterns, which all were dlesd in the same way. In his schema,
a pattern description always includes the poihistilated in the figure 1.

A major point is the relationship between the pateexpressed by means of “Pattern
parents” and “Pattern children”. These conceptaterbnks between patterns and thus
a pattern language is not only a collection ofgratt, but also includes a hierarchical
structure. Therefore, the application of a highelgvattern can lead to the application
of sub-pattern. This fosters the asset of patteves more.

The work of Alexander had a great impact on otleddd, which resulted in several
attempts to translate the idea of formalizing $oh# of recurrent problems to other fields.

Gamma et al. (Gamma, Helm et al., 1994) establishedconcept in the field of
computer science. Known as the “Gang of Four” (GaRg authors introduced
software design patterns, which offered reusabletisos for frequent problems in
the field of object-oriented software development.

Gamma’s attempt to adopt the idea of Alexander tvadirst in the field of computer
science. In (Gamma, Helm et al., 1994) a pattedescribed as follows:

“A design pattern names, abstracts, and identififesskey aspects of a common design
structure that make it useful for creating a reusabbject-oriented design. ... It
describes when it applies, whether it can be applie view of other design
constraints, and the consequences and trade-offs oge.”

Gamma introduced a catalog of 23 patterns, whiehcategorized in three different
classes: Creational Patterns, Structural Patterth$8ahavioral Patterns.

The metapattern of Gamma is similar to Alexandand contains the following points:

» Pattern Name and Classification
* Intent

* Also Known As

* Motivation

* Applicability

e Structure

Design Pattern

» Participants

* Collaborations
* Consequences
» Sample Code
* Know Uses

 Related Patterns

After Gamma’s software design patterns, the idea walely adopted in software
development in general. Up to now, there are fetaimce programming language
patterns (Gabriel, 1998), program design patté@uplien and Schmidt, 1995), HCI
patterns (Ahmed Seffah and Forbrig, 2002; Weli€420idwell, 2005; Van Duyne,

Landay et al., 2006) .

Most of the developed patterns focus on the intestnacture of an application. They
are useful for the design of low-level models (eapde models), which are mostly
used by software developers. However in recentsygatterns have also appeared for
“high-level” models, like task models (Sinnig, 20@hd Ul models in general (Welie,
2004; Tidwell, 2005; Van Duyne, Landay et al., 2006

The user interface design community has been amfdar vigorous discussion on
pattern language for user interface design andlitgamgineering. An Ul pattern is an
effective way to transmit experience about recunpeoblems in the HCI domain.

In the HCI field, several groups developed pattleirmguages. In “The Design of

Sites” (Van Duyne, Landay et al., 2006) a set dfgoas with respect to all design

aspects of the design of web sites are collectbdy Ereated patterns for all kinds of
web sites, such as e-shops or private web sitespdtierns are hierarchically ordered
and divided into twelve groups. The levels of adugipn guide the user through the
design of the website by starting with the highegel called “Site Genres”, where the
user can select his/her genre of the site.

Welie’s patterns (Welie, 2004) are quite similarthie idea of Van Duyne, since the
patterns are arranged in a hierarchy and refereareedirected to lower level patterns
to support the user for creating interactive agpiocns. Welie also distinguishes
patterns between the kinds of application theyraaele for. There are web design
patterns and GUI interface patterns as well, anmihgrs. Thus, these patterns offer
very concrete recommendations on how to designtale

Design Pattern

Tidwell (Tidwell, 2005) collected over 40 pattermghich also describe how to build
suitable Uls. She also organizes her patternsaategories but does not introduce a
hierarchy like Welie or Van Duyne. The categories @ivided by the purpose of the
interaction, such as “Showing Complex Data” or ‘fidef Input From Users”. Hence,
the patterns are convenient for all kinds of agians and devices. The author offers
screenshot on how to instantiate the pattern derdifit devices and for different kind
of applications.

2.2. Task Patterns

2.2.1. Definition of Task Patterns

In (Sinnig, Forbrig et al., 2003) the authors pregub two different kinds of patterns
that are applicable for the user-task model.

Task Patterns describe the activities the user has to perforntewfursuing a certain
goal. The goal description acts as an unambigudestification for the pattern. In
order to compose the pattern as generic and fxabl possible the goal description
should entail at least one variable component. Aes variable part of the goal
description changes, the content solution parthef pattern will adapt and change
accordingly. Task Patterns can be composed outilmpatterns. These sub-patterns
can either be task patterns or feature patterns.

Feature Patterns applied to the user-task model describe the dietsvthe user has to
perform using a particular feature of the systeeattire is considered as an aid or a
tool the user can use in order to fulfill a taskaBples of these features can be
“Keyword Search”, “Login” or “Registration”. Featrpatterns are identified by the
feature description, which should also contain ade part, to which the realization
if the feature (stated in the pattern) will adapt.

The difference between task and feature pattersgh#ie, but noticeable. While task

patterns concentrate on a specific goal, the sastedan be accomplished in different
ways using different feature patterns. That is igature patterns are important as a
classification.

Similarly, the same feature pattern can be useattomplish different task patterns.
Therefore it is safe to say that there is a maryamy relationship between the two.
To summarize, Task patterns are concerned witlugke goals (what we need to do),
while Feature Patterns are concerned with the sybhavior (how we can do it).

Design Pattern

2.2.2. Task Modeling

Task models describe the tasks (and sub-tasksprahas to execute to achieve a
certain goal. A task model is a hierarchical sutet which expresses the activities a
user has to execute to fulfill this task. A goaurslerstood as a result a user wants to
obtain by executing a set of activities or an agieto retrieve information from a
software system. Most task models support alsoctireept of objects, which are
manipulability by the user to execute a certaik.t@bjects are also used to represent
the state of the system if it is necessary.

The asset of task models is founded in that it iser-centered approach. Task model
designers concentrate on users and capture theiti@s. Considerations about how a

user can reach a goal using a certain softwareraystin foster usability, which is of

great interest. Even without using task models Ubrgenerating process they help
capturing usability requirements, which are oftemegjarded.

The most common and well accepted notation for taskel is the Concurrent Task

Trees (CTT) notation of Paterno (Paterno, Mandiail.e 1997). A CTT model is a set of

tasks of different types, and relationships betwterse tasks. The most important
relationship is the composition: tasks are arrarigechrchically. This leads to a directed

tree, whose nodes are the tasks. Every task catedmmposed into sub-tasks, except
activities, and every task has a super task, exisepbot task. The graphical visualization
as a tree allows a faster interpretation, becaws®mws the hierarchy of tasks easily.

Paterno distinguishes between four types of tadksiavhich are depicted in Figure 2.

- 1 k=

Abstraction LIser Application Interaction

Figure 2. Task types in CTT

» User tasks: Tasks that are entirely performed by the user,do@$ not require
any interaction with the system. This usually inmed tasks where the user will
have to make a decision (a choice) before seleftorg a number of options.
These types of tasks are mainly for clarificatien, the reader of the model
knows where the user will have to make decisions.

» Application tasks. These are tasks entirely performed by the systieay, do
not require any user interaction. They indicate tha system is doing some

8

Design Pattern

processing work or calculations before the next tas be performed.

* Interaction tasks. Tasks that are performed by users interacting \hth
system. Here, we have both the user and the systestved in the task. A
typical example is when a user quits a proces$fiesystem: the user presses a
button which makes the system ending the process.

» Abstraction tasks: these tasks are complex, abstract, and do nairidiér any
of the categories above. When an abstraction tppkaas as an elementary
task in the tree, it indicates that the task wal dlecomposed in another task
model. It serves as a reference to this task model.

The temporal operators connecting the sub-taskeateltemporal relationships. CTT
distinguishes 8 temporal relationships:

 ChoiceT1[] T2: A choice temporal relationship signalghoice to be made
between task T1 and T2. After making the choice,catinue with the next
task. One of the tasks will not be performed.

e Order Independency T1 |=| T2: Task T1 and T2 can be done in any oaddr
both tasks will have to performed in order to coné.

e Concurrent T1 ||| T2: Both tasks can be performed concurreatlthe same time.

» Concurrent with information exchange T1 |[]| T2: Both tasks can be performed
concurrently, at the same time, but will need tockyonize by exchanging
information. This is also called synchronizatiorearlier versions of CTT.

* Enabling T1 >> T2: Before we can do task T2, we will firstve to do task T1.
T1 enables to do T2.

» Enabling with information exchange T1 []>> T2: Same as Enabling but with
exchange of information between the tasks.

» Disabling T1 [> T2: Also called deactivation. The task T1 dandisabled by
performing task T2.

* Suspend/Resume T1 |> T2: We can suspend the T1 task and movetlgitedask
T2. While doing T2, we can also go back and resiasieT1.

* |teration T*: The task T is iterative; it can be repeatednash as needed.

Design Pattern

* Finiteiteration T(n): The task T is iterative and can be repeaties.

e Optional task [T]: Task T is optional and doesn’t need to be peried,; it is
not mandatory.

* Recursion T: The possibility to include in the task specifioa the task itself.
Recursion appears when one of the sub-tasks afkah@s the same name as
the task itself.

2.2.3. An example of the Use of Patternsfor the User Task Model

In this section, we will discuss briefly an exampteillustrate how patterns can be
applied in task modeling. As an example, we useStach task pattern (Sinnig, 2004).
Suppose the user wants to obtain a subset of ataa system. The type of data is not
limited to a special class. The user has to knduighwkind of data he/she is interested in.
Therefore, the user has to enter several valusrtalate his query. After querying, the

application displays the subset of data that mattireequery.

<«<Feature=>
Search

!Input Figlds := SubSet (Object. Attributes) | ! Object := Object :Object == Object |
<<Feature=> | 7T <<Feature=> | <<Feature=> |
hulti-value Input Browse Search®

Figure 3. Interface of the Search Pattern (Sinnig, 2004)

As a solution, the pattern suggests to give the tmeepossibility to enter the search
guery. Based on this query, a subset of the sealecldata is calculated and displayed
to the user. The Multi-value Input Pattern (Pate@@00; Sinnig, 2004) may be used
for the query input. After submission, the resutsthe search are presented to the
user and can then, in turn, either be browsed (&i2004) or used as input for
refining the search.

