
FACULTY OF SCIENCES
Web & Information Systems Engineering

Error-correction for Ontology-based
Websites through a Version Log

A thesis presented in fulfilment of the thesis requirement for a License Degree in
Applied Computer Science by

Johan Van den Broeck

Academic Year 2005-2006

Promotor: Prof.Dr. Olga De Troyer
Supervisor: Peter Plessers

FACULTEIT WETENSCHAPPEN
Web & Information Systems Engineering

Foutcorrectie voor Ontologie
gebaseerde Websites via een Versie
Log

Eindwerk voorgelegd voor het behalen van de graad van Licentiaat in de Toegepaste
Informatica door

Johan Van den Broeck

Academiejaar 2005-2006

Promotor: Prof.Dr. Olga De Troyer
Supervisie: Peter Plessers

Abstract

Ever since the creation of the WWW, one of its major advantages has also been
the cause of one of its major problems: The usage of unidirectional links, which
allow for the creation of links to a resource without the knowledge of the owner
of the resource. The advantage of this type of links is the high degree of indepen-
dence that developers can afford themselves. The problem that accompanies this
advantage is the well-known problem of broken links. This is the problem that we
have addressed in this thesis.

The approach that we have developed in this thesis makes use of the models of
the WSDM ontology-based website design method in combination with a Version
Log to provide error-correction for broken link errors. This Version Log records
all the changes made to the ontology that captures the WSDM models and we use
this information to be able to temporarily undo the changes made to the website
that cause the broken link error.
The advantages of our approach over conventional error-correcting schemes like
redirection is that our approach requires no additional input from the website en-
gineer besides the models provided by the WSDM Method and that our approach
can provide a more customized recovery, to meet the needs of the website engi-
neer.

Abstract

Sinds de creatie van het WWW, is een van de grootste voordelen van het WWW
steeds gepaard gegaan met een van de grootste nadelen: Het gebruik van unidi-
rectionele links, die het mogelijk maken om een link te leggen naar een resource
zonder dat de eigenaar van deze resource hiervan op de hoogte is. Het voordeel
van dit soort links is de vrijheid die ze bieden aan de website ontwikkelaars. Het
probleem dat gepaard gaat met dit voordeel is het bekende probleem van gebroken
links. Dit probleem behandelen we in deze thesis.

De aanpak die we ontwikkeld hebben in deze thesis maakt gebruik van de mod-
ellen van de WSDM ontologie-gebaseerde website design methode in combinatie
met een Versie Log om fouten van het gebroken link type te corrigeren. Deze
Versie Log registreert al de wijzigingen die gedaan worden aan de ontologie die
de WSDM modellen omvat en we gebruiken deze informatie om de wijzigingen
die de oorzaak zijn van de gebroken link fouten tijdelijk ongedaan te maken.
De voordelen van onze aanpak ten opzichte van conventionele fout-corrigerende
methodes zoals redirectie, zijn, dat onze aanpak geen extra input vereist van
de website ontwikkelaar naast de WSDM modellen en dat onze aanpak de mo-
gelijkheid biedt voor een fout-correctie die beter aangepast is aan de noden van de
website ontwikkelaar.

Contents

1 Introduction 1
1.1 Motivations . 1
1.2 Structure of this thesis .4

I Background 5

2 Ontologies 6
2.1 Definition . 6
2.2 Web Ontology Languages .7

2.2.1 RDF-S . 8
2.2.2 OWL .11

3 Ontology Based Website Design Methods 15
3.1 WSDM .16

3.1.1 Mission Statement Specification17
3.1.2 Audience Modeling .17
3.1.3 Conceptual Design .17
3.1.4 Implementation Design20
3.1.5 Implementation .21
3.1.6 Adaptation .23

3.2 Hera .24
3.2.1 Conceptual Design .25
3.2.2 Application Design .27
3.2.3 Presentational Design .30

3.3 OntoWeaver .32
3.3.1 Domain Ontology Design33
3.3.2 Navigational Structure Specification and User Interface

Composition .33
3.3.3 Layout and Presentation Style Definition35
3.3.4 Customization Requirements Specification36

i

CONTENTS ii

3.4 SHDM .38
3.4.1 Conceptual Design .40
3.4.2 Navigational Design .40
3.4.3 Interface Design .42

3.5 Conclusion .44

4 Ontology Evolution 45
4.1 SIKS Ontology Evolution Approach45

4.1.1 Change Representation46
4.1.2 Change Detection .48
4.1.3 The Change Process .49

4.2 KAON Ontology Evolution Approach51
4.2.1 Change Representation52
4.2.2 Semantics of Change .53
4.2.3 Change Propagation .54
4.2.4 Change Implementation55

4.3 WISE Ontology Evolution Approach58
4.3.1 Change Request .59
4.3.2 Consistency Maintenance59
4.3.3 Change Detection .60
4.3.4 Change Recovery .61
4.3.5 Change Implementation61
4.3.6 Cost of Evolution .61
4.3.7 Version Consistency .62
4.3.8 Version Ontology .62
4.3.9 Change Definition Language63

4.4 Conclusion .63

5 WSDM Ontology 65
5.1 Object Chunks .65
5.2 Navigational Model .67
5.3 Site Structure Model .69
5.4 Presentation Modeling Concepts69

5.4.1 Primitive Presentation Concepts69
5.4.2 Complex Presentation Concepts70

5.5 Behavior Modeling Concepts .71
5.6 Style & Template Model .72
5.7 Page Model .73

CONTENTS iii

II Research 74

6 Changes 75
6.1 Possible Changes .76
6.2 Unsupported Changes .78

6.2.1 Inapplicable Changes .78
6.2.2 Changes Beyond The Scope79

6.3 Supported Changes .80
6.3.1 Changes Captured By WSDM80
6.3.2 Changes Captured By Our Approach81

7 Supporting Changes 83
7.1 Goals .83
7.2 Solution Overview .83

7.2.1 Architecture .84
7.2.2 Components .85
7.2.3 Process .89

7.3 Detailed Solution .90
7.3.1 Component Extensions90
7.3.2 Detailed Process .98

8 Illustrative Example 119
8.1 Example Website .119

8.1.1 The IM .119
8.1.2 The Version Log .123
8.1.3 The Implementation .123

8.2 Example Changes .126
8.2.1 Change 1: Renaming .126
8.2.2 Change 2: Removing .127

8.3 Example Approach Application131
8.3.1 Step 1: Check the existence131
8.3.2 Step 2: Retrieving the website versions131
8.3.3 Step 3: Finding the link132
8.3.4 Step 4: Find Renamed134
8.3.5 Step 5: Retrieve link status135
8.3.6 Step 6: Find removed .135
8.3.7 Step 7: Return the snapshot resource request136
8.3.8 Step 8: Retrieve concepts136
8.3.9 Step 9: Transform Concepts136
8.3.10 Step 10 & 11: Retrieve website versions and Find Link . .137
8.3.11 Step 12: Find link version137

CONTENTS iv

8.3.12 Step 13: Return the live-time resource request137

9 Proof Of Concept 138
9.1 Versioning .139

9.1.1 Change 1: Renaming .140
9.1.2 Change 2: Removing .141

9.2 Recovering .142
9.2.1 Website Versioning .143
9.2.2 Resolving a URL .145
9.2.3 Recovering the IM .148

10 Conclusion 151

11 Acknowledgements 153

10 References 153

List of Figures

2.1 Semantic Web Layers .8
2.2 Vehicle Class .9

3.1 WSDM Phases .16
3.2 WSDM Task Model .18
3.3 WSDM Object Chunk .19
3.4 WSDM Subtask Navigational Model (1)20
3.5 WSDM Subtask Navigational Model (2)21
3.6 WSDM Architecture .22
3.7 Hera WIS architecture .24
3.8 Hera Conceptual Model .26
3.9 Hera Navigation Data Model .27
3.10 Hera Application Model .28
3.11 Hera Application Model Adaptation29
3.12 Hera Extended Application Model30
3.13 Hera Presentation Model .31
3.14 Ontoweaver Framework Overview32
3.15 Ontoweaver Domain Model .33
3.16 Ontoweaver Site Structure Model34
3.17 Ontoweaver Site View Ontology35
3.18 Ontoweaver Presentation Ontology36
3.19 Ontoweaver Customization Framework37
3.20 SHDM Conceptual Model .40
3.21 SHDM Navigational Class Model41
3.22 SHDM Navigational Context Model42
3.23 SHDM Context Definition Card43
3.24 SHDM Abstract Interface .43

4.1 SIKS Change Representations46
4.2 SIKS Ontology Change Process Model50
4.3 KAON Ontology Evolution Process51

v

LIST OF FIGURES vi

4.4 KAON Ontology Changes Abstraction Layers52
4.5 KAON Evolution Ontology and Evolution Log dependencies . . .56
4.6 KAON Evolution Ontology .57
4.7 WISE Ontology Evolution Framework Phases58
4.8 WISE Ontology Evolution Framework Version Consistency . . .62
4.9 WISE Ontology Evolution Approach Version Ontology63

5.1 WSDM Information & Functional Modeling Concepts66
5.2 WSDM Object Chunk Functions67
5.3 WSDM Navigational Model .67
5.4 WSDM Primitive Presentation Model Concepts70
5.5 WSDM Complex Presentation Model Concepts71
5.6 WSDM Behavior Model Concepts71
5.7 WSDM Template Modeling Concepts72

7.1 Error-correction Architecture .84
7.2 WSDM Page Links .85
7.3 WSDM Transformation Pipeline87
7.4 Thesis Link Temporal Context Example91
7.5 Thesis Link Temporal Context Extension93
7.6 Thesis Deletion Extension .94
7.7 Thesis WebSite Extension .95
7.8 Thesis Link Filename Extension96
7.9 Thesis Detailed Livetime Process99
7.10 Thesis Detailed Snapshot Process100

8.1 Thesis Example IM .120
8.2 Thesis Example MemberDescriptor Object Chunk121
8.3 Thesis Example Link Instance122
8.4 Thesis Example URL .122
8.5 Thesis Example Link Version Log124
8.6 Thesis Example Member Page125
8.7 Thesis Example Index Page .125
8.8 Thesis Example Changed Link Instance127
8.9 Thesis Example Changed Link Version Log (1)128
8.10 Thesis Example IM Changed .129
8.11 Thesis Example Changed Link Version Log (2)130
8.12 Thesis Example Link Version Log Query133

9.1 Thesis Implementation Protege Ontology Editor139
9.2 Thesis Implementation Version Log Plugin Intial Version140
9.3 Thesis Implementation Renaming Change IM141

LIST OF FIGURES vii

9.4 Thesis Implementation Renaming Change Version Log142
9.5 Thesis Implementation Removing Change Version Log143
9.6 Thesis Implementation Website Versioning144
9.7 Thesis Implementation Website Versioning IM145
9.8 Thesis Implementation Website Versioning Version Log146
9.9 Thesis Implementation URL Checking147
9.10 Thesis Implementation URL Checking Result148
9.11 Thesis Implementation IM Rebuilding149
9.12 Thesis Implementation Transformed URL150

List of Tables

2.1 OWL sub languages .11

3.1 SHDM Artefacts .39

viii

Chapter 1

Introduction

1.1 Motivations

In 1990, the Proposal for theWorld Wide Web (WWW)[1] was published by
Berners-Lee, laying the foundations for the current WWW. Berners-Lee combined
the existinghypertext[2] and internettechnologies and while doing so developed
theUniform Resource Identifier(URI) [3] system, a system of global unique iden-
tifiers on the Web. The main differences of the WWW with other hypertext sys-
tems available at the time were the following1:

• The WWW was non-proprietary, allowing the independent development of
servers, clients and extensions.

• The WWW uses unidirectional instead of bidirectional links, allowing links
to a resource without requiring action of the resource’s owner. This de-
centralized approach allowed further independence for developers, but also
created the problem of broken links. This problem will be addressed in this
thesis.

The real breakthrough for the WWW came in 1993, with the creation of Mosiac2,
the first graphical web browser. Soon, the WWW became the most popular Web
application in a time when access to the internet was spreading beyond members
of the academic and research community. In the years following its breakthrough
to the general public, the WWW has become a large data-centric network of web
applications.

1World Wide Web, Wikipedia, seehttp://en.wikipedia.org/wiki/World Wide
Web

2Mosiac (web browser) Wikipedia, seehttp://en.wikipedia.org/wiki/Mosaic
web browser

1

CHAPTER 1. INTRODUCTION 2

As mentioned before, one of the WWW’s properties that led to it’s success was
it’s decentralized approach to resource linking. This approach, where links to re-
sources can be created without knowledge of the owner of the resource can lead
to major problems:

• The contents of the resource can change, removing the informationidenti-
fied by the link. This leads to a link pointing to an existing resource con-
taining the wrong information, without the knowledge of the owner of the
resource.

• The resource itself can be removed by the owner, intentional or not. The
result is a link pointing to a lost resource.

• The resource can be moved to another location, due to a restructuring of the
website. The result is a link pointing to a missing resource, but this resource
is still available from another location on the same website.

These problems corrupt the concept of an URI, as used by a hypertext link3, a
fundamental component of the WWW. The URI (”Uniform Resource Identifier”)
no longer ”identifies” the resource in question.
Studies [7] have found the half-life of Web Resources to range from 2 to 4 years
depending on the type of resource. With resource type meaning the origins of the
resource (e.g., random web page, a digital library object, a legal citation or a com-
puter science citation) and half-life meaning the time it takes for half of a defined
amount of resources to disappear.

A number of practices have been devised to address these problems:

Server Redirects Server redirects simply work by sending the address of the new
location of the resource to the browser, which then sends the new location
back to the server. Most modern browsers will support this, but other user
agents, like indexing and auditing tools may not and so provide incorrect
information [8].

Similarity Retrieval In this case, the server attempts to find existing resources
similar to a cached version of the missing resource and redirect the browser
to the found resource. Although additional efforts have been made to im-
prove upon this [9], the accuracy of this method still depends on the content
similarity of the resource. As this method also uses server redirects, certain
user agents will have trouble handling these redirects.

3Cool URIs don’t change, seehttp://www.w3.org/Provider/Style/URI.html

CHAPTER 1. INTRODUCTION 3

Mirrors Mirrors may be useful for maintaining resources that were accidentally
deleted, but provide no solution when the resource has been moved deliber-
ately. Besides the problems arising from creating a static mirror of dynamic
resources [5], web site administrators will again have to make use of a server
redirection scheme and the detection problems it brings along.

All too often, however, no attempt is made to solve the problem and the user is
simply presented with a so-called404error page [6]. These error pages are sel-
dom helpful and novice users will simply give up on the resource [4].

Our approach for solving these problems, which we describe in this thesis, needs
structural information, this structural information can be obtained fromstructured
website design methods

Ever since the creation of the WWW, web sites have become increasingly com-
plex. Because of this increased complexity, ad-hoc design methods are no longer
sufficient since they bring along several usability problems [10]:

• Redundancy: Needlessly repeated information during navigation is annoy-
ing to users.

• Inconsistency: If information on the website is inconsistent, the user will
probably distrust the whole website.

• Incompleteness: This mean stale and broken links, but also lack of informa-
tion that users expect to be available on a site.

• Actuality. If a website has visibly not been updated for a while, the users
will most likely not trust the provided information.

A number of structureddesign methodshave been developed to overcome
these problems. These design methods, like WSDM [14], Hera [16], OntoWeaver
[17] and SHDM [32] make use of models to specify websites at aconceptual
level. Ontologies[11] are used to formally capture these models and add extra
high-level structural and content annotations to websites.

In this thesis, Ontology Evolution [13] will be used as an innovative way to track
changes to the ontologies that make up the higher-level structure of the website.
The information acquired by the tracking of these changes will then be used to cor-
rect errors caused by moved or missing resources. The error-correction achieved
in this manner is both automated and effective.

CHAPTER 1. INTRODUCTION 4

1.2 Structure of this thesis

This thesis is structured as follows: there are two parts, the first part covers the
background needed to understand this thesis and the second part covers the re-
search done. The research part starts by giving an overview of the error-correction
approach, followed by a specification of its different components.

Background Chapter 2 gives information about ontologies. Chapter 3 gives
an overview of the most prominent ontology based website design methods. Chap-
ter 4 discusses ontology evolution. And Chapter 5 describes the ontologies used
by the WSDM design method.

Research In Chapter 6 we define the scope of the problems that will be han-
dled by the error-correction approach described in this thesis, we do this by de-
termining the changes to the website that will be of importance to our approach.
In Chapter 7 we describe how these changes are then used to trigger our error-
correcting approach which is described in the same Chapter. Chapter 8 contains
an example illustrating the application of our error-correction approach. The ap-
proach explained in Chapter 7 has been implemented in a proof-of-concept, de-
scribed in Chapter 9. In the last Chapter we give our conclusions for the work that
has been done.

Part I

Background

5

Chapter 2

Ontologies

The term ontology1 originates from philosophy where it concerns studies to deter-
mine whatentitiesand types of entities exist and theirrelationships. In computer
science, ontologies were designed to support thesharing and reuse of formally
represented knowledgeamong AI systems [11]. Its exactly these properties that
have made ontologies popular among other disciplines besides AI research.

We will continue to give a definition for an ontology in the next Section, followed
by a discussion of a number of ontology languages and their context.

2.1 Definition

The short answer [11]:

An ontology is a explicit and formal specification of a shared concep-
tualization.

Which brings us to the need to specify aconceptualization. A conceptualization is
an abstract, simplified view of a world, describing it’s objects, concepts and other
entities and their relationships [12]. Every knowledge based system implicitly or
explicitly commitsto some conceptualization.

Specifying such a conceptualization is building an ontology. It is a description
of the conceptsand relationshipsthat can exist for an agent or a community of
agents [11]. Since these agentscommit to using the same, shared, description,
they are agreeing to use the samevocabularyto exchange queries and assertions
among each other.

1Wikipedia, Ontology, seehttp://en.wikipedia.org/wiki/OntOlogy

6

CHAPTER 2. ONTOLOGIES 7

The vocabularies used are constructed usingontology languages, these languages
share a number of common constructs2:

Concepts Anything about which something can be said (e.g., a vertebrate)

Attributes The properties of a concept (e.g., a vertebrate is cracked)

Relationships The relationships among concepts (e.g., a vertebrate is a part of a
spine)

In the following Section, the most prominent examples of ontology languages and
their context will be described.

2.2 Web Ontology Languages

The ”Web” in ”Web Ontology Languages” means that these languages were de-
signed to be compatible with the WWW in general and theSemantic Webin par-
ticular3.
The Semantic Web according to Tim Berners-Lee [18]:

”The Semantic Web is an extension of the current web in which in-
formation is given well-defined meaning, better enabling computers
and people to work in cooperation.”

The implementation of this Semantic Web happens through layers of Web Tech-
nologies and standards built upon each other [19]. Figure 2.1 gives an overview
of these layers.
The Unicode and URI [3] layers at the bottom make sure international character
sets are used and the objects in the Semantic Web are referable.
The XML layer, combining XML, namespaces and XML-Schema provide Se-
mantic Web compatibility with XML standards.
The layer above that uses RDF and RDF-S (see Section 2.2.1) to respectively
make statements about Semantic Web objects and define vocabularies for the Se-
mantic Web.
The Ontology layer adds the ability to add relationships among the Semantic Web
objects. This layer uses OWL (see Section 2.2.2) to express these relationships.
The layers above the ontology layer are still the topic of research. The Logic layer

2Wikipedia, Computer Science Ontology , seehttp://en.wikipedia.org/wiki/
Ontology \ (computer \ science)

3McGuinness, D.L, and Frank van Harmelen, F, ”OWL Web Ontology Language Overview”,
seehttp://www.w3.org/TR/owl-features/

CHAPTER 2. ONTOLOGIES 8

Figure 2.1: The Semantic Web Layers

adds the possibility to express rules, which can be evaluated by the Proof layer
and assigned a measure of trust by the Trust layer.

The following Sections will describe the underlying RDF-S framework andthe
web ontology language OWL.

2.2.1 RDF-S

As mentioned in Section 2.2, theResource Description Framework(RDF)4 allows
to represent information about resources on the WWW, using named properties
and values. RDF however, provides no mechanisms for describing these prop-
erties, nor does it provide a way for describing the relationships between these
properties and other resources. That is the role of the RDF vocabulary description
language, RDF Schema (RDF-S) . RDF-S defines classes and properties that may
be used to describe classes, properties and other resources .

Classes
During any description process, it’s necessary to define what kind of things to
describe. These ”kinds of things” correspond toclassesin RDF-S. A class in
RDF-S corresponds to the generic concept of a type or category. Classes can
represent almost any kind of thing, such as Web pages, people, document types,
databases or abstract concepts. Classes are described using the RDF-S resources
rdfs:Class , and the propertiesrdf:type and
rdfs:subClassOf . These properties allow stating that a resource is an in-
stance of a class (even of class ”rdfs:Class ”) and stating one class is a sub-
class of another respectively.

4Manola, F., Miller, E., RDF Primer, seehttp://www.w3.org/TR/rdf-primer/

CHAPTER 2. ONTOLOGIES 9

Listing 2.1 gives an RDF/XML example of the classes described by Figure 2.2:

Figure 2.2: The Vehicle Class Hierarchy

<rdf:RDF
xmlns:rdf=” http: // www.w3.org/1999/02/22−rdf−syntax−ns#”
xmlns:rdfs=” http: // www.w3.org/2000/01/rdf−schema#”
xml:base=” http: // example.org/schemas/vehicles ”>

< rdf:Description rdf:ID=”MotorVehicle”>
<rdf:type rdf:resource =” http: // www.w3.org/2000/01/rdf−

schema#Class”/>
</ rdf:Description>

< rdf:Description rdf:ID=”PassengerVehicle”>
<rdf:type rdf:resource =” http: // www.w3.org/2000/01/rdf−

schema#Class”/>
<rdfs:subClassOf rdf:resource =”#MotorVehicle”/>

</ rdf:Description>

</rdf:RDF>

Listing 2.1: The Vehicle Class Hierarchy in RDF/XML

Properties
In addition to describing the specific classes of things RDF-S allows the de-
scription of specificpropertiesthat characterize those classes of things (such as
registeredTo to describe a passenger vehicle). In RDF-S, properties are de-
scribed using the RDF classrdf:Property , and the RDF-S propertiesrdfs:domain ,
rdfs:range , andrdfs:subPropertyOf .

CHAPTER 2. ONTOLOGIES 10

<rdf:Property rdf:ID=” registeredTo ”>
<rdfs:domain rdf:resource =”#MotorVehicle”/>
<rdfs:range rdf:resource =”#Person”/>

</ rdf:Property>

<rdfs:Class rdf:ID=”Person”/>

Listing 2.2: The Vehicle Properties in RDF/XML

The RDF-S propertiesrdfs:domain andrdfs:range describe the sub-
ject and object of the property respectively.

Instances
Now that we have shown how to create descriptions of classes and instances, we
can illustrateinstancesof those classes and properties. Listing 2.3 describes an
instance of theex:PassengerVehicle class described in Listing 2.1.

<rdf:RDF xmlns:rdf=”http: // www.w3.org/1999/02/22−rdf−syntax−
ns#”

xmlns:ex=”http: // example.org/schemas/vehicles#”
xml:base=” http: // example.org/ things ”>

<ex:PassengerVehicle rdf:ID=”johnSmithsCar”>
<ex:registeredTo rdf:resource =” http: // www.example.org/

staffid /85740”/>
</ex:PassengerVehicle>

</rdf:RDF>

Listing 2.3: A Vehicle Instance in RDF/XML

Note that theex:registeredTo property used in theex:PassengerVehicle ,
is inherited from theex:PassengerVehicle superclass (see Listing 2.2).

Limitations
RDF-S has a number of limitations to its expressiveness:

• Lack of localized range and domain constraints (e.g.: You cannot express
that the range ofhasChild is person when applied to persons and elephant
when applied to elephants)

CHAPTER 2. ONTOLOGIES 11

• Lack of value and cardinality constraints (e.g.: You cannot express that all
instances of person have a mother that is also a person, or that persons have
exactly 2 parents)

• Lack of transitive, inverse or symmetric properties (e.g.: You cannot express
that isPartOf is a transitive property, thathasPart is the inverse of
isPartOf or thattouches is symmetric)

• Lack of constructs for class combination (You cannot express the union,
intersection, disjointness or complement of classes)

• Lack of ways to express equivalence between classes, properties and in-
stances

• Lack of native support forreasoning

To remedy these limitations, OWL, which is described is the next Section, was
developed on top of RDF-S.

2.2.2 OWL

OWL, theWebOntology Language was designed to enable machine interpreta-
tion of Webcontents. OWL is an extension of RDF-S, adding more vocabulary
for describing properties and classes: among others, relations between classes,
cardinality, equality, richer typing of properties, characteristics of properties, and
enumerated classes. As shown in Table 2.1, OWL provides three increasingly ex-
pressive sub languages designed for use by specific communities of implementers
and users5.

OWL Full
OWL DL (Description Logics)

OWL Lite

Table 2.1: An RDF Statement

OWL Lite supports simple classification hierarchy and simple constraints (e.g.
cardinality constraint values are limited to 0 and 1). It is the easiest to
implement and even provides a quick migration path for thesauri and other
taxonomies.

5McGuinness, D.L, and Frank van Harmelen, F, ”OWL Web Ontology Language Overview”,
seehttp://www.w3.org/TR/owl-features/

CHAPTER 2. ONTOLOGIES 12

OWL DL offers maximum expressiveness while retaining computational com-
pleteness and decidability. OWL DL includes all OWL language constructs,
but they can be used only under certain restrictions (e.g., while a class may
be a subclass of many classes, a class cannot be an instance of another class).
Full formalism ofDescription Logicsis supported.

OWL Full offers maximum expressiveness with full syntactic liberty of RDF,
but without computational guarantees (e.g., a class can be treated simulta-
neously as a collection of individuals and as an individual in its own right).

The following Sections provide an overview of the most important OWL con-
structs.

Classes
Listing 2.4 gives an example of an OWL class definition for a Wine ontology.
Every individual in the OWL world is a member of the classowl:Thing . Thus
each user-defined class is implicitly a subclass ofowl:Thing . Domain specific
root classes are defined by simply declaring a named class6.

<owl:Class rdf:ID=”Wine”>
<rdfs:subClassOf rdf:resource =”&food:PotableLiquid”/>

</owl:Class>

<owl:Class rdf:ID=”Pasta”>
<rdfs:subClassOf rdf:resource =”#EdibleThing” />

</owl:Class>

Listing 2.4: An OWL Wine Class.

This example (Listing 2.4) defines two classes,Wine , a subclass ofPotableLiquid
andPasta , a subclass ofEdibleThing .

Individuals
Individualsare used to describe the members of classes. OWL individuals are in-
troduced by declaring them to be a member of a class. Listing 2.5 shows an OWL
class definition and an individual of that class7.

6Smith, M.,K., Welty, C., McGuinness, D.L. 2004, ” OWL Web Ontology Language Guide”,
seehttp://www.w3.org/TR/owl-guide/

7Smith, M.,K., Welty, C., McGuinness, D.L. 2004, ” OWL Web Ontology Language Guide”,
seehttp://www.w3.org/TR/owl-guide/

CHAPTER 2. ONTOLOGIES 13

<owl:Class rdf:ID=”WineGrape”>
<rdfs:subClassOf rdf:resource =”&food:Grape” />

</owl:Class>

<WineGrape rdf:ID=”CabernetSauvignonGrape” />

Listing 2.5: An OWL WineGrape Class and Instance.

