
Faculteit Wetenschappen
Vakgroep Computerwetenschappen

Implementation Generation for WSDM
using Web Applications Framework

Proefschrift ingediend met het oog op het behalen van de graad van Master in de Ingenieurs-
wetenschappen: Computerwetenschappen

Kevin Van Wilder

Promotor: Prof. Dr. Olga De Troyer
Begeleiders: Dr. Sven Casteleyn

29 mei 2009

Faculty of Science
Department of Computer Science

Implementation Generation for WSDM
using Web Applications Framework

Graduation thesis submitted with intention to obtain the degree of Master in Engineering: Com-
puter Science

Kevin Van Wilder

Promotor: Prof. Dr. Olga De Troyer
Advisors: Dr. Sven Casteleyn

May 29, 2009

Nederlandstalige Samenvatting

In deze thesis presenteren we het onderzoek en de implementatie van een code generatie
tool voor de Web Site Design Methode. We spitsen ons toe op twee invalshoeken.

Enerzijds onderzoeken we verscheidene web frameworks zoals Django, Ruby on Rails en
CakePHP voor inzicht te krijgen in de vereisten voor het genereren naar zulke frameworks.
Daarna wordt de implementatie voorgesteld van de code generator die een WSDM beschri-
jving van een site neemt als input en automatisch de code genereert voor het Django web
framework.

Anderzijds onderzoeken we de verscheidene overige methodes zoals OOH, OOHDM, UWE
en WebML samen met hun respectievelijke tools om websites te genereren.

De case study en de verscheidene gelijkenissen met de andere code generatie tools bevestigen
de keuzes gemaakt tijdens het ontwikkelproces.

iv

Abstract

In this dissertation, we present the research and implementation of a code generation tool
for the Web Site Design Method. Two avenues of website generation are examined.

On the one side, we investigate various web frameworks such as Django, Ruby on Rails
and CakePHP to provide us with insights in the requirements for generation towards these
web frameworks. We then implement a code generation tool which reads in the WSDM
description of a web site and automatically generates the web site using the Django web
framework.

On the other side, we investigate various other methodologies such as OOH, OOHDM,
UWE and WebML along with their respective tools for generating websites.

A case study and various commonalities between other code generation tools validate choices
made during development.

v

Acknowledgements

”I love deadlines. I like the whooshing sound they make as they fly by.”
- Douglas Adams

This document would not be what it is today without the outstanding support of various
people. Therefore I would like to express my gratitude towards:

Prof. Dr. Olga De Troyer for promoting this dissertation, giving me the opportunity to leave
my mark on it and for the countless proof-reads and suggestions during the completion of
it.

My advisor Sven Casteleyn for his great support, insight and honest remarks.

My girlfriend Freija Van Megroot, for her constant support, her care and love. I will make
up for all those weekends spent in front of the computer working on my dissertation!

My parents, for giving me the opportunity to seize every chance in life and allowing me to
study at the VUB.

Also a thank you to Bart Verhaegen, for giving me Frontpage ’98 when I was 12, which
started my interest in web development.

My friend Dries Harnie, for always being there to help me out in life and allowing me to
bounce ideas off of him. As well as my American friend Robert Tiller for sharing his life
experiences with me and offering me advice when I needed it. Also I would like to thank
his wife Terri for proof-reading and helping me with grammar and style. Finally a thanks to
Tom Strickx for his friendship and showing interest in my thesis.

I dedicate this dissertation to my grandmother Ludovica ”Wiske” De Pauw.

Enjoy!

Kevin Van Wilder
Affligem, 2009

vi

Contents

1 Introduction 1
1.1 Context . 1
1.2 Purpose . 2
1.3 Outline of Dissertation . 2
1.4 Notable Contributions . 3

2 Web Site Design Method Overview 4
2.1 WSDM Phases . 4

2.1.1 Mission Statement Specification 5
2.1.2 Audience Modeling . 5
2.1.3 Conceptual Design . 6
2.1.4 Implementation Design . 9
2.1.5 Implementation . 10

2.2 Formal Specification for Interpretation by Machines 10
2.2.1 Basic Concepts . 10

2.2.1.1 The Semantic Web . 10
2.2.1.2 Web Ontology Language (OWL) 12

2.2.2 WSDM Ontology . 12
2.2.2.1 Information and Functionality Modeling 12
2.2.2.2 Navigational Modeling 15
2.2.2.3 Implementation Design Modeling 16

2.3 Conclusions . 17

3 Web Application Frameworks 18
3.1 Django Framework . 18

3.1.1 Project Structure . 19
3.1.2 Object-Relational Mapping . 20
3.1.3 Architecture of Django . 21

3.2 Ruby on Rails Framework . 21
3.2.1 Project Structure . 22
3.2.2 Object-Relational Mapping . 23
3.2.3 Architecture of Ruby on Rails . 23

vii

3.3 CakePHP Framework . 24
3.3.1 Project Structure . 24
3.3.2 Object-Relational Mapping . 25
3.3.3 Architecture of CakePHP . 26

3.4 Framework Abstraction . 27
3.4.1 Project and Application Structure 27
3.4.2 Model-View-Controller Architecture 27

3.4.2.1 Models . 27
3.4.2.2 URL Routing . 28
3.4.2.3 Controllers . 28
3.4.2.4 Views and Templates 28

3.5 Conclusions . 28

4 WSDMtool Architecture 29
4.1 Introduction . 29
4.2 Pre-Parsing of Information . 31
4.3 WSDM Ontology Layer . 32
4.4 Unambiguous Interpretation of Object Chunks 32

4.4.1 Information Chunks . 33
4.4.2 Interaction Chunks . 33
4.4.3 Generating Structure without Presentation 34

4.5 Platform-Specific Django Generator . 35
4.5.1 Generating Database Models . 36
4.5.2 Generating Controller Functions 37
4.5.3 Generating Templates . 39

4.6 Conclusions . 39

5 Case Study 41
5.1 Introduction . 41
5.2 Model Generation . 41
5.3 Controller Generation and Object Chunk Reference Handling 43
5.4 Template Generation . 47
5.5 Routing Generation . 48
5.6 Final Result . 48

6 Related Work 50
6.1 UML-based Web Engineering (UWE) . 50
6.2 Object-Oriented Hypermedia Method (OO-H) 54
6.3 Web Modeling Language (WebML) . 58

6.3.1 Automatic Generation using WebRatio 60
6.4 Object-Oriented Hypermedia Design Method (OOHDM) 61

6.4.1 HyperDE Rapid Prototyping Environment 62

viii

6.5 Other Web Methodologies . 64
6.6 Conclusions . 65

7 Conclusions and Future Work 66
7.1 Summary . 66
7.2 Future Work . 66

7.2.1 Better Model Generation . 67
7.2.2 Semantic Links . 67
7.2.3 Usability and Presentation . 67

7.3 Conclusion . 68

A Author Track for the Conference Review System 69
A.1 Navigation Track . 69
A.2 Object Chunks . 70

B Comparing WSDM description to MVC-pattern 74
B.1 Model Comparison . 74

B.1.1 WSDM . 74
B.1.2 Django Representation . 74
B.1.3 Ruby on Rails Representation . 75
B.1.4 CakePHP Representation . 75

B.2 Controller Comparison . 75
B.2.1 Django Representation . 75
B.2.2 Ruby on Rails Representation . 76
B.2.3 CakePHP Representation . 76

Bibliography 76

List of Figures 80

ix

Chapter 1

Introduction

1.1 Context

”Web Engineering is a discipline concerned with the establishment and use of sound scientific
engineering and development principles and systematic approaches for the successful devel-
opment, deployment and maintenance of Web-based systems and applications. It is often
compared with software engineering, and indeed, Web Engineering applies many techniques
and tools from this field. However, the specificities of the Web and its applications, e.g.
constant evolution of Websites, navigation-based user interface (UI), specific technologies
and (mark-up) languages, client-server architecture, etc. makes Web Engineering a distinct
discipline, with specific challenges and solutions.

The Web today is evolving at a dazzling pace. Since the traditional Web, now called
Web 1.0, we saw the rise of Web 2.0 and the Semantic Web. Web 2.0 was actually
nothing new, but rather a new application of existing technologies oriented towards user
input and cooperation. Where in Web 1.0 the separation between content provider (i.e.
the web server) and user (i.e. the user) was clear, in Web 2.0 this border became vague.
Users provide content (Wikipedia), express themselves on social Websites such as MySpace,
tag (Flickr) and interact (Friendster, Facebook, Last.fm, Twitter). It’s not so much the
technology that has changed, but what people do with it. The Semantic Web is all about
the study of language meaning. Where Web 1.0 and 2.0 are made for people, the Semantic
Web is made for machines. Agents crawling the Web, understanding and interpreting the
information that is available, reasoning about it and drawing conclusions. The Semantic
Web is truly a Web of meaningful content, and promises a revolution on how we use and
handle information.

Even now, the Web is evolving in new directions. More and more users are accessing
the Web at any time, from any place and with any device, resulting in the so-called Mo-
bile Web. Increasingly powerful mobile phones, mobile organizers and game consoles with
Web capabilities have triggered this evolution. Lately, with the development of cheap and
identifiable tags (i.e. Radiofrequency Identification (RFID) and Near Field Communication
(NFC) technology), the Internet of Things is coming into existence.

1

The Web and Information Systems Engineering Lab (WISE) at the Free University Brus-
sels has been present in the Web Engineering community since the early days of the WWW.
In 1998, WISE developed one of the first so called Web Engineering methods, the Web
Site Design Method (WSDM), which is well recognized in the scientific community. WSDM
provides a systematic way to develop and deploy high quality Web applications, taking into
account issues such as usability, accessibility, adaptation, personalization, device dependency,
localization and semantic annotations” 1

1.2 Purpose

All WSDM phases but the last are explained in detail. The final phase of the WSDM
method is the so-called implementation phase. The actual implementation can be generated
automatically from the information collected during the different design phases by means
of the different design models, i.e. object chunks, navigational model, site structure model,
page models, logical data models and mappings. These models will be explained in more
detail.

During its life-span, the WSDM obtained an implementation for this ”implementation
phase”: a transformation pipeline using XSLT. This implementation takes as input the object
chunks (with corresponding data source mapping), navigational, site structure, style and
template and page models, and outputs the actual implementation for the chosen platform
and implementation language. This implementation proved to be rather restrictive, due to
the limitations of XSLT transformations. Depending on the complexity of the models, they
could require interpretation as well as transformation. Another disadvantage of the XSLT
transformation pipeline is the creation of static pages. It would be interesting to be able to
create dynamic web pages that will extract information from a database and present it.

This dissertation presents a new implementation for an automatic code generation pro-
cess for interpreting WSDM models. This implementation overcomes the limitations of
the previous by applying a fully interpretive approach. By using a modular framework, the
generation tool provides the flexibility for generating code for multiple, freely available web
application frameworks.

1.3 Outline of Dissertation

This dissertation is structured by explaining the meaning and form of the input information,
followed by the specifications of the various output formats. An in-depth description of
the generation tool follows these specifications. A case study follows suit and explains
the generated results. Before any conclusions are drawn, we also discuss the various other
methodologies and their code generators in our field of research.

1 Text taken from thesis description page - http://wise.vub.ac.be/

2

Chapter 2 introduces in-depth the Web Site Design Method (WSDM). The five phases
and their respective models will be introduced, followed by an explanation how these were
formalized using OWL to enable formal specification of a web site using the WSDM models.

After presenting the input models, the Django, Ruby on Rails and CakePHP web appli-
cation frameworks are presented in chapter 3 as our possible output results.

Chapter 4 introduces WSDMtool as the new code generation tool, by using the models
described in chapter 2 and generating towards the Django web framework from chapter 3.
The architecture and important decisions made during development will be presented.

Chapter 5 provides an overview and proof-of-concept of the flexibility of WSDMtool
through the application of the Conference Review System case study.

We conclude this dissertation in Chapter 7, which provides a summary of our work and
contributions, followed by an overview of future research directions and our final concluding
remarks.

1.4 Notable Contributions

In this dissertation we present the following original contributions:

• An evaluation of the WSDM methodology as a technique for automatically generating
web sites, as well as exploration of the methodology itself.

• An alternate approach to generating dynamic web sites using code generation instead
of the already available XML/XSLT pipeline transformation process.

• A tool that provides a coupling between WSDM and pre-existing web application
frameworks.

• A case study which demonstrates how WSDM can be used to automatically generate
a fully working web site using the OWL models.

• Providing a WSDM ontology extension required for an unambiguous generation pro-
cess.

3

Chapter 2

Web Site Design Method Overview

The Web Site Design Method (WSDM) was introduced [22] in 1998, making it one of
the pioneer web modeling approaches. The methodology has continuously evolved and has
been re-named [21] in 2007 as Web Semantics Design method. The methodology has been
extended to allow more recent concepts such as localization [19], adaptivity [15], accessibility
[38] and semantic annotations [16]. It differs from other web modeling methodologies by its
orientation towards audience-driven websites, rather than the more common content-driven
approaches.

WSDM has two basic characteristics:

• An audience driven approach which can be exemplified by the very early audience
modeling phase where the emphasis is placed upon the target audience of the site.

• An explicit conceptual design phase describing a process to generate a pure conceptual
design free of implementation and presentation details. This allows the possibility for
different presentations for different users or hardware platforms.

2.1 WSDM Phases

WSDM is divided into 5 phases: mission statement specification, audience modeling, con-
ceptual design, implementation design and a final implementation phase.

4

Figure 2.1: WSDM Methodology – Phase overview [22]

2.1.1 Mission Statement Specification

The first phase in the methodology describes the specification of the mission statement for
a website. This statement expresses various aspects of the website, such as the purpose,
the subject and the targeted demographic. This mission statement is important since it
clearly outlines the scope and the borders of the website that needs to be created and how
it should be used. It furthermore serves as a document which can be used for validating the
functionality. There are no constraints on how this document is written but it is normally
done as prose.

2.1.2 Audience Modeling

Based on the information obtained from the previous Mission Statement phase an Audience
modeling phase is performed. This is a two-step process containing an Audience Classifica-
tion and an Audience Characterization sub-phase.

In the Audience Classification phase, the target audience will be divided into different
types of users called Audience Classes. Each person of an Audience Class has the same
information and functional requirements as to how they will perceive the web site.

5

Figure 2.2: Audience Classes

After these classes are derived (Figure 2.2) the next sub-phase, called Audience Charac-
terization, is initiated. Here the Audience Classes will be extended by an informal description
of their informational, functional, navigational and usability requirements as well as their
characteristics, such as age-group, computer knowledge and language.