In this Search pattern, the variable ‘Object’ iplaceholder for a particular object of
information that the user wants to search for. Hatern is also composed of some
other patterns; the Multi-Value Input pattern, Beanpattern, and recursively of itself.

10

Design Pattern

The variable Object in the Search pattern will bgigned to the Object of the Browse
and the Search pattern. Moreover, the attributethefSearch object are used to
determine the various Input Fields of the Multinalinput pattern, which is used to
conduct the search query.

From this pattern, we can specify the tasks fos fhattern as in the CTT given in
figure 4. In order to apply and integrate the taskicture, the pattern and all its sub
patterns must be instantiated and customized toufrent context of use.

nter-ClUery Results
I‘iﬁ 13 ﬁ-‘r Iﬂﬁ I —‘Iﬁ
MUt - Value Input Pattern Submit Browse search

Figure 4. Task Specification of the Search Pattern (Sinni§42
2.3. Benefit of using patterns

According to Vora (Vora, 2009) in the book “Web Aigption Design Patterns”, the
benefits of using pattern can be summarized agvisl|

Proven design solutions and guidance for their use: Patterns identify real solutions
and are more than abstract principles or guidelimeaddition, by making the context
and problem explicit and summarizing the ratiorfaletheir effectiveness, patterns
explain both how a problem can be solved and whkysthiution is appropriate for a
particular context. However, because it's a gen@are” solution, its use can vary
from one implementation to another without makinglaok “cookie-cutter” or
discouraging creativity.

Improved design process. Identifying design patterns and cataloging them help
designers to increase their productivity by redgctime spend “reinventing the
wheel.” Furthermore, if (user interface) componerts built for patterns in the form
of a design pattern library, designs can be redlizested, and iterated rapidly, and
can help shorten release cycles.

11

Design Pattern

Reusability and consistent interfaces. Developing a library of reusable user interface
components can facilitate development of consigtéatfaces both within and across
applications. This is particularly useful in larg®rporations with multiple and
distributed design teams, where different solutiongy be applied for the same
problems by different design groups, leading teirsistent interfaces among designs
produced within the same company. By cataloginga@mmunicating design patterns,
teams can increase consistency, predictability, usadbility of their designs and it can
serve as a corporate memory of design expertise.

A common, shared language: Patterns help supporting and improving
communication among team members from diverse glises by developing a
common language or vocabulary when explaining asclidsing the design solutions.
This is very important because user interface dessgy often work in an
interdisciplinary team with developers, applicatdomain experts, and users or user
representatives, and these groups typically lackramon terminology to exchange
design ideas and opinions.

Effective teaching aid and reference tool: Patterns also can be an effective way for
experienced designers to offer design guidanchdset without a formal background
in design. Because of the approach used in documgepatterns, by providing visual
and textual description, it is easier for noviceeiface designers to see examples of
their successful usage.

Usable applications: Finally, because patterns are based on a histbsuccessful
usage, their use can make the application more laishbcause interactions
recommended by patterns would be familiar to users.

12

Web Semantics Design Method

3. Web Semantics Design M ethod

3.1. Introduction

Web Semantics Design Method (WSDM) is a methodd&reloping website. It was
introduced by De Troyer and Leune in 1998 (De Troged Leune, 1998). This
method is an audience-driven approach, which tékesequirements of the users of
the web site as a starting point and uses thissis or the structuring of data and the
web site structure afterwards. WSDM uses modelsutiitout its complete design
process to represent both requirements and theeptuad structure. WSDM gives
consideration to the fact that web sites aliguhave different types of visitors
that may have different needs and requirementsilliagl these requirements leads to
higher usability and greater satisfaction.

WSDM method consists of a sequence of phases. &dr phase, there is a well-
defined method to identify the information and ftiocality needed for the web

system and the structure of the website in an gpj@ate way. The output of one phase
is the input of the following phase.

In this chapter, a brief discussion about the WSiSNrovided. The general idea of
all phases in WSDM is provided without going intetall. More detail information
can be found in (De Troyer, 1998; De Troyer andnegul998; De Troyer, 2001; De
Troyer et al., 2005; De Troyer, Casteleyn et &1Q07).

The present status of further research about WSRM also be consulted on the
WSDM web sitehttp://wsdm.vub.ac.be

In the chapter 5, the case study presents therdess of WSDM to design a web site.
The overview of the WSDM method is given in theif@5. It has a sequence of phases:
1. Mission Statement Specification
2. Audience Modeling
3. Conceptual Design
4. Implementation Design

5. Implementation

13

Web Semantics Design Method

Mission stetement
Specification

U

4)
Audience Moddling

[Audience } [Audience Classi

Classificatiol Characterizatic

!

Conceptual Design

Task & Informatior Navigational
Modeling Design

Implementation Design

Site Structure Presentation Data Design
Desigr Desigr

U

[Implementation]

Figure 5. Overview of WSDM method

3.2. Mission Statement Specification

The first phase in WSDM is to define the Missioat8iment. The goal of this phase is

to identify the purpose of the web system as wetha subject and the target users of
the web system. In order to formulate the missiatesnent of the web system the

designers should answer the questions:

* What is the purpose of the web system?

» What are the target users of the web system?

* What are the subjects of the web system?

The purpose of the website should be identifiedabse without a purpose it is
impossible to define the functionality and informat of the web system; moreover,
there will be no proper basis for making designisiens or for evaluating the
effectiveness of the web system.

14

Web Semantics Design Method

The target users of the web system are the usarsvthwant to address or that will be
interested in the web system. Different group a@rasnay have different information
requirements that should be reflected in the cdrdgkthe website. Identifying exactly
what users want and what they need could help ¢isggders to create and give the
appropriate information for the users. Therefore, vave to identify the target users
of the web site.

The subject (topics) of the web system is relatetthé purpose and the target users of
the web system. The subject must allow fulfillitng tourpose of the web system, and
it must be adapted for the target users.

The output of this phase is the mission statemerg.formulated in natural language
and must describe the purpose, subject, and tasges of the web systems. In fact,
the mission statement establishes the borderseofiélsign process. It allows (in the
following phases) deciding which information or éfionality to include or exclude,
how to structure it, and how to present it.

3.3. Audience M odedling

During Audience Modeling, the target users ideedifin the mission statement are
refined into audience classes. This is done by meémwo sub-phases: the audience
classification and the audience characterization.

3.3.1. Audience Classification

The target users identified in the mission statdnaea the input for the audience
classification. These target users are refinedctassified into audience classes based
on differences in their informational and functibrequirements. All members of an
audience class must have the same set of infornatand functional requirements.

In order to identify the audience classes the Valhg method is used:
Step 1: Consider the activities of the organizateated to the purpose of web system
Step 2: For each activity

1. Identify people involved
2. Restrict them to the target users

3. Identify their requirement

15

Web Semantics Design Method

4. Divide them into audience classes based on diftendormation or functional
requirements

5. Decompose the activity if possible and repeat 3tep

By doing this, a hierarchy of audience classesosstucted. At the top of this
hierarchy is the class Visitor that represents tathet users. The requirements
associated with the Visitor class are the requirgmhat are common to all users in
the web system. An audience class is a subclaasather audience class if the set of
requirements associated with the subclass contdinthe requirements associated
with the super class and some extra requirements.

3.3.2. Audience Class Characterization

After identifying all audience classes, the relévamaracteristics of each audience class
should be specified. Some examples of charactsristie the language, the age, the
experience with website in general, the lifestylef.the members of the audience class.
From, Some of these characteristics may be tradslato usability requirements while
others may be used in the Implementation Phasedigrdthe “look and feel” for each
audience class such as choice of colors, fonishgps etc.

3.4. Conceptual Design

At this point in the method, the designer has idiedt all the requirements and
characteristics of the different target users (@mock classes). The goal of the
Conceptual Design is to turn these informal requéets into high level and formal
descriptions from which later on the web systemlmagenerated.

The Conceptual Design covers the conceptual “whdthew” of the web system. The
conceptual “what” is covered by the Task Modelingb-phase which models the
information and functionality. The conceptual “hove’ covered by the Navigational
Design sub-phase which models the navigationattsirel of the Web system.

3.4.1. Task and Information M odeling

The purpose of the Task and Information Modelintpisnodel in detail the different
tasks the members of each audience class needabldéo perform and to describe
the data and functionality that is needed for thasks.

An adapted version of the task modeling technigomcGrrent Task Tree (CTT) is used to

16

Web Semantics Design Method

model tasks in WSDM. There are some things fronotiggnal CTT (has been discussed
in the previous chapter) that have been modifieldciianged in WSDM.

» The first one is the categories of tasks. WSDM duasuse all four different
kind of task categories as in the original CTT téasl WSDM uses only three
categories:

o0 Application tasks: Tasks executed by the applicatio
0 Interaction tasks: tasks performed by the userstbyaction with the system

0 Abstract tasks: tasks that consist of complex ds/

& 2. L

Abstraction Application Interaction

Figure 6. Task types in WSDM

» The operators are used to express the temporaioredaip among tasks. In
WSDM the using of the operators is not exactlyrathe original CTT. There
are some differences:

o The iteration (T*) is changed slightly. In CTT threeaning of this operator
is that the action is performed repetitively uittis deactivated by another
task. However, in WSDM this operator is used with meaning that the
task can be repeated several times and ends whaemn#in charge (the
user or the web application) decides not to rejreatask.

o There is new operator in WSDM, the transactienT <): the task must
be executed as a transaction. The whole task @imgall its subtasks) is
executed completely, or in case there is an eitrehould be rollback; no
change is applied.

» Furthermore, tasks decomposition is stopped edhem in the original CTT
method. In the original CTT method, the leavesh# tree correspond with
elementary user interactions or application fumaldy. In WSDM, a leaf
corresponds with an elementary task, which is la d@sling with one type of
information.

By using this adapted CTT version, the task modedscreated and decomposed until
elementary tasks are obtained.