The individualCarbernetSauvignonGrape is a valid individual because it
denotes a singleWinGrape variety.

Properties
OWL properties are binary relations that allow the assertion of general facts about
class members and specific facts about individuals. Two types of properties are
distinguished:

Datatype Properties describe relations between instances of classes and RDF
literals and XML Schema datatypes.

Object Properties describe relations between instances of two classes.

Listing 2.6 extends the Wine ontology with a property for theWine class.

<owl:ObjectProperty rdf:ID=”madeFromGrape”>
<rdfs:domain rdf:resource =”#Wine”/>
<rdfs:range rdf:resource =”#WineGrape”/>

</owl:ObjectProperty>

Listing 2.6: An OWL madeFromGrape property.

The madeFromGrape property shown in Listing 2.6 relates instances of the
classWine to instances of the classWineGrape . Properties allow the restriction
of their classes, as show in Listing 2.7.

<owl:Class rdf:ID=”Wine”>
<rdfs:subClassOf rdf:resource =”&food:PotableLiquid”/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource =”#madeFromGrape”/>

CHAPTER 2. ONTOLOGIES 14

<owl:minCardinality rdf:datatype =”&xsd:nonNegativeInteger
”>1</owl:minCardinality>

</ owl:Restriction>
</rdfs:subClassOf>
...

</owl:Class>

Listing 2.7:Wine is made from at least oneWinGrape .

The cardinality constraint enforced in Listing 2.7 makes sure that ”Wine is made
from at least one Grape”. The class Restriction used in the above example defines
ananonymousclass that represents the set of things with at least onemadeFromGrape
property. BecauseWine is a subclass of this set, the restriction enforces a cardi-
nality constraint on themadeFromGrape property, meaning that each individual
Wine must participate in at least onemadeFromGrape relation.

Of course, many more characterizations are possible, including:

• cardinality (e.g.minCardinality , maxCardinality , cardinality)

• equality (e.g.equivalentClass , equivalentProperty , sameAs)

• relationships between classes (e.g.disjointWith , unionOf)

• characteristics of properties (e.g.FunctionalProperty)

• etc...

A full definition of the OWL syntax can be found in the OWL Web Ontology
Language Guide8.

8Smith, M.,K., Welty, C., McGuinness, D.L. 2004, ” OWL Web Ontology Language Guide”,
seehttp://www.w3.org/TR/owl-guide/

Chapter 3

Ontology Based Website Design
Methods

Modern websites are more closely related to large-scale applications than to the
network of linked pages they were in the early years of the WWW. Back then,
websites were simple enough to be designed in an ad-hoc manner. Applying this
ad-hoc manner to design complex and large web-applications is likely to result in
a number of usability and maintainability problems (see Section 1.1) [10].

To avoid these problems, a large number of structured Website Design Methods
have been developed (e.g., WebML1, OOHDM [20], OOH [21], UWE [22], RMM
[23]). Due to their structured nature, these methods make use ofmodelsto cap-
ture the complexity of the design process. In the past, model representation varied
from graphical representation techniques (e.g. ER [24], UML [25], ORM [36]),
over plain text to more formatted descriptions (XML2). With the rise of the Se-
mantic web, ontologies (RDF-S3, OWL4, see Section 2) have become an increas-
ingly popular way to provide formal descriptions of complex information. Some
Website Design Methods have evolved to make use of ontologies and the opportu-
nities they provide (e.g. Hera [16], WSDM [26], SHDM [32], OntoWeaver [17],
OntoWebber [27] and XWMF [28]) .

In the next Sections, the four most current ontology based website design methods
are reviewed, namely WSDM, Hera, OntoWeaver and finally SHDM.

1The Web Modeling Language, seehttp://webml.org
2Extensible Markup Language (XML), seehttp://www.w3.org/XML/
3Manola, F., Miller, E., RDF Primer, seehttp://www.w3.org/TR/rdf-primer/
4Web Ontology Language (OWL), seehttp://www.w3.org/2004/OWL/

15

CHAPTER 3. ONTOLOGY BASED WEBSITE DESIGN METHODS 16

Figure 3.1: Overview of the WSDM phases.

3.1 WSDM

The Website Design Method (WSDM) project is led by Prof.Dr. Olga De Troyer,
head of the WISE research group5 at the Vrije Universiteit Brussel6. WSDM is
an audience-driven design method, meaning that the requirements of the intended
users form the starting point for the method, in contrast with most design methods,
which are data-driven. Figure 3.1 (from [34]) gives an overview of the different
phases of the WSDM design process. The models of each of these phases have

5Web & Information Systems Engineering, seehttp://wise.vub.ac.be/
6Vrije Universiteit Brussel, seehttp://www.vub.ac.be

CHAPTER 3. ONTOLOGY BASED WEBSITE DESIGN METHODS 17

been provided with explicit formalizations, using ontologies [15].
The WSDM method is iterative in nature, not completely sequential as suggested
by the Figure.

Each of the phases of Figure 3.1, will be described in the following Sections,
followed by a description of the adaptive capabilities of WSDM.

3.1.1 Mission Statement Specification

The intention of this phase is to identify the purpose of the website, as well as the
subject and the target users. This phase creates the mission statement, which is
formulated in natural language.

3.1.2 Audience Modeling

The audience modeling phase is divided in two sub-phases: Audience Classifica-
tion followed by Audience Characterization.

3.1.2.1 Audience Classification

During this phase, the target users identified in the mission statement are refined
into audience classes. Users with the same information and functional require-
ments become members of the same audience class. Users with additional require-
ments form audience subclasses. This results in a hierarchy of audience classes
[15].

3.1.2.2 Audience Characterization

During audience characterization, relevant characteristics are collected for each
audience. Examples of characteristics are age, experience level and language.
These characteristics are taken into account when deciding the structure and pre-
sentation for thenavigation trackof each audience class.

The model representing the audience class hierarchy together with for each audi-
ence class their characteristics and their set of requirements is called the audience
model.

3.1.3 Conceptual Design

Conceptual Design has two sub-phases, the Task & Information Modeling and
the Navigational Design phases. The content and functionality at a conceptual

CHAPTER 3. ONTOLOGY BASED WEBSITE DESIGN METHODS 18

level are defined during the Task Modeling phase and the conceptual navigational
structure is defined during the Navigational Design. The resulting conceptual
design does not contain any implementation details or commitment to a target
platform.

3.1.3.1 Task & Information Modeling

The Task & Information Modeling phase is in turn composed of two sub phases,
namely the Task Modeling sub phase and the Information & Functional Modeling
sub phase.

3.1.3.1.1 Task Modeling
Each requirement of each audience class from the Conceptual Model results in

a task that is part of the Task Model. These tasks will describe the information
and processes needed to fulfill the requirements causing them. The tasks are de-
composed into elementary tasks. Figure 3.2 (from [34]) gives an example of a
task decomposition. The task being decomposed here is the ”Collect Items ”
task for an online bookstore application. The model itself is expressed using an
adapted version of the Concurrent Task Trees (CTT) [35] notation, called CTT+.
These elementary tasks are then used in the next sub phase.

Figure 3.2: A WSDM CTT+ Task Model.

CHAPTER 3. ONTOLOGY BASED WEBSITE DESIGN METHODS 19

Figure 3.3: A WSDM Object Chunk.

3.1.3.1.2 Information & Functional Modeling
The Information & Functional Modeling phase creates for each of the tasks in

the task model anobject chunk. Such an object chunk is a data model describ-
ing the necessary information and functionality needed to fulfill the requirement
causing the elementary task.
Object Role Modeling (ORM) [36] is used tovisuallyrepresent the object chunks.
Figure 3.3 gives an example of an object chunk for theView List task from
the example in Figure 3.2, represented in ORM.
OWL is used by WSDM tointernally represent these object chunk models and

add a conceptual annotation to the Task Modeling phase. This results in the cre-
ation of a number of links between object chunks and the concepts of one or more
ontologies. The conceptual annotation adds the semantic meaning of these object
types and roles to the design method [14].

3.1.3.2 Navigational Design

The goal of the Navigational Design is to define how the members of the different
audience classes can navigate through the website and perform their tasks. For

CHAPTER 3. ONTOLOGY BASED WEBSITE DESIGN METHODS 20

each audience class, an navigational audience track is created. An audience track
can be considered as a sub site with all and only the information and functionality
needed by the associated audience class members.

All audience tracks are combined into theConceptual Structureby means of
structural links. The same structural links are used to group thetask navigational
modelsinto the audience tracks. Task navigational models contain these elements
[34]:

Components These are placeholders for object chunks, allowing the usage of the
same object chunk in different contexts (tasks).

Links These are links between components that are used to express the work-
flow or process logic, as expressed in the task model by means of the CTT
relations.

Figures 3.4 and 3.5 (from [34]) provide examples of subtask Navigational Models.
These are subtasks from Figure 3.2.

Figure 3.4: Subtask Navigation Model forCollect Items

3.1.4 Implementation Design

During the implementation design phase, the conceptual design models are ex-
tended with information required for the actual implementation. This design phase
is divided in two sub phases:

3.1.4.1 Site Structure Design

The Site Structure Design phase decides which component(s) and links defined
in the navigational model will be grouped onto web pages. Different site struc-

CHAPTER 3. ONTOLOGY BASED WEBSITE DESIGN METHODS 21

Figure 3.5: Subtask Navigation Model forInspect Shopping Cart

tures can be defined for the same conceptual structure, to target different devices,
contexts or platforms. The result of this phase is the site structure model.

3.1.4.2 Presentation Design

The Presentation Design phase defines the look and feel of the website, as well as
the positioning of page elements. This phase has two sub phases:

Style & Template Design This sub phase handles the design of different page
templates for the website, as well as the style for the page-elements.

Page DesignThis sub phase describes how the components assigned to a page
are presented. The layout of each page is based on one of the templates
defined during the previous sub phase. The editable regions specified in
these templates need to be filled in using presentation concepts (see Section
5.4 on Page 69).

The output of these phases is the presentation model which consists of a set of
templates and a page model for each page of the site structure model [15].

3.1.5 Implementation

WSDM enables the automatic generation of the actual implementation from the
information collected during the different design phases. A Transformation Pipeline
has been defined, which takes as input the object chunks and WSDM models and
outputs the implementation for the chosen platform and implementation language.
Figure 3.6 gives an overview of the WSDM architecture and the combination

CHAPTER 3. ONTOLOGY BASED WEBSITE DESIGN METHODS 22

Figure 3.6: An Overview of the WSDM Architecture

of the different models to reach the automatic implementation generation. The
phases from the architecture are:

High Level Transformation Mapping The high level presentation concepts (see
Section 5.4) and templates are translated into primitive presentation con-
cepts.

Model Integration The navigation, page structure, template & style and page
design models are integrated into one single model.

Implementation Mapping The integrated model is partially transformed toward
the chosen platform (e.g. HTML).

Data Source Mapping The references to attributes in the object chunks are re-
solved and mapped to their data source by executable queries.

Query Execution The queries are executed and the resulting data can be inserted
into the actual pages.

CHAPTER 3. ONTOLOGY BASED WEBSITE DESIGN METHODS 23

3.1.6 Adaptation

Adaptation in WSDM happens through a ”Web site Overlay Model” [41]. This
Overlay Model supports the storage of website usage information at runtime. Ad-
ditionally, a high level rule based adaptation specification language (ASL) for
WSDM has been developed to allow a number of operations:

information storage operations These operations allow the population of the
Web site Overlay Model (e.g. adding tracking variables to design elements,
updating the value of tracking variables).

model transformation operations These operations allow the manipulation of
the WSDM navigational and page design models and thus, the adaptation
of the web site design;

ASL allows the web designer to specify about which (design) element informa-
tion needs to be stored, when and how to update this information and when and
how to perform the model transformation operations. These specifications use the
following concepts;

Adaptation Strategies and PoliciesAdaptation Strategies specify rules defining
which adaptive behavior needs to be performed; Adaptation Policies specify
the events when the Adaptation Strategies need to be performed.

Events User generated events (e.g. clicking a link, visiting a node,) or System
generated events (elapse of a time interval, tracking variables attaining a
certain value,) trigger adaptation strategies.

Rules Rules can be used to specify iteration, conditional execution of an action,
add tracking variables, declare variables, assign values to (tracking) vari-
ables or perform pre-defined operations.

Control flow Control flow operations add programming logic to adaptation strate-
gies (e.g. loop-constructs, if-then).

Expressions and set-expressionsExpressions allow the designer to express cal-
culations with tracking variable values and arbitrary values. Arithmetic,
statistical and set theory operators are provided.

Using these concepts, ASL allows the designer to specify, at design time, which
adaptation (on the design models) can be performed at runtime.

CHAPTER 3. ONTOLOGY BASED WEBSITE DESIGN METHODS 24

Figure 3.7: The WIS architecture in Hera.

3.2 Hera

The Hera Research Program7, located at the Vrije Universiteit Brussel8 and the
Technische Universiteit Eindhoven9, has developed the design method of the same
name. Hera is a model-driven design method focusing on the development of
context-dependent or personalizedWeb Information Systems(WIS).
Based on the principle ofseparation of concernsit distinguishes three design
steps: conceptual design, navigational design and presentation design. At each
design step different aspects of adaptation and personalization can be specified in
terms offormal modelsfor data transformations.
Figure 3.7, taken from [16] gives an overview of the three layers that make up the
architecture of WIS in Hera.
These three layers are:

The Semantic Layer This layer defines the content that is managed in the WIS
in terms of a conceptual model. This layer includes the definition of the
integration process needed to gather the data from different sources. The
data can originate from databases, or, if the data is made available from
outside the WIS, a search agent or information retrieval engine could be the
interface to the WIS.

7The Hera research program, seehttp://wise.vub.ac.be/hera
8Vrije Universiteit Brussel, seehttp://www.vub.ac.be
9Technische Universiteit Eindhoven, seehttp://www.tue.nl

CHAPTER 3. ONTOLOGY BASED WEBSITE DESIGN METHODS 25

The Application Layer This layer defines the navigation view on the data in
terms of an application model, which represents the structure shown to the
user in the hypermedia presentation. This layer includes the definition of
the adaptation in the hypermedia generation, meaning it provides a view on
the conceptual model to satisfy the needs of a specific user class.

The Presentational Layer This layer defines the presentation details that together
with the definitions from the Application Layer are needed for the genera-
tion of a presentation to the user’s browsing platform.

The top part of Figure 3.7 describes the Hera design methodology, while the bot-
tom part describes the Hera suite, which makes use of the models resulting from
the design method to create the WIS.

Each of the three layers of the WIS architecture corresponds with a step of the
Hera design method and the models it creates. The conceptual design results in
the conceptual model provided to the semantic layer, the navigational design cre-
ates the application model for the application layer and the presentational design
provides the presentation model to the presentation layer.
RDF-S (see Section 2.2.1) is used to represent both the conceptual and application
model, while the presentation model is created as a XSLT transformation from the
conceptual model.

The following Sections will describe the three design steps of the Hera design
method.

3.2.1 Conceptual Design

3.2.1.1 Conceptual Model

The conceptual design step creates the conceptual model (CM). Figure 3.8 from
[16] shows an example of a conceptual model for a virtual art gallery.

The CM is composed of concepts and concept properties that together define the
domain ontology. There are two types of concept properties: concept attributes
which associate media items to the concepts and concept relationships that define
associations between concepts. As shown in Figure 3.8 the RDF-S used to express
the CM is extended with two descriptions [16]:

CM Properties These describe theinverse andcardinality of concept
relations:

CHAPTER 3. ONTOLOGY BASED WEBSITE DESIGN METHODS 26

Figure 3.8: An RDF-S Conceptual Model for a virtual art gallery.

System Media TypesThese describe the possible concept types using the mul-
timedia ontology. This extensible ontology contains types astext and
image .

Adaptation in the CM is based on the conditional inclusion of elements. XSLT
conditions referencing (ranges of) data, describing the device capabilities and user
preferences can be used to achieve this conditional inclusion. These conditions are
then stored in a user profile [30].

3.2.1.2 Navigation Data Model

The CM can be extended with a Navigation Data Model (NDM) [29]. The purpose
of this model is to complement the CM with a number of auxiliary concepts which
can be used in the AM when defining thebehavior of the application and its
navigation structure. Figure 3.9 (taken from [29]) shows the NDM for a virtual
art gallery’s shopping trolley. The NDM captures these concepts:

SelectedPaintingThis represents the Paintings the userselectedfrom the form.

Order This represents a single ordered item, such an itemincludes aSelectedPainting
and has aquantity

Trolley This represents a shopping trolley whichcontains severalOrders .

From the system perspective the concepts in the NDM can be divided into two
groups:

CHAPTER 3. ONTOLOGY BASED WEBSITE DESIGN METHODS 27

Figure 3.9: A Navigation Data Model for a virtual art gallery.

• Concepts representing views over the concepts from the CM (e.g.,SelectedPainting
from the NDM is a view of aPainting from the CM). Instantiation can
only happen for subsets of instances of CM concepts.

• Concepts forming a local repository. Instantiation happens based on the
users interaction, meaning that the data is created, updated, and potentially
deleted on-the-fly.

The instantiation of both groups of concepts is triggered by a certain action (such
as pressing the submit button) specified in the Application Model.

3.2.2 Application Design

The application design step creates an application model (AM). The AM describes
the navigational aspects of the hypermedia presentation [16].

3.2.2.1 Application Model

Figure 3.10 gives an example of an AM for the virtual art gallery. An AM is
composed of slices and slice properties that define the navigation ontology. A slice
is a meaningful presentation unit of somemedia items. These media items may
originate from different CM concepts. A slice is always owned by a concept from
the conceptual model and each slice has attributes that correspond to attributes in
the conceptual model. There are two types of slice properties:

slice composition a slice encloses another slice.

slice navigation a slice points to another slice by means of a Hyperlink.

Primitive slices contain only one media item. Higher level slices use slice com-
position to contain other slices. Top-level slices correspond to pages presented to
the user [16].

CHAPTER 3. ONTOLOGY BASED WEBSITE DESIGN METHODS 28

Figure 3.10: An RDF-S Application Model for a virtual art gallery.

The example from Figure 3.10 shows an AM that is composed of two slices
(technique andpainting , subclasses ofSlice) and two slice navigation
properties between these two slices. The primitive slices are shown as ovals and
the slice composition properties are shown through nesting. Because a single
technique is used for manypaintings , a set of links is created when navi-
gating from technique to painting. Practically, the two top-level slicestechnique
andpainting correspond to two webpages.

Adaptation for the AM is reached by associating appearance conditions to slice
references. Figure 3.11 shows the previous AM, with extra appearance conditions
added.
These appearance conditions allow for static and dynamic adaptation, done prior

and during the presentation browsing respectively.

3.2.2.2 Extended Application Model

Like the NDM provides extended information for the CM, the AM has an Ex-
tended Application Model (EAM) [29]. The EAM allows to add:

• State information (e.g., information received from a user query).

• Input controls with navigation information (e.g., selecting paintings for a
trolley).

CHAPTER 3. ONTOLOGY BASED WEBSITE DESIGN METHODS 29

Figure 3.11: An Adaptive Application Model.

The forms containing the input controls are implemented using XFORMS10 and
the queries use the Sesame RDF Query Language (SeRQL)11.

Figure 3.12(taken from [29]) gives an example of and EAM for a virtual art
gallery, containing forms an queries.
The forms are added to slices (e.g.,BuyForm andSelectForm) and have a

number of properties associated with them:

The Owning Concept Nesting is used to indicate the concept owning the form
(e.g., aSelectForm is selectingPaintings):

The Input Controls These controls allow the user to input information in the
form (e.g., selecting a painting inSelectForm and indicating the quantity
in BuyForm)

The Outgoing Navigational RelationshipsForms result in navigation to other
slices (e.g. bothBuyForm andSelectForm result in navigation (Q1and
Q2) to the slice containingTrolley)

10XForms - The Next Generation of Web Forms, seehttp://www.w3.org/MarkUp/
Forms/

11Sesame RDF Query Language, seehttp://openrdf.org/

CHAPTER 3. ONTOLOGY BASED WEBSITE DESIGN METHODS 30

Figure 3.12: An Extended Adaptive Application Model.

These Navigational Relationships are in fact queries, passing state from one slice
to another.

3.2.3 Presentational Design

The Presentational Design step produces the Presentation model (PM) and this
model describes how the data is presented to the user. The PM uses the AMA-
CONT project to generate presentations for the user. AMACONT is a component-
based document format for building Web applications by linking configurable
document components. There are three types of components [30]:

Media Components These components encapsulate concrete media assets by
describing them with technical metadata.

Content units These components group media components by declaring their
layout in a device-independent way.

Document ComponentsThese components define a hierarchy out of content
units to fulfill a specific semantic role.

Figure 3.13(taken from [30]) gives an example of a PM for thetechnique slice.
The Figure contains conditions and a number ofBoxLayouts . A BoxLayout

CHAPTER 3. ONTOLOGY BASED WEBSITE DESIGN METHODS 31

Figure 3.13: A Hera Presentation Model.

is an AMACONT layout manager. AMACONT allows the association of XML-
based layout descriptions to components, such descriptions are called layout man-
agers. Currently four layout managers are defined:

BoxLayout Lays out multiple components either vertically or horizontally.

BorderLayout Arranges components to fit in five regions: north, south, east,
west, and center, resembling the structure of many Web pages consisting of
a header, an optional footer, a main area and one or two sidebars.

OverlayLayout Allows to present components on top of each other.

GridLayout Enables to lay out components in a grid with a configurable number
of columns and rows.

In the example of Figure 3.13, the layout manager has been assigned to a slice
of the AM. The layout of the attributes and subslices of the slice can in turn be
positioned using the subcomponent attributes of the component manager [30].

CHAPTER 3. ONTOLOGY BASED WEBSITE DESIGN METHODS 32

Figure 3.14: The OntoWeaver framework.

3.3 OntoWeaver

The OntoWeaver methodology [37] has been developed at the Knowledge Media
Institute (KMI)12 of the United Kingdom’s Open University (OU)13. Ontoweaver
has been built on top of the Intelligent Information Presentation System (IIPS)
[39], also developed by the KMI.

The OntoWeaver method is an ontology-based approach to the design and man-
agement ofcustomizeddata-intensive web sites. The OntoWeaverframework
starts from a domain ontology and aims to produce a customized, personalized
data-intensive website. Figure 3.14 (from [17]) gives an overview of this frame-
work.

The Ontoweavermethodcreates the models (ontologies) involved in the frame-
work of Figure 3.14, this method consists of the following steps [37]:

1. Designing the domain ontology;

2. Specifying navigation structures and composing the user interfaces;

3. Defining layouts and presentation styles;

4. Expressing customization requirements.

Each of these steps will be described in the following Sections.

12Knowledge Media Institute, seehttp://kmi.open.ac.uk/
13Open University distance learning, seehttp://www.open.ac.uk/

CHAPTER 3. ONTOLOGY BASED WEBSITE DESIGN METHODS 33

3.3.1 Domain Ontology Design

The result of this step is the Domain Ontology. The domain ontology abstracts
the underlying domain data model, by means of a set of classes and properties.
Figure 3.15 (taken from [17]) gives a graphical example of such an ontology for
the KMI web portal.
Part (a) of Figure 3.15 shows the hierarchical structure of the domain ontology

Figure 3.15: Two views of an OntoWeaver domain ontology.

and part (b) shows class descriptions.

The graphical representation of Figure 3.15, corresponds to the actual Domain
Ontology, which is expressed in RDF(S). The instantiation of this domain ontol-
ogy forms the information about a specific KMI web portal version.

3.3.2 Navigational Structure Specification and User Interface
Composition

This step is divided in two sub-steps [17]:

Modeling Site Structures This step identifies web pages and defines their pur-
pose and link relationships:

Composing User InterfacesThese User Interfaces are composed for each web
page from the Structure Model.

These sub-steps are described in the following sub-sections:

CHAPTER 3. ONTOLOGY BASED WEBSITE DESIGN METHODS 34

3.3.2.1 Modeling Site Structures

The Site Structure Model, that is the result of this design step, is a coarse-grained
level structure of an entire web site, which comprises a root page, a number of
page nodes and the URI of the underlying domain ontology. Figure 3.16 (from
[17]) gives an example sitestructure for the KMI portal.
The site structure in Figure 3.16 consists of page nodes and two kinds of links:

Figure 3.16: An example site structure.

Non-Contextual Links These links simply provide navigation.

Contextual Links These links carry contextual information when they are used
to navigate from one webpage to another.

3.3.2.2 Composing User Interfaces

In the OntoWeaver method, web pages are composed of a set of components, and
each component is in turn composed of a set of atomic user interface elements and
subcomponents. This allows the expression of complex user interfaces. Each of
the user interface elements has an URI for identification, which can be referenced
by other composite user interface elements to allow re-use [17].
Dynamic features like information publication, querying and user input are sup-
ported by the Ontoweaver method.
Note that in this step of the design process, the organization and look and feel of
the user interface elements is not yet considered.

The specified navigational structures and composed user interfaces from the pre-
vious steps are expressed using the Site View Ontology. Figure 3.17 (from [17])

CHAPTER 3. ONTOLOGY BASED WEBSITE DESIGN METHODS 35

gives an overview of the site view ontology.
This ontology models a web site as a collection of resources, these logical re-

Figure 3.17: An overview of the OntoWeaver Site Ontology.

sources describe web pages, components and user interface elements. The on-
tology also contains a set of navigational constructs to allow the specification of
complex navigational structures.

3.3.3 Layout and Presentation Style Definition

At this design step, the visual appearances and organizations for user interface
elements of web pages are specified in terms of the presentation ontology [38].
This ontology provides the following:

• A set of templates to abstract the visual appearance of user interface ele-
ments,

• A set of layouts to model the organization features of user interface elements

• A construct calledPresentation to attach templates to user interface
elements

• A construct calledSitePresentation to group presentation styles and
layouts together in a presentation model.

Re-usable templates are used to specify the visual appearance of user interface
elements.
Figure 3.18 (from [37]) gives an overview of the presentation ontology.

CHAPTER 3. ONTOLOGY BASED WEBSITE DESIGN METHODS 36

Two different layout constructs are present in the presentation ontology to model

Figure 3.18: An overview of the Presentation Ontology.

the typical layout for user interface elements:

TextLayout This models the layout of atomic user interface elements in terms of
alignment within a component:

ComponentLayout This organizes the sub-elements of the component into five
sub-areas, top, left, middle, right and bottom. Each of these sub-areas can
display user interface elements in a horizontal or vertical layout direction.

3.3.4 Customization Requirements Specification

OntoWeaver contains a framework for customization, which is based on four com-
ponents [38]:

1. TheUser Ontology, which provides means to describe the user model in the
domain specific context;

2. The Customization Rule Model, which enables the specification of cus-
tomization rules;

3. The Site View Ontology and the Presentation Ontology, which provide the
declarative site models;

4. The inference engine, which reasons about site specifications with cus-
tomization rules according to the facts of the user profiles.

CHAPTER 3. ONTOLOGY BASED WEBSITE DESIGN METHODS 37

Figure 3.19: An overview of the Customization Framework.

Figure 3.19 provides an overview of the customization framework.

The following Sections will describe the User Model and the Customization
Rule Model which are used by the inference engine to create a customized web
page.

3.3.4.1 User Model

The user model, that is the result of this sub-phase, describes information about
end users. The user model enables [38]:

• The definition of customization conditions at a high level of abstraction;

• Through its instantiations (called User Profiles), the evaluation of the condi-
tions of customization rules and the decision whether the rules should fire.