2.1.3 Conceptual Design

Next the methodology enters the Conceptual Design [20] phase. The goal of this phase is
to turn the informal requirements obtained from the previous phase into high-level, unam-
biguous, formal descriptions which can later be used in the implementation process of the
web site.

This phase is divided into two sub-phases: Task Modeling and Navigational Design. [20]
describes this phase as modeling the conceptual ”what and how?” of the website, where
the Task Modeling phase focuses on the ”what?”and the Navigational Design phase on the
”how?”.

In contrast to content driven web site methodologies, WSDM does not start by creating
an overall conceptual schema or Universe of Discourse but rather tiny conceptual schemas,
called Object Chunks for each functional requirement in each Audience Class. Combining
all Object Chunks will however result in the same Universe of Discourse as would be defined
in other methodologies. These Object Chunks are created in the Task Modeling phase using
an adapted modeling technique based on Concurrent Task Tree (CTT) [37] to describe their
workflow. CTT is a tree-like methodology where each non-leaf node is an Abstraction Task
and all leafs are either Interaction or Application Tasks.

6

Figure 2.3: A decomposed task using CTT

Figure 2.3 provides an example1 of Task Modeling:

• The task ”Submit new paper” is decomposed into an Interaction task ”Register new
paper” and ”Submit info for paper”. Upon completion of the first task, the second
task is enabled and information is passed from the first task to the second task.

• Similarly the ”Submit info for paper” task is divided into two Interaction tasks ”Add
co-author” and ”Submit info & upload file”. These two tasks, marked by ”|=|” are
order independent.

Once the task models are created, each elementary task is associated with an Object
Chunk (see example in Figure 2.4) which will fulfill this task. These chunks are modeled
using an extended version [20] of Object Role Modeling (ORM) to allow the annotation of
web-specific functionality. This extension allows, for instance, supporting user interactions.
An example of such a user interaction is the requirement to fill out a form. To decide which
information the user needs to fill in, an object type is annotated by ”*p = ?”, specifying that
input is required for that object type and that the instantiation should be kept in a ”variable”
called ’p’. The ”Paper” concept is highlighted in order to visualize it as the main concept
in the object chunk. WSDM is currently the only methodology to allow the conceptual
modeling of a web site through the usage of an ORM notation.

1 Images 2.2, 2.3 and 2.5 obtained from the lecture slides for Web Engineering

7

Figure 2.4: ”RegisterNewPaper” Object Chunk

To allow communication between multiple Object Chunks they are annotated by input
and output parameters, specifying the Concept (i.e. Object Type) that is being passed
through.

The next sub-phase, Navigation Design, creates the navigational structure of the site.
For each audience class a Navigation Track is created. This track can be considered as a
sub-division of the web site that a specific audience class will be able to visit. The tracks are
represented by a graph: Nodes connected through Links. Nodes are placeholders containing
one or more Object Chunks to specify their functionality. This way, Object Chunks can be
reused in other locations in the web site that require the same functionality. This is still part
of the conceptual design phase, which means that these nodes do not represent the pages.

The choice of the type of navigational link is decided by inspecting the task models [18].
These links can have any cardinality, e.g. one-to-one, many-to-one, etc. and are either
unidirectional or bidirectional.

There are four distinct categories of Links:

• Project Logic Links are used to connect nodes that belong to a single task navigation
model and express the workflow or process logic in the task model modeled by the
temporal CTT relations.

• Structural Links describe how a visitor navigates from one user task to another in the
web site.

• Navigational Aid Links can be considered as secondary Structural Links and are added
to aid the visitor navigating through the web site. A typical implementation for these
links could be breadcrumb navigation or the typical ”back to the home page” link on
each page.

8

• Semantical Links are links which do not connect Nodes but rather Concepts in Object
Chunks. Using the Amazon web site example in [18] the object chunk ”View Item
Info” showing the information of a book can have a semantic relationship with ”View
Author Info”. An implementation of this would generate a hyperlink over the author’s
name to a page containing information about the author.

Figure 2.5: ”Update Paper Submission” Navigation Track

Figure 2.5 describes the ”Update Paper Submission”navigation track. The track contains
three nodes: ”Update Paper Info and File”, ”Delete Co-authors”and ”Add Co-author”. Every
node contains one object chunk.

The end of the conceptual modeling phase results in a conceptual navigation path linking
the various user tasks together as a whole. At this point the website has been formalized in
context of its functional and navigational requirements.

2.1.4 Implementation Design

This phase will extend the conceptual models with extra information required for implemen-
tation on a specific platform. This happens in a three-step process: Site Structure Design,
Presentation Design and Logical Data Design.

The Site Structure Design phase will decide which nodes are placed on the same page.
For each device (e.g., computer, PDA) targeted, a different decision can be made. Because
some devices have restrictions such as a small viewing resolution or low bandwidth it is
important to put few nodes on the same page, thus restricting the amount of information
present on each page and limiting the information that needs to be downloaded on the
device.

During the Presentation Design phase, the layout, such as positioning and styling, of
the pages will be described. Templates are designed initally. These can be accompanied by
Cascading Stylesheets (CSS), which is the current standard for styling.

9

The final Logical Data Design phase is only needed for data intensive web sites. The
conceptual models obtained during the Conceptual Design phase can now be mapped [16]
upon new or existing data sources, such as relational databases or triple stores.

2.1.5 Implementation

The final part in the methodology is the actual implementation of the web site modeled
thus far. The automation of this particular phase is the subject of this dissertation.

2.2 Formal Specification for Interpretation by Machines

Until now we have explained the creation of a WSDM specification for a web site through the
means of graphical notations, such as the ORM-diagrams in the Object Chunks. In order to
automatically generate web sites using these specifications, a notation has to be introduced
which can be interpreted by software. To allow further processing of the different WSDM
models expressing the content and structure of a website, the models are stored into the
WSDM Ontology2. The ontology contains a set of meta-models which are used to design
site-specific models and populate them. A choice was made to express the WSDM models
using the Web Ontology Language (OWL). This provided the opportunity to define the
meta-models of WSDM models as well as their semantics. Having a formal and semantic
representation of these models made it possible to create a tool which could be able to
interpret these models and generate a website matching the provided specifications.

2.2.1 Basic Concepts

Before we introduce the formal notation of WSDM, a couple of key aspects will be intro-
duced.

2.2.1.1 The Semantic Web

The original Web dates back to 1989, when it was initially introduced as a universal means
to exchange information between universities by Tim Berners-Lee and his associate Robert
Cailliau [10]. This World Wide Web (WWW) was made up of wiki-like documents, linked
together by hypertext.

The technology of the WWW was based on three parts:

• Uniform Resource Locator (URL): a method of addressing resources, in this case web
sites and pages, without the need for specifying the physical location of the resource.

2 http://wise.vub.ac.be/ontologies/WSDMOntology.owl

10

• Hypertext Markup Language (HTML): a markup language designed to specify infor-
mation of various multimedia types, such as text or video. It also contains markup to
specify hyperlinks based on the previously mentioned URL addressing method.

• Hypertext Transfer Protocol (HTTP): a protocol designed to exchange information
between a web client and a web server.

The Semantic Web (often referred to as Web 3.0) extends the original Web, also called
the Hypertext Web, with ideas that were already present during its original design [10], but
were never implemented thus far. The intent was to create a semantically grounded web,
where computers would be able to understand any given site as good as a human would.
Day to day business would be partially fulfilled by communicating autonomous computer
agents [10].

These ideas brought forth several new technologies such as RDF, OWL, and many
more depicted in figure 2.6. This figure, presented by Tim Berners-Lee [9] represents the
hierarchical structure how the various technologies extend and complement each other. The
first and second layers are the original Web as we have known it before the Semantic Web.

Figure 2.6: Semantic Web Technology Stack [9]

• XML only provides syntax to structure documents.

• XML Schema (XMLS) provides a platform for restricting the structure of XML and
also extends it with data types.

• RDF provides the possibility to create resources and specify relations between them.

• RDF Schema (RDFS) provides a vocabulary for describing properties and classes of
RDF resources.

11

• OWL extends RDF Schema even further by adding more vocabulary for descriptions
such as relationships between classes, cardinality, equality, typing and characteristics
of properties, etc.

2.2.1.2 Web Ontology Language (OWL)

As described in [25] OWL is intended to be used when information contained in files is
processed by applications not by humans. It is used to ground the meaning of terms and
their relationships in a given vocabulary, also called Ontology.

OWL, a revision of the DAML+OIL web ontology language, provides a richer set of tools
to express meaning and semantics than XML, RDF and RDF-S.

The OWL language has been divided into three sublanguages with increasingly expressive
specifications. This has been done to suit the different needs of users and communities.

• OWL Lite contains a classification hierarchy and provides simple constraints such as
cardinality constraints for values of 1 and 0. The Lite version is mostly used as a
transition platform for other taxonomies.

• OWL DL (Description Logic) provides a richer set of features for expressions but
remains computational complete. This means that all conclusions are still computable.

• OWL Full is the all-encompassing language set which provides maximum expressive-
ness and syntactic freedom. This however, comes at a price, as the Full language is
computational incomplete.

With these sublanguages in mind, OWL Full can be considered an extension of RDF-S,
whilst both OWL Lite and OWL DL should be considered as a restriction.

2.2.2 WSDM Ontology

As an aid to fully explain the meta-model of the WSDM Ontology, we will visually and
semantically [26] represent it using the VisioOWL [27] application.

2.2.2.1 Information and Functionality Modeling

The wsdm.I-F-ModelingConcept class is the parent for everything related to information and
functionality modeling, to be more precise: this will specify a notation for the object chunks.

wsdm.ObjectChunk (meta model depicted in figure 2.9) is a subclass of wsdm.I-F-
ModelingConcept containing the full specification of an Object Chunk as it would be de-
scribed in the visual representation.

12

Figure 2.7: OWL representation of a wsdm.MultimediaConcept meta model

The relations between the various concept classes in ORM can be described as a list
of statements (meta model depicted in figure 2.8) in the typical form of 3-tuples (Subject,
Property, Object), e.g. (Person, hasName, Name).

The bi-directional roles in ORM can be translated to one wsdm.Statement. To spec-
ify the inverse relationship, i.e. the other direction, it is only necessary to define the
rdfs.inverseOf of the wsdm.Property. If the inverse of the ”hasName” property would be
”isNameOf”, then our statement would be: (Name, isNameOf, Person).

Figure 2.8: OWL representation of a wsdm.Statement meta model

A wsdm.Class (meta model depicted in figure 2.7) can be either a Lexical Object Types
(LOT) or Non-Lexical Object Types (NOLOT), which need to be differentiated in the on-
tology as well.

• A NOLOT will be superclassed by wsdm.Class.

• A LOT will be superclassed by one of the seven already present subclasses of
wsdm.MultimediaConcept.

13

Figure 2.9: OWL representation of a wsdm.ObjectChunk meta model

An Object Chunk is an extended version of ORM. If the meta-model would only be
composed of a collection of statements, it would still not be possible to express the input,
output or the variable definitions inside object types (OT) as we exemplified by ”*p = ?”. We
express these annotations via wsdm.ObjectChunkReferences (OCRs). These OCRs (meta
model depicted in figure 10) are versatile references allowing us to refer to anywhere inside
the Object Chunk.

Figure 2.10: OWL representation of a wsdm.ObjectChunkReference meta model

The object chunk reference contains the following properties:

• hasName: the name of the variable inside the chunk, e.g. the variable name for ”*p
= ?” would be ”p”.

14

• hasSubject, hasProperty, hasObject: the statement this reference is pointing to.

• hasSortFunction a property specifying a function which decides how the data should
be ordered.

• hasObjectChunkFunction is used for specifying user or system interaction.

Note that it is not necessary to instantiate all properties.
Example: Imagine we wish to model our example ”*p = ?”placed inside a ”PersonName”

NOLOT. This means that the user is required to fill in the name of a person on the web
site. This is modeled in the object chunk as an internal reference. Modeling this is done by
filling in the following properties of the object chunk reference:

1. Fill in the hasName property with ”p” to specify the variable name.

2. Link it to the LOT by selecting the PersonName recourse for the hasSubject property.

3. Denoting the reference to require a user input by selecting a ”FillOutFunction”instance
for the hasObjectChunkFunction property

Example: Figure 2.11 gives an idea how the visual representation of the object chunk is
formally notated in OWL using the discussed meta models.

Figure 2.11: Notational vs Graphical Object Chunk

2.2.2.2 Navigational Modeling

Following are the necessary classes required for modeling the navigational design.

15

Figure 2.12: OWL representation for the navigation meta model

As previously mentioned, a link can be of any cardinality. To model this, we decompose
such links into one-to-one or one-to-many links that can be modeled using the meta-model
from figure 2.12.

2.2.2.3 Implementation Design Modeling

The structural model, as depicted in figure 2.13 defines how the nodes from the navigational
modeling phase are put onto pages. These pages represent the web pages that the user will
perceive.

Figure 2.13: OWL representation for the structural design meta model

16

This represents the hierarchical structure of how WSDM defines a web site: a web site
is composed of a collection of pages. These pages contain bits of information represented
by the nodes. The nodes itself are typically made up of one Object Chunk.

2.3 Conclusions

In this chapter we have presented the Web Site Design Method for modeling and creating
web sites which is based on a pipeline process consisting of 5 phases: mission statement
specification, audience modeling, conceptual design, implementation design and the imple-
mentation.

We further introduced a formal specification for the models of this methodology to allow
the automation of the final implementation phase. This specification, called the WSDM
Ontology, is expressed in a Semantic Web technology called the Web Ontology Language
and describes the meta-models of the method. This introduction only described the parts
in the ontology that were used to implement the WSDMtool discussed in a later chapter,
since the presentational aspects in the ontology are not fully defined yet to accommodate
the diversity of web design methods.

By extending the ontology notation of object chunks with internal references and an
hasMainConcept relation, we are now able to use this notation as input for our automatic
code generation tool.

17

Chapter 3

Web Application Frameworks

The past two decades have seen a shift in software engineering towards software frame-
works as the need for code reusability and less time-consuming software development grew.
These frameworks facilitated the development of software by empowering the developers
and designers to develop their application on a much higher abstraction level, letting the
framework handle the more repetitive but time consuming work.