17

Web Semantics Design Method

When the task models are completed, for each el@metask, an object chunk is
modeled to describe the information and functidpatieeded to complete this task.
WSDM uses Web Ontology Language (OWL) to modelitfiermation needs. Since
OWL does not have a commonly accepted graphic inaota?VSDM uses the Object
Relation Model (ORM) graphic notation to presem ithformation modeling in OWL.
Because ORM and OWL are very close, the mappingn fORM to OWL is
straightforward.

WSDM also extends ORM to provide some extra natatidor expressing the
functional needs of a task. For the more detaiualius can be found in (De Troyer,
Plessers et al., 2007).

3.4.2. Navigational Design

The goal of the Navigational Design is to define tonceptual structure of the web
system and to model how the members of the diffemadience classes can navigate
through the web system and perform their tasks.

For each audience class a navigational track iagt@te This can be considered as a
sub-site containing all and only the informationdafunctionality needed by the
members of the associated audience class.

From all the audience navigational tracks, the gitional model is created to present
the structure of the website.

3.5. Implementation Design

The goal of the implementation design is to com@etithe conceptual design with
the necessary details for the implementation. Tinglementation design consists of
three sub phases: the Site Structure Design, theeRtation Design and the Logical
Data Design.

3.5.1. Site Structure Design

In this phase, the designers will decide how tos@né the components from the
navigational model in web pages. By default, eacmmonent will be placed on a
page. However, the designers can group some caraamyvigation components on
one page or they can present one component overatif pages.

The characteristics of each audience class camalsa tinto account when deciding

18

Web Semantics Design Method

which information should be presented on a page.ekample, for old people, the
information presented on a page should not be toohmThis leads to the idea of
splitting a component and present it on severa¢pag

At this step, several site structures can be adgaterder to support different devices,
context, or platforms. For instance, with the lirit the screen size, we can not
present the same amount of information on a mal@igéce as on a regular computer
screen. This requires another site structure tegotein a suitable way information on
a mobile device.

3.5.2. Presentation Design

The Presentation Design phase defines the lookesstaf the web system, as well as
the layout of the pages (i.e. positioning of patgments). To enhance a consistent
look and feel, templates are used. Therefore, pagplates are defined.

In a web system there are many different kindsages like a home page and leaf
pages. For each of these pages a template is drddtese templates are subsequently
used in the page design, when for each of the pégfeted in the site structure model
the layout is defined.

The layout describes how the information and fanetity (modeled by means of the
object chunks and) assigned to a page (by medahe abmponents) should be laid out on
the page. To specify style, WSDM currently reliaSGascading Style Sheets (CSS).

3.5.3. Logical Data Design

In the Task and Information Modeling sub-phase dbgct chunks are created to
present the information that are used in each aaswell as in the application. The
different object chunks are related by means @ference ontology that contains the
different concepts used in the different objectridtsu

While generating the logical data schema, it isartgmt to keep track of the mapping

between the reference ontology and the logical dateema, because later on (in

the implementation phase) the conceptual queridsugdates expressed in the object
chunks need to be translated into queries and epdatto the logical database schema.
By preference, this process is supported by a CBSE-in which case the designer is

not burdened with the creation of the logical dataema and the mappings.

In case there is available data from another sotinceinformation can be considered

19

Web Semantics Design Method

as external source and it is only needed to defieemapping between the reference
ontology and this data store.

3.6. Implementation

The final phase of WSDM, the implementation, tagae of the actual realization of
the Web system by using a certain implementationremment (HTML, WML for
examples). Based on all the information coming fritke@ models resulting from the
previous design phases and based on the available, the web system can be
generated automatically.

20

Part |1

Resear ch

Integrating Design Patterns in WSDM

4. Integrating Design Patternsin WSDM

4.1. Introduction

WSDM is a method to design web system by goinguiinoa sequence of phases. In
some phases, design patterns can be used to ateellbe design process. In the
Implementation Design, web patterns can be usgulésent information to the users
in convenience way. For example, paging patternli@v2004) presents the results
grouped in pages with a fixed number of items alhmlvathe users to move easily
from one page of items to another; breadcrumb patfé/elie, 2004) shows the
hierarchical path from the top level to the currpage and make each step clickable.
These patterns at HCI level could support the ubgreffering high usability and
greater satisfactions. However, before the pattatrthe user interface level can be
used, at the task level, the designers have to Inleel¢éasks that users need to perform
and the information associated with these taske. diesentation level only reflects
the task level. The success of a web site is depgndot only on its interface, but
also on the quality of the task models.

Moreover, in WSDM, from the Conceptual Design ph#se navigation and the
structure of the web site are derived. Therefdre, €onceptual Design phase plays
and important role in WSDM. Using design patterihis phase, more specifically, in
the sub-phase “Task Modeling” will not only helpetdesigners modeling the tasks
more quickly but will also improve the design presén WSDM.

In this chapter, a proposal approach for integgatask patterns in WSDM will be
presented.

In order to integrate task patterns in the Conadddesign phase in WSDM, first task
patterns need to exist. Therefore, we will firstds on the definition of a task pattern
for its use in WSDM. A task pattern for WSDM consjslike a normal task
description, of a task model and its associatedablghunks. The task models as well
as the object chunks in such a pattern are givam iabstract (i.e. generic) way. When
the pattern is used in a concrete context, it maydcressary to adapt and extend the
pattern’s object chunks in order to create the @Rrcobject chunks for the current
context of use. Moreover, the task model from #sk fpattern needs to be instantiated
to create the concrete task model for the currentext of use. From this, the task
navigational model is created.

22

Integrating Design Patterns in WSDM

In the following part, we first describe how a patt can be defined (section 4.2).
Next, the process of integrating task patternsh@ €Conceptual Design phase is
described in detail (section 4.3).

4.2. Pattern Definition

Since the design pattern is used in many diffefiefds from architecture to software
engineering and HCI, several different formats haeen used for describing patterns.
The pattern description format used in Sinnig (8§jn2004) is different from other
formats since there are some added elements terpréne task interface and the task
model.

In order to describe task patterns in WSDM, theepatdescription format is adapted
with some new elements to describe the task mothedspbject chunks, and the task
navigational model. The pattern description forived the following elements:

» Pattern Name: The pattern must have a meaningful name. Gooterpat
names form a vocabulary for discussing conceptostiactions.

» Problem: Statement of the problem that the pattern addcess

o Context: Description the context in which the pattern che applied.
Designers, when considering a new design, use oméext description to
determine if a particular pattern is appropriate.

» Solution: This section describes the solution the patterersffMoreover, it
shows how the pattern works and how the usersaicttevith the system in
order to achieve the certain goal.

* Rational: Briefly describes how the use of the pattern impsothe task
structure and how the goal can be accomplishedsimg uhe pattern.

e Structure: This part presents thask structure, the object chunks, and the task
navigational model of the pattern.

» Related pattern: List of related patterns, which might baredecessor
patterns whose application leads to this pattesagcessor patterns whose
application follows from this patterrglternative patterns that describe a
different solution to the same.

In the chapter 5, a list of patterns created is thesis will be presented using this
pattern description format,

23

Integrating Design Patterns in WSDM

4.2.1. Pattern and notation

Let us start with an example. A typical task a ymforms in many web applications is
selecting something from a list. The task “selemini’ embodies this basic task and in
principle can be used for different kinds of iteffts example to select a book, select a
category...). Therefore, it would be useful to creafmattern for this task such that it can
be reuse in many different applications and fdied#nt kinds of items. In order to create
such a generalized “Select Item” pattern we mustratt from the particular item we
want to select, and replace it with a generic égia

The following figure gives an example of the tasktern “Select One Item” and the
notation used. The left part of the figure showes iton used for a pattern; the right
part of the figure gives the details of the pattern

This pattern has only one user task: “Select Iteffiis task is a common and basic
task that users usually perform in order to sededtem. To make the type of the item
to select variable, the variable “Object” is usedrdicate the item type (e.g., book,
category). Variables are put between square bracket

5) @
“EE Sglect One ltem [Ohject]

Select One Item
ko

aelect Iterm [Ohject]

Figure 7. Example task pattern and the notation

4.2.2. The Object Chunks

Similar as for a regular task model in WSDM, an &bjChunk is given for each
elementary task in this pattern. For the examplergithe object chunk is shown in
the following figure.

*Io:!{*o} T T
has is of y Ohjecttame
T -~
7 ™ _

Select ltem IN {*0}:Objec
OUT *0:0Object

Figure 8. Object Chunk “Select One Item”

24

Integrating Design Patterns in WSDM

The “Object” variable in the pattern presents thsti@ct object that must be replaced
by a concrete object in each context of use. H@bject” needs to be replaced by a
concrete Object Type (e.g., Book) and ObjectNanezisad¢o be replaced by a naming
Object Type for the concrete Object Type (e.g., Hatte).

4.2.3. The Navigational M odel

From the task model given for a pattern, the cpording task navigational model
can be created using the same technique as usedrégular task model in WSDM.
The task navigational model for the example patt8eiect One Item” is given in the
following figure.

Select Iterr
in {*o}

——» Select Item ——»

Figure 9. The Navigational Model for the task “Select Onanrlte

4.3. The Process of Pattern Application

Suppose that we have a library of task patternstiaeyg are ready to be used in the
task modeling process. A list of task patternsvemin chapter 5.

In order to create a task model for a particulgsliaption, the following process is
proposed and it consists of two main steps:

1. Selection: An appropriate pattern is selected to be appled task model. By
studying the context of use, the designer can detmdselect and apply a pattern to
express some tasks without the need to desigont the scratch.

2. Adaptation: A pattern is an abstraction that must be insteedial herefore, in this
step the pattern will be adapted according to tmgext of use. In a top down process,
all variable parts need to be bound to specifit@sl resulting in a concrete instance
of the pattern.

25

Integrating Design Patterns in WSDM

4.4. Example

In order to clarify the previously introduced presewe will now illustrate it with an
example. The task “Select and View Book Informatiisrused for the demonstration.