CHAPTER 3. ONTOLOGY BASED WEBSITE DESIGN METHODS 38

3.3.4.2 Customization Rule Model

OntoWeaver has dynamic customization support for the target web applications,
through the usage of a number of customization rules. These customization rules
specifyconditionsdetermining when certain customizations should happen, and
actionsthat realize the customizations.

The OntoWeaver rule model has a condition part and an action part. The con-
dition part describes a condition that has to be satisfied for the customization to
take place. The action part describes the adaptation actions, meaning the adding,
hiding or modifying of components, or setting presentation or layout properties
for components [38].

3.4 SHDM

The Semantic Hypermedia Design Method (SHDM) [32] is based on the Object
Oriented HyperMedia Design Method (OOHDM) [20] and both are developed at
the Universidade Católica de Braśıia14. SHDM extends the OOHDM approach, by
using ontology languages to represent the OOHDM models. The SHDM Method
is a model-driven design method which uses five steps [32]:

1. Requirements Gathering

2. Conceptual Design

3. Navigational Design

4. Abstract Interface Design

5. Implementation

Each step focuses on a particular aspect and produces models, describing details
about an application to be run on the web. Table 3.1 (from [32]) gives an overview
of the artefacts created during those design steps. To enhance the separation of
concerns, SHDM (OOHDM) keeps a strict separation between conceptual and
navigational design.

The most important steps of SHDM are discussed in the following Sections.

14Universidade Católica de Braśıia, seehttp://www.puc-rio.br/

CHAPTER 3. ONTOLOGY BASED WEBSITE DESIGN METHODS 39

Steps Artefacts
Requirements Gathering Scenarios: User Interaction Dia-

grams:Design Patterns
Conceptual Design SHDM Conceptual Model, com-

posed by:

• SHDM Conceptual Schema;

• SHDM Conceptual Ontol-
ogy;

• Instances.

Navigational Design SHDM Navigational Model, com-
posed by:

• SHDM Navigational Class
Schema;

• SHDM Navigational Context
Schema;

• Specification Cards describ-
ing: Contexts, Access Struc-
tures and Facets;

• SHDM Navigational Ontol-
ogy.

Abstract Interface Design Abstract Data Views: Configura-
tion Diagrams: ADV-Charts: De-
sign Patterns

Implementation Running application using the pre-
vious artefacts and the mechanisms
supported by the target environ-
ment (parser, inference engine, Java
classes, .jsp pages, etc.)

Table 3.1: An overview of the artefacts created by SHDM

CHAPTER 3. ONTOLOGY BASED WEBSITE DESIGN METHODS 40

3.4.1 Conceptual Design

The Conceptual Model(CM) is built during the Conceptual Design step. The CM
shows classes and their relationships specifically related to a domain. Classes are
described as in object-oriented (OO) UML models. Figure 3.20 (taken from [33])
gives an example CM for an academic department.
The conceptual model from the UML class diagram is then mapped to a DAML+OIL15

Figure 3.20: A SHDM Conceptual Model.

serialization format.

3.4.2 Navigational Design

The Navigation Design creates two models, the Navigation Class Model (NClM)
and the Navigational Context Model (NCoM). The NClM defines all navigable ob-
jects as views over the application domain (”What” information can be reached).
The NCoM defines the navigational contexts, their access structures and the links
among them (”How” the information can be reached) [32].

3.4.2.1 Navigational Class Model

Figure 3.21 (from [33]) gives an example of a NClM for the example of Section
3.4.1.

The navigational classes use the same graphical representations as OOHDM.

15DAML+OIL is an OWL predecessor, seehttp://www.w3.org/Submission/2001/
12/ .

CHAPTER 3. ONTOLOGY BASED WEBSITE DESIGN METHODS 41

Figure 3.21: A SHDM Navigational Class Model.

These classes correspond to nodes and the links among them correspond to navi-
gational links. Navigational classes represent views of conceptual classes, includ-
ing directly mapped conceptual attributes, derived attributes and attributes from
other conceptual classes [32].
Meaning:

directly mapped conceptual attributes These attributes are directly imported from
the classes in the CM.

derived attributes These attributes can be derived (e.g., calculated) from attributes
in the CM.

attributes from other conceptual classesThese attributes are added to the NClM
classes from other classes in the CM.

The mappings between the NClM and CM are specified using RQL16 queries on
the data in the CM. These queries are described in the attributes of the navigational
classes (e.g.,select y from { Person } name { y } for thenameat-
tribute of thePerson navigational class)

3.4.2.2 Navigational Context Model

The NCoM is complementary to the NClM, and it allows the description of two
important aspects [32]:

• The different ways how context objects can be grouped during navigation.

16RDQL - A Query Language for RDF, seehttp://www.w3.org/Submission/RDQL/

CHAPTER 3. ONTOLOGY BASED WEBSITE DESIGN METHODS 42

• The access structures to reach these context objects.

These context objects refer to navigational classes and definehowthe information
can be browsed by the user in some context. The access structures are collections
of links that provide access to the navigational objects in some context.

Figure 3.22 (from [33]) gives an example of the NCoM for the NClM from

Figure 3.22: A SHDM Navigational Context Model.

Section 3.4.2.1. The context objects present in this example areProfessor ,
Student , Paper andNewsArticle . Student , for example can be reached
through the access structuresMainMenu and Students and browsed by the
access patterns alphabetical (Alpha) or by professor (byProfessor). The de-
finition of a context is given by its Context Definition Card (CDC) [33].
Figure 3.23 (taken from [33]) shows such a CDC for the Student ByProfessor

context. Notice the query expression defining the members of the context. The
navigation for this context is sequential, with the Students shown in alphabetical
order on name (stdt.name).

3.4.3 Interface Design

Abstract Interface Design focuses on making Navigation objects and application
functionality available to the user at the abstract level. It allows modeling the in-
formation exchange between the application and the user. Separating the abstract
and the concrete level of the Interface design allows the shielding of a significant

CHAPTER 3. ONTOLOGY BASED WEBSITE DESIGN METHODS 43

Figure 3.23: A SHDM Context Definition Card for thebyProfessor access
pattern for theStudent context.

Figure 3.24: A SHDM Abstract Interface .

part of the interaction design from platform evolution, as well as from the need to
support users in various hardware and software runtime environments.
The Abstract interface uses the Abstract Widget Ontology. Figure 3.24 from [33]
gives an example of an abstract interface and its widgets.

The Abstract interface widgets must be mapped onto Concrete Interface Wid-
gets in order to be visible in the actual interface. For example, the abstract
SimpleActivator widget from Figure 3.24 is mapped to aLink concrete
interface widget. The mapping of the abstract onto the concrete widget ontology

CHAPTER 3. ONTOLOGY BASED WEBSITE DESIGN METHODS 44

will record the actual interface elements chosen by the designer.

3.5 Conclusion

All of the different Ontology Based Website Design Methods presented in the pre-
vious Sections, provide a way to model the grouping of resources into webpages:

WSDM The content is described using Object Chunks. These Object Chunks
are encapsulated in Nodes, linked together in the Navigational Model. The
Nodes of the Navigational Model are then grouped onto webpages by the
Site Structure Model.

Hera The Concepts of the Conceptual Model are contained in Slices from the
Application Model. Instances for the top-level Slices then correspond to the
webpages presented to the user.

OntoWeaver The Concepts from the Domain Ontology for the website are mapped
to Page Nodes in the Site Structure Model. Each of these Page Nodes can
be instantiated as a webpage.

SHDM The Classes of the Conceptual Model are extended with Navigational
Links by the Navigational Class Model. This model forms the basis for the
Navigational Context model which can be instantiated into a webpage.

All these models are captured using ontologies and thus all are the subject of on-
tology evolution (see Section 4). Since the subject of this thesis makes use of
ontology evolution to keep track of the changes made to the structure of the web-
site, each of these Website Design Methods would be suitable for the proposed
method.

Because of the explicit formalization using ontology-languages of the different
steps and the automated implementation generation possibilities, we have decided
to use the WSDM Website Design Method as a basis for the research subject of
this thesis. The different ontologies used will be described in Section 5, providing
the reader with a sufficient basis for understanding the remainder of this thesis.

Chapter 4

Ontology Evolution

In an open and dynamic environment like the Semantic Web [18], the domain
knowledge is continually evolving. This evolving knowledge means that the on-
tologies capturing this knowledge need to evolve as well. This is where ontology
evolution comes into play.

Ontology evolution can be defined as the adaptation of an ontology to the arisen
changes and the consistent management of these changes. This is not a trivial
process, due to the variety of sources and consequences of changes and thus can-
not be performed manually by an ontology engineer. Because of this, the ontology
evolution process needs to be supported by an ontology evolution approach.

The following Sections will describe three such approaches, followed by a con-
clusion.

4.1 SIKS Ontology Evolution Approach

The Dutch Research School for Information and Knowledge Systems (SIKS)1

supports this ontology evolution approach developed by Michel Klein [43] at the
Vrije Universiteit Amsterdam2.

This approach is centered aroundontology changes. An ontology change is de-
fined as an action on an ontology that results in an ontology that is different from
the original version.

1The Dutch Research School for Information and Knowledge Systems, seehttp://www.
siks.nl/

2Studie Informatica, Vrije Universiteit Amsterdam, seehttp://www.cs.vu.nl/

45

CHAPTER 4. ONTOLOGY EVOLUTION 46

The following Sections describe the SIKS Ontology Evolution Approach. Section
4.1.1 describes the way this approach represents changes. Section 4.1.2 describes
the way changes are detected in the SIKS Ontology Evolution Approach. And
finally, Section 4.1.3 describes how the change detection and change represen-
tation from the previous Sections is used by the change handling process of the
approach.

4.1.1 Change Representation

Figure 4.1: The relationships among the Change Representations and the Opera-
tions from the Ontology of Change Operations (taken from [43])

Figure 4.1 gives an overview of the different change representations used by
this ontology evolution approach, together with their transformations. Each of
these change representations provides different information at a different level of
detail. Starting with two versionsVold andVnew of an ontology, the possible forms
of representation are:

• Ontologies only: the old versionVold and the new versionVnew of the on-
tology provide no explicit change information, but can be used as a basis to
find other change information;

• Log of changes: a record of the changes as they are performed; a list of
changes that applied toVold results inVnew ;

• Structural diff: a mapping between concepts and properties in one version
and their counterparts in the new version, together with a list of added and
removed concepts;

• Conceptual relations: an explicit specification of the conceptual relations
between concepts inVold and corresponding concepts inVnew .

CHAPTER 4. ONTOLOGY EVOLUTION 47

The following Sections will now describe the main components of this ontol-
ogy evolution approach [43].

4.1.1.1 A meta-ontology of change operations

A meta-ontology of basic change operations is directly related to the ontology
language itself and constitutes a set of operations to build an ontology in this
language. The ontology evolution approach uses the meta-model of the OWL and
OKBC Ontology Languages. By defining for each of the elements of the meta-
model ”add”, ”remove” and ”modify” operations, a set of operations is created
that enables the description of all possible changes for the ontology language.

4.1.1.2 The notion of complex changes

Besides the basic change operations, the ontology of change operations of this
ontology evolution approach also containscomplex change operations. Complex
operations provide a mechanism for grouping a number of basic operations that
together constitute a logical entity.
Complex changes could also contain information about the implication of the op-
eration on the logical model of the ontology. To identify complex changes, the
logical theory of the ontology is needed, while the structure of the ontology is
sufficient to identify the basic changes.

4.1.1.3 The notion of a transformation set

A transformation set provides a set of change operations that specify howVold can
be transformed intoVnew. The transformation set uses the operations from the
ontology of changes. A transformation set is not unique, there are often multiple
ways to construct a transformation set for a specific change.
A minimal transformation set is a special variant of a transformation set. It con-
sists of a set of operations that issufficient and necessaryto transformVold into
Vnew.

4.1.1.4 A template for change specification

This is a template that can be used to describe how two ontology versions are
related. Such a template has the following elements:

• Descriptive meta-data: this is book-keeping information which can be used
to identify the versions and changes in a setting of collaborative develop-
ment.

CHAPTER 4. ONTOLOGY EVOLUTION 48

• Minimal transformation set: this transformation set can be used to re-execute
the change, to translate or re-interpret data sets, and as a basis for deriving
additional information about the change.

• Conceptual relations: this is the relation between concepts across versions
as specified by the ontology engineer.

• Complex changes:Together with the minimal transformation set, the com-
plex operations can be used to create data transformation scripts and to de-
termine in more detail the effect of changes on data accessibility and specific
logical queries.

• Change rationale: this is the intention (e.g. fix of an error, specification,
update, ...) behind the change. The intention can be used to decide which
version to use and can help to visualize the change.

4.1.2 Change Detection

According to the SIKS ontology evolution approach, change detection happens by
findingor derivingchanges.

4.1.2.1 Finding Changes

When onlyVold andVnew are available, a transformation set and a structural diff
can be created to find changes.

4.1.2.2 Deriving Changes

Change information that is already available can be used to derive additional in-
formation about the change.
The SIKS ontology evolution approach describes the following possibilities to
derive changes:

Change log→ minimal transformation set Many ontology-editing tools provide
logs of changes, these can be transformed into transformation sets by trans-
lating the operations into the vocabulary of basic changes and removing all
redundant changes.

Transformation set→ minimal transformation set The transformation set can
be transformed into minimal transformation sets by removing all redundant
changes.

CHAPTER 4. ONTOLOGY EVOLUTION 49

Transformation set→ complex changesA transformation set consisting of ba-
sic operations, can be extended with heuristics to combine the basic opera-
tions into complex change operations.

Structural diff → complex changesA structural diff can be used to create more
useful change descriptions.

Transformation set→ conceptual relations A transformation set with both ba-
sic and complex operations defined between versions, can be extended by
heuristics to suggest conceptual relations between frames in versions to the
user.

Structural diff → conceptual relations Conceptual relations can be derived from
a structural diff.

Vold, Vnew and structural diff → conceptual relations An automated reasoner can
be used to derive conceptual relations between the concepts in the old and
new version of the ontology.

4.1.3 The Change Process

This process defines how the models described in the previous Sections can be
used. Figure 4.2 (taken from [43]) gives an overview of this process. The process
starts off by determining the specific versions from the ontology’s life trace that
are relevant for the ontology related task in question.
After this, change information is iteratively generated, until enough information is
available to perform the task at hand. This change information is called aChange
Specificationand the SIKS ontology evolution approach specifies the following
methods to build this Change Specification [43]:

Generating a Transformation Set This can be done either by analyzing a log of
an ontology editor or by comparing two ontology versions.

Generating Two Versions This can be done by applying the transformation set
to one version.

Generating Complex ChangesThis can be done from editor logs or by applying
rules or heuristics to the transformation set.

Generating Evolution Relations These relations provide a mapping between cor-
responding constructs in the old version and the constructs in the new ver-
sion of the ontology, specifying which concept has evolved in what other
concept. If the ontology contains persistent identifiers for concepts and re-
lations, those can be used to generate the evolution relations. Alternatively,

CHAPTER 4. ONTOLOGY EVOLUTION 50

Figure 4.2: The model for managing the ontology change process for ontology-
related tasks

a change log can be used to find the mappings.If a log is not available either,
then mapping heuristics have to be applied.

Generating Conceptual RelationsThe conceptual relation between two concepts
specifies the intended semantic relation between the two versions of a con-
cept or relation. If both versions of the ontology are available and the se-
mantics of the ontology can be expressed in a Description Logic the sub-
sumption and equivalence relations according to the definitions can be com-
puted automatically by reasoning systems. If an exact computation of the
logical relation can not be done, heuristics can be applied to the transforma-

CHAPTER 4. ONTOLOGY EVOLUTION 51

tion set to suggest conceptual relations to the human expert that understands
the domain of discourse.

4.2 KAON Ontology Evolution Approach

The Karlsruhe Ontology and Semantic Web framework (KAON) has been de-
veloped at the University of Karlsruhe3 and provides a platform needed to apply
Semantic Web technologies to E-commerce and B2B scenarios, knowledge man-
agement, automatic generation of Web portals, E-Learning, E-Government etc.
The KAON framework uses the KAON ontology language, an RDF based lan-
guage with many additions and changes to the standard. The KAON framework
includes an ontology evolution approach developed by Ljiljana Stojanovic [42].

This ontology evolution approach manages changes in six steps and is illus-
trated by Figure 4.3. These six phases are [42]:

Figure 4.3: The Ontology Evolution Process (taken from [42]).

1. The process starts with capturing changes either from explicit requirements
or from the result of change discovery methods;

2. Next, the changes are represented formally and explicitly as one or more
ontology changes;

3. Then, the semantics of change phase prevents inconsistencies by computing
additional changes that guarantee the transition of the ontology into another
consistent state;

4. In the change propagation phase, allartefacts(applications, other ontolo-
gies, etc) that depend on the ontology are updated;

3Universiẗat Karlsruhe, seehttp://www.uni-karlsruhe.de/

CHAPTER 4. ONTOLOGY EVOLUTION 52

5. During the change implementation phase, the required and induced changes
are applied to the ontology in a transactional manner;

6. In the change validation phase, the user evaluates the results and restarts the
cycle if necessary.

Thecoreontology evolution process are the four middle phases from Figure
4.3. These phases are described in the following Sections.

4.2.1 Change Representation

The role of the change representation phase of the KAON ontology evolution
approach is to map a request for a change into one or more ontology changes.
To represent changes, three levels of abstractions of ontology changes are are
introduced into the KAON language. These levels are described in Figure 4.4
(from [42]) The three levels of abstraction are:

Figure 4.4: The different layers of abstraction for ontology changes and their
applicability.

An elementary ontology changeThis is an ontology change that modifies (adds
or removes) only one entity of the ontology model. It can be seen as an
isolated modification of an ontology;

A composite changeThis is an ontology change that modifies (creates, removes
or changes) the neighbourhood of an ontology entity. Composite changes
specify coarse-grained changes. They are more powerful since an ontology
engineer does not need to go through every step of the sequence of basic
changes to achieve the desired effect;

CHAPTER 4. ONTOLOGY EVOLUTION 53

A complex changeThis is an ontology change that can be decomposed into any
combination of at least two elementary and composite ontology changes.
Complex changes encompass all ”real-life” changes not included in the el-
ementary and composite changes. Complex changes raise the level of ab-
straction and reusability even further.

The above mentioned changes are represented as instances of anevolution ontol-
ogy . This is an ontology which explicitly represents semantic information about
ontology entities, changes in the ontology and mechanisms to discover and resolve
changes.

4.2.2 Semantics of Change

The application of an elementary change to an ontology can induce inconsisten-
cies in other parts of the ontology. The task of the semantics of change phase
is to enable the resolution of induced changes in a systematic manner, ensuring
consistency of the whole ontology.

The KAON ontology evolution approach distinguishes structural and semantic
inconsistency. Structural inconsistency arises when theconstraints of the ontology
modelare invalidated. Semantic inconsistency arises when themeaningof an
ontology entity is changed due to the changes performed in the ontology.

4.2.2.1 Semantic inconsistency resolution

To allow for semantic inconsistency resolution, the standard ontology model has
to be enriched with semantic information that exactly characterizes the concept’s
semantic properties and expected ambiguities, including the properties that are
prototypical for a concept and that are exceptional or essential as well as the be-
havior of a properties over time and the degree of applicability of properties to
subconcepts.

4.2.2.2 Structural inconsistency resolution

Since an ontology engineer can easily overlook some part of the overall modifi-
cation, it cannot be expected that the generation of additional changes needed to
keep the consistency can be done manually, so two main approaches were adopted
from the database community to ensure the consistency [42]:

1. The Procedural approach
This approach resembles classical problems of schema change:
specify the semantics of ontology changes (i.e. preconditions and postcon-
ditions) and accordingly, specify rules to preserve the consistency of the

CHAPTER 4. ONTOLOGY EVOLUTION 54

resulting ontology. This approach is extended by specifying a multiple set
of rules (i.e. the evolution strategies) for ensuring the consistency. And, the
so-called metarules (i.e. the advanced evolution strategies) are defined for
controlling the set of consistency enforcing rules that have to be used.

2. The Declarative approach
This approach models the ontology evolution as reconfiguration-design prob-
lem solving task, such that the problem is reduced to a graph search where
the nodes are evolving ontologies and the edges represent the changes that
transform the source node into a target one. The search of the graph is
guided by the constraints provided partially by an ontology engineer and
partially by a set of rules defining the ontology consistency.

4.2.3 Change Propagation

The task of the change propagation phase of the KAON ontology evolution ap-
proach is to automatically bring all dependent artefacts into a consistent state after
an ontology update has been performed.

The used approach depends on the artefact type:

4.2.3.1 The effect of changes on the Dependent Ontologies

This problem can be solved by recursively applying the ontology evolution process
to the dependent ontologies.

4.2.3.2 The effect of changes on the Ontology Instances

When the ontology is modified, ontology instances need to be changed to preserve
consistency with the ontology.
Two types of evolution can be distinguished:

1. Metadata evolution:
The instances are distributed over the Web.
The resolution of this case can be performed in three steps:

(a) The instances that may depend on a change have to be gathered into
a temporary ontology. The output of this step is a list of instances
together with a reference to the web documents containing them;

(b) The temporary ontology is a dependent ontology consisting of only
ontology instances. It must be transformed to conform to the modified

CHAPTER 4. ONTOLOGY EVOLUTION 55

ontology. This step provides output in the form of a list of modified
instances with a reference to the corresponding web resource;

(c) In the last step, the ”out-of-date” instances on the Web are replaced
with corresponding ”up-to-date” instances.

2. Knowledge base evolution:
In this case, the instances are organized in an instance pool. These instances
are then transformed to conform to the modified ontology.

4.2.3.3 The effect of changes on the Applications

When an ontology is changed, applications based on the changed ontology may
no longer work correctly.
An application can be maintained semi-automatically only if there is metadata
describing which ontology and/or which ontology entities that application uses.
In order to avoid overhead, the ontology changes are categorized in changes that
require a modification of the application and changes that do not require a modi-
fication of the application.

4.2.4 Change Implementation

The role of the change implementation phase of the KAON ontology evolution
approach is threefold [42]:

1. To inform an ontology engineer about all consequences of a change request;

2. To apply all the (required and derived) changes;

3. To keep track of the performed changes.

These three roles will be described in the following Sections, followed by a de-
scription of the evolution ontology and the Evolution Log used by this approach.

4.2.4.1 Notification of the Consequences of a Change

To avoid performing undesired changes a list of all implications to the ontology
and dependent artefacts should be generated and presented to the ontology engi-
neer who modifies the ontology before applying a change to an ontology. When
the changes are approved, they are performed by successively resolving changes
from the list. If changes are canceled, the ontology should remain intact.

CHAPTER 4. ONTOLOGY EVOLUTION 56

4.2.4.2 Change Application

During this sub phase all changes (i.e. required and derived changes) are applied
to a consistent ontology and result into a new consistent state of this ontology. All
these changes act like an atomic transaction, although the changes are executed
step by step.

4.2.4.3 Change Logging

The last sub phase of the change implementation phase needs to keep track of the
performed changes.
The KAON ontology evolution approach makes use of an evolution ontology and
the Evolution Log. The evolution ontology is a model of ontology changes en-
abling better management of these changes. The Evolution Log tracks the his-
tory of applied ontology changes as an ordered sequence of information (defined
through the evolution ontology) about a particular change. Figure 4.5 illustrates
the dependencies between the Evolution Ontology and Log and the Domain On-
tology.

Figure 4.5: The dependencies between the Evolution Ontology, the Domain On-
tology and the Version Log.

4.2.4.4 Evolution Ontology

The Evolution Ontology of the KAON ontology evolution approach is a meta-
ontology that is used as a backbone for creating Evolution Logs. Figure 4.6 shows
part of this evolution ontology. It models what changes, why, when, by whom and
how they are performed in an ontology. Therefore, the most important concept is
theChange concept. The structure of the hierarchy of ontology changes reflects
the underlying ontology model by including all possible types of changes.

CHAPTER 4. ONTOLOGY EVOLUTION 57

Figure 4.6: Part of the Evolution Ontology.

The Evolution Ontology allows the association of additional information to changes
(e.g. date and time of change, version number, priority, cost ...), but also the ex-
pression of dependencies. The dependencies can run among the changes (e.g. the
causesChange property, thehasPreviousChange property) or between
the changes and the concepts of the domain ontology (e.g. thehasReferenceEntity
property).

4.2.4.5 Evolution Log

The Evolution Log records an exact sequence of changes that occurred when
an ontology engineer updated an ontology. Therefore, it contains instances of
subconcepts of the conceptChange , which include the elementary as well as
the composite ontology changes. Each instance contains data about a particular
change. For example, all changes in the log have a timestamp, author, version,
etc.

CHAPTER 4. ONTOLOGY EVOLUTION 58

4.3 WISE Ontology Evolution Approach

The WISE ontology evolution approach has been developed by Peter Plessers
[13], member of the WISE research group4 at the Vrije Universiteit Brussel5.

This ontology evolution approach has resulted in a framework that works
through the usage of aVersion Log. Such a Version Log stores the different ver-
sions a concept defined in the ontology passes through during its life cycle. Stor-
ing these versions happens by using theVersion Ontologyas described in Section
4.3.8. The Version Log allows the definition of changes as queries on the Version
Log, using theChange Definition Languageas described in Section 4.3.9. The
execution of these queries results in a listing of the applied changes, called an
Evolution Log. The definitions for these changes can vary, each interested party
can define its own set of changes, suited to meet certain needs.

The framework consists of seven phases used in two different contexts. Figure
4.7 gives an overview of these phases and illustrates the different contexts. The

Figure 4.7: The seven phases of the Ontology Evolution Framework.

top part of Figure 4.7 contains the phases applicable in the context of the evolu-
tion of the ontology itself, while the bottom part of the Figure contains the phases
relevant in the context of the evolution of the depending artifacts (the ontologies
or applications depending of the evolving ontology).

4Web & Information Systems Engineering, seehttp://wise.vub.ac.be/
5Vrije Universiteit Brussel, seehttp://www.vub.ac.be

CHAPTER 4. ONTOLOGY EVOLUTION 59

The following Sections specify the seven phases of the WISE ontology evolu-
tion framework, followed by Section 4.3.8 describing the ontology used by the
Version Log and Section 4.3.9 describing the language used to define changes.

4.3.1 Change Request

This phase gives the ontology engineers the ability to specify their request for
change through predefined changes.
Different types of changes are distinguished by the ontology evolution framework:

Primitive Changes Primitive Changes modify exactly one element of the ontol-
ogy and cannot be decomposed any further. Primitive Changes are in turn
divided into domain independent and domain dependent changes. The set
of domain dependent changes are defined for a particular domain. The set
of domain independent changes is derived from the underlying ontology
language and expressed as a set of modifications to the constructs of the
ontology language.

Composite ChangesThis type of changes modify more than one element of the
ontology and offer a higher level of abstraction.

Meta Changes This type of changes specify the implications of a change, they
provide information about a change.

The changes requested by the change request cause pending versions for concepts
in the Version Log. These pending versions represent the outcome of requested
changes and are not yet implemented in the actual ontology or checked for con-
sistency.

4.3.2 Consistency Maintenance

This phase fulfills three tasks: checking the consistency of the ontology, resolving
inconsistencies and checking the backward compatibility of the changed ontology.