Pree stated [39] that software frameworks consist of two types of spots: frozen and
hot spots. The frozen spots are part of the architectural design of a framework and define
the basic components and their relationships. These components remain unchanged (i.e.
frozen) in most revisions of the framework and provide consistency for the developers. Their
counterparts are known as hot spots; these are the blocks of code the developer has to write
to use the components of the framework. The business logic of applications will always be
described in hot spots.

Software engineering for the web has always been lagged slightly behind traditional appli-
cation development paradigms. However, recently there has been a growth of development
frameworks such as Ruby on Rails, Django, and CakePHP.

This chapter will investigate these frameworks individually followed by a summary ex-
plaining their commonalities. Using these commonalities, a conceptual idea can be formal-
ized on how an abstraction can be created for the code generator.

3.1 Django Framework

Django is an implementation of a web application framework written in Python. Its architec-
ture follows loosely the Model-View-Controller pattern, but is called Model-Template-View
(MTV-pattern) by the Django development community.

The development started closed source in the hands of the IT department of ’The World
Company’, a local news-oriented website in Lawrence, Kansas. As of July 2005, it was
released to the open source community under a BSD license and was named after the
famous jazz artist Django Reinhardt. In June 2008 the framework was adopted by the
Django Software Foundation, who became its main supporter and promoter.

18

3.1.1 Project Structure

A Django project is divided into components called ”applications”. Each application adds
a specific functionality to the project. The idea is that every application should be stand
alone or with a minimum of prerequisites.

The project contains the applications and a general ’settings.py’ file containing website
related settings. This file also ’activates’ the many applications a project can have. An
important file is the ’urls.py’ file. A request received by the server is linked to a specific
view-function (the controller in terms of the MVC pattern) to handle the generation of a
response to send back. The view-functions are linked to regular expressions which represent
the static or dynamic URL’s that are delegated to the function.

from django.conf.urls.defaults import *

urlpatterns = patterns(’’,

(r’^articles/2003/$’, ’news.views.special_case_2003’),

(r’^articles/(\d{4})/$’, ’news.views.year_archive’),

)

This extract of code1 contains two URL patterns which are linked to view functions.
When a user requests URL ’/articles/2003’ from the server the framework calls the functions
’news.views.special case 2003’, which will load the data and render the template. The latter
tuple contains a more dynamic way of representing URL’s through regular expressions; if
the URL contains ’articles/’ followed by four digits, represented by ”nd{4}” in the regular
expression, it is sent to ’news.views.year archive’ with the four digits as an argument, e.g.

news.views.year_archive(2004)

Every application in the Django project contains various files and directories:

• ’models.py’ defines all database tables for the application through Object-Relational
Mapping, which will be discussed below.

• ’views.py’ contains the controller functions. These functions react to events, as spec-
ified by the ’urls.py’ file in the previous paragraph. They will process requests and pre
compute information so it can be displayed on templates.

Optional is ’forms.py’, which contains python classes abstracting the web forms that
can be displayed on web pages and a templates directory containing html templates to be
shown. These templates are the ”view”-part of the MVC pattern.

1 http://docs.djangoproject.com/en/dev/topics/http/urls/#topics-http-urls

19

3.1.2 Object-Relational Mapping

To facilitate the interaction with the database through a more object-oriented approach
instead of the traditional SQL statements, the principle of ORM has been introduced.
Tables in the database are represented as models in python classes.

from django.db import models

class Musician(models.Model):

first_name = models.CharField(max_length=50)

last_name = models.CharField(max_length=50)

instrument = models.CharField(max_length=100)

class Album(models.Model):

artist = models.ForeignKey(Musician)

name = models.CharField(max_length=100)

release_date = models.DateField()

num_stars = models.IntegerField()

We see here two class definitions2 of albums and musicians. The framework knows these
are models since they are located in a models.py file in the application directory and the
specific classes are inherited by ”django.db.models.Model”. Django translates these models
to SQL statements.

The example python code will be translated to the following SQL:

CREATE TABLE "application_musician" (

"id" integer NOT NULL PRIMARY KEY,

"first_name" varchar(50) NOT NULL,

"last_name" varchar(50) NOT NULL,

"instrument" varchar(100) NOT NULL

);

CREATE TABLE "application_album" (

"id" integer NOT NULL PRIMARY KEY,

"artist_id" integer NOT NULL REFERENCES "application_musician" ("id"),

"name" varchar(100) NOT NULL,

"release_date" date NOT NULL,

"num_stars" integer NOT NULL

);

Django handles these conversions in the background of the framework, but it can be
requested through ’python manage.py sql application’, which will output all CREATE SQL
statements for inspection purposes. Django also adds a primary key if no primary key fields
were explicitely specified in the model definition.

2 http://www.djangoproject.com/documentation/0.96/models/manipulators/

20

3.1.3 Architecture of Django

When a browser requests a URL it is sent to Django’s URL dispatcher. This dispatches
the request to the view function linked to the first regular expression that succeeds on the
URL string. These view function can either be custom written or generic. They contain
business logic for the functionality the URL should provide and will interact with the models
inside the application. The view-functions will decide which template should be rendered
and what data is passed to them. The templates follow an inheritance principle so it is easy
to define the general structure of the website in one template (called a base template) and
have page-specific templates inherit this structure. The templates themselves receive the
data sent by the view-function and decide how to present this information for the user.

Figure 3.1: Django Framework – Request/Response workflow

3.2 Ruby on Rails Framework

The most common framework for rapid web development and prototyping is currently Ruby
on Rails [44]. Even though development on both Ruby on Rails as Django started around
the same time, Rails went public a year (July 2004) before Django. Because of this Rails
obtained a head start in getting community contributions and reached milestone version 1.0
in December 2005. Currently it has already reached version 2.2.

Rails is largely build around three philosophies that define the architecture and mentality
behind the framework:

• Don’t Repeat Yourself, or DRY, suggests reusability of code.

• Convention over Configuration: Instead of hard coding information in the system, Rails
will configure itself without bothering the developer. Through a series of conventions,
such as file naming schemes etc. Rails instantly recognizes models, templates and
relations between them.

21

• MVC architecture.

The major difference between Ruby on Rails and Django is the ”Convention over Config-
uration”mentality. Django requires explicit notation of functionality, whereas Ruby on Rails
assumes there is functionality by ”guessing” for it based on specific conventions.

3.2.1 Project Structure

In contrast to Django, Ruby on Rails generates a lot of files already. Applications can
be created by running a script which generates code and does scaffolding. This actually
means that it will automatically generate basic creation, read, update and delete (CRUD)
functionalities for the model controller and templates.

Basic URL routing is also automatically generated; this can be altered in ’config/routes.rb’
which looks3 like:

ActionController::Routing::Routes.draw do |map|

map.connect ’products/:id’, :controller => ’catalog’,

:action => ’view’

Install the default route as the lowest priority.

map.connect ’:controller/:action/:id.:format’

map.connect ’:controller/:action/:id’

end

The keyword is again pattern matching; like Django, it will try and match the URL
request to a pattern, defined in this do-statement. The code above for example contains a
link ”products/:id”, which will get triggered when for example ”products/521” is called. It
will then activate the ActionController class ”catalog” by executing the method ”view”. It
also contains some defaults so it will automatically retrieve the controller, action method
and parameters from the URL.

The controllers are defined using ruby classes:

class BookController < ApplicationController

def list

@books = Book.find(:all)

end

def show

@book = Book.find(params[:id])

end

3 Code examples from http://guides.rubyonrails.org/

22

def new

@book = Book.new

end

more actions such as create, edit, delete, update

end

This example defines a controller for Book objects. Most of these actions are self-
explanatory. What can be noticed here is the controller does not specify any templates to
be used to output; the naming conventions will specify what templates are used.

3.2.2 Object-Relational Mapping

Ruby on Rails uses similar Object-Relational Mapping techniques as Django, in which models
are defined as classes which are inherited from ’ActiveRecord::Base’, which adds basic CRUD
operations to the models.

Models are represented as basic ruby classes:

class Post < ActiveRecord::Base

validates_presence_of :title

has_many :comments

end

class Comment < ActiveRecord::Base

belongs_to :post

end

Ruby itself contains only validation information and relationships of the models. ”Post”
objects have a mandatory ”title” attribute and a one-to-many relationship with ”Comment”.
We see the ”Convention over Configuration” aspect of Rails in effect. We do not specify
that ”has many :comments” is linked to the Comment object, rather than that we use a
convention that figures out ”comments” is plural for our Comment.

3.2.3 Architecture of Ruby on Rails

Requests sent to the Ruby on Rails framework4 (Figure 3.2) server are handled by the
Dispatcher. this wil map the URLs from the request to an ’action controller’. The action
controller processes incoming requests to the server, extracts its parameters and dispatches
them to a specific action. The ’Action View’ receives these requests and manages the
business functionality of the view. The View function interacts with the models through an

4 http://www.eclips3media.com/workshop/2007/06/introducing-ruby-on-rails/

23

’Active Record’ pattern. All database transactions go through these classes inherited from
Active Record class.

Figure 3.2: Ruby on Rails Framework – Request/Response workflow

3.3 CakePHP Framework

PHP, the recursive acronym for PHP: Hypertext Preprocessor is one of the major contenders
in the web development scene. Originally inspired by Perl, PHP saw the light in early 1994
under development by Rasmus Lerdorf, a software engineer at IBM. Since then it has gained
increasing momentum as perhaps the primary server-side scripting language available.

However with the presence of python, ruby and their respective rapid web development
frameworks, the usage of PHP started decreasing (http://www.php.net/usage.php). Seeing
the interest for web development frameworks grow, the PHP community decided it was time
to develop their own framework; one of these is CakePHP (http://www.cakephp.org).

The community found the inspiration for the framework’s architecture and functionality
at Ruby on Rails. It is therefore easy to understand why there are so many similarities in
their development philosophies. One of their main correlations is the same usage of the
Model-View-Controller pattern, especially their definition of models.

3.3.1 Project Structure

The common CakePHP projects contain the following file structure:

• An ’app’ directory where all the models, views and templates will be defined (the hot
spots).

• A ’cake’ directory containing all framework specific files (the frozen spots).

• A ’docs’ directory containing all documentation, readme’s and license text files for the
project.

24

• A default ’index.php’ file

• A ’vendors’ directory where third-party PHP libraries can be placed.

Inside the ’app’ directory other directories can be found for configuration, models, con-
trollers, views, internationalization, etc.

An added difference is the fact that every project created in CakePHP contains the full
web application framework. This is due to the way one has to program in PHP; instead of
importing libraries which are on the execution path like in Python or Ruby, PHP only allows
the inclusion of files using a relative or static file path.

Similar to Ruby on Rails, CakePHP5 calls the way URL’s are linked to controller functions
”Routing”.

URL to controller action mapping using default routes:

URL: /monkeys/jump

Mapping: MonkeysController->jump();

URL: /contents/view/chapter:models/section:associations

Mapping: ContentsController->view();

$this->passedArgs[’chapter’] = ’models’;

$this->passedArgs[’section’] = ’associations’;

This code excerpt shows two routing entries: a static and a dynamic one. The second
(which is dynamic) catches URL requests such as ”/contents/view/chapter:5/section:2/”.
What can be noticed is that the look of CakePHP’s URL’s differs from either Ruby on Rails
and Django because of the ”variable assignment” feeling to them.

3.3.2 Object-Relational Mapping

Similar to the previous two frameworks, models are again represented as PHP classes,
extended by class ’AppModel’ specified by the framework.

class Recipe extends AppModel {

var $name = ’Recipe’;

}

We defined a Recipe model named ”Recipe”. The $name variable is a PHP4 compatibility
feature already introduced by the language. Similar to Ruby on Rails, no model attributes
in the sense of database columns are defined.

Manipulation of these models happens inside their respective controller-functions, which
is extended by the framework’s ’AppController’ class.

5 Code examples from http://guides.rubyonrails.org/

25

class RecipeController extends AppController {

var $uses = array(’Recipe’);

function index() {

$this->Recipe->find(’all’);

}

}

Due to language limitations, the controller class needs to contain a $uses variable spec-
ifying which models it will be manipulating. Apart from this, the controller functions are
implemented in a similar fashion as in Ruby on Rails.

3.3.3 Architecture of CakePHP

Page requests are handled6 (Figure 3.3) the following way:

1. The client sends a request for a specific URL .

2. The router functionality of the framework receives the URL request and parses this
by extracting the parameters, controller, action and arguments important for the
controller.

3. After this, the router maps the URL to a controller action, being a method of the
specific controller class. Any beforeFilter() functions defined in the controller are
executed before the controller action itself is executed.

4. Inside the controller action the business logic for the application is executed. The
controller manipulates the database through the use of models.

5. After the model has retrieved the data, it is returned to the controller, where actions
such as session manipulation, authentication is applied.

6. The controller hands the information to the view function which handles presentation
logic.

7. afterFilter() functions are executed if present and the information is sent back to the
client.

6 http://book.cakephp.org/nl/view/21/A-Typical-CakePHP-Request

26

Figure 3.3: CakePHP Framework – Request/Response workflow

3.4 Framework Abstraction

In the previous sections we’ve investigated three major web development frameworks. We
will now investigate if those frameworks have some common principles. This can then be
used to create an abstraction layer for web development frameworks, which on its turn can
be used for our code generation to make part of the code framework-independent.

3.4.1 Project and Application Structure

In the three frameworks discussed, the specific websites that are implemented are called
’projects’. Unlike CakePHP, Django and Ruby on Rails divide the project itself into multiple
’applications’, each complementing the project with a specific functionality. For example a
project can contain a ”calendar” application and another ”blog” application. These applica-
tions are not necessarily independent to each other. In the example it is possible that the
blog application generates posts which are also visible on the calendar.

3.4.2 Model-View-Controller Architecture

We notice that the previous frameworks are all implemented with a Model-View-Controller
architecture, which will also be our main focal point of the code generator.

3.4.2.1 Models

Models are always represented by classes, which are inherited by framework specific classes.
These parent classes contain the framework implementation for data manipulation, i.e.
Object-Relational mappings. A major difference that could be found is what the models
contain; in Django these models contain attributes which represent relationships and the
various columns to be found in the database table, whereas in Ruby on Rails and CakePHP
only contain relationships and validation annotations.

27

3.4.2.2 URL Routing

URL routing is fairly similar among the three investigated frameworks; input is always the
URL which the client sends to the server, which is parsed and compared to the routing
instances defined by the user.