4.4.1. Selection

In order to view a book’s information, the user @loselect a book from a list of
books. After that, the system will display the datdormation of the selected book to
the user. For this purpose, the patterns “Selece @am” and “Display Item
Information” given as example patterns can be used.

After selecting the patterns “Select One Item” dBisplay Item Information” to
model the task “Select a Book” and “Display Bookohmation”, task model of the
parent task “Select and View Book information” igaq in the following figure.

o

ele nd Yiew Book Information

g - g

Select One ltem [Book] Display Item Information [Book]

Figure 10. Task Model for the task “Select and View Book imfation”

In this task model, the Book object type replad@bject” in the patterns “Select One
Item” and “Display Item Information”.

4.4.2. Adaptation

4.4.2.1. Object Chunk Adaptation

If we go back to the sectiopattern definitionabove, there is an object chunk
associated to the task pattern “Select One Iteivjeéad chunks for “Select Item”.

The default object chunk, given in the pattern ‘f8elect Item”, only models the
display of the ObjectName for the Object. Now foe turrent context of use, the task
“Select Book” should not only display the book namg also some other properties
of the “Book” object. For instance, the designesoalvants to display the book’s
image and the book’s description. Therefore, & $tep and depending on the needs
of the application, the designers can decide toradce information and extend the
object chunk for this task. This means that he adlhptthe object chunk in the task

26

Integrating Design Patterns in WSDM

pattern to the current context of use. Furthermateen the system lists books for the
users to select one book and view its informattbme, designers can decide that the
users can click on the book’s name or the book'agento select one. This decision
leads to the adaptation of the object chunk “Sddectk” as follow.

(P N

has |i,-;|;uf' I-—{Bnnk}lmle}

- A

- T

has [isef F——{ Image)

e o PO

gt T

s [is-nf I—\rDescﬂptian}

- o5

= — =
Select Book IN {*b}:Book

\ OUT *h:Book Y,

Figure 11. Object Chunk “Select Book”

-

has I i of I—(B:-:k;:uft) \

A

has eoli]'u:ir| wrote

- e
-— hs | isof I—{p:nhomuf}

co-mthor l wrote - -

L)

-

-
. , L
has is of L— Diescription)
| ll"""-.. -
— =

ensise
has |uﬂ P—\Img)}
~ -

-
F ategory 1 -
has | B of E— has | 5 of I—Qﬂewﬂuﬁ

g

e |

; - .
hs [sof F—{ Price)
B T
P
e T - ———
has wof l—/ Weizht his is of ' i
| IH“-.._.,-'} i:sn "_\xLengthH}

B E—

s |isof f— b |wof J—{ Wik)
e - ‘:':—_ ‘_’:‘
has i 15 of I—{ Height H}
o, PR
Qisplay Book Info IN *b:Book /

Figure 12. Object Chunk “Display Book Info”

27

Integrating Design Patterns in WSDM

Similarly, for the “Display Item Information” patte, we have the object chunk
“Display Book Info” for presenting to the users tthetail information of the selected
Book. In the pattern “Display Item Information”, éhobject chunk “Display Item
Info” is modeled with some default information likke ObjectName, Description,
and CategoryName. Here, we want to present togbesumore information about the
Book such as the AuthorName, Image, Price, etcrefbee, the “Display Item Info”
is expanded during adaptation. The result is theobkchunk “Display Book Info”
modeled as in figure 12.

4.4.2.2. Task Instantiation and Expansion

The task model above (figure 10) provides a higkllef abstraction of the task “Select
and View Book Information” in which we model theska “Select a Book” and “Display
Book Information” as pattern tasks. These patteessl to bénstantiatedn order to create
the full task model.

The following figure presents the full task modet the task “Select and View Book
Information” after we instantiated and expanded plagterns “Select One ltem” and
“Display Item Information”. Such a model is calletllly instantiatedtask model.

o

/@W Book Information

[@

lect One Book Otsplay Book Information

&

S

& —

2 -
A
oelect Boalk DiS[:HEI"_-,-" Book Info

Figure 13. The fully instantiated task model for the task
“Select and View Book information”

From this detail task model, the task navigatiorded@an be created. Together with
the object chunks that we have created in the pusvistep, the task navigational
model is given in the following figure.

28

Integrating Design Patterns in WSDM

SelectBook
in {*b} [
i

Display Book Info}

in*b
J

{*0}| selectone| *b .| Display BooK
Book "| Information

out *b

Select and View Book Information

Figure 14. The task navigational model for the task
“Select and View Book Information”

From this task navigational model, we realize thatcomponents “Select One Book”
and “Display Book Information” are already preseniie the task navigational model
of the “Select One Item” and “Display Item Infornmat” patterns. In order to make it
simpler and easier, a new concept and notatiomtr®duced called thépattern
component”— an abstract component that corresponds to #kertavigation model
fragment of a pattern. A dotted-line rectangle andharacter ‘P’ inside a circle
present this notation.

Figure 15. The notation for a “pattern component”

With this new notation, the task navigation modeha can be modeled as follow:

SelectBook
in {*b} Display Book Info
out *b in *b

LR Display ltem
; Information@

! [tem

Figure 16. The task navigational model with the “task compdhen

29

Integrating Design Patterns in WSDM

In a task pattern, one or more object chunks aecasted with it. In the Object Chunk
Adaptation step, all these object chunks are itistaa in the current context of use.
These object chunks, if necessary, can be prowd#t navigational model to indicate
the component that they are associated with. Imévegational model above, the object
chunks “Select Book” and “Display Book Info” areopided to indicate that they are
used by thepattern component$Select One Item” and “Display Item Information”.

Actually, these object chunks can be derived frbetasks “Select One Item [Book]”

and “Display Item Information [Book].”

4.5. Summary method

The above process can be summary as follow:
- Step 1: Selecting a pattern to be used in thertasdeling
- Step 2: Adaptation

o Object chunk adaptation: adapt the object chunks fthe pattern to the
current context of use

o Task instantiation: Each task pattern will be inftged resulting in a
full task model.

The task navigational model can then be derivethftbis instantiated task model.
However, it is also possible to omit the task exgi@mand use the navigational model
for the pattern as a task pattern component intdsk navigational model that is
derived from the task model obtained before theaagion.

30

List of Patterns

5. Alist of Patterns

In section 4.2 we have defined the pattern desenigbrmat. In this chapter, a first
list of task patterns will be presented. Thesegpast are derived and defined during
the design process of the case study. When elahgridte case study, these patterns
were useful and saved me a lot of time. | didnithto model or create the tasks that
appeared more than once; | just had to select dtterp and use it in the case. Of
course, after selecting the patterns that | hadd@pt it to make it suitable for the
context of use.

As only intended as a proof of concept for my sttityt patterns can be integrated in
WSDM, the list of patterns presented is limited #mel patterns should be evaluated and
improved. However, these patterns are common asttaab enough to be used in
different cases. | have applied these patternsyincase study (see chapter 6). In the
following will present the first list of patterns the format has been discussed in chapter 1.

5.1. Register Pattern

Pattern Name: Register

Problem: Web applications often need to uniquely identigers in order to provide
personalized content, or opportunities to condoches tasks (e.g. a purchase), or to
prevent unauthorized access to personal and senisiftormation (bank account, health
record), or to increase convenience such as stbiilirgy and shipping address of users,
so that they do not have to retype this informag&ach time they place an order.

Context: This pattern is used when you want to provide ggootunity to end-users
to register to the system.

Solution: Registering is usually performed by first entersmgne personal information
that will be validated by the web system and then dystem will optionally provide
some feedback. After a successful registrationetiteuser is known as a new user and
will have an account for the system.

In the subtask to enter the users’ informations ivery important that some data is
mandatory for users to fill in. Often sites ask sdirts of personal details such as
username, email address, and password. The reqaofedhation is not the same in

every applications; it is related to the purposthefsite.

31

List of Patterns

After providing the personal information, the ussubmit this information to register

as new user of the website. Depending on the irdoom that the user provided, the
system will validate the information and can giesdback information to indicate

possible invalid information (for example the usene already exists) or some errors
that occur during the register processing.

Rational: With the registered account, the web system cavige personalized
content to your users. Account registration alldassremembering details about the
user; product wish lists, preferences, interekippsg and billing addresses, and more.

Structure
Task Model
/M
E = - 13 -
EEE e
Enter User Information Walidate [Feedback |
Figure 17. Task Model for the task “Register”
Object Chunks
~ A A)
has s of S UserlD :l
#d=NEXT
(A PR
has is of Y Userl ame
L *I:T.:? -
User -] = e
#y=HE n
- P -
+ - - .
has is of -ﬁf Passerord]
T gl 5
1 .
kEnter User Information OUT: *u:User)

Figure 18. Object Chunk “Enter User Information”

32

List of Patterns

Task Navigational Model

__

Enter User Feedback
Information TXT
out *u |
f Feedback
*U i

EnterUsel

! Information
Registe Validate

Figure 19. Task navigation for the task “Register”

Related Pattern:

Login: can be used afterwards to allow the end-tsdogin to the system using the
created account

5.2. Login Pattern

Pattern Name: Login

Problem: In some systems, users need to identify themseivesler to access
private data or to perform authorized operations.

Context: This pattern can be used to allow end-users tlreaaleady known to the
system (i.e. have an account) to log into the systsing this account.

Solution: In order to login into the system, in general, tieer should enter his
username and password a (sometimes of the userisaare email address). After
submission, the application validates the accounfarimation and provides feedback
whether login was successful or not.

Rational: By using the Login Pattern, the users can uniquentify themselves.
Therefore the application can validate and autleotie user to perform operations
according to the user’s authorization.

Structure

Task Structure

33

List of Patterns

E*_" B Ll [=
s s

Enter Account Information Yalidate Feedback

Figure 20. Task Model for the task “Login”

Object Chunks
e e)
/ Userbame ™
hs | wor i Vel
3 | — - T
: ,; ;5\
has [1 of I—\M a:m _,"I
= - il
L Enter Account Information OUT *u:User)

Figure 21. Object Chunk “Enter Account Information”

Navigational Model

———

Enter Account Informatio
' out *u Feedbac :
| z TXT i

Enter Account | *U *u
Feedbac [—1»

Y

: Information :
. Login Validate

Figure 22. Task navigation for the task “Register”

Related Pattern:

Register: can be used previously to allow an emat-ugo is not yet known to the
system to create an account.