The first task, consistency checking, is solved through the usage of a reasoner.
First, the pending changes from the previous phase are applied to a copy of the
ontology. Then, the reasoner is used to check the consistency of this copy.

To be able to resolve inconsistencies, the onology evolution framework extended
the algorithm used by the reasoner to explicitly keep track of the internal axioms
it uses. Keeping track of these axioms, gives a complete description of the incon-
sistencies detected. This complete description can then be used by the ontology

CHAPTER 4. ONTOLOGY EVOLUTION 60

engineer to select the actions necessary to resolve the inconsistencies. The on-
tology evolution framework expresses these actions through a set of rules. Such
a rule calls another rule or adds a new, so-calleddeduced changeto the Change
Request.

The Cost of Evolution phase described in Section 4.3.6 determines the backward
compatibility of the intermediate versions for depending artefacts. When a ver-
sion of the ontology is backward compatible with another for a certain depending
artefact, this means that the old version of the ontology can be replaced with the
new version without breaking the depending artefact. Inconsistency can generally
be resolved in several ways and determining whether a solution maintains back-
ward compatibility or not, helps the ontology engineer choose from the possible
solutions.

As a result of this phase, the Change Request has been updated to allow the on-
tology to evolve from one consistent state into another. The ontology engineer
can then decide to accept or reject the proposed changes. When the changes are
accepted, the pending versions in the Version Log are changed into confirmed
versions. When the proposed changes are rejected by the ontology engineer, the
pending versions are removed from the Version Log.

4.3.3 Change Detection

During this phase, changes are detected that were not specified during the Change
Request phase, but that did occur as a consequence of the modifications to the
ontology.

The automatic detection of changes has the following advantages:

• The same ontology modification can be achieved by composite changes of
different granularity, the change detection mechanism allows the inclusion
of all these complex changes in the Evolution Log.

• Meta Changes can be automatically detected. This allows the ontology en-
gineer to focus on the essentials during the Change Request phase.

• Ontology engineers and the maintainers of the depending artefacts may use
different definitions for the same change. Automatic change detection al-
lows the generation of Evolution Logs using these different definitions.

• Some tools for creating Change Requests only provide a limited set of
changes that can be specified, automatic change detection smoothens out
these differences in tool support.

CHAPTER 4. ONTOLOGY EVOLUTION 61

Since changes are defined as queries on the Version Log, change detection is sim-
ply the execution of these queries. The result of this phase is an Evolution Log
containing both the changes from the change requests and the changes detected
by the ontology evolution framework.

4.3.4 Change Recovery

An ontology engineer may have used a sequence of changes instead of the right
complex change. After each step in that sequence of changes, the framework may
add deduced changes to solve inconsistencies. When the sequence of changes is
then considered as a whole, some of these deduced changes may be superfluous.
During the Change Recovery phase, the framework should recover from these su-
perfluous changes.

This recovery happens by undoing the versions in the Version Log that were
added because of the deduced changes. The resulting temporary ontology is then
checked for consistency. If the temporary ontology remains consistent, the frame-
work recommends the removal of the relevant versions to the ontology engineer,
otherwise the versions are restored and the deduced changes are not recovered.

4.3.5 Change Implementation

During all the previous phases, the changes have only been applied to the local
copy of the ontology. The goal of the Change Implementation phase is to apply
the changes to the public version of the ontology. This is simply done by replacing
the original public version of the ontology with the changed, local copy of the
ontology.

4.3.6 Cost of Evolution

In the Cost of Evolution phase, the framework determines which versions of the
ontology remain backward compatible and allow updating without changing the
depending artefacts. The framework also determines which parts of the dependent
artefact need updating when the ontology is updated to a non-backward compat-
ible version. Both these tasks are reached using the consistency checking and
backward consistency checking tasks from Section 4.3.2.

Based on this information provided by the framework, the maintainers of the arte-
facts depending on the ontology should decide if they still agree with the changed
ontology and if the changes warrant an update. If there is an intermediary back-

CHAPTER 4. ONTOLOGY EVOLUTION 62

ward compatible version of the ontology, the maintainers can choose to update to
only to this intermediary version.

4.3.7 Version Consistency

Figure 4.8 gives an overview of the input provided by the framework to guide an
update decision. The Change Detection phase describes the changes that have

Figure 4.8: Factors guiding the decision to update.

occurred and the Cost of Evolution phase describes which intermediary versions
are still backward compatible and which parts of the depending artefact are sen-
sitive to the changes. To make sure that an updated depending ontology remains
consistent with the ontology it depends on, the depending ontology starts a new
iteration of the ontology evolution framework. The change request for this itera-
tion of the depending ontology contains the deduced changes necessary to restore
consistency with the ontology it depends on.

4.3.8 Version Ontology

For each class, property and individual that is created in the Domain Ontology, an
associated EvolutionConcept instance from the Version Ontology is created in the
Version Log. Such an EvolutionConcept instance keeps, besides a reference to the
concept in the Source Ontology, a list of past and current versions of that concept.
Whenever a change request for a concept in the ontology is executed, a new Ver-
sion instance is added to the associated EvolutionConcept instance, representing

CHAPTER 4. ONTOLOGY EVOLUTION 63

the new version of the referred concept. Figure 4.9 (from [13]) gives an overview
of the Version Ontology.

Figure 4.9: An abbreviated Version Ontology taken from [13].

4.3.9 Change Definition Language

The Version Log of the WISE ontology evolution approach uses an explicit time-
line for the different versions. This explicit timeline aspect provides the possibil-
ity to check properties of past versions of ontology concepts by means of condi-
tions. These conditions are used to formulate definitions for the different types
of changes as described in Section 4.3.3. The conditions are resolved by pattern
matching. The syntax of the conditions allows the querying of the Version Log, to
determine the presence or absence of a property with a certain target for a certain
version of a source.

4.4 Conclusion

Because all of the ontology evolution approaches presented in the previous Sec-
tion provide a way to capture the modifications performed on an ontology and
each of the ontology evolution approaches contains a way to define and detect
these changes, namely:

• The SIKS Ontology Evolution Approach uses the Change Specification
Language [43], based on the meta-ontology of change operations from Sec-
tion 4.1.1.1;

CHAPTER 4. ONTOLOGY EVOLUTION 64

• The KAON Ontology Evolution Approach uses the evolution ontology (see
Section 4.2.4.5) in combination with constraints to specify changes. A
declaritive language has been suggested but not yet defined [42];

• The WISE Ontology Evolution Approach uses the Change Definition Lan-
guage described in Section 4.3.9.

We could choose any of these approaches as applicable for the subject of this the-
sis.

In the light of our earlier personal experience with an extended version of the
WISE ontology evolution approach, we have decided to use this approach to track
the changes to the ontologies that make up the higher-level structure of the web-
site.

Chapter 5

WSDM Ontology

This Chapter provides an overview of the ontology used by the WSDM design
methodology. As described in Section 3.1 on Page 16, WSDM uses an OWL
ontology to formally represent the information and functionality modeling and to
make the semantics of the different WSDM design models explicit. The internal
use of the WSDM ontology allows the following [40]:

Generate content- and functionality annotations: The explicit semantic infor-
mation available from the conceptual information and functional modeling
is used to automatically generate semantic annotations about content and
functionality.

Generate structural annotations: The explicit semantics from the high level
conceptual modeling primitives of the WSDM ontology allow the gener-
ation of semantic annotations about the structure, organization and presen-
tation of the website.

Allow interoperability between design methods: The formally defined design
models make it possible to import from or export to other web design meth-
ods.

The following Sections describe the major modeling concepts and different meta-
models of the WSDM ontology needed by the Transformation Pipeline (see Sec-
tion 3.1.5 on Page 21). We start by describing the Object Chunk concepts, fol-
lowed by the description of the Navigational, Site Structure, Presentation, Behav-
ior, Style & Template and Page model concepts.

5.1 Object Chunks

As described in Section 3.1.3.1.2 on Page 19, an object chunk is a data model
describing the necessary information and functionality needed to perform a task

65

CHAPTER 5. WSDM ONTOLOGY 66

from the Task Modeling phase (see Section 3.1.3.1.1, p. 18). Since OWL is used
by WSDM as the internal modeling language, Object Chunks are collections of
OWL Statements (see Section 2.2.2). Using OWL allows importing from or link-
ing to existing (OWL) ontologies. Figure 5.1 (from [40]) describes the concepts
needed. An Object Chunk is described by anObjectChunk concept which is
composed of statements (described by theStatement concept) which is in turn
composed of Classes (described by theClass concept) connected to each other
by a Object Properties.

TheObjectChunkFunction concept from Figure 5.1 allows the attachment

Figure 5.1: WSDM Information & Functional Modeling Concepts.

of functionality toObjectChunk concepts. Figure 5.2 gives an overview of the
Object Chunk Functions. These functions allow theSystemto createor remove
instances of the associated concepts and they allow theUser to uploada file or
fillout a value for the associated concept orselectan instance from the associated
concept.

Figure 5.1 lacks a way of expressing DataTypeProperty concepts, since the stan-
dard OWL DataTypes are not sufficient to express the multimedia types used in
web applications. These multimedia DataTypeProperties are expressed by the

CHAPTER 5. WSDM ONTOLOGY 67

Figure 5.2: WSDM Object Chunk Functions.

MultimediaConcept concept, a subconcept of theClass concept. DataType-
Properties are then modeled through anObjectProperty between a Class
and such aMultimediaConcept . TheMultimediaConcept has in turn
a number of subconcepts, representing the most common primitive multimedia
types found in web applications:String , Integer , Image , Email , Audio ,
Video andResource .

5.2 Navigational Model

The navigational model concepts are divided inNodes andLinks in between
these nodes. An overview of this is given in Figure 5.3 (from [40]).

A RootNode is a special kind ofNode defining the root of a navigational

Figure 5.3: WSDM Navigational Model.

CHAPTER 5. WSDM ONTOLOGY 68

track (see Section 3.1.3.2 on Page 19) and anExternalNode refers to external
resources (e.g., pages from an external website). The Object Chunks from the
previous Section are connected to the internal nodes, to allow different contexts
for one Object Chunk.

Four subtypes of theLink concept are defined [40]:

Process logic link Such a link expresses part of a workflow (e.g., the checkout
procedure for an e-commerce website’s shopping cart):

Structural link Such a link is used to create organizational structures in infor-
mation or functionality (e.g., linear, hierarchical, web, etc. structure):

Navigation aid link Such a link provides a shortcut to the information contained
in the organizational structure (organized through structural links):

Semantic link Such a link represents an existing semantic relationship between
concepts within the domain.

EachLink can have the following properties [40]:

Parameters These allow the passing of information between the source node and
the target node. Such a parameter gives the instantiation of the target node
a reference to one of more instantiations of the classes in the object chunk
of the source node instantiation, thus providing access to the source node
instantiation’s information.

Conditions These restrict the availability of the link for different users, devices
or timeframes.

Although HTML only allows one-to-one links, WSDM allows the specification
of one-to-one, one-to-many and many-to-one links. These types of links allow
to keep semantically or logically related links together. When generating HTML
presentations, these links are of course transformed in one-to-one links and the
link-types can then be used to determine the type of presentation (e.g., a one-to-
many link can be presented as a single menu).

Note that these links link togetherconcepts, meaning that a one-to-oneconcept
link may cause the creation of several hyperlinks, between for example onein-
stantiationof the source node and severalinstantiationsof the target node.

CHAPTER 5. WSDM ONTOLOGY 69

5.3 Site Structure Model

The WSDM Site Structure Model contains the concepts needed to map the navi-
gational model onto pages.
A WebSite (concept) has one or morePages (concept). ThisPage concept
groupsNode concepts from the navigational model. When theseNode concepts
have links toNode concepts within the same page, these links result in links
within the page (or no links), when theNode concepts have links toNode con-
cepts within another page construct, these links will result in links between pages.

More than one site structure may be defined, for different devices, contexts or
platforms.

Again, note that a single pageconceptcan result in multiple pageinstancesin
the implementation, resulting from the population of the classes in the related
object chunks [40].

5.4 Presentation Modeling Concepts

The WSDM Presentation Modeling Concepts can be divided in two large groups
[40]:

Primitive Presentation Concepts This set of low-level concepts allow the de-
scription of any layout, but because of their low-level nature, using these
concepts is very labour-intensive:

Complex Presentation ConceptsThis set of high-level concepts (built using the
Primitive Presentation Concepts) correspond to well-known GUI concepts
and and are easy to use for developers.

The following Sections give an overview of these primitive and complex presen-
tation concepts.

5.4.1 Primitive Presentation Concepts

A hierarchy of the WSDM Primitive Presentation Concepts can be found in Fig-
ure 5.4 (taken from [40]).

Two main concept types can be seen in Figure 5.4:PositioningConcepts
andFormConcepts . The latter determines the position of objects on the web-
pages and the former allows the representation of form elements.

CHAPTER 5. WSDM ONTOLOGY 70

Figure 5.4: WSDM Primitive Presentation Model Concepts.

The positioning of elements happens through aGrid , containingRows with
Cells . These Grid elements can have an absolute or relative height and width,
allowing for a complete positioning of their contents. These contents are located
within cells, which contain multimedia values (fromObjectProperties to
MultimediaConcepts) or other, nested cells. These cells (and thus, their
implemented contents) can be augmented with the navigation links from the nav-
igational model. As mentioned in the previous Sections, multiple instances of a
class of a represented Object Chunk can cause, in this case, the repetition of the
grid structure for each instance.

FormConcepts represent form elements. The WSDM Primitive Presentation
Concepts containSelectControl (e.g., selection list),InputControl (e.g.,
textbox) andActionControl (e.g., button) concepts and their sub-concepts.
The WSDM Behavior Modeling Concepts allow the attachment of behavior to
theseControl concepts.

5.4.2 Complex Presentation Concepts

Figure 5.5 provides an overview of the Complex Presentation Concepts. These
Complex Presentation Concepts are all translated into Primitive Presentation Con-

CHAPTER 5. WSDM ONTOLOGY 71

Figure 5.5: WSDM Complex Presentation Model Concepts.

cepts during the WSDM Implementation phase (see Section 3.1.5 on Page 21).
Most of theComplexPresentationConcept subtypes are selfexplanatory,
so we limit our descriptions to theBreadCrumbTrail concept as an example.
Such aBreadCrumbTrail concept is used to keep track of the path the user
followed to reach a certain page.
A NavigationBreadCrumbTrail concept adds a link to each item of the
path. These items are represented by multimedia items with a list representation.

5.5 Behavior Modeling Concepts

The Behavior Modeling Concepts allow the association of behavior with the pre-
sentation model concepts from the previous Section. Figure 5.6 (from [40]) gives
an overview of these concepts. The behavior (Behavior concept) of a Presen-

Figure 5.6: WSDM Behavior Model Concepts.

tation Concept expresses the fact that when a specified event (Event concept)

CHAPTER 5. WSDM ONTOLOGY 72

occurs for that Presentation Concept, the specified action (Action concept) will
be performed. Not all presentation concepts support all events and actions.

5.6 Style & Template Model

The Style & Template model consists of the following:

Styles These define the font, colour, etc of the page objects through the use of
stylesheets;

Templates These define a common layout for several pages through the use of
the modeling concepts shown in Figure 5.7.

Figure 5.7: WSDM Template Modeling Concepts.

Figure 5.7 shows two examples of predefined templates, namely theHeader-
Footer-Template and theHeader-LeftSideBar-Template . A tem-
plate allows the positioning of fixed content (content that is the same for all pages
that use the template) and variable content (content that differs from page to page).
Fixed content is expressed through presentation concepts (see Section 5.4) at-
tached to aContentPane , Footer , etc. Variable content is expressed through
the inclusion of the ”EditableRegion” concept which can be ”filled in” during the
Page Design.

CHAPTER 5. WSDM ONTOLOGY 73

5.7 Page Model

The layout of thePage concepts from the Site Structure Model is addressed by the
Page Model. This layout is set using theTemplateConcept concepts from the
previously described model. TheseTemplateConcept concepts are attached
to thePage concepts using theBasedOn property of thePage concept. The
editable regions of the Templates are defined usingPresentationConcept
concepts from the Presentation Model.

Part II

Research

74

Chapter 6

Changes

To be able to correct website errors, we first need to study the cause of these errors.
As mentioned in the Introduction (see Section 1.1), the common way to describe
website errors is through the concept of ”broken links”. Such a broken link re-
sults from the unidirectional and decentralized character of links to resources in
the WWW. This means that third parties can create links to resources of a website,
without the owner of the resource knowing about this link. A broken link then oc-
curs when the owner of the resourcechangesthis resource, without the knowledge
of the third party. When the link from the third party then attempts to retrieve the
resource, it may fail to do so and ”break”.
Before we go any further, we need to define the terms ”resource request” and
”third party link”:

resource requestA resource request is the request sent to a website for a certain
resource. A prominent example for a resource request is an URL. This type
of resource request is then used in the context of a Hypertext link.

third party link A third party link is a link that is made to a resource of the web-
site that is the target of our approach, without the knowledge of the engineer
of the website. This type of link can be created by the engineer of another
website, or by a user of the website, under the form of a ”bookmark”. A
third party link always originates from a link existing on the target website.

Since we use the WSDM Ontology Based Website Design Method (as described in
Section 3.1) as a basis for designing our websites, the models of this method cap-
ture the entire website. To change a website designed using the WSDM Method
means changing the models of the design.

The following Sections describe the changes that can occur on a website and how
these changes reflect on the models of the WSDM Method. Section 6.1 describes

75

CHAPTER 6. CHANGES 76

the possible changes that can be applied to a website. Section 6.2 determines
which of these changes are not within the scope of this thesis, and argues why.
We then conclude this Chapter with Section 6.3, which lists the changes that are
the target of the approach described in this thesis and gives the reasons why this
is the case.

6.1 Possible Changes

The following Sections list the changes that can happen for a website and identify
the models of the WSDM Method affected by these changes. To be able to do
this, we first need to clarify the differences between content and resources:

content Simply put, content is that which iscontainedwithin a resource. In a
webpage, content is text, images, etc. Content is represented as instances of
theMultimediaConcept concepts of the WSDM Method (See Section
5.1).

resource Resources contain content and are addressable. For a website, a re-
source is a webpage. Although multimedia sources (e.g.: images) are also
addressable, we consider these multimedia sources to be content and thus
contained within a resource. In the models of the WSDM Method, a re-
source corresponds to aNode concept of the Navigational Model (see Sec-
tion 5.2) grouped onto a Page from the Page Model (see Section 5.7).

Now, we are ready to list the changes that can happen for a website:

changing the style and layoutThis change results in a changed look and feel of
the website. Depending on the implementation platform, this look and feel
may be embedded in the content of the resources. In the WSDM Method
however, the look and feel of a website is captured by the Style & Template
Models (see Section 5.6), which are linked to the content by the Page Model
(see Section 5.7).

moving resourcesThis change results in a resource being moved from one lo-
cation to another (e.g.: a webpage is moved from one folder of the web-
server to another). In the WSDM Method, these resources are represented
by Nodes, grouped onto pages by the Page Model (see Section 5.7).

renaming resourcesThe result of this change is a resource of which the name
has changed. In the WSDM Method the Nodes of the Navigational Model
(see Section 5.2) are identified by a name property. This name can change,
constituting a rename of the associated Page resource.

CHAPTER 6. CHANGES 77

removing resourcesA resource has been removed as a result of this change. Be-
cause the WSDM Method presumes internal consistency, the removal of a
Node from the Navigational Model results in the removal of any references
to this node in the Page Model.

removing content The result of this operation is a content element that has been
removed. A ”content element” for the WSDM model exists on two levels:
the data level and the schema Level. Content on the schema level is present
in the WSDM models as a class that is a part of an Object Chunk (see Sec-
tion 5.1). Content on the data level corresponds to an instance of one of the
classes that represent the same content on the schema level. Because of the
internal consistency of the WSDM models, the removal of a class from an
Object Chunk means the removal of all the instances of that class. Both in
the case where a class is removed and in the case when a single instance is
removed, the internal consistency requires that all references to these con-
tent elements are also removed.
In some cases, the content that has been removed needs to stay removed
(e.g. to avoid copyright infringement, to avoid unauthorized access to sen-
sitive information, etc...).
Another special case is the removal ofmultimedia sources. The result of
this type of change is that a certain multimedia source, an audio, video or
image file has been removed. On the data level, WSDM multimedia con-
tent elements are WSDM MultimediaConcept concept instances, but these
instances only contain areferenceto the multimedia source, not the multi-
media source itself.

renaming content The result of this change is a content object for which the
namehas changed. Thenamefor this type of change means the key that
identifies this content object within the content source. Within the WSDM
Object Chunks, this key exists on both the data and the schema level. On the
schema level, the key is the name of a class contained in an Object Chunk.
On the data level, the key is a part of the ”content element” itself, since it is
a property of an instance of one of the classes of the Object Chunk.

changing content The result of this change is that one content element of a re-
source has changed. In the WSDM Method this means that the values for
one of the properties of an instantiation of a class that is part of an Object
Chunk have changed.

changing the target platform The result of this change is a that a different out-
put format is used to present the website to the user. In the WSDM Method
the target platform is specified as a part of the Transformation Pipeline of

CHAPTER 6. CHANGES 78

the Implementation phase (see Section 3.1.5). A change in target platform
results in the creation of another Transformation Pipeline, suited for this
platform.

incomplete removal of resourcesThe result of this type of change is that a re-
source has been removed from the website, but references to this resource
still exist. This type of removal would cause inconsistencies in the models
of the WSDM Method.

changing the domain The result of this kind of change is that the entire website
is moved from one domain name to another. Domain names are not captured
by the WSDM Method, except in those cases where an absolute url is used
to reference the multimedia sources used as values for MultimediaConcept
instances’ values.

6.2 Unsupported Changes

The changes that are not supported by our approach can be divided in two cate-
gories:

Inapplicable Changes These changes have no consequences for the approach
presented in this thesis and monitoring these changes would produce no
result whatsoever;

Changes Beyond The ScopeThis type of changes are changes that can be con-
sidered as useful to detect, but are beyond the scope of this thesis.

The following Sections define which changes belong to these two categories and
provide the reasons why this is the case.

6.2.1 Inapplicable Changes

Inapplicable Changes are changes that can be made to a website, but that are of
no consequence for our approach. This means that these changes won’t cause
”broken links” or direct the user to unwanted information.

changing the style and layoutThe style of a website means the colour, font size
and location upon a page for the objects of that page. A change in the style
of a website does not change the way the pages of the website are addressed
nor the content of the website. In the WSDM Method, the style part of
the Style & Template Model is presumed to be defined through the use of
stylesheets. These stylesheets allow the specification of the style of the page

CHAPTER 6. CHANGES 79

objects independent of the page objects, so a change in style does not effect
these page objects. The template part of the Style & Template model defines
the location of the content in the different Page concept instances. Each of
these Page concepts of the Page Model has an associated Template from the
Template Model. These Page concepts also contain the style specifications
for the elements of the Page that are not specified by the template.
Since the addressing of resources in the WSDM Method is taken care of
by the Navigational Model, and this model is only indirectly (through the
Page Model) associated with the Template Model, a change in this Template
Model does not affect the addressing of resources in a website created with
the WSDM Method.

6.2.2 Changes Beyond The Scope

This type of changes will cause website errors, but the solution of these errors
cannot be achieved by using the design models of the WSDM Method.

incomplete removal of resourcesA badly executed removal of resources can
cause a number of errors. The most prominent examples of these are ”bro-
ken links” (coming fromwithin the website) and ”broken images” (an image
file has gone missing). For these kinds of errors to exist in a website created
using the WSDM Method, the models of the WSDM Method of this web-
site would have to be in an inconsistent state.
Although it would be useful to fully address this type of change causing
the inconsistent state, our error-correction approach only provides partial
support for this type of change. Partial, because the ”broken links” caused
by model inconsistencies are corrected by our approach to resolve ”broken
links” created by third parties as described in Section 6. When it comes
to other errors caused by model inconsistencies, we assume that the mod-
els of the WSDM Method are kept in a consistent state using a consistency
checking method.

changing the domain A change in the domain of a website is enough to invali-
date all the third party links made to the website. Unless redirection to the
new website has been provided, correcting an error resulting from a domain
change is impossible. For websites created using the WSDM Method, a
resource request is fulfilled by returning a page based on a number of pa-
rameters sent to a generating technology. The location of this technology
is determined by the domain of the website. This location is captured by
the Transformation Pipeline of the WSDM Method. If the original domain
is still under the control of the website engineer, the problems caused by a

CHAPTER 6. CHANGES 80

changed domain can be solved by redirecting the resource request sent to
the original domain to the new domain, with the location of the generat-
ing technology changed to reflect the new location. This type of redirection
can be easily achieved through any standard redirection technique available.
The usage of this kind of solution does not directly relate to the advantages
of using an Ontology Based Website Design Method and because of this,
will not be treated in this thesis.

6.3 Supported Changes

The changes that are supported by our approach can be divided in two categories:

Changes Captured By WSDM These changes are captured by WSDM, mean-
ing that websites designed using the WSDM Method do not suffer the con-
sequences of these changes, thereby limiting the number of problems that
need to be solved;

Changes Captured By Our Approach This type of changes are the changes that
are captured by the error-correction approach proposed in this thesis. These
changes cause the occurrence of ”broken links” or may cause the user of a
third-party link to be guided to unwanted information.

The following Sections define which changes belong to these two categories and
provide the reasons why this is so.

6.3.1 Changes Captured By WSDM

This Section contains the changes that would cause website errors for websites
implemented using ordinary architectures, but that are prevented to do so by using
the WSDM Method as the design method for the website.

moving resourcesNormally, when a resource (e.g. a webpage) is moved within
a webpage (e.g. moved to a different folder), the previous location of this
resource can no longer be used as a valid resource request. A third-party link
that existed prior to this move and that contained the now invalid resource
request has now become a broken link. This kind of error does not occur for
websites designed using WSDM Method. Moving a resource of a website
that was designed by the WSDM Method simply moves this resource onto
another Page. But, in WSDM, resources are addressed directly and not
through these Pages, so the way of addressing this moved resource will not
change.

CHAPTER 6. CHANGES 81

changing the target platform A change in the target platform normally results
in a change in the composition of the resource requests of a website. The
target platform is usually expressed through the usage of extensions (e.g.:
*.html for Hypertext pages and *.wml for WAP pages) for page files. Since
these extensions turn up in the resource requests, a change in target platform
means invalidating the resource requests for existing links. In websites cre-
ated using the WSDM Method, extensions not a part of the resource request.
The Transformation Pipeline of the WSDM Method captures the target plat-
form and the different models of the WSDM Method are thus not affected
by this type of change. This includes the Navigational Model, the model
specifying the structure of the resource requests for websites created by the
WSDM Method.