3.4.2.3 Controllers

Django differs greatly from Ruby on Rails and CakePHP by implicitly linking the controller
to the view, whereas Ruby on Rails and CakePHP link them to the model. They also follow
specific naming conventions to figure out what controller and view to use. However this
does not concern us at this point because it is an implementation issue for the specific
framework and not for the code generator abstraction. Summarizing, every page in Ruby on
Rails and CakePHP is controlled by one or more methods in a controller whereas in Django
every page has a separate view-function. (Remember that Django uses the word ”view” for
controllers and ”template” for views)

3.4.2.4 Views and Templates

Views are the presentation part of the data obtained by the controller. It is therefore nec-
essary to have communication from the controller functions to the view functions, because
the view functions need to have an idea of what variables to which they have access.

For example a controller function specifies a publications-variable, containing a list of
Publication objects. The View needs to know that it can output Publications through
iterating over the publications-variable.

3.5 Conclusions

In this chapter we have presented the three most prominent web development frameworks:
Django, Ruby on Rails and CakePHP. For each of these frameworks we have discussed
its project structure, i.e. how they divide a web site into smaller coherent portions, the
architecture and how their communication layer with the persistence layer, e.g. a database,
works.

Following this in-depth presentation, we have compared the frameworks to each other in
order to extract their similarities. These similarities have been combined in the Framework
Abstraction section of this chapter and provide us with an abstract framework which provides
platform independence, yet describes all discussed platform specific implementations.

28

Chapter 4

WSDMtool Architecture

4.1 Introduction

In the previous chapter we described the various frameworks that can be used to generate
towards. Furthermore we have extracted the similarities and presented (section 3.4) an
abstract framework containing them. As we are targeting a tool that can, in principle,
generate code for any of these frameworks, we decided to keep most of the tool as generic
as possible, so that only a small part needs to be re-implemented when other frameworks are
considered. This is where the abstract framework comes in place. The tool for generating
web applications using any of the above frameworks has to adhere to this abstract framework.
So, most of the generation tool is common for all frameworks, while the more specific
portions are handled by the framework-specific code generator module.

The architecture, as depicted in figure 4.1, is made up of three layers. The file containing
the site description formalized by the WSDM ontology is read by a third-party library called
Jena, which translates the raw XML-based input into a Java API which enables us to
query the information inside the OWL file. A secondary layer introduces another indirection
which translates these OWL-based classes into WSDM-based classes. Finally the third layer
contains the generator routines. It is possible to define a framework-specific code generation
module through the use of the Interface pattern. The platform independent generator will
communicate through this interface to the platform-specific code generator.

29

Figure 4.1: WSDMtool architecture

Generation of the web site happens in the third layer, which has been split up into a
number of separate tasks:

• The Database generator creates the models which are used for communication with
the database and provide the object-role mapping.

• The Controller generator handles the generation process of the controller functions
that contain the business logic for each page.

• A Template generator completes the MVC-pattern by generating templates which will
be used to render the front-end of the web site.

• Accompanying this MVC pattern is the Routing generator in charge of defining the
dispatcher that maps the URL address requests onto the controller functions, i.e. this
decides which page you will view when requesting a specific URL.

• List output generator contains the routines for generating information chunks, which
is described in the Template Generator section.

These classes make up the abstraction layer of the WSDMtool and provide a common
base for each platform-specific code generator created.

First we will elaborate the aspects of the platform-independent generation process, such
as the pre-parser, ontology layer and the abstraction choices made for the template generator,
followed by an in-depth overview on how our platform-specific Django generator was created.

30

4.2 Pre-Parsing of Information

The information contained in the OWL file is preprocessed before the various tasks are
executed. This processing step will be the same for every web framework considered and it
is therefore important to be fully platform independent so it can always be used.

With the research into various web frameworks such as Django and Ruby on Rails,
it became apparent that only the model part of all the MVC-based frameworks could be
generalized. Object Chunks in the framework however contain only the necessary model
information to perform a specific task for a web page. In order to create the models of
the framework we require the business information model, which is spread across all object
chunk s. To solve this problem two solutions can be suggested:

1. If we adopt the idea of creating an object chunk containing all the statements of the
web site defined in the ontology, we could use this object chunk to generate the model
and database tables.

2. Because the code generator needs to generate all the pages before the site can actually
be used, we could create the models incrementally; the models can be expanded every
time a new object chunk with new statements has to be generated.

There is however still a small problem that has to be resolved: the ontology does not
speak about models. The code generator must distinguish which statements are part,
i.e. attributes, of a specific model and which classes are the actual models. However,
figuring out which are the actual models is not complicated; they can be easily extracted
because one of their super classes is the wsdm.I-F-ModellingConcept.Class class. Once
identified the wsdm.Statements linking two of these classes can be considered as relationships
between their respective models. All other wsdm.Statements would then describe the model
attributes.

Our Pre-Parser converts the business information model (BIM), obtained by combining
all concepts and statements about these concepts, into internal Model instances. Each of
these instances represents a table in the database that is required for the website. Such
a model contains ModelField instances, each representing a column in the table and for
each ModelField we have a ModelFieldType, which represents the type of data contained
in the column, indicating whether it is e.g. a string type or if it contains a relationship to
another model. In that case the model to which it is related will also be present in the
ModelFieldType.

A current limitation of our implementation is that the relationships between the various
models are interpreted as many-to-many relationships . This was chosen because every
relationship can be expressed as a many-to-many relationship. By also interpreting the
cardinality of the relationship in the WSDM OWL specification, it would become possible
to choose the correct type of relationship between two models. If various object chunks
would define the cardinality of a relationship between two models differently, this would be
resolved by choosing the least restrictive relationship and using this as a ModelFieldType.

31

To allow generation towards various web frameworks, an implementation of an abstract
factory pattern has been chosen to facilitate the separation. The interface classes themselves
contain a ”generate(PreParser op, String frameworkLocation)” method. This method only
requires the preprocessor class to retrieve the preprocessed information and a location where
it is allowed to generate its platform specific code.

4.3 WSDM Ontology Layer

An initial idea for WSDMtool was to give more functionality to the pre-parser. The idea
was to have the pre-parser directly read in the OWL classes through Jena and create so-
called ”internal classes” for the WSDMtool. These internal classes were considered to be
the equivalent for platform-independent models (PIM) commonly used in the model-driven
architecture approach. However this idea was discarded because the WSDM specification
itself could already be considered as PIMs and another way of modeling them was deemed
unnecessary. Furthermore the differences between the various web frameworks only had
the object-relational mapping in common and it became apparent that no general internal
representation could be agreed upon for the template and controller objects.

A new idea was found to create a separate indirection layer allowing us to communicate
directly with the WSDM model classes instead of the OWL classes. The code generator
never communicates directly to the Jena API but uses the WSDM API to get its information.
This made it possible to work for example with Object Chunk, Node and Concept classes
and drastically decreases the complexity of the implementation.

To summarize: we have decoupled the generation layer from the OWL2Jena layer by
adding an Jena2WSDM indirection layer. The generation layer only communicates to this
WSDM layer.

If at some point in time it is decided to represent the WSDM models with something other
than OWL, the only modifications that need to happen are within the WSDM indirection
layer so it would not use the RDF-specific Jena library.

4.4 Unambiguous Interpretation of Object Chunks

Visually interpreting object chunks appears deceptively straightforward, because the human
brain allows us to figure out the meaning of the object chunk by its name and establish an
interpretation by inspecting the various concepts connected to each other. It is however not
so straightforward for a piece of software to perform this same task; a formal methodology
must be decided upon to achieve similar results as if done manually.

To provide such a methodology, we have divided the object chunks into two categories:
information and interaction chunks. The information chunks category contains object chunks
that only present the user with information; examples of this are the ”SubmissionsInfo”object
chunk from the case study described in chapter 5. The interaction chunks category contains

32

object chunks requiring an action to be taken by the user or system, i.e. filling out a form.

4.4.1 Information Chunks

A first problem arose early during development: ”Where do we start with the interpretation
process of an object chunk?”. If we have an object chunk called ”ListPapersAndTheirAuthors”,
it would be only logical to start iteration at the Paper-concept and show the name of the
paper and authors for each iteration step. This problem had already been observed in pre-
vious work [23] and had been resolved by introducing the idea of a ”Main Concept” inside
every object chunk. This addition to the WSDM methodology had not yet found its way
into the OWL description for web sites but has now been added. With annotating a concept
as being the main concept of an object chunk the algorithm for generating templates now
has a position to start from.

The following depth-first graph traversal algorithm templateGenerator handles the gen-
eration process of information chunks.

DEFINE templateGenerator(objectChunk, currentConcept)

FOREACH concept IN neighbours(currentConcept, objectChunk)

IF concept is LOT

RETURN output concept instance

ELSE concept is NOLOT

RETURN templateGenerator(objectChunk, concept)

templateGenerator(objectChunk, get-main-concept(objectchunk))

The algorithm considers our object chunks to be mere graphs. The nodes are represented
by object types (OT) such as lexical and non-lexical object types. More particularly the
lexical object types (LOT), as defined by ORM [29], are concepts such as ”name”, ”telephone
number”, ”title”which are atomic and can be represented by wsdm.MultimediaConcept’s such
as wsdm.String or wsdm.Integer and are always the leafs of the graph. The intermediary
nodes in our graph always consist of non-lexical object types (NOLOT) representing abstract
Concepts such as a person (which can be referred by LOTs). Finally the roles between the
various OTs make up for the edges between the nodes.

ORM states that every role between two Object Types is bidirectional. This assertion
would mean that we would constantly keep revisiting concepts. The direction of each role
is therefore made unidirectional, making sure we don’t revisit nodes through the same or
inversed role.

4.4.2 Interaction Chunks

Generation of interaction chunks is different than generation of information chunks. This
is because the user has to be able to fill in information in the system. For generating web
sites this boils down to creating web forms.

33

Generating a web form is only the first phase in interpreting interaction chunks. These
types of object chunks also explain what has to be done with the information received by
the user. This means that apart from generating an output, it is also required to generate
code routines which handle the filled in form request sent by the user by submitting the
form.

4.4.3 Generating Structure without Presentation

Whenever we are speaking about views (Ruby on Rails and CakePHP) or templates (Django)
we are referring to the HTML output not the HTML and Cascading Stylesheets (CSS)
output. The code generator application will not contain routines to generate CSS output.
This is done for multiple reasons.

The primary goal of WSDM is to conceptually model the content of a website. Initially,
modeling the look and feel of the website was not considered in WSDM. After a couple of
iterations the WSDM ontology was extended to also allow storing the (conceptual) modeling
of the layout of the website. However this layout design cannot yet be considered as a
full-fledged to model the look and feel of a web site. This is one of the main reasons
why page styling will not be implemented. The World Wide Web is one of the fastest
evolving domains in existence. Trends for web page styling and typesetting rapidly evolve
and customers become demanding in this respect. This need cannot be reflected efficiently
in the ontology as currently it only allows general layout concepts such as three-columns,
navigation menu’s, bullet lists. but does not yet allow the increasingly more popular ”Web
2.0”features such as websites with AJAX enabled web calls. While the requirements for the
content do not evolve, those for layout and styling do and this is an important argument
not to focus on page style generation for our code generator.

A second reason is based upon another fact of web development in the business world.
As Jacob Kaplan-Moss stated [30] web development is a two-fold process; the programming
team creates the database models, the controller functions to handle requests, basic tem-
plates and these are then sent to another team who re-order the layout, add CSS and finally
publish it. His argument for this strategy is that good programmers are not necessarily good
graphics designers and suggests that two separate professions should do these two processes.
The inverse is also an argument; graphic designers should not have to be fully aware of all
the intricacies of the framework or the ontology to present the information.

The code generator will therefore act as the programmer’s team; it will generate the
templates without styling. Several features have however been implemented to easily support
the use of style sheets. Every generated template is inherited from a so-called base-template
which has to be provided by the user. This template defines the general layout of the website,
for example whether the site uses a two or three column layout. It also defines something
called ”blocks” to specify where the generated information is to be displayed inside this
template. This is important, as we want to be able to specify where the navigational links
and information has to be placed.

34

Figure 4.2: Example of a possible layout

In figure 4.2 we would define a base template to contain a header, footer, horizontal
navigation (2), vertical navigation column (3) on the left and a content column (1) on the
right side. The content appearing in the red boxes will be different for every page we visit.
It is this and only this information that the generator will create.

4.5 Platform-Specific Django Generator

As a proof of concept for a generator we have implemented a platform specific code generator
towards the Django web development framework, described in the previous chapter. As
previously discussed, a Django project is a combination of applications. Because the WSDM
ontology uses a navigational-oriented methodology, it is not immediately possible to extract
the different applications from the site description. Therefore we will currently restrict our
code generator to the functionality of generating the web site as a single application, thus
making it possible for generation to frameworks which support either single or multiple
applications.

Django was chosen because of its many advantages over other frameworks; the frame-
work is based on the Python programming language. As such, it is a widely available,
high-level, object-oriented programming language which runs on all operating systems. Fur-
thermore the choice of whether the database is MySQL, Oracle or any other database man-
agement system does not matter since Django provides support for each of these databases,
drastically simplifying the task.

35

4.5.1 Generating Database Models

There are two options on how to store data for a web site: storing the content in the WSDM
ontology itself or only storing the content structure in the ontology and storing the actual
content elsewhere (e.g., in a database).

The WSDM ontology already supports storage of data via WSDM statements. These
are based on the RDF Triple principle, which links a Subject to an Object via a predicate
”(Subject, Predicate, Object)”. For example:

(Person, hasName, Name)

Because the ”hasName” property is unique for the entire ontology description of the
website we can ”instantiate” it through

(ID0001, hasName, "Bob T.")

This links an instantiation ID0001 of a ”Person” to the instantiation of ”Name” and
describes that Person ID0001 is named Bob T. Let’s say we also link the ”Person” to a
specific ”Age”, we can also give Bob an age by using

(ID0001, hasAge, 34)

A database that is specifically built for storing information as these statements is called
a Triplestore.

The code generator will not use a Triplestore. A Triplestore is a good way of working for
rapid prototyping tool but may be inappropriate for a production environment where large
volumes of data need to be maintained.

Another possibility is to describe only the content in the WSDM ontology, such as

(Person, hasName, Name) and (Person, hasAge, Age)

With these OWL statements, we can create the models for our framework and instantiate
them in the working framework itself. However, this requires a methodology to convert the
conceptual models describing the structure of the content into some implementation format,
like a relational database.

It is possible to have a database generator which is solely dependent on the pre-processed
Models. The database generator will translate this internal representation into the platform
specific representation of a model in the MVC-pattern.

