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Abstract 

 

With the increase in power and graphical capacities of modern day computers, 3D 

virtual reality applications are becoming available to the general public, giving rise 

to an increased need for fast design and implementation of virtual environments. 

Hence, VR-DeMo was conceived, a methodology for the conceptual modeling of 

virtual environments. In its current state, VR-DeMo provides support for modeling 

the static scene of a virtual world, the objects populating it, the behaviors 

performed by these objects, and user interaction with the world. 

 

This thesis discusses VR-SDL, an extension to the existing VR-DeMo 

methodology, for modeling interactive scenarios for a virtual world. Scenarios are 

a missing link in the current VR-DeMo approach : rather than modeling the virtual 

environment itself, they model the purpose of the virtual environment, and (parts 

of) the application for which it is used. 

 

In VR-SDL, actors participating in the scenario are modeled separately from the 

actual scenario, using a technique called actor graphs – a special type of finite state 

machine. Consequently, the scenario itself is modeled using a scenario graph, a 

special kind of flowchart, describing the possible interaction between actors during 

the scenario, and the results thereof.  
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Abstract 

 

Door de toenemende processorkracht en grafische capaciteiten van hedendaagse 

computers worden applicaties van virtuele realiteit stilaan beschikbaar voor het 

grote publiek. Hierdoor stijgt de nood aan een snelle manier om virtuele 

omgevingen te modelleren en implementeren. Om deze reden werd VR-DeMo 

gecreëerd, een benadering voor het conceptueel modelleren van virtuele 

omgevingen. In zijn huidige toestand biedt VR-DeMo ondersteuning voor het 

ontwerp van de statische opbouw van een virtuele wereld, de objecten die erin 

voorkomen en hun gedrag, en interactie van de gebruiker met de wereld.  

 

In deze thesis wordt VR-SDL besproken, een uitbreiding op de bestaande 

VR-DeMo benadering, voor het modelleren van interactieve scenario’s voor een 

virtuele wereld. Scenario’s zijn een ontbrekende schakel in de huidige VR-DeMo 

benadering : zij dienen niet voor het modelleren van de virtuele omgeving zelf, 

maar voor het doel ervan, en (delen van) de applicatie waarvoor de virtuele wereld 

wordt gebruikt. 

 

In VR-SDL wordt een onderscheid gemaakt tussen het ontwerp van de actoren die 

deelnemen aan een scenario, en dat van het scenario zelf. De actoren worden 

gemodelleerd door middel van actor graphs, een speciaal soort finite state machine. 

Vervolgens wordt het scenario gemodelleerd door middel van een scenario graph, 

een speciaal type flowchart, dat de mogelijke interactie tussen actoren beschrijft, 

evenals de gevolgen hiervan. 
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Chapter 0 

Introduction 

0.1. Virtual Reality 

Upon hearing the term ‘virtual reality’ (VR), the layman might immediately think 

of science fiction scenes from books or movies, where people are entirely 

immersed in life-like virtual worlds through exotic equipment such as visors, 

sensor suits, neural plugs, and so on. This Hollywood-inspired misconception 

conceals the fact that virtual reality is much more than a mere futuristic vision, it is 

a very real research field, with a variety of contemporary applications. In general, 

VR is the technology for creating and interacting with real-time, three-dimensional, 

computer simulated environments.  

 

This definition will probably sound significantly more familiar : three-dimensional, 

real-time environments have been commonplace in regular households for over ten 

years, due to gaming computers and consoles. In 1994-1995, with the rise of the 

fifth generation of videogame consoles, most notably represented by the Sony 

PlayStation, Nintendo 64 and Sega Saturn, 3D virtual environments began 

surfacing in people’s living rooms. To date, videogames are still the most common 

way for people to experience virtual reality firsthand. 

 

The range of applications of VR extends far beyond games, however. Computer 

simulations are being used in various training programs, while avoiding the 

downsides a real training would entail, such as a high risk of physical harm, a 

prohibitively high cost, or simply an inability to recreate the training in reality due 

to laws of physics. Examples include army ground troops training for urban combat 

using combat games [30], pilots training in flight simulators [28], or aspiring 

surgeons performing virtual surgery [14], without the risk of accidentally killing a 

patient due to a rookie mistake. While these simulations can not (and are not 

intended to) eliminate the need for real training, they do offer a very valuable 

addition to the training process. 