6.3.2 Changes Captured By Our Approach

The changes captured by our approach are the changes that can cause errors when
considering third party links to webpages designed with the WSDM Method.

renaming resourcesRenaming a resource affects the resource request for that re-
source. Whether the resource is contained in a file on the server or generated
by the server, renaming the file or the identifiers sent to the generating tech-
nology invalidates the existing links using the old resource requests. The
different elements that make up a resource request in the WSDM Method
are identified through names, a change in these names means a change in
the resource request.

removing resourcesRemoving a resource means that the resource request will
request a resource that is no longer there. In the context of a website de-
signed using the WSDM Method, this means that the resource request refers
to a Node that is no longer part of the Navigational Model, thus invalidating
the resource request associated with an existing third-party link.

renaming content Since a resource request contains references to the identifiers
used to retrieve content, a change in these identifiers invalidates the resource
requests associated with existing third party links.

removing content Removing a content element means that the requested resource
no longer contains the content element requested. In the WSDM Method
the request for the content element is contained within the resource request.
When this content element has been removed, this means that the resource
request refers to a content element that is no longer part of the Navigational
Model, thus invalidating the resource request associated with an existing

CHAPTER 6. CHANGES 82

third-party link.
When the removed content element was removed due to its sensitive nature
(e.g.: copyrighted or insecure content), the resource request associated with
the existing third-party link has not only become invalid, but it is also no
longerallowedto retrieve the content it targets.
When it comes to removed multimedia sources, there are two perspectives
to consider:

The internal perspective From the viewpoint of the website, a multime-
dia source is a content element, and it should be treated as a content
element vulnerable to the ”changing content” and ”removing content”
changes.

The external perspectiveFrom the viewpoint of the a third-party, a multi-
media source can be considered as a resource. The resource request for
the multimedia source can be determined by the third-party and a link
to this resource can be created. However, since such a direct link to a
multimedia source is prohibited by both the implementation (the web-
site engineer never intended for a multimedia source embedded within
a resource to be directly linked) and the WSDM Method (links directly
to multimedia sources are unspecified in the WSDM Ontology), this
type of link should not be considered when considering changes to
resources.

So when considering the content-related changes, we need to include mul-
timedia sources as one of the types of content affected.

changing content Changing the content of a resource usually does not invalidate
the resource request. However, the user of the third-party link may not
get the content that wasexpected. When there is a possibility for a certain
content object of a resource to change, it is up to the website engineer to
specify whether a link to this type of content allows the content to change
or not.

Chapter 7

Supporting Changes

This Chapter describes our error-correcting approach and specifies in which way
the changes determined in Chapter 6 are supported by this approach.

7.1 Goals

To be able to specify the goals of our error-correction approach properly, we first
need to define the meaning of a ”recovery”:

recovery The recovery of a content object or a resource means that we are able
to recoverfrom the results of the changes performed on that content object
or resource. A clear example of this is restoring a resource that has been
removed to be able to fulfill a request for that resource.

The goals of our error-correction approach are the following:

• To provide recovery from the specified changes whenever applicable.

• To do so taking into account the intention of the website engineer.

In the following Sections we will specify how these goals are reached. Section 7.2
will first provide an overview of the solutions proposed by this thesis and Section
7.3 will provide additional details.

7.2 Solution Overview

This Section starts by describing the architecture of our approach in Section 7.2.1,
followed by Section 7.2.2 specifying the different components that are a part
of our approach and finishing up by Section 7.2.3, which describes the general
process of our approach.

83

CHAPTER 7. SUPPORTING CHANGES 84

7.2.1 Architecture

Figure 7.1 gives an overview of the architecture of our solution. As shown in

Figure 7.1: An overview of the error-correction Architecture.

Figure 7.1, our approach provides a way to recover resources that have changed
or have been removed. Recovery of these resources is needed to fulfill resource
requests associated withlinks made by third party users. To achieve recovery, our
approach creates aVersion Log for an intermediate model of theTransforma-
tion Pipeline. We will refer to this intermediate model as theIntegrated Model.
As described in Section 3.1.5, the Transformation Pipeline implements websites
designed with the WSDM Method. The Version Log that we create for the Inte-
grated Model of the Transformation Pipeline records all the changes that are made
to the Integrated Model during its lifetime.

The next Section specifies the components of our architecture.

CHAPTER 7. SUPPORTING CHANGES 85

7.2.2 Components

The different components of our approach as shown in Figure 7.1 are described in
this Section. Section 7.2.2.1 describes the way links among resources are specified
in the WSDM Method and how these aid our approach. Section 7.2.2.2 situates
the usage of the WSDM Transformation Pipeline within our approach. The next
Section, Section 7.2.2.3 describes the advantages of using the Integrated Model
in our approach. Section 7.2.2.4 shows how the Version Log component ties into
our approach. And finally, Section 7.2.2.5 describes the usage of the Change
Definition Language within our solution.

7.2.2.1 WSDM Links

Figure 7.2 illustrates the way links between resources are created according to
the WSDM Method (as described in Section 3.1.4.1). The WSDM Method rep-

Figure 7.2: The creation of pages in the WSDM Method.

resents the content of a resource on the conceptual level by the Nodes from the
Navigational Model. Such a Node from the Navigational Model references an
Object Chunk from the Information & Functional Modeling phase of the WSDM
Method. An Object Chunk in turn captures the information needed to fulfill the
functional and informational requirements of a task from the WSDM Task Mod-
eling phase.
The links between these Nodes are the origin of the links between pages. It is
only when the Page Model is overlayed onto the Navigational Model that it be-
comes clear which Nodes are grouped onto pages. When a links exists between
two Nodes on different pages, this link is the actual link between these pages, the
WSDM Method does not use different constructs to express links between Nodes

CHAPTER 7. SUPPORTING CHANGES 86

grouped on the same or different pages.
These links between pages determine the resource requests possible for the web-
site and thus also determine the third party links possible.
Since each link refers to one or more Nodes and Nodes represent content on the
conceptuallevel, each link needs one or more references to content on theim-
plementationlevel. This type of references are called the Parameters of the link,
and they reference the instances of the classes associated with the Object Chunks
(Referenced by the Nodes). These instances contain the content as values (e.g.:
strings) for their properties.

7.2.2.2 WSDM Transformation Pipeline

The WSDM Website Design Method uses a number of models to capture the entire
structure of a website. This structure is divided over the following models:

• The Object Chunks, (see Section 5.1).

• The Navigational Model, (see Section 5.2);

• The Site Structure Model, (see Section 5.3);

• The Page Model, (see Section 5.7).

These models are then used as input during the Implementation phase of the
WSDM Website Design Method (see Section 3.1.5). The process thattransforms
these models into a website is called the WSDM Transformation Pipeline. Figure
7.3 focuses on the Transformation Pipeline, as a part of the architecture of our
approach from Figure 7.1. The Transformation Pipeline consist of a number of
phases, including the Model Integration phase. This phase is needed to be able
to map the models onto a number of pages for an implementation platform. The
information necessary to construct a single page, is spread out over the models
listed above, the Model Integration phase integrates all these models in one large
model, the Integrated Model (IM), which is the subject of the next Section.

7.2.2.3 Integrated Model

The IM captures the structure of the entire website that is thetarget of our ap-
proach. It consists of the different models of the WSDM Method merged together.
The merging of these models is simply achieved by taking the OWL representa-
tions of these models and collecting them in a single OWL file. Since all models
use the common OWL WSDM Ontology (see Section 5), this merge is easily
achieved. The reason for selecting the IM over any of the other models of the
WSDM Method is the following:

CHAPTER 7. SUPPORTING CHANGES 87

Figure 7.3: The implementation of pages in the WSDM Method.

To increase the separation of concerns, the information gathered by the WSDM
Method is spread out over several models. The IM groups these models together,
meaning that we only need to keep a Version Log for a single model ontology, as
opposed to many. By maintaining a Version Log for only a single ontology, the
need to synchronise the chronological order of the Version Logs for several model
ontologies disappears.
Because the IM captures the entire website for that implementation of the website,
a record of this model would provide a good basis for recovery. The component
that provides this record, the Version Log, is discussed in the next Section.

7.2.2.4 Version Log

A Version Log is a crucial part of the WISE Ontology Evolution Approach, as
described in Section 4.3. Although we do not use the WISE Ontology Evolu-
tion Approach in its entirety, we do make use of the technologies developed for
the approach. These technologies are the Version Log and the Change Definition
Language. This Section discusses the Version Log and the next Section describes
the Change Definition Language.

The Version Log is a log that keeps track of the different versions an ontology

CHAPTER 7. SUPPORTING CHANGES 88

concept passes through during its lifetime. The concepts used in the Version Log
are defined by means of an ontology, called the Version Ontology (see Section
4.3.8). This Version Ontology gives the Version Log the capability to maintain
a list of the past and current versions for each concept of the ontology, besides
other properties relating to these versions. One of these properties is aversion
numberassigned to each version, this version number adds a temporal order to
the versions, achieved through the numerical order of the version numbers.

By keeping track of all the concepts of the IM, the Version Log provides a backup
of the different versions of the IM. Each of these versions is recorded as a result
of a change being made to the IM. During the different iterations of the WSDM
Method, the IM will go through many intermediate changes before the Implemen-
tation phase is reached. These intermediate changes can cause the IM to (tem-
porarily) be in an inconsistent state (e.g.: a concept is removed from the IM while
the references to this concept have not yet been removed). When the IM reaches
the Implementation phase, it will off course need to be in a consistent state. The
IM that is used as input for the Implementation phase represents a finished prod-
uct from the viewpoint of the website engineer.
Since the Version Log records all these changes as additional versions, we will
need to differentiate between the intermediate versions and the”website” ver-
sions.

The Version Log providesversioningfor the IM, to be able to use this source
of information, we need an effective way to query the Version Log. The Change
Definition Language of the WISE Ontology Evolution Approach described in the
next Section, provides this functionality.

7.2.2.5 Change Definition Language

The chronological order within the Version Log, as described by the previous
Section, provides the possibility to check properties of past versions of ontology
concepts by means of conditions. In the WISE Ontology Evolution Approach
these conditions are used to define the changes that should be monitored by the
Approach and specified using the Change Definition Language.
In our approach however, the main application of the Change Definition Language
is the usage of these conditions to determine which version of the IM should be
restoredfrom the backups provided by the Version Log. This restoration is needed
to provide recovery for an erroneous resource request. The information provided
by this resource request in combination with the conditions of the Change Defini-
tion Language is sufficient to determine the correct version number.

CHAPTER 7. SUPPORTING CHANGES 89

7.2.3 Process

In this Section we will describe thegeneralprocess used by our approach. Be-
cause of the general nature of this description, we will not yet distinguish between
the different changes that may have caused the error. Section 7.3.2 contains the
detailed process, including the different approaches for these changes.

The general process is as follows:

1. A number of changes have been performed on the IM of a website that uses
the WSDM Method. These changes have been recorded in the Version Log,
including the state of the IM prior to these changes. If, for example, one
of the changes was the removal of the concepts from the IM that represent
the ”join” page of a fanclub and the links to that page, the Version Log will
record this ”removal change” in the Version Log for these concepts, while
also maintaining the ”creation change” and the other modification changes
that have happened to these concepts prior to their removal.

2. The changed IM is used as input for the Implementation phase of the WSDM
Method. At this point in time, we mark the last version recorded in the Ver-
sion Log to be a”website version”, which means that this version represents
the website that is then implemented and presented to the users.

3. The WSDM generation pipeline has now implemented the latest version of
the website. In this version, the example ”join” page and the links to this
page have been removed. However, without our knowledge, a third party
had created a link to this ”join page” prior to its removal.
The third party then uses this link and sends the resource request associated
with the link to our website.

4. Because the resource (the ”join” page) requested is no longer available, the
request causes an error. This error triggers the error-correction mechanism
of our approach.

5. The erroneous resource request corresponds with a WSDM link to the ”join”
page that has been removed from the IM since the previous implementation
of the website. We now need to determine the version number of the version
in the Version Log that represents this previous implementation. We do this
by transforming the erroneous resource request into a query in the Change
Definition Language that retrieves the WSDM link for this resource request
prior to its removal and the version number associated with this link.

CHAPTER 7. SUPPORTING CHANGES 90

6. We now have the version number of the most recent website version in the
Version Log that still contained the WSDM link associated with the erro-
neous resource request for the ”join” page. Because of the internal consis-
tency of the IM, the version that captures a link to the ”join” page, must
also capture the ”join” page itself. By restoring the IM to the found website
version that was captured by the Version Log, we can roll back the website
design to the previous version.

7. We can now use this restored IM to create a temporary resource (the ”join”
page) to return as a response for the resource request that originally caused
the error. Thereby effectively correcting the error caused by the resource
request.

7.3 Detailed Solution

This Section provides more details for the Solution presented in Section 7.2. Sec-
tion 7.3.1 describes a number of extensions to the WSDM and Version Ontologies
needed to support our approach. Section 7.3.2 provides a more detailed view of
the process of our approach that was described in Section 7.2.3.

7.3.1 Component Extensions

The WSDM Ontology of the WSDM Method and the Version Ontology used by
the Version Log need a few extensions to accommodate the error-correcting ap-
proach presented in this thesis.
These extensions are grouped around four different subjects:

1. Links: an extension is needed to indicate the temporal context of a link;

2. Deletion: an extension is needed to allow the website engineer to specify
whether a deleted resource may be recovered;

3. Website Versioning: we need an extension to be able to indicate which ver-
sions in the Version Log arewebsiteversions;

4. Files to Links: an extension is needed to map the files of static websites to
WSDM resource requests;

5. Content Versioning: special treatment is needed to provide versioning for
certain types of content.

The following Sections each describe one of these extensions.

CHAPTER 7. SUPPORTING CHANGES 91

7.3.1.1 Links Extension

In this Section we present an extension of the WSDM ontology to be able to ex-
plicitly include thetemporal contextof the link. This temporal context addresses
the issues brought up by the ”changing content” change in Section 6.3.2. The web-
site engineer needs to be able to specify whether a link to a resource allows the
contents of that resource to change. This specification is called the temporal con-
text of the link. There are two kinds of temporal context possible: the ”snapshot”
type and the ”live-time” type. Figure 7.4 illustrates the differences between these
contexts. Figure 7.4 shows two links to the Event Organizer Page concept with

Figure 7.4: Types of temporal contexts for a concert example.

different types of temporal context. The link coming from the Event Organizers
Page expects themost recentinformation about a particular event organizer to be
displayed on the Event Organizer Page, so the website engineer has specified this
link to have alive-time temporal context. The link coming from the Event Page
that is a part of an Event Archive expects the information about the organizer to
be relevant to the event described on the Event Page. We can assume that this was
the case at the point in time when the Event Page was created, so upon creation
of the link the website engineer specifies this link to have asnapshottemporal
content.

The example illustrates that there may be cases in which one temporal context
allows the content of a resource to change, while another temporal context forbids
the content of that same resource to change. To be able to solve this problem, we
saw the need to extend the WSDM Link concept.

CHAPTER 7. SUPPORTING CHANGES 92

This extension should provide two things:

• A way to record type of temporal context a link has. We repeat the two
types possible:

Snapshot type A link with this type of temporal context does not allow the
content of the resource it links to, to change. A snapshot link provides
animageof the resource at the time the snapshot was taken. This point
in time occurs at the creation of the link.

Live-Time type A link with this type of temporal context allows the con-
tent of the resource it links to, to change. Just like with a regular Hy-
pertext link, a live-time link always points to the most recent version
of the resource available.

• A way to record at which point in time the ”snapshot was taken”, for snap-
shot links. We can take a version number from the Version Log to specify
this point in time. To be more precise, the version we take the version num-
ber from, is the website version number of the IM that had the snapshot link
newly added.

Figure 7.5 describes theLink concept from the WSDM Ontology and its prop-
erties. ThisLink concept is part of the Navigational Model as described by
Figure 5.3 in Section 5.2. The extension of theLink concept of the WSDM On-
tology consists of adding thehasContextType andhasContextVersion
DataTypeProperties .
ThehasContextType property is a property obligated for eachLink instance
and can take as values the strings ”live-time ” and ”snapshot ” indicating
the type of temporal context specified by the ontology engineer.
The hasContextVersion property is only valid when the context type is
”snapshot ” and, additionally, the ontology engineer is not allowed to set the
value of this property manually. This value of thehasContextVersion prop-
erty is the number of the IM version captured by the Version Log that contains the
Link as a newly added concept. The setting of this value is done by our approach,
during the WSDM Implementation phase.

Note that this extension constitutes a modification of the resource requests for
websites created by the WSDM Method, effectively tying in the WSDM resource
requests with the Version Log.

CHAPTER 7. SUPPORTING CHANGES 93

Figure 7.5: TheLink class and its properties, including the extensions.

7.3.1.2 Deletion Extension

As explained in the specification of the ”removing content” change in Section
6.3.2, sometimes, resources are not allowed to be recovered by our approach,
once they have been deleted. Because of this, the Version Ontology used by the
Version Log needs to be extended to allow the specification of a kind of ”strong”
delete.

Figure 7.6 gives an overview of the Version concept that is part of the Version
Ontology as described by Figure 4.9 in Section 4.3.8. The extension of the Ver-
sion Ontology consists of adding the ”deleted ” option to the list of valid values
for thehasState property. Normally, when a concept is removed from an on-
tology that is being monitored by a Version Log, a new version is added to the
Version Log to reflect this removal. This new version for the removed concept
receives as value for itshasState property the ”retired ” string. This value
may be changed by the website engineer into the ”deleted ” string to specify
that this concept may not be recovered by our approach. If our error-correction
approach is invoked by a resource request for a deleted resource that may not be
recovered, our error-correction approach will halt the recovery process and return
an error page for the resource request.

CHAPTER 7. SUPPORTING CHANGES 94

Figure 7.6: TheVersion concept and its properties.

7.3.1.3 Website Versioning Extension

As mentioned in Section 7.2.2.4, we need to be able to distinguish between ver-
sions in the Version Log that represent the implementable (orwebsite) versions
and versions that represent intermediate changes made to the IM. The reason for
this is that these intermediate changes may bring the IM (and thus the version in
the Version Log capturing the IM at that point in time) into a temporary incon-
sistent state (e.g.: a concept has been removed while references to this concept
remain). And, such an inconsistent IM would not be suitable as input for the
Implementation phase of the WSDM Method. Not only do the so-calledweb-
site versionscapture a consistent version of the IM, they also represent a finished
product from the viewpoint of the website engineer.
Because of these properties, the website versions are the only versions that should
be considered to be candidates for recovery.

To store the current version number of the website, we extend theWebSite

CHAPTER 7. SUPPORTING CHANGES 95

concept used in the Site Structure Model (see Section 5.3) with an additional prop-
erty. Figure 7.7 gives an overview of theWebSite concept and the extension
made.
The extension here is under the form of thehasVersion property. The value

Figure 7.7: TheWebSite concept and its properties.

that is assigned to this property is the version number of the version that captures
the ”add new/modify existing hasVersion property” change. This change occurs
right before the IM is presented to the Transformation Pipeline, which makes sure
that the version number that is assigned to thehasVersion is the last version
captured prior to the implementation of the website.
Setting this property in the IM happens automatically by our approach and the
website engineer is not allowed to set the value of thehasVersion property
manually.

7.3.1.4 Files to Links Extension

A website created by using the WSDM Method has been implemented as either a
static or a dynamic website. A static website consist of a number of fixed pages
in a certain format (e.g. *.html files) depending on the target platform of the im-
plementation. A dynamic website generates the pages on the request of the user,
based upon the WSDM models. In the static system, a resource request retrieves
a file, while in the dynamic system, a resource request builds the resource and re-
turns it. In fact, the files of the static system correspond to a one-time generation

CHAPTER 7. SUPPORTING CHANGES 96

of the resources as if they had been generated in response to dynamic resource
requests.

To be able to apply our error-correction approach to static websites created by
the WSDM Method, we need to extend the WSDM Ontology to maintain a map-
ping between the static resource requests (requests for files) and the corresponding
dynamic resource requests (requests for concepts of the IM) for the website.

This extension is also added to theLink concept of the WSDM Ontology. Since
a Link concept captures the information of a dynamic resource request, this is
the most obvious place to store the static resource request (a filename).

Determining which filename corresponds with which link can be done manually
by the ontology engineer or automatically by the WSDM Transformation Pipeline.
Figure 7.8 shows the extension from this Section added to theLink concept.
Note that the extensions from Section 7.3.1.1 have been omitted in Figure 7.8

Figure 7.8: TheLink class and its properties, with only the extension from this
Section.

to provide clarity. The extension in this case is achieved through the optional
requestsPageFile property which contains a filename string representing
the static resource request corresponding to the dynamic resource request cap-
tured by theLink .

Also note that therequestsPageFile property should only be added to the
Link concepts that represent resource requests. The links that exist between
Nodeswithin a single Page do not represent resource requests. As has been visu-

CHAPTER 7. SUPPORTING CHANGES 97

alized by Figure 7.2 on Page 85, only the links between Nodes on different Pages
represent resource requests.
Since multiple resource requests can exist for a single resource (meaning multi-
ple links to a single Page can exist), and a single resource results in a single file,
multiple Link concepts will contain the same filename. When our approach then
needs to retrieve the resource request from this filename, we will simply accept
the first resource request retrieved since each of the retrieved resource requests for
the resource are equal.

7.3.1.5 Content Versioning Practice

For websites created using the WSDM Method, the content (pieces of text, im-
ages, audio, etc..) of the website is kept separate from the models describing the
website structure up to the Implementation phase, when the content is mapped
to the IM. The WSDM Method supports various sources of content that can be
mapped to the IM. These content sources can be divided into two groups:

DataBase SourcesVersioning for DB systems is available under the form of
Temporal Databases1. This type of database provides the ability to roll
back data by recording the ”Transaction Time” (point in time when the data
was entered or superseded) for the data within the database.

File Sources When files are used as a data source, our approach requires a form
of versioning for these files. The most obvious form of versioning available
is by using a Version Log for an OWL-file based datasource.

In this thesis we will assume that OWL files are used as a content source. These
files are then integrated into the IM and versioning is provided through the Ver-
sion Log for the IM.
However, there are limitations to the types of content that can be captured in OWL.
Multimedia data is represented in OWL by an URL referring to the location of the
file containing the multimedia data. The versioning thus only provides versions
for the location of the data, not the data itself.

As mentioned in Section 6.3.2 with the description of the ”removing multime-
dia sources” change, we need to provide versioning for the content, even for the
multimedia data itself. We achieve this versioning by simply creating local copies
of these files and updating the references to theseversionedfiles in the Version

1Temporal Database on Wikipedia, seehttp://en.wikipedia.org/wiki/
Temporal database

CHAPTER 7. SUPPORTING CHANGES 98

Log. So whenever a new multimedia file has been added to the website, our ap-
proach creates a single backup copy for this file, and references this copy as the
multimedia source in the Version Log.

7.3.2 Detailed Process

In this Section, we will describe how the different cases that may be a part of the
recovery process are treated in our approach. We will start by describing how our
recovery process responds to the different changes that were described in Section
6.3.2 in Section 7.3.2.1, followed by Section 7.3.2.2 that contains the description
of several special cases that are caused by the extensions needed by our approach
(see Section 7.3.1).

7.3.2.1 Handling Changes

This Section describes the algorithms for handling the changes from Section 6.3.2.
Since all these different changes are all part of one larger process to correct erro-
neous resource requests, we first describe this process. To do so, we first distin-
guish between the two different types of resource request a website created by the
WSDM method can receive, namely:

1. Resource requests with a live-time type of temporal context;

2. Resource requests with a snapshot type of temporal context.

Figure 7.9 describes the full process for live-time type of resource requests.
The different processes from Figure 7.9 are the following:

Check ExistenceWe check whether the resource request can be fulfilled. We do
this by executing the query specified in Listing 7.1. If the resource request
can be fulfilled, we simply do so, otherwise, our error-correction mechanism
is triggered ad we continue with the next step;

Retrieve Website VersionsWe get the website version numbers recorded in the
Version Log. We get these version numbers through the query from Listing
7.10;

Find Link For each of version numbers retrieved from the previous step, we try
to find the link corresponding to the resource request. The query from List-
ing 7.2 is used to find this link;

Find Renamed We now need to determine whether a renaming change has oc-
curred. The query from Listing 7.3 does this for the link that we have re-
trieved in the previous step. If the renaming change has been detected, we

CHAPTER 7. SUPPORTING CHANGES 99

Figure 7.9: The detailed process for live-time resource requests.

redirect the erroneous resource request to an updated resource request that
reflects the consequences of the renaming change. If the renaming change
has not been detected, a removing change has been detected and we con-
tinue with the next step;

Retrieve Link Status We retrieve the status of the version capturing the link we
have retrieved in the previous steps. If this status is ”deleted”, we redirect
the erroneous resource request to a request for an error page, since the re-
moved resource may not be recovered. If the status is ”retired”, we can
continue with the next step. The retrieve of the status happens through the
query from Listing 7.8;

Find Removed We have now detected a removing change, and the removed re-
source may be recovered. We retrieve the version number of the version
from the Version log to recover, and the resource request associated with

CHAPTER 7. SUPPORTING CHANGES 100

the link concept of that same version. Retrieving this information is done
through the query of Listing 7.4;

Return Snapshot Resource RequestSince we now have the version number and
the resource request from the version with that retrieved version number, we
can create a snapshot resource request. This snapshot resource request will
recover the version of the IM that is needed to fulfill the resource request
found in the previous step.

Figure 7.10 describes the process for the snapshot type of resource requests.
The different processes found in Figure 7.10 are:

Figure 7.10: The detailed process for snapshot resource requests.

Retrieve ConceptsWe collect the concepts of the Version Log that have as ver-
sion number the contextversion number requested by the snapshot resource
request. This is done through the query in Listing 7.5;

CHAPTER 7. SUPPORTING CHANGES 101

Transform Concepts We transform the concepts we have retrieved in the previ-
ous step back into an the IM that was captured by that version of the Version
Log;

Retrieve Website VersionsWe get the website version numbers recorded in the
Version Log. We get these version numbers through the query from Listing
7.10;

Find Link For each of version numbers retrieved from the previous step, we try
to find the link corresponding to the resource request. The query from List-
ing 7.2 is used to find this link;

Find Link Version We now get the resource request associated with the link we
found in the previous step, from the version with as version number the
contextversion number from the snapshot resource request. The query to
retrieve the parameters for this resource request is listed in Listing 7.6;

Return Live-Time Resource RequestWe now have retrieved the resource re-
quest and the IM for the contextversion number of the snapshot resource
request. The resource request can now be fulfillled as a normal live-time
resource request by the temporarily implementation of the IM.

The following Sections now each describe the algorithms for each change type
separately.

7.3.2.1.1 Handling The ”renaming resources/content” Changes
As mentioned in Section 6.3.2, the different elements that make up a resource

request in the WSDM Method are identified through names, a change in these
names means a change in the resource request used to retrieve this resource. An
example of this type of change is a live-time link that originally uses the following
identifiers to retrieve a webpage resource that describes a member of a fanclub:

DescribeMember This is the name of the node from the Navigational Model that
is requested by the link;

Member This is the name of the class that identifies the content on the schema
level;

John This is the key of the instance of the Member class that identifies the content
on the data level.

The name of the class used to identify the data on the schema level has now
changedfrom ”Member” tot ”FanclubMember”. This renaming change has in-
stantaneously changed all the resource requests for the fanclub members’ infor-
mational content.

CHAPTER 7. SUPPORTING CHANGES 102

Note that we have grouped together the renaming changes for content identifiers
as well as for resource identifiers, since the treatment of both changes is equal.

We make the following assumptions that determine the current state of the en-
vironment:

• A complete Version Log exists and the IM is internally consistent;

• The resource request is of the temporal context type ”live-time”, since this
type of change does not apply to resource requests with a ”snapshot” tem-
poral context;

We start by giving a step-by-step description of the algorithm used, followed by a
more detailed description of the main queries used.

Algorithm

1. First, we need to check whether the resource request that we have received
will cause an error or not. We do this by executing the first of the three
queries described in the next Paragraph. If this query returns a result, this
means that our website will be able to fulfill the resource request. If this is
not the case, we continue with the next step of our algorithm.