All that was required of the generator was to create a models.py file inside a Django
application where the models can reside. The conversion from the internal model structure
is as follows:

1. Each instance of the Model becomes a Python class, which inherits from the
’django.db.models.Model’ class or another model we have defined to allow model in-
heritance. For example: a Student model can inherit from the Person model. The end
of the inheritance hierarchy is ended by a model inheriting from ’django.db.models.Model’.

36

2. Attributes are then added to the Django model by iterating over the ModelFields of
a Model. The type of the attribute is decided through a mapping of the different
WSDM.MultimediaConcepts over the attribute fields made available in Django.

3. Finally the model is registered in the administration to create scaffolding in the ad-
ministration site for CRUD operations.

As an exception to WSDM.SystemFunction the NEXT-function is not implemented in
the controllers’ generator but rather in the database generator. If there exists an object
chunk that has a NEXT-function as an internal reference to a specific concept, the model
field representing this concept will be interpreted as being an automatically incrementing
field in the database.

4.5.2 Generating Controller Functions

For Django, every object chunk can be generated in the corresponding page’s controller-
function. The problem with Ruby on Rails and CakePHP however lies with the requirement
to generate a method and associate it to the correct controller, e.g., associate a ”create”
action for ”Paper” to the ”PaperController” and not to the ”AuthorController”. The specific
framework code generator should therefore contain a mechanism to establish which model
it has to choose. Studying various object chunks we conclude that this could be based on
the wsdm.hasMainConcept property introduced in the previous section.

On close inspection we notice that not a lot of the information contained in the object
chunk is represented in the controller function. This is because the object chunk contains
statements which represent the data to be displayed which belong in the template/view
model and not in the controller model. Regarding the controller, only the ObjectFunction
aspects of the WSDM ontology and the object chunks in/out values are of importance. This
describes what the controller needs to know: which data is coming in, which data has to go
out and what manipulations it has to perform on them.

A comparison between the WSDM notation and the preferred framework specific imple-
mentations can be found in appendix B.

Our Django implementation generates a controller function resembling the code below.

DEFINE pagename(inputref1, inputref2, ...)

- fetch required database objects referenced by the inputrefs

IF post request sent:

- populate form instance with user input

IF user input valid:

- retrieve user interaction references from form instance

- execute system interaction references

37

- save changes to database

- fetch objects referenced by all other references

IF action is outboundlink1

RETURN redirect routine to next page on navigation

path parametrized by all output references

IF action is outboundlink2

RETURN redirect routine to next page on navigation

path parametrized by all output references

...

ELSE

- Create form instance

RETURN redirect routine to next page containing all necessary

references of the next page

The following can be said about the code above:

• The code highlighted in bold is only generated for interaction chunks.

• Input references are handled as function arguments.

• Each outbound link creates a new if-test to handle the specific link.

The internal references have been split up into several types of internal references:

• User interaction reference (e.g. ”*query = ?”) denotes that a model instance called
’query’ has to request its value from the visitor. This generally means that the user
is required to fill in a form field for this value.

• A system interaction reference (e.g. ”*date = TODAY”) is a reference similar to the
user interaction, but instead of asking the user for input for the variable it represents,
the system automatically generates it. Implemented examples are:

– Create Instance: creates a new instance of a model, e.g. creating a new Person
object.

– Create Property: adds a new property to a model instance, e.g. adding a first
name to the Person object.

– Delete Instance: removes a model instance from the database.

– Today: generates the current time and date using python’s datetime.datatime.now()

38

• A data-lookup reference (e.g. ”*p”) does not perform any user interaction or system
interaction in the same sense as the system references, but rather does a database
lookup to retrieve its instantiation value. It does so by querying for all model instances
of the model and filters the query by every instantiated reference directly and indirectly
connected to it.

4.5.3 Generating Templates

With both the models and controller generation processes already addressed, we can now
focus on the third and final requirement for our Django code generator for the WSDMtool:
the generation of templates. The platform-independent part of the code generator already
contains the logic for generating templates. Specifying this for the Django generator is a
matter of inheriting the abstract class and defining the abstract functions. These functions
represent the abstract routines as defined in the templateGenerator algorithm which can
be specialized for the Django generator. For example the code below specifies that the
encapsulation of objects will be done using HTML div-tags.

protected String startListContainer(String listName, int tabDepth) {

return tabs(tabDepth)+"<div class=\""+listName+"\">\n";

}

Defining these procedures will handle the generation of information chunks. The gen-
eration of interaction chunks is handled by defining a new form class for each interaction
chunk. This class contains the information of what form fields are visible and which input
field type, i.e. an option-list, radio checklist or text input fields, etc. Generation of the
actual HTML form is handled by Django itself.

4.6 Conclusions

The WSDMtool interprets the OWL specification as described in chapter 2. This XML
syntax is translated to Jena classes available for the Java programming languages. An
indirection layer translates these Jena classes and specifies an API which can be used by the
code generator.

The generation process was split into multiple phases targeting different aspects of the
MVC-pattern. Each phase has been deliberately kept as generic as possible in order to serve
as a base for generating towards a multitude of frameworks.

Some of the tool’s most distinguishing features are:

• Support of the WSDM methodology

• Possibility for generating towards multiple unmodified web frameworks through the
use of framework-specific code generation modules.

39

As a proof of concept a platform specific generator towards the Django web framework
was implemented.

40

Chapter 5

Case Study

5.1 Introduction

The Conference Review System has been a case study used by many web modeling methods,
such as OO-H [14], OOHDM [42] and WSDM [17]. The case study [41], created by Daniel
Schwabe, was introduced in 2001 for the First International Workshop on Web-Oriented
Software Technology [1] (IWWOST) in Valencia, Spain.

The case study of the conference review system describes a web application that supports
the business logic of submitting, evaluating and selecting papers for a conference.

The web application supports the following actors:

• Author actors submit the papers for acceptance at the conference.

• Program Committee (PC) chairman is responsible for creating a conference and as-
signing members as PC members.

• A PC member is responsible for evaluating a collection of papers and selecting people
as reviewers.

• A Reviewer reviews the submitted papers.

After reviewing the case study, we chose to only focus on implementing the author
navigation track as done in [41] due to all tracks having the same complexity in regards to
code generation.

The complete collection of object chunks used to create the author track part of the
web application can be found in appendix A.

5.2 Model Generation

The models are generated by interpreting the business information model (BIM).

41

Figure 5.1: Business Information Model of the Paper concept

Figure 5.1 depicts how the Paper concept is connected to other object types in the busi-
ness information model. By applying the interpretation techniques from the previous chap-
ter, each NOLOT is translated into a class definition. Roles linked to LOTs are interpreted
as table columns whilst roles linked to other NOLOTs are interpreted as many-to-many
relationships.

class Paper(models.Model):

abstracted_to = models.CharField(max_length=255, null=True)

in_track = models.CharField(max_length=255, null=True)

last_modified_on = models.DateTimeField(null=True)

uploaded_to = models.FileField(upload_to=’documents’, null=True)

submitted_on = models.DateTimeField(null=True)

about = models.CharField(max_length=255, null=True)

paper_identified_by = models.IntegerField(null=True)

authored_by = models.ManyToManyField(’Person’, related_name="author", null=True)

coauthored_by = models.ManyToManyField(’Person’, related_name="coauthor", null=True)

titled = models.CharField(max_length=255, null=True)

admin.site.register(Paper)

The different concepts defined in the WSDM specification as wsdm.MultimediaConcept
instances are mapped onto the model fields (CharField, DateTimeField, etc.) provided by
the Django framework.

42

5.3 Controller Generation and Object Chunk Reference
Handling

We will now describe the generation of the Django controller functions, which handle the
business logic described by the object chunks.

An abstract idea of this code has already been given in chapter 4 in the section on
generating controller functions for the Django framework. We will now give some practical
examples to explain this code more in-depth.

An interesting example to start with is the following object chunk:

Figure 5.2: AuthorLogin object chunk

The object chunk in figure 5.2 represents the functionality required to log in as a specific
Person by providing a correct username and password. First the object chunk requires the
user to enter a username and password, denoted by the ”*p = ?”and ”*n = ?”references in
respectively the Password and Name LOTs. The main concept is denoted with a gradient
background.

If a Person instance a is found with a specific Password p and Name n the output
reference required to exit the object chunk and the outbound navigational link can be
followed to the next object chunk.

This object chunk shows how the WSDMtool handles user interaction references, such
as ”*p = ?” as well as references that forces a database lookup using other instantiated
references.

Interpreting this object chunk results in the following controller-function code for the
Django framework:

def home(request):

if request.method == ’POST’:

authorloginform = AuthorLoginForm(request.POST, request.FILES)

43

if authorloginform.is_valid():

p = authorloginform.cleaned_data[’password’]

n = authorloginform.cleaned_data[’named’]

try:

a = Person.objects.get(Q(password = p, named = n))

except ObjectDoesNotExist:

return HttpResponseNotFound("Your request was incorrect.")

if request.POST[’action’] == "author’s submissions":

return HttpResponseRedirect(

reverse(’wsdmsite.views.submissions’,

kwargs = {’a_id’: a.pk}))

else:

authorloginform = AuthorLoginForm({})

return render_to_response(’home.html’,

{

’authorloginform’: authorloginform,

})

As well as a class definition, which contains the form description:

class AuthorLoginForm(forms.Form):

def __init__(self, *args, **kwargs):

super(AuthorLoginForm, self).__init__(*args, **kwargs)

self.fields[’password’] = forms.CharField(required=False)

self.fields[’named’] = forms.CharField(required=False)

The following can be observed from both code excerpts:

• The controller function has the name of the Page: ”home”.

• The branch created by the first if-test contains all the information to be handled after
the user has provided the information. All code below the if-test concerns the creation
of a web form, which the user will be able to fill in.

• A form variable in the form-processing branch is instantiated with the POST request
as an argument, binding the user input to the form fields.

• All Object Types containing references requiring user interaction, i.e. ”*p = ?”, are
turned into variables which extract information out of the form instance.

44

• Other intermediary references such as ”*p” that do not require any user or system
interaction are then handled in a separate try-except clause.

• After successfully handling a form request, the visitor is taken to the next page ac-
cording to the navigational modeling, in this case the ”submissions”-page.

• The web form itself is an instantiation of a separately generated AuthorLoginForm
class containing all the fields (”named” and ”password”) as required by the object
chunk.

• The HTML itself is created using Django’s built-in render to response function, which
takes a dictionary containing variables required by the template.

• Errors which occur when no Person could be found containing a particular username
and password is handled by generating a 404 error page. The handling of the error
could also be done differently: by changing the return HttpResponseNotFound(”Your
request was incorrect.”) to a simple pass statement, a user would return to the login
form to try again after submitting incorrect credentials.

The login object chunks makes it clear how internal references such as user interaction
references (*p=?) and data lookup references (*a) are handled. This demonstrates most of
the internal references except the system interaction reference which will be discussed now
using a new example.

The object chunk in figure 2.4 represents the registration of a new co-author for a paper
in the conference review system.

When the navigation enters a node containing the AddCo-Author object chunk, a paper
is already known, as described by the input reference ”in *p Paper”. The user is able to
enter the name for a person (”*pn = ?”in the Name LOT) and the system will create a new
person (”*a = NEW” in Person NOLOT) and add the name and a newly generated id (”*id
= NEXT”in PersonID) properties to the model instance. The object chunk has now finished
and the outbound link is followed, sending along the paper (”out *p Paper”) it received at
the start.

The WSDMtool interprets this object chunk and generates the following code for it:

def register_addcoauthors(request, p_id):

p = get_object_or_404(Paper, pk=p_id)

if request.method == ’POST’:

addcoauthorform = AddCoAuthorForm(p_id,

request.POST,

request.FILES)

if addcoauthorform.is_valid():

pn = addcoauthorform.cleaned_data[’named’]

CREATE: Person

45

a = Person()

NEXT: Person_ID

pid = 10

CREATE PROPERTY: coauthor

a.save()

a.coauthor.add(p)

CREATE PROPERTY: person_identified_by

a.person_identified_by = pid

CREATE PROPERTY: named

a.named = pn

a.save()

if request.POST[’action’] == "save":

return HttpResponseRedirect(

reverse(’wsdmsite.views.register_information’,

kwargs = {’p_id’: p.pk}))

if request.POST[’action’] == "save and add another":

return HttpResponseRedirect(

reverse(’wsdmsite.views.register_addcoauthors’,

kwargs = {’p_id’: p.pk}))

else:

addcoauthorform = AddCoAuthorForm(p_id, {})

return render_to_response(’register_addcoauthors.html’,

{

’p’: p,

’addcoauthorform’: addcoauthorform,

})

Once again a few interesting things can be discovered:

• The system interaction references introduce a new aspect which has to be kept in
mind: persistency; when a new model instance is created in Django it requires to be
saved at some point in the database. Updating the model instance does not cause
any database access. Whenever a .save() method is called on the model instance, the
database is accessed to save the model. This is required at the end of the business
logic to perform the final save. Sometimes it is required that the object already has
to be saved once, so it has a primary key, e.g. when a many-to-many relationship
(a.coauthor.add(p)) has to be performed. The WSDMtool is able to figure out when
this has to happen by sorting the generation order of the internal references.

• The AddCo-Author object chunk also shows what happens when there is more than
one outgoing navigation link. The navigation path defines two outgoing links from the

46

node containing this object chunk. The choice whether to follow the first or second
link will be derived from which button was pressed in the form.

• In contrast to the previous object chunk the type signature contains an extra param-
eter. This is because this object chunk has an input reference, stating it requires a
model instance of the type Paper. The code generator demands the primary key of
the model when it is a NOLOT. As a first action in the controller it will retrieve the
real model instance from the database using this primary key. In case of a LOT it will
simply demand the lexical value.

5.4 Template Generation

Using the templateGeneration algorithm discussed in the previous chapter, we get the fol-
lowing code for the AuthorSubmissions object chunk:

<div class="authorsubmissions">

{% for object in authorsubmissions_list.all %}

<div class="person">

<div class="coauthor">

<h4>coauthor</h4>

{% for paper in object.coauthor.all %}

<div class="paper">

paper_identified_by: {{ paper.paper_identified_by }}

titled: {{ paper.titled }}

</div>

{% endfor %}

</div>

<div class="author">

<h4>author</h4>

{% for paper in object.author.all %}

<div class="paper">

paper_identified_by: {{ paper.paper_identified_by }}

titled: {{ paper.titled }}

</div>

47

{% endfor %}

</div>

</div>

{% endfor %}

</div>

This HTML shows how the algorithm traverses over the image and generates a hierar-
chical HTML structure. Furthermore a value is added to each DIV or SPAN tag to provide
more flexible support for using style sheets.