5.3. Sdlect Item

Pattern Name: Select Item

Problem: The users want to select item(s) from a list.

34

List of Patterns

Context: This pattern is used when a user should be aldelézt an item from a list of
items to perform some action on it or when a useulsl be able to select multiple items
from a list of items to perform some action on geiems (e.g., delete multiple items)

Solution: There are two types of this pattern: Select Omenland Select Multiple

Items. They have the same structure; that is oaeinteraction task “Select Item” to
select one item from a list or “Select Multiplerttéto select multiple items. In the
task “Select Multiple Item”, of course, the userosll have the option to select
multiple items. This is specified in the object nkwassociated with this task.

Rational: With this pattern, an item, respectively a lisiteims (depending on which
type of pattern we use) can be selected by theamkwill be returned.

Structure
Task Model
sglect One ltem [Object] Select Multiple Items [Object]

Select itern [Ohject] elect Multiple ltem [Chiject]

o]

Figure 23. Task Model for the task Figure 24. Task Model for the task

“Select One ltem” “Select Multiple Items”
Object Chunks
*o = I{*o} Te—
- S
@—{ Has [is of l_(\\GhjectHnm]
. U
Select One ltem IN {*o}: Object
OUT *0:0bject

Figure 25. Object Chunk “Select One Iltem”

qor=tgor
Ih,as | 1 of "_{\Ohjecﬂﬁlmle 1
e

=

Select Multiple Items IN {*o}: Object
OUT {*0’}:Object

Figure 26. Object Chunk “Select Multiple Items”

35

List of Patterns

Task Navigational Model

Select Itenr
in {*o}
out *o

——»| Select Item ——»

Figure 27. Task navigation for the task “Select One Item”

Select Multiple Item:
! in {*o}
out {*0’}

—>Select Multiple Items ———+——

Figure 28. Task navigation for the task “Select Multiple I1téms

Related Pattern:
5.4. Update Item Infor mation Pattern

Pattern Name: Update Item Infor mation

Problem: Sometimes,a user should be able to change or update thematon
available for an item.

Context: This pattern can be used whee item for which the information needs to
be updated has already been identified.

Solution: Show the available information of the item to theemandprovide the
ability to update this information.

Rational: With this pattern, the information of items on theb site can be kept up to
date.

36

List of Patterns

Structure

Task Model

©

Update Item Information [Ohject]

S

pdate lterm Info [Ohject]

Figure 29. Task Model for the task “Update Item Information”

Object Chunks

[0 pmTT
Thas [s of OhjectM ame “:'
w *nend
- .

—— =

Obi ﬁ'h /D"l"' _F_ H -
et | , erenption
o has 1 af l—*\ 27 f;
el . ! —

fm — e
has | isof 1:?:!’3’ has | is of I_x Emt'mfﬂum#j
_— -

9 Update Item Info IN/OUT *0:0Object

J

Figure 30. Object Chunk “Update Item Information”

Task Navigational Model

infout *o

J

——» Update Item Informatiotr —»

[Updat(Item Informatior}

Figure 31. Task navigation for the task “Update Item Infornaati

Related Pattern:
Select Item: this pattern can be used to selectitéme for which the information
should be updated.

37

List of Patterns

5.5. Display Item Information Pattern

Pattern Name: Display Item Information
Problem: Showing detail information of (a) particular iten{s the user.

Context: This pattern can be used whtre item(s) for which the information needs
to be shown has already been identified.

Solution: There are two types of this pattern: Display Iterfotmation and Display
Multiple Items Information. This task just simpliiavs some basic information of an
Object(s). In a specific application, dependingtloe needs, other information can be
added when adapting this pattern.

Rational: In order to gain information about the object(s)must be inspected. An
object is externally represented by its attrib@ied methods. Thus, object information
must be derived from its attributes and methods

Structure
Task Model
Display Item Information [Ohject] Display Multiple Items Information [Ohbject]
- -
ST .y
Display ltem Info [Ohject] Display Multiple Items Info [Ohject]
Figure 32. Task Model for the task Figure 33. Task Model for the task
“Display Item Information” “Display Multiple Item Information”
Object Chunks
4 I__.-ﬂ' =TT e)
has [s0f |——Objectiame}
— -
H__ S P ~
i in Category o e a;-:;\
[T T
L S
L Display Item Info IN: *0:0bject)

Figure 34. Object chunk “Display Item Information”

38

List of Patterns

s ==~ N

——

Ohbject : T T
has ’ i of |—k1;.’-"hts¢npt1-:-j !

, -
\ - =
\‘[has ’ is of has | is of I—‘Eﬂategonrﬂuf_t}
Snfifaliiie
L Display Multiple Item Info IN: {*o}:Object)
Figure 35. Object chunk “Display Multiple Item Information”
Task Navigational Model
. [Display Item Info Display Multiple Items Info]
| |infout *o infout {*o}
i *0 . * i i * . . * i
Display ltem |*0 {*o} Display Multiple | {*o} .
' Info Items Info

Figure 36. Task navigation for the Figure 37. Task navigation for the task

task “Display Item Information”

“Display Multiple Items Information”

Related Pattern:

Select Item: this pattern can be used to selectt¢ne(s) for which the information
needs to be shown.

5.6. Confirm or Cancel Pattern

Pattern Name: Confirm or Cancel

Problem: For performing some important operation, you wardgk theuser to either
cancel or confirm the operation.

Context: This pattern is used to get the confirmation fréw® tisers before process an
important operation. For example, before procesdeigte an item, the system should
print out a message to notice users and get thisioledrom the users.

39

List of Patterns

Solution: Provide the task in order to ensure that the useast to continue
processing an important task (e.g., placing anrdtmeproviding to the users a way to
confirm or cancel the continuation of the process.

Therefore, in this task, the system displays a agsdo the user to ask him/her if
he/she want to continue the process (task). If uber confirms, the system will
perform the task, otherwise the system will skig task.

Rational: By providing this pattern, we can protect the uskon performing
unwanted actions.

Structure
Task Model
orifiem or Cancel < Tasks [Ohject]
Ask Confirmation [«Tasks [Ohject]]
Figure 38. Task Model for the task “Confirm or Cancel”

Object Chunks

;“'\En:u1:1.]"|.1:11:1,adi:;::w:'h

N vefe? !
{ Ask Confirmatior OUT *cf:BOOLEAN J

Figure 39. Object Chunk “Ask Confirmation”

Task Navigational Model

TXT Out *cf

\ j <Task> [Object]
~ Ask cf r 1

[Confirmation Questio}v [Ask Confirmation}

v

Confirmation

Confirm or Cancel

Figure 40. Task navigation for the task “Confirm or Cancel”

40

List of Patterns

In this task navigation model, the task <Task>[Ot}jss modeled as a task navigation
model, which will be derived from the task model §dask>.

Related Pattern:

Add Item, Delete Item: these patterns can be usedmbination with this pattern.

5.7. Add Item Pattern

Pattern Name: Add Item
Problem: Users want to add new content to the web system.

Context: This pattern can be used to save new content iakasystem. For example,
add new book (in e-commerce website), add newl@aticnews, etc.

Solution: The user has to provide some information for tbe bject; the user can
confirm to save this new object or cancel the apanain which case no new Object
will be created

Rational: Provide the users a task to create new contentassal allow them to
confirm that they want to add the new item to th&team. This pattern is modeled as a
transaction task so a new item is added if thesusenfirm their action, otherwise no
item is add in the persistent store.

Structure

Task Model

&

mt]

— o «—
Add Item Info [Object] Confirm or Cancel <Add> [Object]

Figure 41. Task Model for the task “Add Item”

Object Chunks

41

List of Patterns

7 =3 ™
e o S |
15 o b—
*d=NEXT. }
(A 61:.‘ _N“ ~
. S Ubpectame §y
15 of I—\ R i
N il
m e
is of | / Desenption 4
% #g=7 ! dm —
- > o RN c=!
A | e
is of Category has is of ‘—'-Categor}rﬂanle}
*e Sty
e — ot
(A
of creatioy datE:::O ;

kAdd Item Infc OUT: *0:0bject

Figure 42. Object chunk “Add Item Info”

Task Navigational Model

Add Item Infc Ask confirmatiot

out *o *cf: BOOLEAN !

/ *0 Cf) """" |

. ! onfirm of :) !
—E——> Add Item Info —h Cancel : _,_>

i Add Iten

Figure 43. Task navigation for the task “Add Item”
Related Pattern:

Confirm or Cancel: this pattern is used to allow tiser to confirm or cancel the add
operation

5.8. Delete Items Pattern

Pattern Name: Delete Items

42

List of Patterns

Problem: Users should be able remove items from the system.

Context: This pattern can be used to delete one or multipies that are stored in the
system.

Solution: There are two types of this pattern: Delete Onm lsnd Delete Multiple
Items. Provide users a task to remove unwantedsit&ims task is modeled as follow:
the user first selects (the) item(s) that he wanmteemove and then the Confirm or
Cancel pattern is used to confirm or cancel thetdedperation.

Rational: In a web system, there may be a lot of informationorder to keep the
system up to date, it must be possible to rem@&msgtthat are not needed anymore.