2. Next, we determine the type of change causing the resource request to be
erroneous. There are two types of change possible, the renaming change
or the removing change. The removing change will be treated in Section
7.3.2.1.2, while the renaming change will the treated here.
To determine this type of change, we use the second and third queries de-
scribed in the next Paragraph.

3. One of two cases occurs as a result of the execution of these queries. When
we receive output from the third query, it is the presence of this output that
confirms that the renaming change has taken place. Similarly, when we
do not receive any output, this means that the removed content change has
taken place, in this case, we will then need to continue with the solution
presented in Section 7.3.2.1.2.

4. If there is output provided by the second query, then this output consists of
the changed identifiers that were the result of the ”renaming” change. These
identifiers can then be used to create an up-to-date resource request. For
our example the identifiers received would be ”DescribeMember”, ”Fan-
clubMember” and ”John”. From these identifiers we can construct a new,
correct resource request.

CHAPTER 7. SUPPORTING CHANGES 103

5. Finally, we can now redirect the erroneous resource request to the created
up-to-date resource request, hereby correcting the error.

Description of the Version Log Query

• We start with the query from Listing 7.1. This query determines if the cur-
rent version of the Version Log (and thus the current version of the IM)
contains a link concept that captures the resource request. To do this, we
try to retrieve the link concept that has a number of properties whose val-
ues match the values of the parameters (”DescribeMember”, ”Member”,
”John”) that are sent along with the resource request.

• Next, we need to refresh our knowledge of the Version Log. As we have
seen, the Version Log keeps a list of all the versions of all the concepts
of the IM. These versions are grouped per concept of the IM within the
Version Log. Each concept of the IM has a single corresponding, so-called
EvolutionConcept in the IM. This EvolutionConcept groups together the
versions of concept it corresponds with.

• The result of the renaming change is a link in the IM that still uses the
same concepts as before, although the names of all these concepts may
have changed. This is where the EvolutionConcept from the previous point
comes in handy. Although the concepts of the IM have changed their names,
and these changes are reflected in the Version Log, the EvolutionConcepts
associated with these concepts have not changed. The EvolutionConcepts
form abridgebetween the old names in the old versions it captures and the
new names in the current version it captures.

• This bridge between versions also provides a bridge between the erroneous
resource request (which uses the old names) and the up-to-date resource
request (which uses the new names) that we are seeking.

• To limit the number of queries needed in the next step, we first retrieve all
the website version numbers. The query to get this information is specified
in Listing 7.10.

• We start with the first query (from Listing 7.2) that determines the Evo-
lutionConcepts for the parameters of the erroneous resource request. We
perform this query for each timestamp (=version number) found in the pre-
vious step. The query searches the a past website version of the IM in the
Version Log (hence the ”BEFORE” operator) for a Link concept capturing
the different nodes and parameters of our erroneous resource request. We

CHAPTER 7. SUPPORTING CHANGES 104

make sure the versions of the Version Log that are found to match these
nodes and parameters originate from the same version by synchronizing
their version numbers.

• Now that we have determined the EvolutionConcepts we can use their iden-
tifiers as a bridge to check if the current version of the IM in the Version
Log contains a definition for a link that uses the same EvolutionConcepts,
we do this by performing the query of Listing 7.3.

• if the current version of the IM in the Version Log does contain a defini-
tion for a link that uses the same EvolutionConcepts, we simply return the
current names for the detected concepts.

• If this is not the case, we have encountered a ”removing” change and need
to proceed as described in Section 7.3.2.1.2

Listing 7.1 contains the first query that has been described. The resource request
for Listing 7.3 retrieves a resource containing the Node with name ”Describe-
Member” with as content the content instance of the ”Member” class referenced
by the ”John” identifier.

// get ?x, the link
checkExistence(?x) :=
// start by looking for the contentid that is the value for a property called ”

hasValue”
hasValue(?a, ”John”) AND ofProperty(?a, hasValue) AND hasPropertyInstantiation

(?b , ?a) AND
// that property belongs to ?b, which is in turn the value for the ”hasObject”

property
hasTransactionTime(?b, ?c) AND hasObject(?e, ?b) AND ofProperty(?e, hasObject)

AND hasPropertyInstantiation (? f , ?e) AND
// that property belongs to ?f which is an ObjectChunkReference
instanceOf (? f , ObjectChunkReference) AND hasTransactionTime(?f, ?c) AND
// that is in turn the value for the ”hasParameter” property of ?x, the link
hasObject(?g, ?f) AND ofProperty(?g, hasParameter) AND

hasPropertyInstantiation (?x, ?g) AND
//? f has another property , called ”hasSubject”
hasPropertyInstantiation (? f , ?h) AND ofProperty(?h, hasSubject) AND

// the value for that property is a class named ”Member”
hasObject(?h, ?i) AND hasID(?i, ”Member”) AND hasTransactionTime(?i, ?c) AND

//? x, the link has another property , namely ”hasTarget”
hasPropertyInstantiation (?x, ?k) AND ofProperty(?k, hasTarget) AND

hasObject(?k, ?l) AND
// which has as value a Node instance

CHAPTER 7. SUPPORTING CHANGES 105

instanceOf (? l , Node) AND hasTransactionTime(?l, ?c) AND
hasPropertyInstantiation (? l , ?n) AND
// which has as a value for the ”hasName” property ”DescribeMember”
ofProperty (?n, hasName) AND hasValue(?n, ”DescribeMember”) AND

instanceOf (?x, Link) AND hasTransactionTime(?x, ?c);

Listing 7.1: The Version Log query to determine whether the current version of
the IM contains a link concept that matches the resource request

Listing 7.2 contains the second query that has been described. The resource re-
quest for Listing 7.3 retrieves a resource containing the Node with name ”De-
scribeMember” with as content the content instance of the ”Member” class refer-
enced by the ”John” identifier. And the website transactiontime is represented by
”00”.

// get the evolution concepts
findLink (?d,? j ,?m,?y):=
// assign the evolution concept of the node to ?m
<BEFORE(?x)>(hasValue(?n, ”DescribeMember”) AND ofProperty(?n, hasName)

AND hasPropertyInstantiation(?l, ?n) AND hasTransactionTime(?l, ”00”) AND
instanceOf(?l, Node) AND hasVersion(?m, ?l) AND
hasObject(?k, ?l) AND ofProperty(?k, hasTarget) AND

hasPropertyInstantiation (?x, ?k) AND hasTransactionTime(?x, ”00”) AND
hasPropertyInstantiation (?x, ?g) AND hasObject(?g, ?f) AND

hasTransactionTime(?f, ”00”) AND instanceOf(?f, ObjectChunkReference)
AND

// assign the evolution concept of the content key to ?d
hasPropertyInstantiation (? f , ?e) AND ofProperty(?e, hasObject) AND hasObject(?

e, ?b) AND hasVersion(?d, ?b) AND hasTransactionTime(?b, ”00”) AND
hasPropertyInstantiation (?b, ?a) AND ofProperty(?a, hasValue) AND

hasValue(?a, ”John”) AND
// assign the evolution concept of the content class to ?j
hasPropertyInstantiation (? f , ?h) AND ofProperty(?h, hasSubject) AND hasObject

(?h, ?i) AND hasID(?i, ”Member”) AND hasTransactionTime(?i, ”00”) AND
hasVersion(?j, ?i) AND

// assign the evolution concept of the link to ?y
instanceOf (?x, Link) AND hasVersion(?y, ?x)) ;

Listing 7.2: The Version Log query to retrieve the evolution concepts of a link
associated with a resource request

Listing 7.3 contains the third query that has been described. The evolution concept
identifiers for the evolution concepts are: ”ec00” for the link evolution concept,
”ec 01” for the node evolution concept, ”ec02” for te content class evolution
concept and ”ec03” for the content key evolution concept.

CHAPTER 7. SUPPORTING CHANGES 106

// retrieve the parameters for the resource request
findRenamed(?y,?d,? j ,?m):=
// assign the transaction time to ?y
hasVersion ([ec00], ?x) AND hasTransactionTime(?x, ?y) AND

hasPropertyInstantiation (?x, ?a) AND ofProperty(?a, hasTarget) AND
hasObject(?a, ?b) AND hasVersion([ec01], ?b) AND instanceOf(?b, Node)
AND hasTransactionTime(?b, ?y) AND

// assign the node name to ?d
hasPropertyInstantiation (?b, ?c) AND ofProperty(?c, hasName) AND

hasValue(?c, ?d) AND
hasPropertyInstantiation (?x, ?e) AND ofProperty(?e, hasParameter) AND

hasObject(?e, ?f) AND hasTransactionTime(?f, ?y) AND instanceOf(?f,
ObjectChunkReference) AND
// assign the content key to ?j
hasPropertyInstantiation (? f , ?g) AND ofProperty(?g, hasObject) AND

hasObject(?g, ?h) AND hasVersion([ec02], ?h) AND
hasTransactionTime(?h, ?y) AND hasPropertyInstantiation (?h , ?i)
AND ofProperty(?i, hasValue) AND hasValue(?i, ?j) AND

// assign the content class name to ?m
hasPropertyInstantiation (? f , ?k) AND ofProperty(?k, hasSubject) AND

hasObject(?k, ?l) AND hasVersion([ec03], ?l) AND hasID(?l, ?m)
AND hasTransactionTime(?l, ?y) ;

Listing 7.3: The Version Log query to retrieve the resource request for a renamed
link

7.3.2.1.2 Handling the ”removing resources/content” Changes
The removal of a resource or a content object invalidates the WSDM resource

requests, as we mentioned in Section 6.3.2. An example of this type of change is
a live-time link that originally uses the following identifiers to retrieve a webpage
resource that describes a member of a fanclub:

DescribeMember This is the name of the node from the Navigational Model that
is requested by the link;

Member This is the name of the class that identifies the content on the schema
level;

John This is the key of the instance of the Member class that identifies the content
on the data level.

Suppose that in the current version of the website IM, we have removed the link
concept that groups these identifiers. This would invalidate all the resource re-
quests that are associated with that resource request.

CHAPTER 7. SUPPORTING CHANGES 107

Note that we have again grouped together the remove changes for content objects
as well as for resources, since the recovery procedure for both changes is identical.

We again make the following assumptions about the current state of the envi-
ronment:

• A complete Version Log exists and the IM is internally consistent;

• The resource request is of the temporal context type ”live-time”, since this
type of change does not apply to resource requests with a ”snapshot” tem-
poral context.

We start by giving a step-by-step description of the algorithm used, followed by a
more detailed description of the main query used.

Algorithm

1. As in the Previous Section, we first need to determine whether the resource
request might cause an error. We do this by executing the query from Listing
7.1 that was described in the previous Section.

2. Next, we need to determine the type of change causing the resource request
to be erroneous. This is done using the same query as given in Listings 7.2
and 7.3 in Section 7.3.2.1.1.

3. To limit the number of queries needed in the next step, we first retrieve all
the website version numbers. The query to get this information is specified
in Listing 7.10.

4. We now need to determine the version number of the version containing the
most recent non-removed version of the link corresponding to the erroneous
resource request. Because the resource request that is represented by this
link may also have changed prior to deletion, we also need to retrieve the
most recent resource request captured by the link. This is done by using the
main query described in the next Paragraph. This query returns the version
number and the parameters of the link concept that we seek and we perform
this query once for every website version number that we have retrieved in
the previous step.

5. We now have the version number and the parameters needed to create a
correct resource request for the wanted resource for that version of the IM.
From this information, we can create a new, correct, so-called ”snapshot”

CHAPTER 7. SUPPORTING CHANGES 108

type resource request, which will be able to retrieve the wanted informa-
tion. The way in which these ”snapshot” requests are responded to by our
approach is described in Section 7.3.2.1.3.

6. We can now redirect the erroneous resource request to the snapshot resource
request, by which the error, that could have been caused by the erroneous
resource request, is corrected.

Description of the Version Log Query

• Because the concepts that make up the link corresponding to the erroneous
resource request may have been renamed prior to removal, we need to make
sure that we retrieve the last valid version of the link concept preceding this
removal.

• To achieve this, we use the same approach as described in the previous
Section. We start by retrieving the EvolutionConcept concepts by using the
query from Listing 7.2 in Section 7.3.2.1.1

• Now we have the EvolutionConcepts involved in the versions of the Link
concept of the erroneous resource request. Our query from Listing 7.4 will
now retrieve the most recent versions of these EvolutionConcepts that form
valid links and return the version number and parameter values of these
versions.

Listing 7.4 contains the full query that has been described. The evolution concept
identifiers for the evolution concepts are: ”ec00” for the link evolution concept,
”ec 01” for the node evolution concept, ”ec02” for te content class evolution con-
cept and ”ec03” for the content key evolution concept. And the current website
transactiontime is represented by ”00”.

// we retrieve the identifiers for the resource request
findRemoved(?d,?j ,?m):=
<BEFORE(?x)>(hasVersion([ec00], ?x) AND hasTransactionTime(?x, ”00”) AND

hasPropertyInstantiation (?x, ?a) AND ofProperty(?a, hasTarget) AND
hasObject(?a, ?b) AND hasVersion([ec01], ?b) AND instanceOf(?b, Node)
AND hasTransactionTime(?b, ”00”) AND
// we assign the node name to ?d
hasPropertyInstantiation (?b, ?c) AND ofProperty(?c, hasName) AND

hasValue(?c, ?d) AND
hasPropertyInstantiation (?x, ?e) AND ofProperty(?e, hasParameter) AND

hasObject(?e, ?f) AND hasTransactionTime(?f, ”00”) AND instanceOf(?f,
ObjectChunkReference) AND

CHAPTER 7. SUPPORTING CHANGES 109

hasPropertyInstantiation (? f , ?g) AND ofProperty(?g, hasObject) AND
hasObject(?g, ?h) AND hasVersion([ec03], ?h) AND
hasTransactionTime(?h, ”00”) AND
// we assign the content key to ?j
hasPropertyInstantiation (?h , ?i) AND ofProperty(?i, hasValue)

AND hasValue(?i, ?j) AND
// we assign the content class to ?m
hasPropertyInstantiation (? f , ?k) AND ofProperty(?k, hasSubject) AND

hasObject(?k, ?l) AND hasVersion([ec02], ?l) AND hasID(?l, ?m)
AND hasTransactionTime(?l, ”00”)) ;

Listing 7.4: The Version Log query to retrieve the most recent resource request
and version number for a link that has been removed

7.3.2.1.3 Handling The ”changing content” Change
As we mentioned in Section 6.3.2, a change in the content of a resource does

not invalidate the resource request. To accommodate this type of change we have
defined an extension of the Link concept of the WSDM Ontology, as was de-
scribed in Section 7.3.1.1. Because a change in the contents does not invalidate
the resource request, the algorithm we present here does not describe a recovery
process, but an extension for the resource request handling mechanism. An exam-
ple of this type of change is a snapshot link that uses the following identifiers to
retrieve the version identified by the version number ”4” of a webpage resource
that describes a member of a fanclub:

DescribeMember This is the name of the node from the Navigational Model that
is requested by the link;

Member This is the name of the class that identifies the content on the schema
level;

John This is the key of the instance of the Member class that identifies the content
on the data level.

We make the following assumptions about the current state of the environment:

• A complete Version Log exists and the IM is internally consistent;

• The resource request is of the temporal context type ”snapshot”, since the
handling mechanism for a resource request with a ”live-time” temporal con-
text is not different from the standard resource request handling for the
WDSM Method.

CHAPTER 7. SUPPORTING CHANGES 110

Algorithm

1. Upon the point of receiving the resource request with a ”snapshot” temporal
context, we need to recover the IM version indicated by the version number
that is received as a part of this resource request.

2. To be able to perform this recovery, we first need to retrieve the concept
versions from the Version Log that have the received version number as
their version number. We do this by the simple query defined in the Change
Definition Language shown in Listing 7.5.

retrieveConcepts (?x) :=<BEFORE(?x)>(hasTransactionTime(?x, ”4”));

Listing 7.5: The Version Log query to retrieve all Version Log versions with a
particular version number

3. Now that we have the full needed version of the IM described by the con-
cepts of the Version Ontology, we can transform these concepts into con-
cepts of the WSDM Ontology thus recovering the IM to the needed version.

4. To limit the number of queries needed in the next step, we retrieve all the
website version numbers. The query to get this information is specified in
Listing 7.10.

5. We now need to determine the correct resource request corresponding link
contained in the recovered IM. To do this, we first use the query from List-
ing 7.2 to retrieve the evolution concepts of the link associated with our
snapshot resource request.

6. We now have the evolution concepts and the version number for the link
concept whose resource request parameters we wish to retrieve.
Listing 7.6 contains the query that is able to retrieve these parameters. The
evolution concept identifiers for the evolution concepts are: ”ec00” for the
link evolution concept, ”ec01” for the node evolution concept, ”ec02” for
te content class evolution concept and ”ec03” for the content key evolution
concept. And the current website transactiontime is ”4”.

// we retrieve the identifiers for the resource request
findLinkVersion (?d,? j ,?m):=
<BEFORE(?x)>(hasVersion([ec00], ?x) AND hasTransactionTime(?x, ”4”)

AND
hasPropertyInstantiation (?x, ?a) AND ofProperty(?a, hasTarget) AND

hasObject(?a, ?b) AND hasVersion([ec01], ?b) AND instanceOf(?b,
Node) AND hasTransactionTime(?b, ”4”) AND

CHAPTER 7. SUPPORTING CHANGES 111

// we assign the node name to ?d
hasPropertyInstantiation (?b, ?c) AND ofProperty(?c, hasName)

AND hasValue(?c, ?d) AND
hasPropertyInstantiation (?x, ?e) AND ofProperty(?e, hasParameter)

AND hasObject(?e, ?f) AND hasTransactionTime(?f, ”4”) AND
instanceOf(?f, ObjectChunkReference) AND
hasPropertyInstantiation (? f , ?g) AND ofProperty(?g, hasObject)

AND hasObject(?g, ?h) AND hasVersion([ec03], ?h) AND
hasTransactionTime(?h, ”4”) AND
// we assign the content key to ?j
hasPropertyInstantiation (?h , ?i) AND ofProperty(?i, hasValue

) AND hasValue(?i, ?j) AND
// we assign the content class to ?m
hasPropertyInstantiation (? f , ?k) AND ofProperty(?k, hasSubject)

AND hasObject(?k, ?l) AND hasVersion([ec02], ?l) AND hasID
(?l, ?m) AND hasTransactionTime(?l, ”4”)) ;

Listing 7.6: The Version Log query to retrieve the resource request for a link with
a certain version number

From the retrieved parameters we can now reconstruct the live-time re-
source request that was described by the link for the version number that
was specified in the snapshot resource request.

7. The recovered version of the IM is now able to satisfy the new, live-time
resource request that we have determined in the previous step.

7.3.2.2 Handling Extensions

The following sections will describe the algorithms needed for the extensions of
our approach described in Section 7.3.1.

7.3.2.2.1 Handling Temporal Context Version Number Addition
As we mentioned in Section 7.3.1.1, the value for thehasContextVersion

property may not be set by the website engineer. This Section describes the algo-
rithm that sets these values. As described in Section 7.3.1.1, these values need to
be set during the Implementation phase of the WSDM Method. Every new imple-
mentation triggers another run of this algorithm.
We make the following assumptions about the current state of the environment :

• A complete Version Log exists and the IM is internally consistent;

• A new version of the IM has just been generated.

CHAPTER 7. SUPPORTING CHANGES 112

Algorithm

1. Since the values for thehasContextVersion property have to be set
in both the Version Log and the IM (our algorithm modifies the IM, this
modification needs to be reflected in the Version Log) we need to determine
the Link concepts of the IM and the versions for these Link concepts in
Version log.

2. These concepts can be determined by querying the Version Log. Listing
7.7 shows the query defined in the Change Definition Language to retrieve
these concepts.

retrieveNewSnapshotLinks(?x,?w):=
// retrieve the Link version and its evolution concept
instanceOf (?x, Link) AND hasVersion(?w, ?x)

// that has a context type of ”snapshot”
AND (hasPropertyInstantiation (?x, ?y) AND ofProperty(?y,

hasContextType) AND hasValue(?y, ”snapshot”))
// and that does not have a hasContextVersion property
AND (NOT(hasPropertyInstantiation(?x, ?z) AND ofProperty(?x,

hasContextVersion)))

Listing 7.7: The Version Log query to retrieve all the new Link concepts of the
”snapshot” temporal type

3. This query returns the current versions for the Link concepts and the evolu-
tion concepts of these versions.

4. Using this information, we now also have the version number for the current
version of the IM.

5. We then add thehasContextVersion property to each of the found
Link concepts, increasing the version number value assigned to this prop-
erty with every addition. Since the Version Log is still monitoring the IM
during these additions, they are also captured in the Version Log

7.3.2.2.2 Handling Permanent Deletion
When the website engineer has decided that the deletion of a resource needs to

be permanent, the Link concept associated with the resource request for the re-
source needs to be removed from the IM and the reflection of this removal in the
Version Log needs to be marked as ”deleted”. When we then attempt to recover
from an erroneous resource request, we need to take this special permanent dele-
tion into account. This type of recovery only occurs as a result of the ”removing”

CHAPTER 7. SUPPORTING CHANGES 113

change algorithm. This Section will specify an extension for that algorithm that
takes into account the possibility of permanent deletion.
We make the following assumptions about the current state of the environment :

• A complete Version Log exists and the IM is internally consistent;

• The resource request is of the temporal context type ”live-time”, since this
type of change does not apply to resource requests with a ”snapshot” tem-
poral context.

• The resource request has been detected to be erroneous and our recovery
mechanism has been triggered.

• This recovery mechanism has detected the ”removing” change type and the
algorithm has determined the evolution concept associated with the link
versions in the Version Log.

Algorithm

1. We need to determine the status of the removed link concept associated
with the erroneous resource request. Since we already know the evolution
concept of the versions capturing the link concept in the Version Log, we
can use the query from Listing 7.8 to retrieve this status value.

// retrieve the status string
retrieveLinkStatus (?y) := hasVersion ([ecid], ?x) AND hasState(?x, ?y) ;

Listing 7.8: The Version Log query to retrieve the version representing the
removal of a Link

2. The above query has provided us with the value of thehasState property.
If this value is ”deleted”, then the link has been permanently deleted and the
resource the link describes a resource request for may not be recovered, in
which case we return an error page for the resource request.

3. If the value of thehasState property equals ”retired”, this means that
the resource the link describes a resource request for may be recovered, in
which case we can continue with the algorithm of Section 7.3.2.1.2 where
we left off.

7.3.2.2.3 Handling Website Versioning
As we argued in Section 7.3.1.3, we needed an extension of the WSDM Ontol-

ogy to be able to assign a version number to a website implementation. There are
two different algorithms needed here, namely:

CHAPTER 7. SUPPORTING CHANGES 114

• An algorithm to set the version number for an implementation of the web-
site;

• An algorithm to retrieve the different website version numbers present in
the Version Log.

We will treat these algorithms in the following Paragraphs:

Setting the version number
The setting of the website version numbers happens by assigning the website

version number to thehasVersion property of theWebSite instance repre-
senting the website that is the result of the application of the WSDM Method. This
setting happens automatically, just before the website implementation is generated
from the IM.
We make the following assumptions about the current state:

• A complete Version Log exists and the IM is internally consistent;

• The version of the IM we are presented with is ready to be transformed by
the Transformation Pipeline, meaning that no further changes will be made
to the IM after this algorithm has been applied.

Algorithm

1. Because an IM implements a single website, we can assume that a single
instance of the WebSite class exists in the IM.

2. We retrieve this single version by using the query from Listing 7.9

// retrieve the version that is an instance of ”WebSite”
retrieveWebsite (?x) :=VersionOfIndividual (?x) AND instanceOf(?x,WebSite);

Listing 7.9: The Version Log query to retrieve version representing the instance
of the WebSite concept

3. Now that we have a version of the WebSite instance, we can retrieve the
instance of the IM itself from this version.

4. We can then add (or modify) the hasVersion property to this instance, with
as value the version number of the retrieved version increased by one (the
addition or modification will cause an extra version in the Version Log).

CHAPTER 7. SUPPORTING CHANGES 115

Retrieving the version numbers
Since the versions in the Version Log that correspond with the website version

numbers recorded in that same Version Log are the only versions that are valid
candidates for recovery, we will need to be able to retrieve these website version
numbers.
We make the following assumptions about the current state:

• A complete Version Log exists and the IM is internally consistent;

• The website version numbers have been added to the IM and these additions
have been recorded in the Version Log.

Algorithm

1. Because an IM implements a single website, we can assume that a single
instance of the WebSite class exists in the IM.

2. We retrieve the website version numbers from the hasVersion properties
recorded in the Version Log by the query in Listing 7.10

// get the transactiontime of the link versions
retrieveWebsiteVersions (?y) :=

<BEFORE(?x)>(instanceOf(?x, WebSite) AND hasTransactionTime(?x, ?y)
AND
// that have a hasVersion property with a value equal to the

transactiontime
hasPropertyInstantiation (?x, ?z) AND ofProperty(?z, hasVersion) AND

hasValue(?z, ?y)) ;

Listing 7.10: The Version Log query to retrieve the version numbers assigned to
the WebSite instance

3. The above query retrieves all the information that we need.

7.3.2.2.4 Handling File to Link Lookup
As we described in Section 7.3.1.4 the website that is the target of our recov-

ery approach may have been generated by the WSDM Method as a static website.
Such a static website consist of a number of fixed pages in a certain format (e.g.
*.html files) depending on the target platform of the implementation. Section
7.3.1.4 describes an extension we have made to Link concept that links the file-
names of these files to the resource requests captured by the Links concepts of the
WSDM Method. This Section provides an algorithm to handle the occurrence of
errors in static websites.
We make the following assumptions about the current state of the environment :

CHAPTER 7. SUPPORTING CHANGES 116

• A complete Version Log exists and the IM is internally consistent;

• The website has been implemented as a static website;

• The resource request has been detected to be an erroneous static resource
request and our recovery mechanism has been triggered.

Algorithm

1. To limit the number of queries needed in the next step, we first retrieve all
the website version numbers. The query to get this information is specified
in Listing 7.10.

2. To retrieve the dynamic resource request associated with the static resource
request we make use of our link extension and use the filename of the static
resource request in the query contained in Listing 7.11. We perform this
query once for each of the website versions that we have determined in the
previous step
The Link concept we are looking for in Listing 7.11 has been associated
with the static file with filename ”file001.htm”.

// retrieve the evolution concept and version Number of the Link
retrieveDynamicLink(?y, ?z) :=
<BEFORE(?x)>hasVersion(?y, ?x) AND instanceOf(?x, Link) AND

hasTransactionTime(?x, ?z) AND
// that has as associated filename ” file001 .htm”.
hasPropertyInstantiation (?x, ?w) AND ofProperty(?w, requestsPageFile

) AND hasValue(?w, ”file001.htm”);

Listing 7.11: The Version Log query to retrieve the Link concept associated with
a filename

3. The query from Listing 7.11 has provided us with the version number and
the evolution concept of the version of the Link concept associated with the
static resource request (filename).

4. From this version number and the evolution concept we can now retrieve
the dynamic resource request. Listing 7.12 shows the query to retrieve this
request. The dynamic resource request we need to retrieve in Listing 7.12
is from the Link with evolutionconcept ”ec0” and version ”4”.