The form class generated during the controller generation process is intantiated and sent
to the following template where it is outputed as a collection of paragraphs using the .as p
method in the template.

<form enctype="multipart/form-data" method="post">

{{ authorloginform.as_p }}

<input type="submit" name="action" value="author’s submissions" />

</form>

5.5 Routing Generation

Finally each page is generated as an entry in the urlpatterns variable, linking a regular
expression representing possible URL requests to the controller function handling that re-
quest. Input references are extracted from the URL if necessary and passed to the function
as arguments.

urlpatterns = patterns(’’,

(r’home/’, home),

(r’register/(?P<a_id>\d+)/’, register),

(r’paper_update/(?P<p_id>\d+)/’, paper_update),

(r’register_addcoauthors/(?P<p_id>\d+)/’, register_addcoauthors),

(r’paper_update_addcoauthors/(?P<p_id>\d+)/’, paper_update_addcoauthors),

(r’paper_update_deletecoauthors/(?P<p_id>\d+)/’,

paper_update_deletecoauthors),

(r’submissions/(?P<a_id>\d+)/’, submissions),

(r’register_information/(?P<p_id>\d+)/’, register_information),

(r’paper/(?P<p_id>\d+)/’, paper),

)

5.6 Final Result

For the purpose of illustrating the result of the code generation process we have included
the HTML representations of the AuthorLogin and SubmissionInfo object chunks.

48

Figure 5.3: AuthorLogin object chunk result

Figure 5.4: SubmissionInfo object chunk result

49

Chapter 6

Related Work

At the end of the ’90s a lot of researchers started to recognize the lack of design methods
for creating web sites and web-based information systems. A number of methods have been
proposed. Some methodologies are data-driven whilst others are geared towards user-driven
approaches.

In this chapter, we will present the most prominent web modeling methodologies cur-
rently in use and discuss how they deal with the implementation of the web site under
design.

6.1 UML-based Web Engineering (UWE)

The UML-based Web Engineering approach [32] tries to adhere to the principle of using UML
to describe a web application as much as possible. Its premise is the same as Model-Driven
Engineering by using the meta-models and applying complex transformations to them. It
combines various ideas found in other methodologies: such as a user-centered approach
(WSDM), separation between navigation and presentation (OOHDM) and the usage of
graphic notations (RMM).

UWE is a set of tools, notations and techniques, including a modeling language for
graphically representing models, a formal definition of their meta-models, a development
process and tools for semi-automatic generation of a web site based on the models.

The authoring process contains four phases for the creation of the following models: use
case, conceptual, navigation space, navigation structure and a presentation model. Each
iteration of the process refines these models further to provide more functionality.

The first part of the process is the creation of use case models. This is done by con-
sidering the application domain and defining the types of users as well as the functionality
the application has to offer them. First the different type of actors have to be identified.
Activities are then linked to the actors able to perform them. Activities logically belong-
ing together are then grouped into use cases. An example is the submission use case in
figure 6.1. Relationships between use cases and actors are established as well as inclusion
and extension relationships between use cases. Finally the model is simplified by defining

50

inheritance between actors and use cases. UML already contains a graphical representation
to model these aspects.

Figure 6.1: Submission Use Case Package in UWE [32]

After creating the use case model a conceptual model can be defined. This is done
by using plain UML to describe the concepts in the business information model as UML
classes. Alongside the common information found in these classes, such as a class name,
attributes and methods, additional information for modeling adaptivity can be found; these
are modeled using the UML comments. Finally, related classes are grouped together using
UML packages. This is once again done using plain UML, requiring no additional semantics.

The navigational modeling phase generates two separate models: a navigation space
model and a navigation structure model. The first one explains which concepts are able
to be visited in the web application for each user type, whilst the second indicates the
navigational structure specifying how to reach them.

The navigation space model, consisting of the objects that are reachable for a specific
actor, contain navigation classes with the same names as the objects from the conceptual
model. Using a separate model presents the possibility for restricting the permissions of
a specific actor on certain attributes or methods of a conceptual object. Associations
between the classes in the navigation space model represent direct links between the various
objects. These navigation classes are represented by plain UML classes stereotyped as
”navigation class”. The associations are also stereotyped by ”direct navigability”. An example
implementation [32] of this model can be seen in figure 6.2. This model is created by first
including all conceptual models relevant to the navigation. Second, unnecessary information
is omitted according to the actor’s requirements and permissions. Associations between the
models are kept and new ones can be added to improve direct navigability. Finally constraints
are added to specify further restrictions.

51

Figure 6.2: Navigation Space Model in UWE [32]

Modeling how the user will be able to navigate through the website is done by enhancing
the navigation space model from the previous step by access elements, type indices, guided
tours and queries. All bi-directional associations are replaced with a set of unidirectional
associations representing the decomposed equivalent. Each association is annotated with
an equivalent query required for retrieving the correct instances. This model is now called
the navigation structure model.

One of these access elements or access primitives is a menu. This is used to represent
different views on a model, such as a guided tour, index, a query, an instance of a navigation
class or a composition of other menus.

The last model is the presentation model which is created through the use of story-
boarding, a technique used to give a first look and feel of the user interface, similar to a
collection of mock ups. The meta-model in figure 6.3 describes the relationship among the
various classes in the presentation model.

52

Figure 6.3: Meta Model for Abstract User Interface Elements [32]

Now we have elaborated on the methodology itself it is time to present the tool used
for modeling and generating a website. ArgoUWE [31] is a plugin for the open-source
UML modeling tool ArgoUML which provides the methodology with its own CASE tool for
modeling and generating towards the Spring framework.

Kraus, Knapp and Koch explain [32] that UWE-based generation of web applications is
straightforward in the case of content and presentational modeling. The conceptual model
is easily translated into its implementation specific counterpart. Similarly, the UML-based
presentation model can be seen as a decomposed abstraction of a web page. However
ArgoUWE does not provide a full fledged automated generator. for example, the implemen-
tation of model methods still has to happen manually.

The generation of platform specific code is handled by a transformation pipeline using
ATL (ATLAS Transformation Language).

53

Figure 6.4: Transformation Pipeline [32]

Figure 6.4 represents the three-layered transformation pipeline. The first (top) layer
contains content independent models (CIMs) describing the meta models. The middle layer
contains the platform independent models (PIMs) describing a website using the CIMs from
the first layer. Finally the bottom layer contains the platform specific models (PSMs) which
implement the web site for a specific framework.

However it is not straightforward for modeling the business logic behind the website,
based on the navigation model. The typical transformation pipeline used by UWE does
not provide enough support for transforming the workflow notations. An interpretational
approach [32] has been chosen for this part.

6.2 Object-Oriented Hypermedia Method (OO-H)

The Object-oriented Hypermedia methodology, or ”OO-H Method”, is a design proposal [28]
for modeling web sites based through an object-oriented approach.

OO-H follows the precept that the modeling techniques used for traditional software
engineering can be successfully applied for also developing web applications. As a result
OO-H is an extension to the traditional UML-modeling technique [5] commonly used in
software engineering.

The proposal enables the developer to create web applications by providing a set of
notations, tools and techniques which complement the UML, such as: a design process, a

54

pattern catalog, a Navigational Access Diagram (NAD), an Abstract Presentation Diagram
(APD) and a CASE tool that allows automation of the development of web applications
using this methodology.

The design process lays out a sequence of phases the developer must cover in order to
create a functional interface:

1. A first step is to create a UML-compliant class diagram that specifies the domain
information structure.

2. A NAD is constructed for each user type.

3. Generate a default APD.

4. Refine the APD, the designer refines the structure and usability for the different
interface modules.

5. Finally the website interface is automatically generated.

The NAD and APD make extensively use of the OO-H Method Pattern Catalog. This is
a collection of patterns which can be used throughout the development. The patterns focus
on best practices to address certain problems, similar as traditional software engineering.
The catalog is divided into three categories:

• Information patterns that provide feedback for the users

• Interaction patterns provide best practices in handling user-interface communication
issues, both functional and navigational.

• Schema Evolution Patterns which cover more structural advanced features

A pattern itself is composed of a name, its application level (specifying whether it
can be used in APDs or NADs), a context, problem statement, verbose solution, default
implementation defined through transformation rules and secondary implementations.

The navigational access diagram or NAD is built upon the UML-compliant class diagram
from step 1. The combination of all defined NADs will result in the navigational model for
the given site. For each view required by the specifications a separate NAD should be
constructed. Furthermore each user-type should have their own set of NADs, since most of
the time different user types will require different specifications.

The diagram is made out of four types of constructs:

• Navigational classes enrich the domain classes by restricting the visibility of the meth-
ods and attributes in accordance to the user’s access permissions. This can be done
using three types of attributes: V-attributes (visible), H-attributes (hidden) and R-
attributes (referenced, i.e. visible at the demand of the user).

55

• A Navigational Target (NT) is the structure to group various elements of a model for
an NAD.

• Navigational Links (NL) define the paths the user will be able to follow. These links
are divided into a couple of categories: Internal Links (Li) define the structure inside
an NT (comparable to process-logic links in WSDM), Traversal Links (Lt) for creating
links between different NTs (similar to structural links in WSDM), Requirement Links
(Lr) point to the start of the an NT and Service Links (Ls) show what services are
available to the user-type.

• Collections are structures which help the user with accessing information.

Figure 6.5: An NAD of the Discussion List System [28]

The NAD as presented in figure 6.5 has its attributes annotated with V-attributes,
which means that the information contained in nameDList (the name of the discussion list),
titleMsg (title of a message) and textMsg (text body of a message) in all messages within
a discussion list will be visible to the user.

The Internal link between ”Discussion List” and ”Messages” states that the NT should
show all (”showall” modifier) messages belonging to that discussion list instance, but that
they will appear on a separate page than the name of the discussion list, denoted by the

56

”dest” modifier. Also a Service Link is defined to allow the user to reply to a message by
pressing a hyperlink called ”Reply”.

Finally the Classifier Collection pointing to the NT specifies that this particular NT will
be chosen as the entry point (EP) for the web application, called ”Index”.

Although the OO-H tool generates basics Abstract Presentation Diagrams, they would
require refinement to add more sophistication and usability to the interfaces. These tem-
plates are expressed using XML. To specify the type of the template a couple of Document
Type Definitions (DTD) have been defined, such as structural, style, forms, client function-
ality and a composite-like window-type which can hold multiple views.

Figure 6.6: An APD for the Discussion List System [28]

As mentioned the tool generates a usable initial version of the APDs; one of these is
shown on figure 6.6. This figure describes that everything except the ”ReplyMessage”action
should be presented using a structural template. For the ”ReplyMessage” action, the user
should be able to fill out information, such as the title and body of a message and thus
requires a Form template. We can also see that the links, defined in the NADs, are also
present.

This APD is generated through a series of basic APD Mapping Rules [28]:

• V-attributes, I, T and R-links appear as elements inside a tStruct template.

• C and S-collections are represented through a tree-like composition structure consist-
ing of tStructs and tForms, depending on the need for user-input or not.

• S-Links generate tForm pages so the user is able to input information into form fields.
Depending on the return-type of the method the link is pointing to, a page might be
generated to present the user with the final result.

• R-attributes also create tStruct pages which are linked together through hyperlinks,
referenced by a value entered in the model.

• Depending on the patterns, a different type of page can be generated. For example
the ShowAll Pattern will create link elements on a single page.

57

This initial APD version provides a usable, but rather simple implementation. It is
therefore possible to refine this diagram by using constructs available from the Pattern
Catalog.

6.3 Web Modeling Language (WebML)

The Web Modeling Language [12] was introduced in 1998 as a visual notation for creat-
ing large complex data-intensive web sites. Similarly to WSDM, its graphical notation is
translated to a formal specification which is used by a visual CASE tool such as WebRatio.

WebML differs from other methodologies by providing only a limited number of concepts
which can be combined together in various ways to offer a large flexibility. Another trait is
the close connection to the industry: alongside the academic research around WebML an
industrial line developed the WebRatio tool utilizing the methodology. This tool has become
the most prominent and actively used web site modeling tools in real-world situations.

The first version of the method only provided support for modeling read-only websites
with a lot of data. The focus was deliberately kept small in order to create a decent
foundation for modeling the organization of the interface, navigation and content. Version
two added descriptors for business logic to the method in order to model read-write web
applications containing authentication, content management etc. A third iteration of the
methodology implemented the possibility of creating model plug-ins, so developers could add
their own primitives to the methodology for modeling more specific business-domain related
problems. The fourth version used this newly introduced plug-in system to introduce new
extensions to the core of the methodology, providing support for web services and distributed
applications.

The methodology is based on an iterative process [11]. Each cycle has a requirements
analysis followed by an implementation through data design. After this a prototype of
the partial web site is created and undergoes testing and validation, returning back to
the original requirement analysis for further refinement and additional functionality for the
next iteration. This process is ideally suited for the Web since it follows a ”deploy fast,
deploy often”mentality. The requirement analysis process consists of collecting information
about the business domain and specifying the functionality and target group of the web
application. The methodology does not specify which format has to be used to create these
specifications; it leaves this up to the designers.

First the types of users are identified. Similar to WSDM they are grouped together
according to the same characteristics and access rights. The user groups are then comple-
mented by with their respective functional requirements. After this a phase called ”iden-
tification of core information objects” extends the information about the user groups once
again by deciding what information the user group is allowed to access and manipulate.

The phase is ended by decomposing the web application into site views for each user
group, i.e. ”creating different hypertexts designed to meet a well-defined set of functional
and user requirements” [12].

58

During the conceptual modeling phase a Data, Hypertext and Business Process Model
are defined.

A Data Model is created using either an entity-relationship diagram or an equivalent
subset of the UML class diagram to model the relationship between the various entities, i.e.
domain concepts. These relationships can be extended with constraints and cardinalities.

Figure 6.7: WebML Data Model using UML [12]

The Hypertext Model provides an initial definition of the front-end, specifying what the
user is able to view. Data and operations are divided into components, called control units,
which are in turn organized in pages. This is complemented by the addition of links between
these pages and control units. Combining all these aspects create a site view, which is
targeted

Each page in a site view can be a combination of any three types:

• The home page, denoted by an ”h”, is the page which will be entered when browsing
to the web site.

• A default page, denoted by a ”d”, is the page presented when the user enters the
enclosing area.

• A landmark page, denoted by ”l”, is an additional navigational link which is reachable
from all pages or areas in the enclosing area.