Structure

Task Model

o

elgte.One Item [Ohject]

-""‘g [
_]..:.' []>> .]:.J

Select One Item [Ohject] Confirmor Cancel <Deletednes [Ohject]

Figure 44. Task Model for the task “Delete One Item”

-
g

Where <DeleteOne>[Object] is the following task: :
Delete One [Ohject]

&

/&Wtems [Object]

CE g
= {1 ‘iﬁ

Select Multiple Items [Object] Confirm or Cancel =Deletetuliples [Ohject]

Figure 45. Task Model for the task “Delete Multiple Items”

Where <DeleteMultiple> [Object] is the followingsta =g _ _
Delete Multiple [Object]

43

List of Patterns

Object Chunks
Cibject
*o REMO
Delete One IN: *0:0bject

Figure 46. Object chunk “Delete One Item”

Chject
{*o} REMOVE

Delete Multiple IN {*0}:Objects J

Figure 47. Object Chunk “Delete Multiple Items”

Task Navigational Model

Select One lte Delete One
i out *o in *o i
Select . _*o___! Confirm or Cancel | !
o One ltem ! : <DeleteOne>[Object]

__

Select Multiple Item Delete Multipl
' |out *o in {*o} :
e s S I
N Select ! Confirm or Cance P)! !
" Multiple ltems~"! . <DeleteMultiple>[Objects]

Figure 49. Task navigation for the task “Delete Multiple Itéms
Related Pattern:

Confirm or Cancel: this pattern is used to allow thser to confirm or cancel the
delete operation.

44

List of Patterns

5.9. Show Results Pattern

Pattern Name: Show Results

Problem: Users need to view the results of some operatittesthe results of a
search or browse.

Context: This pattern can be used to show information aboator more items.

Solution: Some information of the item itself is shown. Adaildt the name and a
description is shown, but depending on the conaretgext of use, other elements of
the item may be included such as a summary, latate&tegory, author etc.

This task simply reuses the pattern “Display Mugtiftems Information” to display
all items from the result.

Rational: With this pattern the results from other operatioas be presented to the
user. For example when a user has done some seagchysing a Search Box or
Advanced Search, they need to be able to inspectsults of this search.

Structure
Task Model
ETW Results [Object]
I-E\.]
Display Multiple tems Information [Ohject)
Figure 50. Task Model for the task “Show Results”
Object Chunks
s L h
has | B of I—: OhjectM ame }
-
Ohject = L
{*a} - ~
| has | 1 of k—: Description }
-—— M
Display Multiple Items Information IN: {*0}:Object
- J

Figure 51. Object chunk “Display Multiple Items Information”

45

List of Patterns

Task Navigational Model

Display Multiple
ltems Information
in {*o}

* 1 - . 1
{ Ot; Display Multiple Items:
Information |

Figure 52. Task navigation for the task “Show Results”
Related Pattern:

Simple Search, Advanced Search, Browse: theserpaitan be predecessors of this
pattern.

5.10. Browse Pattern

Pattern Name: Browse
Problem: The users need to find an item or specific inforamat

Context: The pattern is applicable for allowing searchingifems that are grouped
into a set of categories. By selecting a categoeyusers can view a subset of items
that belong to the selected category. In this céeprowse pattern is more suitable
than the search pattern.

Solution: List the categories and give the user the posilidi select a category.
When a category has been selected, the subsetno$ ithat belong to the selected
category are shown.. THehow Resultpattern is used to show information on the
item’s attributes.

Rational: The search for items is narrowed by first allomiogelect a category.
Structure

Task Model

46

List of Patterns

5 g
= [- [T iﬁ

Select One ltem [Category] et ltems in Category Show Results [Ohject]
Figure 53. Task Model for the task “Browse”
Object Chunks
See the object chunks in the patterns Select @nednhd Show Result

Navigational Model

__

[Select Catego?y Get Items ﬂ [Show Resultj

Category in {*o}

o <\ {0} :
. | Select On: : Show @
Lo Item ®cat | Results

Figure 54. Task navigation for the task “Browse”

Related Pattern:

Simple Search, Advanced Search: these are alteeraditerns
5.11. Simple Search Pattern

Pattern Name: Simple Search
Problem: The users need to find an item or specific inforarat

Context: This pattern can be used if you want to give thssimlity to the user to
search for information using some keywords.

Solution: From the keywords that the user provides, the keamgine will create the
guery (this is done by using the OR functionaliéy)d execute the query. Next the
results from the search engine are presented tagbes. The task pattern “Show
Results” is used to show the results.

47

List of Patterns

Rational: The desired information could be found quickly @mesented to the users.

Structure
Task Model
ﬁ‘:f‘—n» - [;E
: EEENE i
Enter Keywords Execute guery show Results [Ohject]
Figure 55. Task Model for the task “Simple Search”
Object Chunks
4 wil o \
1 Eeyword
vopkE?
, P
Enter Keywords OUT {*k}- TEXT

Figure 56. Object Chunk “Enter Keywords”

Task Navigational Model

Enter Keyword
out {*k} [Execute quer}/

S G L

——>| Enter Keyword ——

__

Figure 57. Task navigation for the task “Simple Search”
Related Pattern:

Browse, Advanced Search: these are alternativerpatt

Show Results: this pattern is used to show thdtsestithe search to the user.

48

List of Patterns

5.12. Advanced Search Pattern

Pattern Name: Advanced Search

Problem: The users need to find an item or specific inforamat

Context: This pattern can be used if you want to give thssfmlity to the user to
search for information using sophisticated seartthr@.

Solution: Allow the user to enter complex search criteriae Bxact format of the
search criteria is dependent on the context of ars# should be specifiedhen
adapting the pattern to the context of use.

Rational: In some cases, the user is not satisfied with glsireearch to find the
required information. The advanced search offesslation to this by adding some
more search options. This kind of functionality.eapntrols how the list of search
terms is interpreted by the search engine. Typicdlis includes AND/OR

functionality together with exclusion functionality

However, the desired search options may vary betaeelications. For example, we
can add to the advanced search some options irs teftem types (articles, video,
audio...), or in terms of item properties (titlatel, location, size, author..Tjogether
with the Search pattern, the Advanced Search carsée in any web site to provide
the users a flexible way to find items that theyntva

Structure

Task Model

€

Y Search [Object]

ﬁ—n» - [_‘iﬁ
EERE]

Enter Search Criteria Execute query Show Results [Object]

Figure 58. Task Model for the task “Advanced Search”

Object Chunks

49

List of Patterns

[

— =

7 Search

Criteria

-
,

!

No{te)=tr @
-~

Ty
E -

N

Enter Search Criteria

(.

OUT {*ckTEXT

Figure 59. Object Chunk “Enter Search Criteria”

Task Navigational Model

__

Enter Search Criterja

out {*c}

Show Resull
in {*o}

Enter Search
Criteria

__

Figure 60. Task navigation for the task “Advanced Search”

Related Pattern:

Browse,Simple Search: these are alternative patterns.

Show Results: this pattern is used to show thdtsestithe search to the user.

50

Case Study

6. Case Sudy

In this chapter, as the proof of concept, a casdyss presented. An online Bookshop
system is created using WSDM and task patternsrdar to clarify and illustrate the

ideas of my approach and its practical relevaneallipresent step by step how to
develop this web system using WSDM.

6.1. Mission Statement

The mission statement of this web application caridomulated as follows: Provide
book information online to attract more customers)prove the bookshop
management, and get more benefit from online basimy providing the ability to
users to search, view, select, and buy books anline

6.1.1. Purpose

» To make it easier for users to find, select, anglimoks
» Support online buying
» To manage the book shop better

6.1.2. Target Audience

e Customers

* Manager
6.1.3. Subject
* Books

6.2. Audience M odeling

To find the audience classes, we follow the me#aqalained in section 3.3.1.

6.2.1. Activities

With the bookshop online system, the following\aintis are identified; they are all related:

1. Provide books information Related

2. Provide buying online Related

51

Case Study

3. Manage customer profile Related
4. Provide reports (customers, books, sales) Related
6.2.2. People involved

For the activities that are identified above, tle®ge involved in these activities are
customers and manager. The following figure depiwtsrelationship between these
groups of people and the activities.

Manage

Customer Customers
Profile

Provide
Online Orders

Provide
Manager

Figure 61. The activities and people involved

The information and functionality requirements &ach of these groups are provided
as follows.

6.2.2.1. Customers

Infor mation requirements:

* Detailed books’ information
» History orders’ information

e Customer’s profile information

Function requirements:

* Login

» Create customer profile

» Change his/her profile information
» Search book

* Add a book to the shopping cart

52

Case Study

Manage his shopping cart.
Place order

Navigation requirements:

Flexible ways to find books

6.2.2.2. Manager

Infor mation requirements:

Book information

Book category information
Information about customers
Information about books

Information about sales

Function requirements:

Login

Create book category.
Create new book.
Manage book categories.
Manage books.

Manage orders

6.2.3. Audience classes

From this analysis we can identified the followengdience classes:

1. Customer: People who want to get detail informatibout books before buying.

2. Manager: People who have the responsible to mabagies, book categories;
manage and get the reports about customer, odtaisales from the website.

Furthermore, we have the Visitor audience clask thi¢ following requirements:

Infor mation requirements:

Information about the book shop
Detailed information about books

53

Case Study

Function requirements:

» Search book
* Add a book to the shopping cart.
* Manage his shopping cart.

* Register as customer

Navigation requirements:

* Flexible ways to search books

6.2.4. Audience class hierarchy

The audience class hierarchy is shown in Figurei@2the Visitor class on the top of
the hierarchy to presents all the users of theegyst

b3

Visitor

o

Customer Stock Manager

Figure 62. Audience Class Hierarchy for the Bookshop online

6.2.5. Audience Class Char acterization

In this second sub-phase of the audience Modeling, characterization of each
audience class is specified as follows.

6.2.5.1. Customer:

 Allage

» Have experience with www

» Have knowledge about payment online
» Language: English

6.2.5.2. Manager:

* Age: from 18-60 years old

54

Case Study

» Have experience with www
» Have knowledge in business workflow

» Language: English
6.2.5.3. Vigitors:

* Age: from 18-60 years old
» Experience with www: variety

» Language: English

6.3. Conceptual Design

With the approach that we have presented in chahten this phase we will use
patterns to model the tasks of the users.

In order to save space for other parts of thisishesly the tasiCreate new Bools
presented in detail as an illustrate example feraproach.

6.3.1. Task and Information M odeling

Suppose we have a library of task patterns at mspodal (see chapter 5). In order to
save space for other parts in this thesis, two @kesnof using task patterns in this
phase are presented: “Create new Book” and “Viestohy Orders”.

6.3.1.1. Create new Book

When designing the task “Create new Book” the desig decide to use suitable
patterns to model this task.