// we retrieve the identifiers for the resource request
retrieveDynamicRequest(?d,? j ,?m):=
<BEFORE(?x)>(hasVersion([ec0], ?x) AND hasTransactionTime(?x, ”4”) AND

CHAPTER 7. SUPPORTING CHANGES 117

hasPropertyInstantiation (?x, ?a) AND ofProperty(?a, hasTarget) AND
hasObject(?a, ?b) AND instanceOf(?b, Node) AND hasTransactionTime
(?b, ”4”) AND
// we assign the node name ?d
hasPropertyInstantiation (?b, ?c) AND ofProperty(?c, hasName)

AND hasValue(?c, ?d) AND
hasPropertyInstantiation (?x, ?e) AND ofProperty(?e, hasParameter)

AND hasObject(?e, ?f) AND hasTransactionTime(?f, ”4”) AND
instanceOf(?f, ObjectChunkReference) AND
hasPropertyInstantiation (? f , ?g) AND ofProperty(?g, hasObject)

AND hasObject(?g, ?h) AND hasTransactionTime(?h, ”4”) AND
// we assign the content key to ?j
hasPropertyInstantiation (?h , ?i) AND ofProperty(?i, hasValue)

AND hasValue(?i, ?j) AND
// we assign the content class to ?m
hasPropertyInstantiation (? f , ?k) AND ofProperty(?k, hasSubject)

AND hasObject(?k, ?l) AND hasID(?l, ?m) AND
hasTransactionTime(?l, ”4”)) ;

Listing 7.12: The Version Log query to retrieve a link for a Resource Request

5. Now that we have retrieved the dynamic resource request associated with
the erroneous static resource request, we continue with the dynamic re-
source request and let the normal error-correction process for dynamic web-
sites take over and correct possible errors.

7.3.2.2.5 Handling Media Source Versioning
Section 7.3.1.5 describes an extra versioning procedure for multimedia sources.

This procedure is described here as an algorithm.
We make the following assumptions about the current state of the environment :

• A complete Version Log exists and the IM is internally consistent;

• A new version of the IM has just been generated.

Algorithm

1. We need to retrieve all the newly added MultimediaConcepts that contain
references to multimedia sources. But this is not all, we also need to re-
trieve the same type of MultimediaConcepts whose references to multime-
dia sources have changed in this version of the IM.
The different types of MultimediaConcepts that maintain URL references
to multimedia sources are:Audio , Image , Resource andVideo .

CHAPTER 7. SUPPORTING CHANGES 118

Listing 7.13 gives an overview of the query defined in the Change Defin-
ition Language that is able to retrieve the information about these new or
changed MultimediaConcepts from the version log.

retrieveNewMultimedia(?y, ?w):=
// retrieve the Multimedia Concept ID (?y) and EvolutionConcept (?v)
Individual (?x) AND hasID(?x, ?y) AND hasVersion(?v,?x)
// for the Multimedia Concept that is once of the applicable subtypes
AND (instanceOf(?x, Audio) OR instanceOf(?x, Image) OR instanceOf(?x,

Resource) OR instanceOf(?x, Video))
// that has a certain URL value (?w)
AND (hasPropertyInstantiation (?x, ?z) AND ofProperty(?z, hasValue)

AND hasValue(?z, ?w))
// but no version existed in the past
AND
// bridge by ?v
NOTBEFORE(Individual(?u) AND hasVersion(?v, ?u)
AND (instanceOf(?u, Audio) OR instanceOf(?u, Image) OR instanceOf(?u,

Resource) OR instanceOf(?u, Video))
// that has that same value (?w)
AND (hasPropertyInstantiation (?u, ?t) AND ofProperty(?t, hasValue)

AND hasValue(?t, ?w)))

Listing 7.13: The Version Log query to retrieve the new multimedia concepts that
have been added to the IM

2. The query from the previous step has retrieved the ID’s and the URL’s for
these multimedia sources. We can use these URL’s to retrieve the multi-
media files that are referenced by the multimedia concepts and create local
(backup) copies of these files.

3. We now update the Version Log (using the ID’s) by changing the URL’s
referencing the multimedia files to point to the local backed-up copy. Any
recovery operation for these multimedia files will now reference the backed-
up copy, enabling recovery operations after the original file has been deleted.

Chapter 8

Illustrative Example

This Section contains an example of the application of our approach for a very
simple html-based website. Section 8.1 gives an overview of the example web-
site that will be used throughout this Chapter. Section 8.2 describes the change
process that causes a resource request for one of the resources of the website, to
become invalid. And finally, Section 8.3 describes the application of our approach
to recover from the invalid resource request.

8.1 Example Website

The example that we use in this Chapter is a simple html website which consists
of two webpages for a fanclub website for the artist known as Joe. The two web-
pages of the website are the main page of the fanclub and the Member Page of the
only member of the fanclub, Joe himself.

The next Sections subsequently describe the IM, The Version Log and The Im-
plementation for this website.

8.1.1 The IM

The IM groups together the different models of the WSDM Method. The models
that are the most important for our approach are the Object Chunks, the Naviga-
tional Model, the Site Structure Model and the Page Model, because the combina-
tion of these models define the resource requests for our website. Figure 8.1 shows
the combination of the Navigational and Page models for our example website.

As shown in Figure 8.1 our Navigational Model consists of three Nodes, the
Nodes identified by the namesDescribeClub , ListMembers andDescribe

119

CHAPTER 8. ILLUSTRATIVE EXAMPLE 120

Figure 8.1: An illustration of the Navigational and Page Models for our example
website.

Member. These Nodes are linked to Object Chunks that each fulfill a task for the
website. The tasks that these Object Chunks describe are the following

• The DescribeClub Node is linked to theClubDescriptor Object
Chunk. This Object Chunk is meant to provide a description of the fanclub
on the conceptual level.

• TheListMembers Node is linked to theMembersList Object Chunk.
This Object Chunk is meant to list the different members of the fanclub.
The Node then needs to link these members to the Member Pages.

• TheDescribeMember Node is linked to theMemberDescriptor Ob-
ject Chunk. This Object Chunk is meant to describe a member of the fanclub
on the conceptual level.

Besides the Nodes, there are also two Links present in the Figure 8.1. The most
important of these links has been labelled with (a) in Figure 8.1. This link de-
termines the resource request that can be made to the website. Because this link
links the Index Page to the Member Page, and one Index Page will link to many
member Pages, the type of this link is a one-to-many link, coming from the con-
ceptual Index Page and going to the conceptual Member Page. Because the Index
Page always needs to point to the most recent version of the Member Page, the
link to the Member Page will allow the Member Page to change, we specify this
by giving this link the ”live-time” temporal type.
However, since WSDM Links link Nodes and not Pages, link (a) actually departs
from the ListMembers Node and arrives in theDescribeMember Node.

CHAPTER 8. ILLUSTRATIVE EXAMPLE 121

This gives us the node that is the target of link (a), we now know that the re-
source request associated with (a) will contain a reference to the
DescribeMember Node.

Now we need to determine the implementational content part of the resource
request. This content part means a reference to a key value for an instantia-
tion of the classes of the Object Chunk. Figure 8.2 visualizes the content of the
MemberDescriptor Object Chunk. This is the Object Chunk that corresponds
to theDescribeMember Node. The classes of Figure 8.2 describe the content

Figure 8.2: The content of theMemberDescriptor Object Chunk.

of the Object Chunk on the conceptual level. The implementation level for this
Object Chunk is only achieved by instantiating the classes of Figure 8.2. In our
implementation there is only one instance of theMember class because the fan-
club of Joe only has one member, namely Joe. Figure 8.3 shows the instance of
this Member class and the way this instance is linked to an instance of the link
(a) from Figure 8.1. Figure 8.3 shows an instance of the WSDM link concept
named link0. This instance, maintains two references in its property instantia-
tions, namely a reference to theNode instance identified by the ”DescribeMem-
ber” name and a reference to anObjectChunkReference instance.
TheNode instance callednod 0 maintains a reference to theMemberDescriptor
Object Chunk, which is in turn composed of a number ofStatement instances.
The ObjectChunkReference instance calledref 0 provides a link to the
components that make up aStatement in the Object Chunk.
As we can see in Figure 8.3,ref 0 determines which of the statements of the
Object Chunk forms the key for the content captured within that Object Chunk.
There is oneMember class and two instances ofString concepts (subtype of

CHAPTER 8. ILLUSTRATIVE EXAMPLE 122

Figure 8.3: The instance of the (a) link.

theMultimediaConcept type) present in the Object Chunk from Figure 8.3.
The values that theString MultimediaConcepts media 0 andmedia 1
are assigned in the instance of theMemberDescriptor ObjectChunk from
Figure 8.3 are the following:

• The value for theMultimediaConcept instancemedia 0 that is the
Object of the hasName property is for this instance ”Joe”;

• The value for theMultimediaConcept instancemedia 1 that is the
Object of the hasDescription property is for this instance ”I’m the artist
known as Joe”.

Now we have all the information needed to specify an URL that captures the re-
source request for the instance of the Member Page that contains the information
about Joe. Figure 8.4 shows the URL that captures the resource request. As we

Figure 8.4: The example URL that captures the resource request.

see in Figure 8.4, the URL that captures the resource request for the Joe Member

CHAPTER 8. ILLUSTRATIVE EXAMPLE 123

Page is:
http://www.example.com/gen?node="DescribeMember" &class
="Member" &key="Joe" &contexttype="live-time"

As shown in the URL, the key value used to display the information related to
a member, is here the name of that member.

Now, we have described the key models of the IM that determine the resource
request available for our website. The next Section will then describe how these
models are reflected in the Version Log.

8.1.2 The Version Log

Since this is the first version of the IM that is being captured by the Version Log,
the Version Log captures the entire IM ontology. In this Section we will concen-
trate on the way the Link instance from Figure 8.3 from the previous Section is
captured by the Version Log. We do this because this Link instance determines
the resource request that is possible for our website and this resource request will,
further on, guide our recovery process.

Figure 8.5 repeats a part of the Link instance described in the Figure from the
previous Section (Figure 8.3) and relates how the Link instance is captured in the
Version Log. As shown in Figure 8.5 each of the concepts of the IM is represented
in the Version Log by anEvolutionConcept which maintains a reference
back to the concept (red arrow). ThisEvolutionConcept maintains a version
of the individual it references by itsVersionOfIndividual instance. This
instance also maintains a reference back to the individual in the IM (green arrow),
besides this reference, theVersionOfIndividual instance also maintains
representations of the properties of that individual and a version number through
its hasTransactionTime property. Because this is the first version of the IM
and its concepts, all the versions in the Version Log have as their version numbers
0.

The next Section will describe the website, once it has been implemented.

8.1.3 The Implementation

As mentioned in the introduction, our website consists of two pages, that each
fulfill a number of tasks:

The Index Page This page fulfills the tasks of describing the fanclub and listing

CHAPTER 8. ILLUSTRATIVE EXAMPLE 124

Figure 8.5: The Version Log entry for the instance of the (a) link.

CHAPTER 8. ILLUSTRATIVE EXAMPLE 125

the links to its members.

The Member Page This page fulfills the task of describing one member of the
fanclub.

Figure 8.6 shows the implemented version of the member page.
As we can see, this page provides as content the strings that had been captured

Figure 8.6: The implementation of the Member Page.

by the instance described in Figure 8.3.
Figure 8.7 shows the implemented version of the index page.
We now presume that a third party makes a link to the member page. This link

Figure 8.7: The implementation of the Index Page.

then uses the URL:
http://www.example.com/gen?node="DescribeMember"
&class="Member" &key="Joe" &contexttype="live-time"
to capture the resource request for the page.

The next section shows the effects of applying some changes to the website.

CHAPTER 8. ILLUSTRATIVE EXAMPLE 126

8.2 Example Changes

The next two Subsections will each describe a change to the website and show the
effects of this change on the models of the IM and the Version Log.

8.2.1 Change 1: Renaming

8.2.1.1 The Change

Joe has decided it’s time for a change. In a move to increase the popularity of his
fanclub, Joe has decided to change his name into to the ”the artist formerly known
as Joe” (TAFKAJ). Of course this means that the this change in name needs to be
reflected in the webpages of the fanclub.

Because the name of the member is used as a key value in the resource request
for the Member Page instance, a change in this name changes the resource request
needed to retrieve this page resource.

The next Sections will first describe the result of this change in the IM, followed
by the resulting modifications in the Version Log. The implementation will not be
reviewed here since the effects of the change are too obvious to mention.

8.2.1.2 The Changed models

Figure 8.8 shows the changed instance for the Link. As the Figure shows, little
has changed. However, since the string that has changed was the key value for the
resource request, this simple change invalidates the previous resource request that
was used by the third party to link to our web page. The new URL that is now
needed to reach the Member Page instance is the following:
http://www.example.com/gen?node="DescribeMember" &class
="Member" &key="TAFKAJ" &contexttype="live-time"

In the next Section we will see how the change is reflected in the Version Log.

8.2.1.3 The Changed Version Log

Figure 8.9 shows the changes that have happened to the Version Log. To provide
more clarity we have left out a number of elements that were present in the ini-
tial Figure (Figure 8.5 in Section 8.1.2). Figure 8.9 shows that the simple change
from the previous section causes the addition of a single version to the Version
Log, when the new IM is generated. This new version has as a version number
the number 2.

CHAPTER 8. ILLUSTRATIVE EXAMPLE 127

Figure 8.8: The changed instance for the Link.

Note that the Version Log still maintain the previous version of the value for the
String instance, namely ”Joe”.

The next Section describes another type of change that is performed on the web-
site that is the target of our approach.

8.2.2 Change 2: Removing

8.2.2.1 The Change

Because The Artist Formerly Known As Joe has been unsuccessful in his attempt
to attract more members to his website, he has decided to remove the list of fan-
club members from his website. This change will effectively remove every in-
stance of the member page and the conceptual Member Page from the website.

Since the member page resource has been removed from the website, this means
that the resource requests for this resource have become invalid.

The following Sections will first describe the result of this change applied to the
IM, followed by the resulting entries in the Version Log.

CHAPTER 8. ILLUSTRATIVE EXAMPLE 128

Figure 8.9: The Version Log entry for the changed instance of the Link.

8.2.2.2 The Changed models

As a result of this change, the page member instance and the link instances have
been removed from the Page and Navigational Models. Figure 8.10 shows the
changed version of Figure 8.1 which contains the Page and Navigational Models
from the IM. The elements that have been removed from the Page and Naviga-
tional Model have been greyed out in Figure 8.10. The removal of the Member
page also means the removal of the links and nodes associated with this page. In
this case, the node that was the source of link (a) (theListMembers Node) has
also been removed because the task that was fulfilled by this node was no longer
required. However, in other circumstances it may be that the node remains and
only the link is removed.

The next Section will show the effects of this change on the Version Log.

CHAPTER 8. ILLUSTRATIVE EXAMPLE 129

Figure 8.10: An illustration of the changed Navigational and Page Models for our
example website.

8.2.2.3 The Changed Version Log

Although all the concepts that have been removed from the IM (the concepts that
are related to the removed elements of Figure 8.10) cause entries in the Version
Log, Figure 8.11 only shows the changes as a result from the removal of link
(a). Each of theEvolutionConcepts of the original Version Log has re-
ceived an additional version (pictured in red) representing the removal of these
concepts. Because the original concepts of the Link instance have been removed,
thehasID , the refersTo and theofProperty properties now are no more
than strings identifying the removed concepts. We review these strings for a better
understanding of Figure 8.11:

• ”link0” refers to theLink instance that has been removed;

• ”ref 0” refers to theObjectChunkReference instance (parameter of
the link) that has been removed;

• ”nod 0” refers to theNode instance (target of the link) that has been re-
moved;

• ”media 0” refers to theString (MultiMediaConcept) instance (ob-
ject of ref 0) that has been removed.

Note that each of the newly created versions has ahasState property with a
value of ”retired”. This string indicates the removal of the concept associated
with the version and it indicates that this type of removal allows recovery. If the
website engineer wishes to prevent the recovery of the resource, thehasState

CHAPTER 8. ILLUSTRATIVE EXAMPLE 130

Figure 8.11: The Version Log entry for the removed instance of the Link.

CHAPTER 8. ILLUSTRATIVE EXAMPLE 131

property of the removed Link defining the resource request for the resource should
be set to ”deleted”.

The next Section will illustrate the recovery process.

8.3 Example Approach Application

In Section 8.1.3 we described the creation of a third-party link using the URL
(http://www.example.com/gen?node="DescribeMember" &class
="Member" &key="Joe" &contexttype="live-time") to capture the
resource request.

We explain how this resource request is treated step-by-step in the following Sec-
tions.

8.3.1 Step 1: Check the existence

We start by checking if our error-correction approach needs to be applied. We do
this by executing the query from Listing 7.1. This query attempts to match the
identifiers of the resource request to a link concept contained in the version of the
Version Log that captures the current version of the IM.
So the query attempts to match the identifiers of the resource request:

• ”DescribeMember”

• ”Member”

• ”Joe”

To the identifiers of any of the link concepts that have been captured in the current
version of the Version Log.
In our example, there are no more unremoved link concepts present in the Version
Log. All the link concepts were removed from the IM as a result from the remov-
ing change from Section 8.2.2.
Because the query is unable to return any matching links for the identifiers of the
resource request, our error-correction mechanism is triggered.

8.3.2 Step 2: Retrieving the website versions

Now, we need to retrieve the website versions. Because the changes presented
in the Section 8.2 and the initial version of the website from Section 8.1 each

CHAPTER 8. ILLUSTRATIVE EXAMPLE 132

represent a complete iteration of the WSDM method, each of these versions are
website versions and the query from Listing 7.10 will have returned the following
website version numbers: 1, 3 and 33. The origins of these numbers are the
following:

• 1: this is the website version number of the very first implementation of the
website (which had as version number 0 + 1 for the addition of the version
number property);

• 3: this is the website version number after the renaming change. The re-
naming change itself had been assigned the version number 2. We add one
for the additional version that was caused by modifying the website version
number in the IM;

• 33: this website version number is an arbitrary choice because, in the pre-
vious Section, we have only illustrated the removal of a limited number of
concepts.

8.3.3 Step 3: Finding the link

By ”Finding the link”, we mean retrieving the evolution concepts from the Ver-
sion Log that are associated with the concepts that together form or used to form
the erroneous resource request that we have received. To find these evolution con-
cepts, we execute the query from Listing 7.2. This query will attempt to match
the identifiers of the resource request that we have received with the identifiers
present in any of the website versions present in the Version Log.

For our example, this means that the query looks among the Website Versions
for a version that contains a link concept that links together evolution concepts
that have had the following identifier values;

• ”DescribeMember”

• ”Member”

• ”Joe”

The query is executed for each one of the website version numbers until a match
has been found. Because we wish to retrieve the most recent match possible, we
start with the Highest website version numbers first. Because step 1 has already
shown that the current website version (with version number 33) does not contain
a matching value, we start our search at the website version with version number
3.

CHAPTER 8. ILLUSTRATIVE EXAMPLE 133

Figure 8.12: The identification of the identifiers in the Version Log.

CHAPTER 8. ILLUSTRATIVE EXAMPLE 134

Figure 8.12 shows the evolution concepts in the Version Log that we are seeking.
We must note that none of the versions shown in Figure 8.12 actually has as ver-
sion number the version number 3.
This is because the Figure 8.12 only shows theexplicit versions of the Version
Log, that have been physically stored in the Version Log. What we are missing,
are theimplicit versions. These implicit versions are implied by the explicit ver-
sions that are present. A single explicit version for an evolution concept, implies
that the concept that is captured by that evolution concept remains the same as
that explicit version (=unchanged) until a new explicit version is recorded in the
Version Log.
This means that the Version Log shown in Figure 8.12 actually does contain ver-
sions with as version number the number 3. Take for example the evolution con-
cept ec0 from Figure 8.12. This evolution concept has two explicit versions, with
version numbers 0 and 4. This means that from version 0 to 3, the concept rep-
resented by the evolution concept ec0 remains unchanged (=equal to the version
with version number 0).
When we now look at the evolution concept ec4 at the bottom of Figure 8.12, we
notice that it has the value ”TAFKAJ” from version number 2 to version number
7. This means that the evolution concept cannot be matched to the value ”Joe” for
the website version with version number 3.
This means we need to continue with the next website version number, namely
the number 1. This time the value ”Joe” does match up with the value ”Joe” from
version number 0 to 1. The same case applies for the other identifiers of the re-
source request. The matches for these values are marked in red in Figure 8.12.
We are finally able to match the following evolution concepts to the identifiers of
the resource request:

• ”DescribeMember”: the name of the node finds a match for the evolution
concept with id ec1;

• ”Member”: the classname of the content finds a match for the evolution
concept with id ec3;

• ”Joe”: the content key finds a match for the evolution concept with id ec3.

All these evolution concepts are connected together by a link concept versioned
by the evolution concept with id ec0.

8.3.4 Step 4: Find Renamed

In this step, we attempt to retrieve the renamed identifiers for the link concept that
we have retrieved in the previous step. A renaming change in the IM does not af-
fect the evolution concepts that capture these identifiers. Since we have retrieved

CHAPTER 8. ILLUSTRATIVE EXAMPLE 135

these evolution concepts in the previous step, we can now use these evolution
concepts as input for the query from Listing 7.3. This query attempts to find a
combination of the evolution concepts that have been provided in the current ver-
sion of the Version Log.
If such a combination can be found, this means that a simple renaming change has
taken place, and we can then create a resource request that reflects this rename
from the information returned by the query.
As we can clearly see from the Figure 8.12, there are no longer connections
present among the most recent versions of the evolution concepts ec0, ec1, ec3
and ec4. This means that another type of change must be the cause of our erro-
neous resource request, namely the removing change.

8.3.5 Step 5: Retrieve link status

Because a removing type of change has been detected, we need to make sure that
we are allowed recover the resource that is requested by the erroneous resource
request. to do this, we simply use the query from Listing 7.8. We provide the
evolution concept id of the link concept, namely ec0 as input for this query.
The query then retrieves the current version of this evolution concept from the
Version Log and returns the value for itshasState property. As we see from
Figure 8.12, the last explicit version of ec0 has as version number, number 4 and
has as a value for itshasState property the value ”retired”. Because this string
value means that we may recover this link concept, we can continue on to the next
step.

8.3.6 Step 6: Find removed

What we now need, is the most recent version of the link we found in Step 3,
prior to its deletion. To find this version, we use the query from Listing 7.4. This
query performs the same actions as the query from Step 4, except that this time,
we don’t attempt to retrieve the link from the current version of the Version Log,
but from all the past website versions of the Version Log.
To do this, we iterate over the website versions we retrieved in Step 2. Again, we
start with the most recent version preceding the current version.
This time, we are lucky, the first website version that we try, namely the website
version with version number 3, contains a combination of all evolution concepts
we had found in Step 3, with the identifiers needed to create a resource request.
All that is left now, is to determine the resource request that is associated with the
link in website version 3. The identifiers that determine the parameters for these
links in the website version 3 have remained the same as in version 0, except for
the value of the identifier captured by the versions inec 4, which has changed

CHAPTER 8. ILLUSTRATIVE EXAMPLE 136

from ”Joe” to ”TAFKAJ”. This means that the resource request for the website
version 3 is:
http://www.example.com/gen?node="DescribeMember" &class
="Member" &key="TAFKAJ" &contexttype="live-time"

8.3.7 Step 7: Return the snapshot resource request

Because the new resource request that we have determined is only valid in version
3, we need to make sure that our resource request retrieves that version of the IM.
We can do this by changing the type of our resource request from a live-time re-
source request to a snapshot type resource request. This results in the following
URL for the resource request:
http://www.example.com/gen?node="DescribeMember" &class
="Member" &key="TAFKAJ" &contexttype="snapshot" &context
version=3
We now redirect the original resource request to our new resource request:
We redirect:
http://www.example.com/gen?node="DescribeMember" &class
="Member" &key="Joe" &contexttype="live-time"
To:
http://www.example.com/gen?node="DescribeMember" &class
="Member" &key="TAFKAJ" &contexttype="snapshot" &context
version=3
This new resource request is then handled by the algorithm that handles the ”chang-
ing content/resource” change. We continue with this algorithm in the next step.

8.3.8 Step 8: Retrieve concepts

Through the resource request, we have received the version number of the version
that should be recovered, namely the version number 3. To do this recovery, we
retrieve all versions, including the implied versions with version number 3 from
the Version Log by using the query from Listing 7.5.

8.3.9 Step 9: Transform Concepts

The next step is to transform the result of the previous step back into the ontology
that causes the entries in the Version Log. This is possible because the Version
Log has captured the entire ontology, keeping track of the instances, classes and
properties of the concepts in the IM ontology that caused the Version Log en-
tries. For example, theVersionOfIndividual instances from Figure 8.12

CHAPTER 8. ILLUSTRATIVE EXAMPLE 137

are transformed back into instances of the classes that theirinstanceOf prop-
erties (these properties are not shown in Figure 8.12) indicate.

8.3.10 Step 10 & 11: Retrieve website versions and Find Link

These Steps are a part of the algorithm to handle snapshot links, but they are exact
duplicates of Steps 2 and 3 of this Section, so we will not repeat them here.

8.3.11 Step 12: Find link version

In this step we basicly handle renaming changes for snapshot type resource re-
quests. Because the identifiers that are part of the snapshot resource request may
have changed, we need to make sure that the resource request part of the snapshot
resource request is still valid in the version that is requested by the contextversion
number. This is done by the query from Listing 7.6. The query retrieves the link
with the evolution concepts that were retrieved in Step 11 from the Version Log
version with the version number equal to the version requested by the snapshot
link.

8.3.12 Step 13: Return the live-time resource request

Because we now have an IM representing the version needed from Step 9 and a
resource request that is valid for that recovered IM from Step 12, we can simply
transform the snapshot resource request for the original IM into a live-time re-
source request for the recovered IM. By doing this, we allow the resource request
to be treated as a normal, live-time resource request for an adapted IM. We would
then return the resource request:
http://www.example.com/gen?node="DescribeMember" &class
="Member" &key="TAFKAJ" &contexttype="live-time"
That is to be used with the recovered IM.

Chapter 9

Proof Of Concept

In this Section, we will describe a small application that was developed as a proof
of concept for our approach.
This application has been implemented as two plug-ins for the Protéǵe Ontology
Editor 1. Prot́eǵe is a tool for the creation and editing of ontologies. The first
Prot́eǵe plugin created as a part of our application focuses on the creation and
visualization of the Version Log Component of our approach (see Section 7.2.2.4)
for ontologies developed in Protéǵe. The second Protéǵe plugin implemented pro-
vides an interface to apply the algorithms of our Approach to that Version Log.

We illustrate the developed application using the example presented in Chapter
8. Figure 9.1 shows the Protéǵe Ontology Editor, with the ontology correspond-
ing to the IM from the example of Chapter 8 already opened. Figure 9.1 shows the
details for the media0 concept of the IM, as indicated on the Figure, this concept
has as value ”Joe”, which is the key value for the content of the Member Page
from the example from Chapter 8. We will focus on this concept for the descrip-
tion of our plugins in the next Sections.

The next sections each describe one of the plugins of our application and their
usage.

• Section 9.1 describes the Version Log plugin and the way it provides ver-
sioning for our example;

• Section 9.2 describes the Request Recovery plugin and how it provides re-
covery for our example.

1The Prot́eǵe Ontology Editor, seehttp://protege.stanford.edu/

138

CHAPTER 9. PROOF OF CONCEPT 139

Figure 9.1: The Protéǵe Ontology Editor with the IM ontology opened.