59

Figure 6.8: WebML Hypertext Model [12]

Figure 6.8 depicts the site view ”Movie DB”made up as a hierarchical structure. At the
top level the site consists of a home page and two navigation area (the shopping cart and
movies areas). Each area consists of a collection of pages where at most one is annotated as
the default page for that area. Each page is composed of various content units, representing
elementary information elements. There are five predefined types of content units:

• Data Units represent a collection of attributes of a given entity instance.

• Multidata Units does the same for a set of entity instances.

• Index Units generate a list of index units from a set of entity instances allowing the
user to select specific instances from that list.

• Scroller Units allow browsing of an ordered set of objects

• Entry Units create forms allowing users to input values into the system.

A Business Process Model, consisting of a UML workflow diagram, was added in version
2 to allow the modeling of user operations, i.e. data manipulation. It defines the activities,
precedence constraints and the user roles in charge of executing all operations.

6.3.1 Automatic Generation using WebRatio

WebRatio is a model driven development environment for modeling web sites using the
WebML method and automatically generating the resulting web site. It was developed by
Web Models, a spin-off of the Politecnico di Milano[35], established in 2001. The generated
web application is Java-based and can thus be installed on any web platform.

60

WebRatio consists of a two-layer architecture: the design layer and the run-time layer.
The design layer contains the graphical user interface for visually modeling the data and
hypertext models of the web site. It also includes a data mapping module that maps the
Data Model over pre-existing entities and relationships to support legacy databases and a
final module that provides the designer with functionality to define the presentation style
and organization of the data on the page using XSL style sheets for XHTML pages.

Figure 6.9: WebRatio Architecture [12]

These visual notations are translated to XML specification by the design layer. It is this
specification which is passed to the run-time layer to be used to generate the website. The
XML specifications are then translated into application code using XSL transformations in
the run-time layer. This code can then be executed by the Jave2EE platform.

The main idea of the generation process is as follows: the XSL transformation process
produces dynamic page templates and unit descriptors. A dynamic page template is a JSP
file which contains the content and the markup of a specific page in the web application in
a given markup language (HTML, XML, RSS, etc.). Unit descriptors are XML files contain
the database interactions required for populating the dynamic page template.

Both layers in the tool have been extended to allow the addition of plug-in modules
to increase the expressiveness of the tool allowing additional concepts to be modeled as
discussed before.

6.4 Object-Oriented Hypermedia Design Method (OOHDM)

The main focus of OOHDM lies on navigating hypermedia in contrast to the audience-driven
approach used in WSDM. Building a web-application with OOHDM is done by creating ”nav-

61

igation objects”that represent a view (i.e. queries) on the conceptual objects. Navigational
contexts are introduced to abstract and organize the navigational space between these var-
ious objects. The interface is completely separated from the navigational space definition.

OOHDM divides the development process [43] into 4 activities: conceptual design, nav-
igational design, abstract interface design and finally the implementation. This choice was
made since the creation process of web-based applications is not intrinsically different from
conventional software engineering, which is generally made up by the following activities:
analysis & modeling, design, implementation, testing and maintenance. The model is built
and enriched incrementally by applying a mix of iterative and incremental development
styles.

The conceptual design phase is similar to most methodologies since it can be generalized
to obtaining the requirements and determine the Universe of Discourse (UoD). This UoD
is modeled using an object-oriented approach containing extra annotations. The model
created during this phase will contain the conceptual objects which will later be used by
the navigational objects and secondary objects that define the computational aspects of the
application, such as algorithms and database access.

The Navigation space will be constructed during the navigational design phase. This
phase will introduce the navigation objects, which are customized views on the conceptual
objects. This is analog to the controller-functions from the MVC-pattern, providing a specific
view on the information, i.e. the conceptual objects). These objects are then divided into
sets called navigational contexts.

As with the MVC-pattern, the navigation objects are not directly perceived by the user,
but rather through interfaces defined in the abstract interface design phase. These interface
models decide which objects the user will be able to view and how the navigation between
them is activated.

Finally the implementation phase will bring all these parts together, mapping the con-
ceptual objects, navigation objects and interface object over a runtime environment. More
specifically this means creating the HTML pages, scripts and queries. This will represent
the final result of the methodology. .

6.4.1 HyperDE Rapid Prototyping Environment

For some time the center of attention of academics has shifted from web methodologies
to semantic web methodologies. As a result, OOHDM gained a successor called Semantic
Hypermedia Design Method (SHDM). It is for this methodology that a tool for automatic
implementation was built, called HyperDE [4]. Figure 6.10 depicts an abstract view of how
the new methodology is defined and executed.

As a result of the close resemblance [35] to the MVC-pattern, the mapping between the
objects and the pattern can be made. Existing web frameworks primarily utilizing this pattern
are therefore interesting candidates for the implementation generator. The generation of
models can be based on the UML diagrams, specifying the various models, its attributes

62

and the relations between them. Similarly the interface models can be generated to view
components and the navigation nodes and interface behaviors to the controller components.
Having commonalities with MVC-patterns, it was understood [34] that generation towards
a web framework such as Ruby on Rails would be very interesting. Ruby on Rails [33] was
chosen over various other frameworks due to its position as market leader in its category. Its
persistence layer, implemented as an Active Record-pattern, has been replaced by one that
is based on a Sesame [13] RDF triple store. All information such as the navigation models
and instances of the UoD are stored in this database.

Figure 6.10: Workflow of SHDM and HyperDE [33]

HyperDE is implemented as a so-called MNVC framework, which extends a framework
based on the MVC-pattern by adding extra models for describing navigation. It allows the
user to input models created according to SHDM and will generate a complete application
adhering to the specifications.

This advantageously affects the portability of HyperDE, since Ruby on Rails only requires
an interpreter for the Ruby [8] programming language to be available on the deployment
server. A disadvantage of this approach however is the use of a specific version of the Ruby
on Rails framework which used as a base for the implementation. It is likely that newer
versions of the framework, containing security patches etc., will appear and would require
to be manually merged into HyperDE in order to remain secure.

In order to generate towards Ruby on Rails HyperDE extensively uses Domain Specific
Languages (DSLs) [34]. This combined with a Model Driven Development approach al-
lows the developer to generate code by simply manipulating the models that make up the
application.

SeRQL is used to directly query the Sesame triple store. Because of the assumption that
the users of HyperDE might not be familiar with such a specialized language such as SeRQL,
they have added a new layer on top of SeRQL containing a ”simple DSL” to abstract. This
has an added benefit that the underlying database can be switched and the new querying
language would simply need to be mapped to the DSL layer.

63

As we already mentioned in the study of Ruby on Rails and other web frameworks, the
framework communicates to the database through the use of models. HyperDE generates
these models for us with the use of another DSL. It does this in the following way:

• Instances of the NavClass become Ruby model classes.

• Each NavAttribute inside a NavClass becomes an attribute in the corresponding Ruby
class. Extra methods, such as ”find by ” are defined to enable the framework to look
up information with the class.

• NavOperations become methods in the Ruby class and represent the controller part
of the MVC pattern.

• Links containing a NavClass as the source will generate an array-attribute in that Ruby
class.

This covers the model and controller aspects of the MVC-pattern required by Ruby on
Rails. The templates representing the View aspect of the pattern are a combination of
HTML interspersed with Ruby on Rails. A new DSL in introduced to specify the generation
towards these templates, e.g.

<input type="text" name="new_email" value="<%=

@node.email %>">

<%= op "change_email", { :label => "Change

Email", :view => "attributes", :update =>

"node_attributes", :label_loading => "wait..." },

[’<input type=button value="%s" onclick="%s">’,

:label, :onclick] %>

This code [33] specifies the generation of an HTML form interspersed with Ruby using
HyperDE’s pre-defined templates.

While HyperDE’s approach closely resembles the one taken with WSDMtool, it differs
greatly in terms of flexibility. Due to the fact that HyperDE subsumes Ruby on Rails, it is
inherently linked to this web application framework and lacks the possibility of generating
towards other frameworks. Another difference is the fact that HyperDE’s approach requires
modifications to the Ruby on Rails framework.

6.5 Other Web Methodologies

Other methodologies which will not be discussed in detail include Hera [3], a collaborate
effort by various Dutch and Belgian universities. This is a model-driven design approach for
context-dependent and personalized web information systems. Its main characteristic is the
focus on adaptation of web sites towards the user.

64

Another method is the Object Oriented Web Solution [36] (OOWS) methodology, which
is based on OO-H. The OOWS method improves OO-H by introducing new models for
representing presentational aspects and navigation.

6.6 Conclusions

The need to create methodologies to simplify and formalize the process of creating web
applications has been filled. Whilst some methodologies are only used on an academic level,
some have found their way into businesses.

Although their approaches may vary, the method proposals have many similarities. All
methodologies discussed make it clear that they should be complemented by a computer
aided development tool that supports their methodology. It is also apparent that each
method has a clear separation of the content, navigation and presentation/design part,
mostly expressed in separate phases and data structures. Finally all methodologies agree that
the creation of web application should be platform independent and that the step towards
platform dependent code should be done as a last phase. The usage of implementing towards
an MVC-pattern in the web application creation process described by other methodologies
validates our abstraction conclusions taken in Chapter 3. The process for generating Ruby
on Rails models in HyperDE has large similarities to our approach.

65

Chapter 7

Conclusions and Future Work

7.1 Summary

In this dissertation we took the first steps towards implementing WSDMtool for generating
web sites using the Web Site Design Methodology.

In chapter 2 we first introduced the WSDM methodology, the focus of this dissertation,
its models and their formal definitions, the WSDM ontology. This ontology will be used to
formally define web sites which will be read in by WSDMtool.

By inspecting various existing web frameworks in chapter 3 we extracted the similarities
to create an abstract framework. WSDMtool uses this abstraction to ensure platform inde-
pendence, whilst providing as much implementation as possible to shorten the development
time for platform specific code generation modules.

Chapter 4 introduced the WSDMtool architecture and discusses the various choices made
during the development process. It also describes the implementation process of the Django
code generation module.

To demonstrate the functionality and features of the WSDMtool we designed a web site
using the Conference Review System case study in Chapter 5 and present our results and
findings.

Finally in chapter 6 we introduce various other methodologies and their approaches taken
towards automatic code generation.

7.2 Future Work

Future work of WSDMtool includes not only improvements to each generation process, but
also creating new modules for generation towards other frameworks as well as introducing
a tool combining conceptual design and automatic generation. These will now be discussed
in more detail.

66

7.2.1 Better Model Generation

The current implementation of the database generator for Django provides functional yet
limited model definitions. A first limitation is the usage of many-to-many relationships to
express the relationships between the models. This type supports the various sub-sets such
as one-to-many and one-to-one relationships. The correct cardinality constraints for each
individual relationship would be preferred. It is possible to extract this cardinality constraint
by iterating over all the object chunks containing the statement specifying the relationship
chose the least restricting statement to base the model relationship on.

Because of the usage of tiny conceptual schemas in the views, it is possible to model
the same information using different concepts. For example: an ”Full Name” concept could
exist in one object chunk whereas it is defined as ”First Name” and ”Last Name” in an-
other. It should be possible for the code generator to understand these subtleties. This
problem has already been addressed in [23] and [24] by defining additional steps during the
conceptual modeling phase. One of these steps is annotating the concepts in the ontology
with pre-defined relationships such as equivalency, sub-types, overlapping and combination
relationships.

Finally it is currently also not possible to specify which model fields are allowed to
contain a null value or not. All model fields allow the null value by default. Once again it
is possible to extract this requirement by going over all object chunks and inspecting the
specific statements.

7.2.2 Semantic Links

WSDM divides navigational links in four disjoint categories: process-logic, structural, navi-
gational aid and semantic links. Currently the WSDMtool supports the first three types of
links. The semantic links were not implemented due to the lack of a correct formal notation
in the WSDM ontology. When a formal notation is decided upon it will be possible to create
the routines for generating the semantic links.

7.2.3 Usability and Presentation

In the WSDMtool architecture chapter we brought forth the notion of internal references to
model the ORM extension proposed by the WSDM methodology. These internal references
were then subdivided into three categories: user, system and data-lookup references. A
data-lookup can generate two different results: a collection of objects found or a value
representing no objects could be found. In Django such lookups generate ObjectNotFound
exceptions. WSDM does not provide a method to model scenarios when no objects could
be found. Currently the WSDMtool handles these scenarios by generating an HTML 404
error page along with the message that no models could have been found.

In the same chapter, we formulated arguments as to why presentation and content should
be handled separately. The current WSDM ontology however contains notations to specify

67

specific presentational aspects such as multi-columned designs. This could still be used to
create a hierarchy of template files using Django’s template inheritance. This also provides
an opportunity to implement a formalization of defining so-called ”static object chunks”,
i.e. semantically annotated static pages. Practical examples of this can be ”About Us” web
pages. This page could be annotated using existing ontologies such as FOAFCorp [2].

The generation of Django form classes is currently limited and does not provide full sup-
port for WSDM user interaction references. For example: a ”First Name”concept referenced
by ”*fn = ?” will generate the same form as when it would contain a reference such as ”*fn
= ??”or ”*fn = !”. It also does not support the ”->”notation (e.g. ”*fn -> ?”) for updating
values. This was done with the assumption that assignments can also be value updates.

A final suggestion can be the development of a full-fledged CASE tool allowing the user
to graphically create the object chunks and the navigation diagram and incorporate the
WSDMtool which automatically generates the given website for these models.

7.3 Conclusion

In this dissertation we took the first steps towards implementing a tool for generating web
sites using the Web Site Design Methodology.

We conclude that the The WSDM methodology is a viable approach to modeling ubiqui-
tous web applications. The formal OWL specifications have been extended where necessary
to allow unambiguous interpretation of the object chunks. This enabled us to create the
algorithms that make up the generation tool.