The task “Create new Book” can be modeled by usimg pattern “Add Item” in
which the variable “Object” will be replaced by tBeok object. This task model is
presented in the following figure.

€

C‘Eate new Book

|
i

Add Item [Book]

Figure 63. Task Model for the task “Create new book”

55

Case Study

After selecting the suitable pattern to model ask$ (in this case the “Add ltem”
pattern), the object chunks and the task navigatimodel in the selected pattern need to
be adapted to the current context of use. Thestegtwill present these adaptations.

In the pattern “Add Item [Object]” there is an offjechunk “Add Item Info”
associated with its subtask “Add Item Info [Objéct]

In our application we will adapt this object chuftk the “Book” object. The Book
object not only has some properties like the naheedescription... but also has some
other properties like the author, the price, thiegary... of the book. After deciding
which information is needed for the Book object tesigners will create the object
chunk for this task. The object chunk “Add Bookdhfwvhich is adapted from the
object chunk “Add Item Info” is given in figure 20.

4 A — N

. AT ID T
has | is of I_"‘Qid=NEX'I,'.)
e =
: | rHookams™
has | s of o owe? "_j
F ——
(+)
has -mtlmr[wrote ot
- - -
B @ has I s of I—{:ﬁmthorﬂa:m}
) ——
co-author | wrote
-~k m L
+
e
b [wor {Cetek)
e
[\ :
mage
i [of | *i=UPLOAD
(N
7 Ny
, % alegory - = .
‘| has | 5 of I— *eata] has I s of J—Qat&go:}'}! A
=1 —— e
T +~ Price ™
has | is of I—'.,\ *p=? f}
o
has [?i.s of }——” TLength ™
S
A s
+ ———
- o or] " Width ™
I =5 S twe?
el
1 ’ #H_;i;h?““
""‘\ *h=?
_Add Book Info OUT: *b: Book -

Figure 64. Object Chunk “Add Book Info”

56

Case Study

In the structure of the pattern “Add Item”, anotlpattern is used to model the task
“Confirm or Cancel”. The pattern “Confirm or Canedlask> [Object]” has one object
chunk: “Ask Confirmation” associated with its sudkd’Ask Confirmation”. Although
this object chunk does not need to be adaptedovwpeasent this object chunk here:

==
- -

p L
} Confirmation

v Hefs? /
~ ol

e

{ Ask Confirmatioi OUT *cf:BOOLEAN J

Figure 65. Object Chunk “Ask Confirmation”

After adapting the object chunks, the patternqentisk model could be expanded to
present the task in full detail. The fully instatéid task model for the task “Create
new Book” is given in the following figure.

W

| I —

Add Book Info affim or Cancel <Add:= [Book]
- [= -
gl 1 =
Ask Confirmation <Add> [Book]

Figure 66. The fully instantiated task model for the task
“Create new Book”

After the task modeling step, the task navigatioodet should be created. For the
pattern “Add Item” we have created the task navogal model to present the
navigation in this pattern (see figure 23).

Ask confirmatior
: [Add Item Info 1 *cf: BOOLEAN

out *o
] *0 J -------- !
———»| Add Item Info ——» Confirm 0@-——»
! Cancel |

Figure 67. Task navigation for the task “Add Item”

57

Case Study

In our application, the task navigational modeltfue task “Create new Book” will be
created from this task navigational model. The oetecobject “Book” will replaces

the variable “Object” in the pattern, meanwhile thencrete” object chunks we have
created will replace the generic object chunkfientisk navigational model.

The result of this step is the “adapted” task natigmal model for the task “Add
Book” and is presented in the following figure.

__________ b

Confirm o@i_
—»| Add Book Info —n Cancel | —>

Add Book Info Ask confirmatior
i out *b *cf: BOOLEAN !

Create new Book

Figure 68. Task navigation for the task “Create new Book”

6.3.1.2. View history orders

In this task, the system lists all history ordersisers. After that, optionally, users can
select one order to view its content. The “Selene @em [Object]” and “Display
Item Information [Order]” patterns are used to preshe tasks “Select an Order” and
“Display Order Info”. The task is modeled as in fhbowing figure.

)
/ﬂw -
!gi [4t

List Orclers m

Select One tem [Order] Display tern Information [Order]

Figure 69. Task Model for the task “View history Orders”

The following part presents all the object chung&saogiated within this task. Only the
object chunks “Select an Order” and “Display Ortleio” are adapted respectively

58

Case Study

from the object chunks “Select Item” (from patté8elect One Item”) and “Display
Item Info” (from pattern “Display Item Informatiop”

- S == ey T ™
ihDate » 'I.H ID ,’ -” 31-!11-15) rﬁlﬂtlbelﬁfﬁnﬂl{s}'n Tntal"faluilj
15 dreattion of s gf i df i df 1 gf
ated on b has Tu E
_ List Orders IN: {*o}: Order)

Figure 70. Object Chunk “List Orders”

=
Book B 4
/ has s of BookMame
{*b} - 2 B >)

isof { Quanity)
- o . o2

il

has i of \ SwbTotal)

S i i

= "OrrderBylser”
> i

(Orde: . . A
Gy g CX i e e | \ —_

{ "Wisd',
MasterCard
NG Card' } o
% i PR el
) Cadeumber) \ Date :l
£ - L R
T
{ Stresthddress isof
N - qf gt
S S
{ oy yzer Jw] !
T e 2 =
/"‘_5““\
{ postacoss y—{sof []
R -—
PaymentInfo: -
-—
-,

IN: *o: Order

kDispIay Order Info

Figure 71. Object Chunk “Display Order Info”

59

Case Study

e — = N

- o
&
Order : 10 B
- . e SR &

Select an Order IN {*o}: Order
OUT: *o: Order

A J

Figure 72. Object Chunk “Select an Order”

After adapting the object chunks, the patternqentisk model could be expanded to
present the task in full detail. The fully instatéd task model for the task “View
history Orders” is given in the following figure.

[story Orders *

{15
LISt Orders v Order]
Select an Order DISFIIEI‘_-,-’ Order Info

Figure 73. The fully instantiated task model for the task
“View history Orders”

Finally, the “adapted” task navigational model toe task “View history Orders” is
presented in the following figure.

Select an Ordt [Display Order infﬂ

in {*o}

List Orders

in {*o} <\» _______ |
Dlsplay Item :
'Informatlon ®:

v

+—>| List Orders

Figure 74. The task navigational model for the task
“View history Orders”

60

Case Study

6.3.2. Navigational Design

6.3.2.1. Conceptual Structural Mode

From the hierarchy of audience classes we derigectimceptual structural model as
follow.

—.M Customer Track
|| Visitor Track "—Q
|| Stock Manager Track

Figure 75. Conceptual Structural Model

6.3.2.2. Audience Navigational Tracks

For each audience class a navigation track is esed&rom all thaask navigation
modelsfor the audience class the navigation track ispmsed. The following figure
reflects the Visitor’s navigational track.

N
\/

v

‘ Manage !

"1 Shopping Cart
Visitor Track Lppg

Figure 76. Visitor Navigational Track

The audience navigational track presents the nawig@hat the members from that
class can perform. For example, in the navigatitnagk above, when users finish the
task “Add Book to Shopping Cart’ they can navigatéghe task “Manage Shopping
Cart” to edit, remove books from the cart or thay go back to do other tasks.

61

Case Study

6.3.2.3. Navigation Structure Design

From all the audience navigation tracks we createthe previous step, the main
conceptual navigation structure of the websiteoimlzined as the following.

_, View Profile
. Manage View history
About Us « Shopping Cart [Orders
p— L[customer || st
,,,,,,, o Track >
Login -« [e , Create
""""""""""""""""""] —> Category | v
: anage
Register > ;
g ,,,,,,,,,,,,,,,, 1T Categories
"""""""""""""""""" Create new
Search <« — Book |
7777777777777777777777777777777 Ly Manager e Manage Books
Browse < Track || |
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, L, Manage
Orders
» Get Book Report
|, Get Customelr
Report
» Get Sale Report

Figure 77. Main Conceptual Navigation Structure
6.4. Implementation Design

6.4.1. Site Structure Design

By default, each component is placed on a page. sitee structure of the web
application is designed as follows.

62

Case Study

Manage
Categories

Manage Booksj

=

—
=
. Mar_lage L View history
About Us Shopping Cart Orders a
s _..m " Checkout |
Contact U Track l
Login i Home Create
oF > Category
Register e iy A p—
Create new
Search le— Book
L, Manager ||| L Z
Browse | [Track ||
e Manage
Orders
7
Get Customejr
Report
,, '

Get Book Repor

Figure 78. Site Structure Design

6.4.2. Presentation Design

Get Sale Repo

The general template for each webpage is desigibdive following elements:

Header

* Logo
* Primary navigation

» Secondary navigation

Sidebar

» Left sidebar
* Right sidebar

Content panel

* Bread crumb trail

» Editable region

63

Case Study

For the style, CSS is used. The web elements waikht own color, look and feel...
which is consistent through out the website.

The page layout is given in the figure below.

Site Name Primary navigation
Header

Secondary navigation

Left sidebar || Bread Crumb Right sidebar

Web content

Editable region

Footer

Figure 79. The Presentation Design

6.4.3. Logical Data Design

The object chunks that are created in the Conceptesign phase are combined to
create the business object model. From this busiokgct model, the data schema is
generated and then mapped into the database ¢atlséoinformation of the web system

64

Case Study

6.5. Implementation

From the different models created during the deiférdesign phases, the website can
be created.