9.1 Versioning

This section describes the versioning of the IM, achieved by our Version Log plu-
gin for the Prot́eǵe Ontology Editor. This plugin creates and visualizes the Version
Log.
This Version Log is created by monitoring the modifications the ontology engi-
neer does to the ontology loaded in Protéǵe. Figure 9.2 shows the Version Log
plugin visualizing the Version Log for the IM that was shown in Figure 9.1. In
Figure 9.2, we again focus on the media0 concept, and show how this concept is
recorded in the Version Log.
The changes that are done to the IM using the Protéǵe Ontology Editor will then

cause new versions to be added to the Version Log that reflect the results of these
changes.
The Version Log is kept by our plugin as an OWL file, using the Version Ontol-
ogy that was described in Section 4.3.8. To create and maintain this OWL file, our

CHAPTER 9. PROOF OF CONCEPT 140

Figure 9.2: The Version Log plugin with the initial version of the IM.

plugin makes use of the Jena2 Framework for Java.

The next Sections will each describe how the changes from the example of Chap-
ter 8 are performed using Protéǵe and how these changes are reflected in the Ver-
sion Log.

9.1.1 Change 1: Renaming

This change from Chapter 8 causes the key for the content of the Member Page to
change from ”Joe” into ”TAFKAJ” (The Artist Formerly Known As Joe). Figure
9.3 shows that this change is performed on the IM using Protéǵe.

This change triggers the addition of a new version to the Version Log by the
Version Log plugin. Figure 9.4 shows the Version Log plugin visualizing the new
version (v466 with transactiontime 3) that was added to the Version Log.
Because the Version Log also maintains the previous versions, these versions can

be used as a basis for IM recovery.

2Jena A Semantic Web Framework for Java, seehttp://jena.sourceforge.net/

CHAPTER 9. PROOF OF CONCEPT 141

Figure 9.3: We change the value for the concept from ”Joe” to ”TAFKAJ”.

9.1.2 Change 2: Removing

This Section illustrates how our application records the removing change from
the example of Chapter 8. In this change, all the concepts related to the Member
Page are removed from this IM, this also includes the media0 and link concepts
that have been captured in the example IM in this Section. Figure 9.5 shows the
effects of this removal on the Version Log. Each of the concepts that have been
removed receive an additional version representing the removal of these concepts.
In Figure 9.5 we see such a version for the removal of the media0 concept from
the IM ontology.
We can see in Figure 9.5 that the last version of the media0 concept has as value

for the ”hasState” property the string ”retired”, indicating the removal of this con-
cept.

Now that we have illustrated the Version Log plugin and the way it provides
versioning for our approach, we will continue with the recovery aspect of our
approach in the next Section.

CHAPTER 9. PROOF OF CONCEPT 142

Figure 9.4: The change from ”Joe” to ”TAFKAJ” is reflected in the Version Log.

9.2 Recovering

The Request Recovery plugin provides the functionality that would be useful in
the case of website error-correction. The next Sections each describe a part of the
functionality provided:

• Section 9.2.1 illustrates the approach used to add Website Version numbers
to the IM;

• Section 9.2.2 shows how our plugin can detect and correct an erroneous
result request from an url sent to our website;

• Section 9.2.3 describes how our plugin restores a previous version of the IM
using the Version Log.

This plugin makes use of the following components:

• The Jena Framework is used to access the Version Log in order to reach
the functionality described in Sections 9.2.1 and 9.2.3. Additionally, Jena
is used as a means to save the recovered IM from Section 9.2.3 to an OWL
file.

CHAPTER 9. PROOF OF CONCEPT 143

Figure 9.5: The removal of the concepts is recorded in the Version Log.

• The Change Definition Language (from Section 4.3.9) is used to query the
Version Log in order to reach the functionality described in all three Sec-
tions. We have implemented this Change Definition Language using the
components listed here, including the Jena Framework.

• Antlr3 is used to generate the parser for the Change Definition Language
from a grammatical description for this language.

• RDQL4 is the RDF Query language that is used to aid in the evaluation
of the statements from the Change Definition Language. RDQL is used
through the RDQL api provided by Jena.

9.2.1 Website Versioning

Our approach requires that a version number is added for each iteration of the
Implementation phase of the WSDM Method. This version number is added pro-
grammatically to the IM by the Request Recovery plugin.
Figure 9.6 shows the interface of the Request Recovery plugin. We first need to

3Antlr Parser Generator, seehttp://www.antlr.org/
4RDQL - A Query Language for RDF, seehttp://www.w3.org/Submission/RDQL/

CHAPTER 9. PROOF OF CONCEPT 144

input the location of the Version Log file, together with the base URI of this Ver-
sion Log file. By using the ”Set Website Version” button when the IM has reached
a state ready for implementation, the website engineer can automatically add the
current version number of the Version Log as a version number for the website.
This version number is then added as a property to theWebSite instance that is

Figure 9.6: After each implementation of the website, a version number is as-
signed to the Website.

a part of the IM currently being edited in Protéǵe.
This addition is done using the Java api provided by Protéǵe. The version number
to add is determined from the Version Log using the Jena api and the WebSite
instance to add the version number to is retrieved using the Change Definition
Language query of Listing 7.10 in Section 7.3.2.2.3.

Figure 9.7 shows the website version number as a property of theWebSite in-
stance namedweb 0. The version number here is 33, meaning that from the start
of this example, 33 changes made to the IM have caused 33 new versions to be
added to the Version Log.

Because the Version Log plugin is still monitoring the IM, the addition of the
website version number is also recorded in the Version Log. The result of this
addition is shown in Figure 9.8.
Note that the Transaction time of the version recording the addition corresponds

to the website version number that is added to the IM. Because the Version Log
maintains the preceding versions of theweb 0 WebSite instance, the website
version numbers that are recorded by these versions can be retrieved and used by

CHAPTER 9. PROOF OF CONCEPT 145

Figure 9.7: The version number assigned to the version of the Website is present
in the IM.

our approach.

9.2.2 Resolving a URL

The functionality described in this Section allows us toresolvean URL that con-
tains a resource request for a resource of our website. By resolving an URL, we
mean that we check if the resource request linked to that URL is valid, and if
this is not the case, that we provide a new URL that corrects the potential error
caused by the invalid resource request. One of the following cases can occur if the
Request Recovery plugin is used to resolve an URL:

1. The resource request is valid: we notify the user of the plugin that this is the
case;

2. The resource request is invalid and we detect a renaming change: the user
is provided with an URL that contains the new resource request that reflects
the results of the renaming change.

CHAPTER 9. PROOF OF CONCEPT 146

Figure 9.8: The version number assigned to the version of the Website is versioned
by the Version Log.

3. The resource request is invalid and we detect a removing change: the user is
provided with an URL containing a snapshot resource request that requests
the recovery of the IM to a version that is able to fulfill the original resource
request

4. The resource request is invalid and we detect a removing change, but the we
are not allowed to recover from this removing change: the user is provided
with an URL containing the resource request for an error page indicating
that the user may no longer view the resource that was requested.

5. The resource request is invalid and we detect that the resource request was
never valid for any version of the website since its creation: the user is
provided with an URL containing the resource request for an error page.

The Request Recovery plugin uses the Change Definition Language queries from
the Listings of Section 7.3.2 to retrieve the necessary information from the Ver-
sion Log. This information is then combined to resolve the URLs that the user of

CHAPTER 9. PROOF OF CONCEPT 147

the plugin provides.

Figure 9.9 shows the URL from our example of Chapter 8 being used as input
for the URL resolving component of the Request Recovery plugin.
The url that is used as input is the following:

Figure 9.9: Checking an URL using the Request Recovery plugin.

http://www.example.com/gen?node="DescribeMember" &class
="Member" &key="Joe" &contexttype="live-time"

Because both a renaming and removing change have been performed on our ex-
ample website, the URL that is shown to be returned in Figure 9.10 reflects both
these changes. The URL that is returned by our plugin is:
http://www.example.com/gen?node="DescribeMember" &class
="Member" &key="TAFKAJ" &contexttype="snapshot" &context
version="4"

The renaming change is reflected in this URL by the change in key value from
”Joe” to ”TAFKAJ” and the removing change is reflected by the change in con-
texttype from ”live-time” to ”snapshot”.
The URL indicates that the IM should be recovered to the website version with
version number ”4”. This version number is the number attached to the version
that captures the link concept representing the resource request, just prior to its
deletion.

CHAPTER 9. PROOF OF CONCEPT 148

Figure 9.10: The result of checking an URL.

9.2.3 Recovering the IM

Snapshot type resource requests require that the IM used as a basis for the imple-
mentation of the website can be rolled back to a preceding version. This rolling
back is achieved by transforming instances of the Version Log concepts (which
are defined using the Version Ontology) back into the instances, properties and
classes of the IM that they describe.
The Request Recovery plugin provides a simplified implementation of this func-
tionality. In this proof of concept implementation, we have focused on providing
the roll-back functionality for the instances of the Version Log describing the in-
stances of the IM. Because the most of the classes and properties of the IM are
fixed and described in the WSDM Ontology (with the exception of the classes and
properties contained within the Object Chunks), we have limited the roll-back
functionality for classes and properties to the extent that these classes and proper-
ties are needed to create instances.
Figure 9.11 shows the interface of the Request Recovery plugin that provides the
roll-back functionality.
The user inputs a URL, in this case the URL that was returned in Section 9.2.2.

The resource request for this URL has as context version number the number 4.
We then retrieve all the concepts from the Version Log that have as version num-
ber the number 4. We do this by using the Change Definition Language query
from Listing 7.5 in Section 7.3.2.1.3. Next, we use Jena to retrieve these concepts
and their properties from the Version Log and to create a new OWL file that will
contain the rolled back IM. We fill this OWL file by going through all the retrieved

CHAPTER 9. PROOF OF CONCEPT 149

Figure 9.11: Rebuilding the IM using the Request Recovery plugin.

concepts and transforming these concepts and their associated classes, properties
and instances as we encounter them.

Now that we have the IM, we need to adapt the resource request to this rolled
back IM. We do this by transforming the snapshot type resource request into a
live-time resource request. For our example, this means that we transform:
http://www.example.com/gen?node="DescribeMember" &class
="Member" &key="TAFKAJ" &contexttype="snapshot" &context
version="4"
into:
http://www.example.com/gen?node="DescribeMember" &class
="Member" &key="TAFKAJ" &contexttype="live-time"
and return this url to the user, as is show in Figure 9.12

CHAPTER 9. PROOF OF CONCEPT 150

Figure 9.12: Returning the transformed URL

Chapter 10

Conclusion

In this thesis, we have presented an approach that makes use of the meta-information
provided by ontology-based Website Design Methods to correct broken-link type
errors for the websites created using these ontology-based website design meth-
ods.
This meta-information is contained in the models of the website design method.
These models describe the website that is being created and they are in turn de-
scribed using an ontology language. These models are sufficiently detailed to
transform them into a complete website implementation.

In this thesis we have used the WSDM ontology-based Website Design Method,
that has been developed at the WISE Laboratory. The models of this Website De-
sign Method are described by the WSDM Ontology described in turn in the OWL
Ontology Language. The models of the WSDM Method are basicly saved on disk
as files containing OWL statements.
Our approach uses another idea developed at the WISE Laboratory, namely a Ver-
sion Log, this Version Log is another OWL file that logs (records) all the changes
made to an ontology. The ontology in this case, are the OWL files that contain the
models that describe the website.
Because the Version Log records the changes made to the models of the web-
site (and thus the website itself) in sufficient detail, we can use the information
in this log to rebuild previous versions of the models. Since these models can
be transformed into a complete website, previous versions of the models can be
transformed into a complete previous version of the website.
Because broken link type errors are caused by changes in the website (and thus
changes in the models), we can use the information in the Version Log to de-
tect these changes and rebuild a version of the website pre-dating these changes,
thereby correcting the broken link error.

151

CHAPTER 10. CONCLUSION 152

The advantages of the approach described in this thesis are the following:

• Our approach can be implemented as a fully automated approach. The Mul-
timedia datasource versioning, the website versioning and the link extension
versioning algorithms described in Section 7.3.2.2 can all be set to automat-
ically trigger at some point during the implementation phase. The Change
Handling algorithms from Section 7.3.2.1 are all designed to produce differ-
ent results, depending on the type of resource request that is used as input.

• For a website designed by using the WSDM method, no extra input is re-
quired from the website engineer to enable our error-correction approach.
We can simply import the existing IM into our method, generate a Version
Log for that IM and continue with the rest of the implementation phase;

• The usage of ontologies as the source of information for our error-correction
approach, allows us to import models from other ontology-based web de-
sign methods and transform these models into WSDM models, that can be
used by our error-correction approach.

• Extra extensions (e.g.: The Temporal Context Type from Section 7.3.1.1
and the Deletion Extensions from Section7.3.1.2) are provided to enable
the website engineer to better express the temporal relations for link and
resource removal, but the website engineers are not obligated to use them.

We have shown in this thesis that it is possible to use the meta-information of
an ontology-based website design method to provide an effective error-correction
approach for the website that has been generated by using this ontology-based
website design method. The error-correction approach presented in this thesis is
yet another advantage of the usage of structured, ontology based website design
methods.

We finalize by describing some possible further extensions of the work presented
in this thesis;

• Most obviously it would be interesting to integrate our implementation with
an implementation of the WSDM transformational pipeline. We would then
be able to check the extent to which our approach meets the expectations of
the users and the website engineers.

• Another interesting extension would be, adding the possibility for condi-
tional temporal contexts. These conditional temporal contexts would appear
under the form of Change Definition Language queries, of which the result
of the execution determines which version of a resource is returned for the
resource request.

Chapter 11

Acknowledgements

First of alI, I would like to thank my promoter, Prof. Dr. Olga De Troyer for giv-
ing me the opportunity to create my thesis and serve my internship at the WISE
laboratory.
Special thanks go to Peter Plessers, for supporting me during my internship and
the creation of this thesis. His helpful remarks and proofreading have most cer-
tainly improved the quality of this thesis.
Finally, I would like to thank my family for supporting me both morally and fi-
nancially for all these years.

153

Bibliography

[1] Berners-Lee, T., Cailliau, R., 1990, ”World Wide Web: Proposal for a Hy-
perText Project” - CERN European Laboratory for Particle Physics, Geneva
CH, 12 November 1990.

[2] Bush, V., 1945, ”As we may think”. The Atlantic Monthly, Vol. 176, Nr.
1,Ed. Weeks E. A.,pp. 101-108, ISSN 1072-7825, July 1945

[3] Berners-Lee, T., 1994, ”Universal Resource Identifiers in WWW”, Internet
Requests For Comments (RFC) 1630

[4] Rimmer, J., I. Wakeman, L. Sheeran, and M.A. Sasse, 2000, ”Messages from
a Tangled Web.” In Proceedings of OzCHI, Eds . Paris C., Ozkan N., Howard
S., Lu S., ISBN 0-643-06633-0, Sydney, Australia, December 2000

[5] Kelley, B., ”Approaches to the preservation of Websites”, 2002, Online In-
formation 2002 conference, ”Archiving the web: tackling digital preserva-
tion” session, Olympia, London, 3 December 2002.

[6] Fielding, et al., ”Hypertext Transfer Protocol – HTTP/1.1”, 1999, Internet
Requests For Comments (RFC) 2616, 1999

[7] Koehler, W., 2004, ”A longitudinal study of Web pages continued: a con-
sideration of document persistence.”, In Information Research, (paper 174),
Vol. 9 No. 2, ISSN 1368-1613, January 2004

[8] Kelly, B., ”Guidelines For URI Naming Policies”, 2002, Ariadne, Issue 31,
Ed. Hunter P., Pub UKoln, ISSN 1361-3200, March 2002,

[9] Chen, C.C., Chung, Y.C., Chien, C.C., Lee, C. 2004. ”Similarity retrieval of
web documents, considering both text and style.”, Lecture Notes In Com-
puter Science, Iss. 3007, pp. 620-629, Publ. Springer-Verlag, Germany,
ISSN 0302-9743, 2004

154

BIBLIOGRAPHY 155

[10] De Troyer, O., 1998, ”Designing Well-Structured Web Sites: Lessons to be
Learned from Database Schema Methodology”, In Proceedings of the ER
’98 Conference, Lecture Notes in Computer Science 1507, pp. 51 - 64, Eds.
Ling T.W., Ram S., Lee M.L., Publ. Springer-Verlag, ISBN 3-540-65189-6,
Singapore, November 1998

[11] Gruber, T., ”A Translation Approach to Portable Ontology Specifications.”,
1993, In Knowledge Acquisition, Vol. 5, No. 2, pp. 199-220, Publ. Academic
Press, ISSN 0001-2998, April 1993

[12] Gruber, T., 1993, ”Toward principles for the design of ontologies used
for knowledge sharing.”, International Journal of Human-Computer Stud-
ies, special issue on Formal Ontology in Conceptual Analysis and Knowl-
edge Representation, Eds. Guarino N., Poli R., Publ. Academic Press, ISSN
1071-5819, technical report, KSL-93-04, Knowledge Systems Laboratory,
Stanford University, 1993

[13] Plessers, P., De Troyer, O., 2005 ”Ontology Change Detection using a Ver-
sion Log”, In Proceedings of the 4th International Semantic Web Confer-
ence, pp. 578-592, Eds. Yolanda Gil, Enrico Motta, V.Richard Benjamins,
Mark A. Musen, Publ. Springer-Verlag, ISBN 978-3-540-29754-3, Galway,
Ireland 2005

[14] Plessers, P., De Troyer, O., 2004, ”Annotation for the Semantic Web dur-
ing Website Development”, In Proceedings of the ICWE 2004 Conference,
Lecture Notes in Computer Science 3140, pp. 349-353, Eds. Nora Koch,
Piero Fraternali, and Martin Wirsing, ISBN 3-540-22511-0, Munich, Ger-
many 2004

[15] Plessers, P., De Troyer, O., 2004, ”Web Design for the Semantic Web”, In
Proceedings of the WWW2004 Workshop on Application Design, Devel-
opment and Implementation Issues in the Semantic Web, CEUR Workshop
Proceedings, Vol 105 Web, WWW2004 Workshop, Eds. Christoph Bussler,
Stefan Decker, Daniel Schwabe, Oscar Pastor, ISBN 1613-0073, New York,
USA 2004

[16] Vdovjak, R., Frasincar, F., Houben, G. J., Barna, P., 2003, ”Engineering Se-
mantic Web Information Systems in Hera”, Journal Of Web Engineering,
Vol. 2, No.1&2, pp. 003-026, Publ. Rinton Press, ISSN 1540-9589, Prince-
ton, New Jersey, September 2003

[17] Y. Lei, E. Motta, and J. Domingue, 2004, ”Modeling Data-Intensive Web
Sites with OntoWeaver”, In Proceedings of the International Workshop on

BIBLIOGRAPHY 156

Web Information Systems Modeling (WISM 2004), Eds. Frasincar F., Vdov-
jak R., Houben G-J.Barna P., Publ. Springer-Verlag, Riga, Latvia, June 2004

[18] Berners-Lee, T., Hendler and J., Lassila, O. 2001.”The Semantic Web.” In
Scientific American, pp. 34-43, Publ Scientific American, Inc., ISSN 0036-
8733, New York, USA,May 2001

[19] Koivunen, M.R., Miller, E., 2001, ”W3C Semantic Web Activity”, Semantic
Web Kick-Off in Finland - Vision, Technologies, Research, and Applica-
tions, Ed.Hyvnen E., Publ.HIIT Publications, ISBN 1458-951-22-6019-0,
Helsinki, Finland, Nov 2, 2001

[20] Shwabe, D., Rossi, G., 1998, ”An object oriented approach to web-based
applications design”, Theory and Practice of Object Systems, Vol. 4, Nr. 4,
pp. 207-225, Eds Lieberherr K., Zicari R., Publ. John Wiley & Sons, ISSN
1074-3227, 1998.

[21] Garrigs, I., Gmez, J., Cachero, C., 2003, ”Modeling Dynamic Personaliza-
tion in Web Applications”, In Proceedings of ICWE 2003, Lecture Notes
in Computer Science, Vol. 2722, pp. 472 - 475, Eds Lovelle J.M.C, Martı́n
Gonźalez Rodŕıguez B., Aguilar L.J., Labra Gayo J.E. del Puerto Paule Ruı́z
M., Oviedo, Publ. Springer-Verlag, ISBN 3-540-40522-4, Spain, July 2003

[22] R. Hennicker and N. Koch., 2000, ”A UML-based Methodology for Hyper-
media Design”, Proc. of UML 2000 Conference, Lecture Notes in Computer
Science, Vol 1939, Eds Evans A., Stuart A., Selic B., Publ. Springer Berlin /
Heidelberg, ISSN 0302-9743, York, England, October 2000

[23] Isakowitz, T., Stohr, E.A., Balasubramaninan, P., 1995, ”RMM: A Method-
ology for Structured Hypermedia Design”, Communications of the ACM,
Volume 38, Issue 8, pp. 34 - 44 ,Publ. ACM Press, ISSN 0001-0782, New
York, NY, USA, August 1995

[24] Chen, P.P. -S., 1976, ”The entity-relationship model: toward a unified view
of data”, ACM Transactions on Dastabase Systems, Volume 1, Issue 1, pp.
9-36, Publ. ACM Press, ISSN 0362-5915, Framingham, MA, March 1976

[25] Fowler, Martin., 2003, ”UML Distilled: A Brief Guide to the Stan-
dard Object Modeling Language”, 3rd ed., Publ. Addison-Wesley. ISBN
0321193687, 2003

[26] De Troyer, O., Leune, C, 1998, ”WSDM: A User-Centered Design Method
for Web Sites”, Proceedings of the seventh international conference on

BIBLIOGRAPHY 157

World Wide Web 7, Pages: 85 - 94, Eds. Enslow P.H. Jr., Ellis A., Publ. El-
sevier Science Publishers B. V., ISSN 0169-7552, Brisbane, Australia, 1998

[27] Jin, Y., Decker, S., Wiederhold, G., 2001, ”OntoWebber: Model-Driven
Ontology-Based Web Site Management”, Proceedings of SWWS’01, The
first Semantic Web Working Symposium, Eds. Cruz I.F., Decker S., Euzenat
B., McGuinness D.L., Publ. Stanford University, California, USA, July 29 -
Aug 1, 2001.

[28] Klapsing, R., G Neumann, G., 2000, ”Applying the Resource Description
Framework to Web Engineering”, Lecture Notes In Computer Science: Vol.
1875, Proceedings of the First International Conference on Electronic Com-
merce and Web Technologies, Pages: 229 - 238, Eds. Kittler J., Roli F.,
Publ.Springer Berlin / Heidelberg, ISBN 3-540-67981-2, Cagliari, Italy,
June 2000

[29] Houben, G. J. , Frasincar, F., Barna, P., Vdovjak, R., 2004, ”Modeling User
Input and Hypermedia Dynamics in Hera”, In ICWE2004, International
Conference on Web Engineering, LNCS 3140, pp. 60-73, Eds. Koch N.,
Fraternali P., Wirsing M., Publ. Springer, ISBN 3-540-22511-0, Munchen,
Germany, pp. 26-30 July 2004

[30] Fiala, Z., Frasincar, F., Hinz, M., Houben, G.J., Barna, P., Meissner, K.,
2004, ”Engineering the Presentation Layer of Adaptable Web Information
Systems”, In ICWE2004, International Conference on Web Engineering,
LNCS 3140, p. 459-472, Eds. Koch N., Fraternali P., Wirsing M., Publ.
Springer, ISBN 3-540-22511-0, Munchen, Germany, 26-30 July 2004

[31] Fiala, Z., Hinz, M., Meissner, K., Wehner, F.: A , 2003, ”Component-
based approach for adaptive dynamic web documents”, Journal of Web En-
gineering, Vol.2 No.1&2, pp. 058-073, Publ. Rinton Press, ISSN 1540-9589,
Princeton, New Jersey, September, 2003

[32] Lima F., Schwabe, D., 2003 ”Application Modeling for the Semantic Web”,
LA-WEB 2003 - First Latin American Web Conference, Santiago, Chile,
2003 - IEEE-CS Press.

[33] Schwabe, D., Szundy, G., de Moura, S. S, Lima, F., 2004, ”Design and Im-
plementation of Semantic Web Applications”, Proc. of the Workshop on Ap-
plication Design, Development and Implementation Issues in the Semantic
Web (WWW 2004), CEUR Workshop Proceedings, Vol. 105, Eds. Christoph
Bussler and Decker S., Schwabe D.,Pastor O., ISSN 1613-0073, New York,
NY, USA, May 18, 2004.

BIBLIOGRAPHY 158

[34] De Troyer, O., Casteleyn, S., 2003, ”Modeling Complex Processes for
Web Applications using WSDM”, In Proceedings of the Third International
Workshop on Web-Oriented Software Technologies (held in conjunction
with ICWE2003), IWWOST2003 (also onhttp://www.dsic.upv.
es/ ∼west/iwwost03/articles.htm), Eds. Daniel Schwabe, Oscar
Pastor, Gustavo Rossi, Luis Olsina, Oviedo, Oviedo, Asurias, Spain July 15,
2003

[35] Paterno, Mancini, Meniconi, 1997. ”ConcurTaskTrees: a Diagrammatic No-
tation for Specifying Task Models”, In Proceedings of INTERACT 97, IFIP
TC13, International Conference on Human-Computer Interaction, Vol 96,
pp. 362-366, Eds. Howard S., Hammond J., Lindgaard G., Publ. Chapman
& Hall, ISBN 0-412-80950-8, Sydney, Australia, 14th-18th July 1997

[36] Halpin, T., 2001. ”Information Modeling and Relational Databases: From
Conceptual Analysis to Logical Design”, 1st Edition. Publ. Morgan Kauf-
mann Publishers, ISBN 1558606726

[37] Lei, Y. , Motta, E., Domingue, J., ”OntoWeaver - an ontology based ap-
proach to web site design and development”, seehttp://kmi.open.
ac.uk/projects/akt/ontoweaver/

[38] Lei, Y. , Motta, E., Domingue, J., 2003, ”Design of Customized Web Appli-
cations with OntoWeaver (2003).”, In proceedings of the International Con-
ference on Knowledge Capture, pp 54-61, Eds. Gennari J.,Porter B.,Gil Y.,
Publ. ACM Press, ISBN 1-58113-583-1, Sanibel Island, FL, USA, October
23 - 25, 2003

[39] Lei, Y. , Motta, E., Domingue, J., 2002, ”An Ontology-Driven Approach
to Web Site Generation and Maintenance.”, The 13th International Confer-
ence on Knowledge Engineering and Management (EKAW 2002), Lecture
Notes in Computer Science 2473, pp. 219-234, Ed. Gomez-Perez, A., Publ.
Springer Verlag, ISBN 3-540-44268-5. Sigenza, Spain 1-4 October 2002

[40] De Troyer, O., Casteleyn, S., Plessers, P., 2005, ”WSDM+: Exploiting Se-
mantic Web Technology during Web Site Design”, Technical Report, 2005.

[41] Casteleyn, S., 2005, ”Designer Specified Self Re-organizing Websites”, Phd
thesis, Vrije Universiteit Brussel, 2005

[42] Stojanovic, L., 2004, ”Methods and Tools for Ontology Evolution”, Phd
Thesis, University of Karlsruhe, 2004

BIBLIOGRAPHY 159

[43] Klein, M., 2004, ”Change Management for Distributed Ontologies”, Phd
Thesis, Vrije Universiteit Amsterdam, ISBN 90-9018400-7, August 2004