 

Evidently, VR simulations can also be used for different purposes, like crash-

testing a car without actually having to crash it. Additionally, VR is known to be 
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used for therapeutic purposes, particularly for phobia treatment, by confronting 

subjects with their fears in a controlled environment.  

 

Another use is publicity : shop owners can offer a 3D model of their store and 

merchandise on their website, providing the surfer with a feel for the look and 

atmosphere, and more importantly, visualization of the products for sale – more so 

than a picture could achieve. Real estate agents can use the same technique to offer 

a prospective client an initial view of their dream home, without them actually 

having to visit it. 

 

With the continuous increase in power and graphical capacities of modern day 

computers, VR applications are becoming increasingly more accessible to the 

general public. Hence, new types of applications, even more general than before, 

are surfacing : virtual tour guides, leading the spectator on a tour through a 3D 

replica of a building or city, advertisements as a promotion for a certain brand, 

incorporated in a popular virtual environment (like an MMOG
1
), and so on. An 

example of the latter is the popular science-fiction MMOG Anarchy Online (AO) 

[11], where non-paying customers see in-game advertisements for real products 

(figure 1). The recently announced Home [27] application for Sony’s PlayStation 3 

console is another nice example of the broadening use of VR : rather than a game, 

it is a virtual meeting place, where users create their own home, watch movies, and 

talk to their friends, all while controlling a 3D avatar of themselves. 

 

 

Figure 1 – An in-game billboard advertising the movie Batman Begins in AO 

 

 

 

                                                      
1
 Massively Multiplayer Online Game, a game played by thousands of interacting players at 

the same time. 
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0.2. VR-DeMo : Modeling Virtual Reality 

With the growing importance of virtual reality, the need for an easy, accessible 

technique to model virtual environments (VEs) seems obvious. One way to achieve 

this is the introduction of a conceptual modeling approach : such a technique would 

allow domain experts in the subject of the virtual environment to perform the 

modeling, and in a later stage, even allow for generation of the entire VE based on 

these models. This is both time- and cost-effective, due to the elimination of the 

communication overhead between the designer (the domain expert) and the 

implementer (a programmer) of the VE, as these two roles can now be fulfilled by 

the same person. Unfortunately, the focus of past VR research has been on 

technological advancement, rather than modeling of VEs. While this is certainly 

understandable – it makes no sense to be able to draw intricate plans for a house 

which could not be built anyway, due to a lack of feasible resources – it also 

implies that a standard VR modeling approach does not yet exist. 

 

Therefore, the Flemish subsidy organization (IWT) funded a project where two 

Flemish universities, the Vrije Universiteit Brussel (VUB) and Universiteit Hasselt 

(Uhasselt), cooperate in trying to create such a (graphical) modeling technique. The 

resulting technique is dubbed VR-DeMo (Virtual Reality : Conceptual Descriptions 

and Models for the Realization of Virtual Environments). The long-term goal of 

VR-DeMo is to provide an intuitive way to model virtual environments, and 

automatically generate the code for the VE, based on these models. Figure 2 shows 

an overview of the approach taken to model a VR application using VR-DeMo.  

 

 

Figure 2 – Conceptual modeling approach for designing a VR application with 

VR-DeMo. 
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The rectangles represent the different modeling techniques present in VR-DeMo. If 

a rectangle A is connected to a rectangle B, this means that the modeling technique 

B is dependent on the output of technique A. The grey box represents the additions 

suggested in this thesis. 

 

The VUB-part of the research, conducted by the research group Web & 

Information Systems Engineering (WISE), is called VR-WISE [36]. VR-WISE is 

focused on modeling the static scene of the virtual environment, the objects therein, 

and behaviors attributed to these objects. The part of the research conducted in 

Hasselt primarily deals with user interaction, for which an approach called 

NiMMiT (Notation for Multimodal Interaction Techniques) [29] was introduced. 

 

This thesis provides an extension to the research described, by attempting to add a 

graphical approach for modeling interactive scenarios in a virtual environment. 

Throughout the thesis, this approach will be referred to as VR-SDL (Virtual Reality 

Scenario Description Language). 