The following figure shows the homepage of the siteb

[7] Books | Bookshap Online

L

€ C | || ¥ htp/focalhost/ecommerce/products LRI + I B i R R

' Bookshop Onlin

Home AbowtUs ContactUs Search Logout

Design Patterns 3 ftems Total: §62 00
Weh Programming ciick to LOOK INSIDEL ek to LOOK INSIDE! Click 1oL OOK INSIDE! Vigw cart | Checkeut

Weh Enginesring _

o Create Category PHP ana MySQL
& Create Baok Web Development

o Mange Categaries
o Manage Books

o hanage Orders
o GetCustomer Reports

PHP-and MySQL Web Development The Design of Sites: Patterns for... C5%: The Missing Manual
o Bet Product Report
o Get Gale Report |]\ I \"' 1o LOOK INSIDEL
IS
PATTERNS
1N JAWA
¥, -

Design Patterns in Java Enterprise Integration Patterns:.. Web Application Design Patterns

= EEEIE

Figure 80. The homepage of the website

2 nexts lastw

Q ﬁ @ W."" EN ol () 12;;“[;;; "

65

Related work

7. Related Work

There are many fields in computer science that fzapted the concept of pattern
and use them as a solution for re-using. In thig pavill present some of researches
and studies most related to task patterns.

In (Breedvelt, Paterno et al.,, 1997) the idea ahaqugask patterns in order to

accelerate the design of task models is addre$8bdn using the CTT notation to

design tasks, the authors realize that some (patasks were recurring in the task

structure. CTT is a hierarchy structure so it isyetb separate a part and reuse it.
Whenever the designers face with a problem thatnislar to one problem that has

been found and solved before then they can reesediution previously developed.

In particular, the task patterns are used as taegpfar designing the task model of an
application. The authors also introduced some eddttask templates:

e Multi-Value Input Task

» Search Task

» Evaluation Task

* Recursive Activation Task

In (Paterno, 2000), the term task pattern was cbifaterno examined the idea of
reuse task fragments by using patterns. He intrediacmetapattern for task patterns,
which is very similar to the metapattern of the Ghfncludes the name, the problem
it addresses, the task specification in CTT and gpecification of the objects
manipulated by the tasks. It is noteworthy that gpecification of a task pattern is
done in the regular CTT notation and thus has mzge part, which can be adapted
to the current context of use. Therefore, the fmdkern, as mentioned above, is just a
model fragment and a description in which situattos useful.

The most promising approach of task patterns wae dy Sinnig (Sinnig, 2004). He

introduced the concept of task pattern as a gemeadel fragment, which can be

customized to the current context of use. Thusdes task patterns very similar to the
software design patterns of the GoF, but in anottmnain. He collected a set of

patterns, which were partly adopted from the pastémtroduced in (Breedvelt, Paterno
et al., 1997) and described the patterns in atsmeat way very similar to Paterno

(Paterno, 2001) and Gamma (Gamma, Helm et al.,) @5 the following elements:

66

Related work

* Name

* Problem
* Context
* Solution
e Rational
* Interface

* Related Pattern

My study has some points that are adopted fronabiee researches but due to the
characteristic of WSDM it was necessary to adapideas at several points.

The idea of using the variable “Object” in eachtgret as a placeholder for generic
object type that can be used within the patteradispted from (Sinnig, 2004). This
approach is differ when compare to Paterno, sinedask pattern is just a fragment of
tasks grouped together to achieve some purposeén Wé use of a variable as
placeholder in patterns the task pattern becomgsnaric task and can be used in
different contexts of use in which the object Vol adapted and instantiated,

Design pattern is used in many fields. Each onsiders the context in a different way
so there is no common format for task descriptiolWSDM we need to specify not
only the task structure but also the object chuanrkd the task navigational model. |
have added these elements to form the task desaoriptmat as discussed in chapter 4.

67

Conclusions

8. Conclusions

In WSDM, task models are used to effectively mdtelinteraction between the users
and the application. Designing task models requarkd of time and experience. This
thesis has introduced task patterns as a vehigposting a more disciplined and

comprehensive form to promote the reuse of taskeV8DM. | created and used

several patterns to represent task models in arigenay as well as to use them in a
concrete context of use.

A major contribution of this research is the intdgn of design patterns into the
Conceptual Modeling phase of WSDM. A process feating and using task patterns
has been proposed. The structure of a task pattehe context of WSDM has been
defined and the process of using patterns has blkdrorated. | have shown how
patterns can be used as building blocks for thatione of tasks models. Furthermore,
| have introduced the “pattern component” (a congmbrpresents the pattern in the
navigational designed), which can be used to furthgeed up the design by
representing the pattern as a high level abst@atiponent in the task navigational
model. In that case there is no need to instantlaepatterns in the task models
before transforming them into a task navigationatei.

Another contribution is a first list a task patteruring the design process in my
case study, | found these patterns occuring in ndiffgrent situations. It may be
needed to improve and extend these patterns lateHowever, creating these task
patterns is the proof of concept that we can indedte and use design patterns in
WSDM as proposed in the approach | have introdircélse Chapter 4.

My research has answered some questions aboubldhefr patterns in the WSDM
development. However, it has led to some otheresghat still needs to be further
investigated:

Tool support. The current CTT tool does not support the notafior the “task
pattern” type (as we know that CTT only supportsrfalifferent types of tasks:
Abstract, Interaction, Application, and User). Antended tool (from CTT or
Microsoft Visio, for instance) is needed to suppbg designers in creating and using
task patterns during task modeling.

Platform dependency. WDSM is a systematic methodology to design wediesy; it
does not only support desktop PC platform but atker kinds of devices such as PDA

68

Conclusions

and mobile phones. In this thesis, the processtefiating design patterns in WSDM is
assumed, by default, in PC platform. Therefore stwond issue that needs to be further
investigated is designing task patterns that supliéerent devices and platforms.

69

References

Refer ences

Abi-Aad, R., D. Sinnig, T. Radhakrishnan and A.f8ef(2003). CoU: Context of Use
Model for User Interface Design. In ProceedingsH&I International 2003, June
2003, Greece, LEA, pp. 8 - 12.

Ahmed Seffah and P. Forbrig (2002). "Multiple Udeterfaces: Towards a Task-
Driven and Patterns-Oriented Design Model." Proteged of the 9th International
Workshop on Interactive Systems Design, Specificatnd Verification.

Alexander, C. (1979). The Timeless Way of Buildifxford University Press.

Alexander, C., S. Ishikawa, et al. (1977). A Patteanguage: Towns, Building,
Construction. New York, Oxford University Press.

Borchers, J. (2001). A Pattern Approach to IntesacDesign. New York, John Wiley
& Sons.

Breedvelt, I., F. Paterno and C. Severiins (19B@usable Structures in Task Models.
In Proceedings Design, Specification, VerificatiohInteractive Systems '97, June
1997, Granada, Springer, pp. 251-265.

Coplien, J. O. and D. C. Schmidt (1995). Pattermdumges of Program Design,
Addison-Wesley Professional.

De Troyer, O. (1998). Designing Well-Structured Weite: Lessons to be Learned
from Database Schema Methodology. In Proceedingshef ER'98 Conference,
Lecture Notes in Computer Science: Springer-Verlag.

De Troyer, O. and C. Leune. (1998). WSDM: A Usenteesd Design Method for
Web Sites. In Computer Networks and ISDN systemecdedings of the 7th
International World Wide Web Conference: Elsevis:94.

De Troyer, O., Casteleyn, S., Plessers, P. (200&hg ORM to Model Web Systems,
On the Move to Meaningful Internet Systems 2005:MDPR005 Workshops,
International Workshop on Object-Role Modeling (ORSB), pp. 700-709, Publ.
Lecture Notes in Computer Science 3762, Springer

De Troyer, O. et al. (2007). WSDM: Web Semanticssibe Method in Web
Engineering: Modelling and Implementing Web Apptioas, Human-Computer

70

References

Interaction Series Vol. 12, pp. 303-352, Eds. GustRossi, Oscar Pastor, Daniel
Schwabe, Louis Olsina, Publ. Springer

De Troyer, O. (2001). Audience-driven web designinformation modelling in the
new millennium, IDEA GroupPublishing.

De Troyer, O., P. Plessers, et al. (2007). WSDMbVB&emantics Design Method,
Springer London.

Gabriel, R. P. (1998). Patterns of Software: Tdfesn the Software Community,
Oxford University Press, USA.

Gamma, E., R. Helm, et al. (1995). Design Patteraeements of Reusable Object-
Oriented Software, Addison-Wesley.

Grand, M. (2002). Patterns in Java: A Catalog aifable Design Patterns lllustrated
with UML, John Wiley & Sons.

Laakso (2010). "User Interface Design Patterns." romf
http://www.cs.helsinki.fi/u/salaakso/patterns/.

Paterno, F. (2000). Model-Based Design and Evanaii Interactive Applications.
London, Springer.

Paterno, F. (2001). Task Models in Interactive Bafe Systems. Handbook of
Software Engineering & Knowledge Engineering, S. ®hang, World Scientific
Publishing Co.

Paterno, F., C. Mancini, et al. (1997). ConcurTaskT a Diagrammatic Notation for
Specifying Task Models. IFIP Conference ProceediRgsceedings of the IFIP TC13
Interantional Conference on Human-Computer IntesacSyndey, Chapman & Hall,
London. Human-Computer Interaction 362—369

Sinnig, D. (2004). The complicity of patterns anddual-based Ul development.
Computer Science. Montreal, Quebec, CONCORDIA. krast

Sinnig, D., P. Forbrig, et al. (2003). Patternd/iadel-Based Development. Software
and Usability Cross-Pollination: The Role of UsapiPatterns.

Sinnig, D., A. Gaffar, D. Reichart, P. Forbrig aAdSeffah (2004). Patterns in Model
Based Engineering. In Proceedings of CADUI 2008426unchal, Portugal, p. 197- 210.

71

References

Tidwell, J. (2005). Designing Interfaces: Pattefos Effective Interaction Design,
O'Reilly Media.

Van Duyne, D. K., J. A. Landay, et al. (2006). Thesign of Sites: Patterns for
Creating Winning Web Sites, Prentice Hall.

Vora, P. (2009). Web Application Design Patternsréan Kaufmann.

Yahoo. "Yahoo Design Pattern Library." frdittp://developer.yahoo.com/ypatterns/

Welie, M. and G. Veer (2003). Pattern Languagdsteraction Design: Structure and
Organization. In Proceedings of INTERACT 2003, &egter 2003, Zuerich, pp.
527-534.

Welie (2004). "Pattern in Iteraction Design." frémtp://www.welie.com/

72