68

Appendix A

Author Track for the Conference
Review System

A.1 Navigation Track

Figure A.1: Author Navigation Track

69

A.2 Object Chunks

Figure A.2: AddCo-Author Object Chunk

Figure A.3: AuthorLogin Object Chunk

70

Figure A.4: AuthorSubmissions Object Chunk

Figure A.5: DeleteCo-Author Object Chunk

71

Figure A.6: MakeSubmission Object Chunk

Figure A.7: RegisterNewPaper Object Chunk

72

Figure A.8: SubmissionInfo Object Chunk

Figure A.9: UpdateSubmissionInfo Object Chunk

73

Appendix B

Comparing WSDM description to
MVC-pattern

B.1 Model Comparison

B.1.1 WSDM

Paper, locatedAt, File(Resource)

Paper, submittedOn, SubmitDate(Date)

Paper, lastModifiedOn, ModDate(Date)

Paper, hasMainAuthor, Author

Paper, hasCoAuthor, Author

Paper, hasAbstract, Abstract(String)

Paper, hasTitle, Title(String)

Paper, hasId, PaperID(Integer)

B.1.2 Django Representation

Class Paper(Model):

locatedAt = FileField()

submittedOn = DateField()

lastModifiedOn = DateField()

hasMainAuthor = Many2ManyField(Author)

hasCoAuthor = Many2ManyField(Author)

hasAbstract = TextField()

hasTitle = TextField()

hasID = IntegerField()

74

B.1.3 Ruby on Rails Representation

class Paper < ActiveRecord::Base

has_many :authors,

:through => :hasMainAuthor

has_many :authors,

:through =>:hasCoAuthor

end

B.1.4 CakePHP Representation

Class Paper extends AppModel

{

var $name = "Paper";

var $hasMany = array(

’hasMainAuthor’ => array(

’className’ => ’Author’

),

’hasCoAuthor’ => array(

’className’ => ’Author’

)

);

}

B.2 Controller Comparison

Paper, locatedAt, File(Resource)

Paper, submittedOn, SubmitDate(Date)

Paper, lastModifiedOn, ModDate(Date)

Paper, hasMainAuthor, Author

Paper, hasCoAuthor, Author

Paper, hasAbstract, Abstract(String)

Paper, hasTitle, Title(String)

Paper, hasId, PaperID(Integer)

Objectchunk name: SubmissionInfo

Objectchunk in: *p Paper

B.2.1 Django Representation

def SubmissionInfo(request, paperID):

get the chunk’s in-context

75

paper = get_object_or_404(

Paper,

pk=paperID)

return render_response(

request,

"submissioninfo.html",

{’paper’: paper})

B.2.2 Ruby on Rails Representation

class PapersController < ApplicationController

def submissioninfo

@paper = Paper.find(params[:paper_id])

end

B.2.3 CakePHP Representation

function submissioninfo($paperID)

{

$this->Paper->id = $paperID;

$this->set(’paper’, $this->Paper->read();

}

76

Bibliography

[1] First international workshop on web-oriented software technology.
URL: http://users.dsic.upv.es/˜west/iwwost01/.

[2] Foafcorp rdf vocabulary.
URL: http://xmlns.com/foaf/corp/.

[3] The hera research program.
URL: http://wwwis.win.tue.nl/˜hera/.

[4] Hyperde.
URL: http://www.tecweb.inf.puc-rio.br/hyperde/.

[5] Omg unified modeling language specification. Technical report.
URL: http://www.rational.com/uml/.

[6] Politecnico di milano.
URL: http://www.polimi.it/.

[7] Ruby on rails web framework.
URL: http://www.rubyonrails.com.

[8] Ruby programming language.
URL: http://www.ruby-lang.org/en/.

[9] T. Berners-Lee. Semantic Web-XML2000 http://www. w3. org/2000. Talks/1206-
xml2k-tbl/slide10-0. html.

[10] T. Berners-Lee and M. Fischetti. Weaving the Web: The original design and ultimate
destiny of the World Wide Web by its inventor. Harper San Francisco, 1999.

[11] B. Boehm. A spiral model of software development and enhancement. ACM SIGSOFT
Software Engineering Notes, 11(4):14–24, 1986.

[12] M. Brambilla, S. Comai, P. Fraternali, and M. Matera. Designing web applications
with WebML and WebRatio. Web Engineering: Modelling and Implementing Web
Applications, pages 221–260, 2007.

77

http://users.dsic.upv.es/~west/iwwost01/
http://xmlns.com/foaf/corp/
http://wwwis.win.tue.nl/~hera/
http://www.tecweb.inf.puc-rio.br/hyperde/
http://www.rational.com/uml/
http://www.polimi.it/
http://www.rubyonrails.com
http://www.ruby-lang.org/en/

[13] J. Broekstra, A. Kampman, and F. Van Harmelen. Sesame: An architecture for storing
and querying RDF data and schema information. Spinning the Semantic Web: Bringing
the World Wide Web to Its Full Potential, page 197, 2003.

[14] C. Cachero, J. Gómez, A. Párraga, and O. Pastor. Conference review system: A case
of study. In First Int. Workshop on Web-Oriented Software Technology, 2001.

[15] S. Casteleyn, O. De Troyer, and S. Brockmans. Design time support for adaptive behav-
ior in Web sites. In Proceedings of the 2003 ACM symposium on Applied computing,
pages 1222–1228. ACM New York, NY, USA, 2003.

[16] S. Casteleyn, P. Plessers, and O. De Troyer. On Generating Content and Structural
Annotated Websites Using Conceptual Modeling. Lecture Notes in Computer Science,
4215:267, 2006.

[17] O. De Troyer and S. Casteleyn. The conference review system with WSDM. In First
International Workshop on Web-Oriented Software Technology, volume 5, 2001.

[18] O. De Troyer and S. Casteleyn. Modeling complex processes for Web applications using
WSDM. In Proceedings of the 3rd International Workshop on Web-Oriented Software
Technologies, pages 27–50, 2003.

[19] O. De Troyer and S. Casteleyn. Designing localized web sites. Lecture notes in computer
science, pages 547–558, 2004.

[20] O. De Troyer, S. Casteleyn, and P. Plessers. Using ORM to model web systems. Lecture
notes in computer science, 3762:700, 2005.

[21] O. De Troyer, S. Casteleyn, and P. Plessers. WSDM: Web Semantics Design Method.
Web Engineering: Modelling and Implementing Web Applications, 2007.

[22] O. De Troyer and CJ. Leune. Wsdm: a user centered design method for web sites.
Computer Networks and ISDN Systems, 30(1-7):85–94, 1998.

[23] O. De Troyer, P. Plessers, and S. Casteleyn. Conceptual view integration for audience
driven web design. In CD-ROM Proceedings of the WWW2003 Conference, Budapest,
Hongary, 2003.

[24] O. De Troyer, P. Plessers, and S. Casteleyn. Solving Semantic Conflicts in Adience
Driven Web Design. In Proceedings of the WWW/Internet 2003 Conference, Algarve
Portugal, 2003.

[25] M. Dean and G. Schreiber. Web ontology language. Technical report, Web Ontology
Working Group

”
World Wide Web Consortium, 2004.

78

[26] C. Fillies, F. Weichhardt, and B. Smith. Semantically correct Visio Drawings. In
Proceedings of the Workshop on User Aspects of the Semantic Web (UserSWeb2005),
pages 85–92, 2005.

[27] J. Flynn. Visioowl.
URL: http://mysite.verizon.net/jflynn12/VisioOWL/VisioOWL.htm.

[28] J. Gómez, C. Cachero, and O. Pastor. On Conceptual Modeling of Device-Independent
Web Applications: Towards a Web-Engineering Approach. IEEE Multimedia, 8(2):26–
39, 2001.

[29] T. Halpin. Information modeling and relational databases: from conceptual analysis to
logical design. Morgan Kaufmann, 2001.

[30] Jason Kaplan-Moss. Django: Web development for perfectionists with deadlines.,
2001.
URL: http://video.google.com/videoplay?docid=-70449010942275062.

[31] A. Knapp, N. Koch, F. Moser, and G. Zhang. ArgoUWE: A CASE tool for Web
applications. In Proceedings of the 1st International Workshop on Engineering Methods
to Support Information Systems Evolution (EMSISE 03), 2003.

[32] A. Kraus, A. Knapp, and N. Koch. Model-driven generation of web applications in
UWE. In Proceedings of the International Workshop on Model-Driven Web Engineering,
Como, Italy, 2007.

[33] C. Mesnage and E. Oren. Extending ruby on rails for semantic web applications. Lecture
Notes in Computer Science, 4607:506, 2007.

[34] Lasse Motroen. Developing web applications using oohdm and ror. 2006.

[35] Demetrius A. Nunes and Daniel Schwabe. Rapid prototyping of web applications com-
bining domain specific languages and model driven design. In ICWE ’06: Proceedings
of the 6th international conference on Web engineering, pages 153–160, New York,
NY, USA, 2006. ACM.
ISBN: 1-59593-352-2.

[36] O. Pastor, J. Fons, and V. Pelechano. Oows: A method to develop web applications
from web-oriented conceptual models. In International Workshop on Web Oriented
Software Technology (IWWOST), pages 65–70, 2003.

[37] F. Paterno. Model-based design of interactive applications. intelligence, 11(4):26–38,
2000.

79

http://mysite.verizon.net/jflynn12/VisioOWL/VisioOWL.htm
http://video.google.com/videoplay?docid=-70449010942275062

[38] P. Plessers, S. Casteleyn, Y. Yesilada, O. De Troyer, R. Stevens, S. Harper, and
C. Goble. Accessibility: a web engineering approach. In Proceedings of the 14th
international conference on World Wide Web, pages 353–362. ACM New York, NY,
USA, 2005.

[39] W. Pree. Framework development and reuse support. Visual Object-Oriented Pro-
gramming, Concepts and Environments. M. Burnett, A. Goldberg, T. Lewis (eds.).
Manning-Prentice Hall, 1995.

[40] Gustavo Rossi and Daniel Schwabe. Object-oriented design structures in web applica-
tion models. Ann. Softw. Eng., 13(1-4):97–110, 2002.
ISSN: 1022-7091.

[41] D. Schwabe. A conference review system. 2001.

[42] D. Schwabe and G. Rossi. A Conference Review System with OOHDM. In First
International Workshop on Web-Oriented Software Technology, volume 5, 2001.

[43] Daniel Schwabe and Gustavo Rossi. An object oriented approach to web-based appli-
cations design. Theor. Pract. Object Syst., 4(4):207–225, 1998.
ISSN: 1074-3227.

[44] B. Tate and C. Hibbs. Ruby on Rails: Up and Running. O’Reilly Media, Inc., 2006.

80

List of Figures

2.1 WSDM Methodology – Phase overview [22] 5
2.2 Audience Classes . 6
2.3 A decomposed task using CTT . 7
2.4 ”RegisterNewPaper” Object Chunk . 8
2.5 ”Update Paper Submission” Navigation Track 9
2.6 Semantic Web Technology Stack [9] . 11
2.7 OWL representation of a wsdm.MultimediaConcept meta model 13
2.8 OWL representation of a wsdm.Statement meta model 13
2.9 OWL representation of a wsdm.ObjectChunk meta model 14
2.10 OWL representation of a wsdm.ObjectChunkReference meta model 14
2.11 Notational vs Graphical Object Chunk . 15
2.12 OWL representation for the navigation meta model 16
2.13 OWL representation for the structural design meta model 16

3.1 Django Framework – Request/Response workflow 21
3.2 Ruby on Rails Framework – Request/Response workflow 24
3.3 CakePHP Framework – Request/Response workflow 27

4.1 WSDMtool architecture . 30
4.2 Example of a possible layout . 35

5.1 Business Information Model of the Paper concept 42
5.2 AuthorLogin object chunk . 43
5.3 AuthorLogin object chunk result . 49
5.4 SubmissionInfo object chunk result . 49

6.1 Submission Use Case Package in UWE [32] 51
6.2 Navigation Space Model in UWE [32] . 52
6.3 Meta Model for Abstract User Interface Elements [32] 53
6.4 Transformation Pipeline [32] . 54
6.5 An NAD of the Discussion List System [28] 56
6.6 An APD for the Discussion List System [28] 57
6.7 WebML Data Model using UML [12] . 59
6.8 WebML Hypertext Model [12] . 60

81

6.9 WebRatio Architecture [12] . 61
6.10 Workflow of SHDM and HyperDE [33] 63

A.1 Author Navigation Track . 69
A.2 AddCo-Author Object Chunk . 70
A.3 AuthorLogin Object Chunk . 70
A.4 AuthorSubmissions Object Chunk . 71
A.5 DeleteCo-Author Object Chunk . 71
A.6 MakeSubmission Object Chunk . 72
A.7 RegisterNewPaper Object Chunk . 72
A.8 SubmissionInfo Object Chunk . 73
A.9 UpdateSubmissionInfo Object Chunk . 73

82

	Introduction
	Context
	Purpose
	Outline of Dissertation
	Notable Contributions

	Web Site Design Method Overview
	WSDM Phases
	Mission Statement Specification
	Audience Modeling
	Conceptual Design
	Implementation Design
	Implementation

	Formal Specification for Interpretation by Machines
	Basic Concepts
	The Semantic Web
	Web Ontology Language (OWL)

	WSDM Ontology
	Information and Functionality Modeling
	Navigational Modeling
	Implementation Design Modeling

	Conclusions

	Web Application Frameworks
	Django Framework
	Project Structure
	Object-Relational Mapping
	Architecture of Django

	Ruby on Rails Framework
	Project Structure
	Object-Relational Mapping
	Architecture of Ruby on Rails

	CakePHP Framework
	Project Structure
	Object-Relational Mapping
	Architecture of CakePHP

	Framework Abstraction
	Project and Application Structure
	Model-View-Controller Architecture
	Models
	URL Routing
	Controllers
	Views and Templates

	Conclusions

	WSDMtool Architecture
	Introduction
	Pre-Parsing of Information
	WSDM Ontology Layer
	Unambiguous Interpretation of Object Chunks
	Information Chunks
	Interaction Chunks
	Generating Structure without Presentation

	Platform-Specific Django Generator
	Generating Database Models
	Generating Controller Functions
	Generating Templates

	Conclusions

	Case Study
	Introduction
	Model Generation
	Controller Generation and Object Chunk Reference Handling
	Template Generation
	Routing Generation
	Final Result

	Related Work
	UML-based Web Engineering (UWE)
	Object-Oriented Hypermedia Method (OO-H)
	Web Modeling Language (WebML)
	Automatic Generation using WebRatio

	Object-Oriented Hypermedia Design Method (OOHDM)
	HyperDE Rapid Prototyping Environment

	Other Web Methodologies
	Conclusions

	Conclusions and Future Work
	Summary
	Future Work
	Better Model Generation
	Semantic Links
	Usability and Presentation

	Conclusion

	Author Track for the Conference Review System
	Navigation Track
	Object Chunks

	Comparing WSDM description to MVC-pattern
	Model Comparison
	WSDM
	Django Representation
	Ruby on Rails Representation
	CakePHP Representation

	Controller Comparison
	Django Representation
	Ruby on Rails Representation
	CakePHP Representation

	Bibliography
	List of Figures