 

 

 

0.3. VR-SDL : Scenarios in Virtual Reality 

0.3.1 Motivation 

In its current form, VR-DeMo provides support for modeling a dynamic virtual 

environment, complete with objects executing complex behaviors (through VR-

WISE), and for modeling user interaction with VEs, via menus and interfaces 

(through NiMMiT). Hence, the necessary means to model an interactive VE are 

already present. 

 

However, this is clearly insufficient. A virtual environment where nothing happens 

aside from a few pre-programmed behaviors is not very interesting : all VEs are 

designed with a goal in mind, they are part of some application, whether it is a 

game, a training simulation, an online shop, or something else. Therefore, there is 

an obvious need for being able to model application-relevant occurrences in the 

VE. For example, in a game, the designer should be able to specify what actions 

the player should take to finish a level, and how his actions influence the VE. In a 

surgical training simulation, one should be able to model the possible mistakes that 

can be made, and their influence on the outcome of the operation. In an online 

shop, the way in which the user can interact with the products (rotate, recolor, 

retexture, ...) should be defined. 
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It is precisely this missing link which is introduced  by VR-SDL, the scenario 

description language described in this thesis. VR-SDL is much more closely tied to 

VR-WISE than to NiMMiT, since it describes manipulations of the objects 

modeled by VR-WISE. 

 

 

0.3.2. What is a Scenario? 

Before introducing any specifics about the VR-SDL approach, it is imperative to 

understand the scope of the problem that will be tackled. The general idea was 

described in the previous section, but it is not so obvious to grasp exactly what 

constitutes a scenario. 

 

Indeed, scenarios can be viewed from many different perspectives. When searching 

the literature on the subject, it quickly became apparent that different authors have 

different views on what a scenario is. Richard Wages [13, 31-33], for example, 

looks at scenarios from a storytelling perspective. In his work, ‘scenario’ is 

synonymous to ‘story’, and they are modeled using a branching story graph. Peter 

Jason Willemsen, who has developed a scenario modeling language in his PhD 

thesis [35], takes an entirely different  approach to scenarios. In Willemsen’s work, 

a scenario is observed from a behavioral point of view. For example, a scenario 

could be a car driving onto an intersection at the exact moment the player enters it 

from the opposite direction, and the ensuing events. However, neither Wages nor 

Willemsen explicitly define the notion of a scenario.  

 

In the context of VR-DeMo, an approach directed towards automatic generation of 

source code based on conceptual models, Willemsen’s view is largely preferable. 

Wages’ take on scenarios is too informal, his work is more akin to creating a tool 

for writing nonlinear stories, than creating a scenario modeling language. 

Therefore, in VR-SDL, scenarios are defined more formally, as a web of possible 

sequential events. 

 

The above leaves us to question the distinction between a behavior and a scenario. 

Intuitively, a scenario is “something that happens in the virtual world” – but so is a 

behavior. The obvious reply to this would be that behaviors are executed by only 

one object, while scenarios involve many objects. Unfortunately, this is not 

necessarily the case. Behaviors in VR-DeMo can be defined as interactions 

between multiple actors. For instance, one could define a chase/evade behavior 

with two actors, A and B, where A tries to capture B, while B attempts to evade A. 

While A and B clearly perform different actions, the chase/evade sequence is 

perceived, modeled and implemented as a single behavior. On the other hand, 
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while it is true that scenarios will usually contain many interacting objects, this is 

by no means a requirement.  

 

Another defining factor might be user interaction. After all, the user’s actions 

usually influence the course and outcome of a scenario. Although this is true in 

general, it is also possible to define a scenario the user is not involved in, relying 

on the AI of the actors to determine the next action to be taken. Additionally, 

behaviors need not be void of user interaction. In the chase/evade example above, 

either of the actors A or B could in fact be controlled by the user, prompting all of 

his actions to influence the execution of the behavior.  

 

Finally, there is the scene. While behaviors can trigger changes in the actors 

performing them (such as sound effects or animations being played), they have no 

way to influence the static part of the scene. Scenarios do have this option at their 

disposal. However, since in VR-DeMo, all parts of the static scene are modeled as 

objects on the lower level (as will be explained in chapter 2), they could all be used 

as actors in the definition of a behavior. 

 

In conclusion, the distinction between behaviors and scenarios is not an obvious 

one. A situation where an actor A is patrolling some route until the player talks to 

it, at which point it will start to flee from the player, can both be viewed as a 

behavior and as a scenario. So, rather than attempting to formulate a formal 

definition for a VR scenario, some general guidelines are provided : 

 

� The more user interaction influences the execution, the better it is to 

model a scenario instead of a behavior.  

� A large effect on the scene generally means it is preferable to model the 

situation as a scenario, rather than a behavior. 

� A very complex situation is usually simpler to model as a scenario, than 

as a behavior. 

� Many actors, and particularly many different types of actors, means a 

scenario is the way to go. 

� When there is little interaction or influence on the scene, but only a few 

different types of actors, performing a lot of low-level actions, a behavior 

is preferred. 

 

These guidelines imply that when designing the scenario modeling technique, 

particular attention should be paid to the ability to represent user and scene 

interaction. Take note, however, that the scope of scenarios is somewhat wider than 

simply behavior and interaction. In a sense, they are the encasing technique to 
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define a purpose for all the components in a VE, from the perspective of some 

application.  

 

 

0.3.3. Approach 

From the discussion above, the basic components of a scenario can be derived : 

scenarios consist of a number of objects interacting with one another (the actors of 

the scenario), while possibly influencing the environment in the process. Therefore, 

the proposed notation uses two different types of graphs.  

 

Firstly, actor graphs model the objects participating in a scenario. Rather than 

describing their static structure – a property for which a modeling technique 

already exists in VR-DeMo – actor graphs describe the states of the object, relevant 

to the scenario. Within different states, objects can display different behaviors, 

visuals or properties. Hence, actor graphs are modeled using a special type of finite 

state machines. 

 

Modeling all participants of a scenario obviously does not equal modeling a 

scenario. An additional graph is required for this, describing the actions by and 

interactions between different objects, and their effect on the environment – in 

other words, on the other objects. This graph is called a scenario graph : 

essentially, it is a flowchart, depicting the possible courses of the scenario.   

 

 

 

0.4. Scope and Structure of this Thesis 

0.4.1. Scope 

The reason why this thesis is rather lengthy, is because it is intended as a 

comprehensive overview for the reader who wants to grasp the VR-SDL notation 

in its entirety. Every available construct is explained in detail, and reasons for the 

necessity of more exotic constructs are given. Moreover, many examples are 

provided, making it easier to understand the practical use of all these constructs. 

Additionally, two chapters about the background of scenario modeling in general, 

and VR-DeMo in particular, are included for the interested reader. 

 

Due to the complexity of the full VR-SDL modeling language, there is a danger 

that the reader might lose track of the general picture. To avoid this, the VR 

conceptual modeling diagram from figure 2 is used as a recurring theme throughout 

the thesis. Each relevant chapter opens with this diagram, where the elements 
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described in that chapter are marked. Parts of the diagram, expanded to show more 

detail about a certain approach, also return in several relevant sections.  

 

Naturally, not all readers will be interested in an all-embracing description of the 

notation. To provide support for people who are simply looking to get a general 

overview of the VR-SDL approach, without going into a lot of detail, the 

introduction to each chapter contains some reader guidelines. These guidelines 

denote the most important sections of the chapter, and explain which sections may 

be skipped without losing track of the notation in general. 

 

 

0.4.2. Structure 

Globally, this thesis consists of two major parts : Background, and Modeling 

Scenarios in VR-DeMo. 

 

0.4.2.1. Background 

This part contains all information the reader needs to be able to understand the 

second part. It is itself split up into two chapters : the first one, State of the Art, 

describes the current state of research in modeling scenarios for VR. Some 

literature on the subject is described, including a number of other attempts to 

formalize a scenario description language. These approaches are compared to the 

one described in this report, and arguments are provided why VR-SDL is a useful 

contribution to the field of scenario modeling. Additionally, an attempt at 

formalizing the notion of a scenario is made. The second chapter, VR-DeMo: An 

Overview, briefly summarizes the part of the VR-DeMo approach relevant to 

understanding the second part of the thesis.  

 

0.4.2.2. Modeling Scenarios in VR-DeMo 

The results of the research performed, and new contributions to the VR-DeMo 

modeling approach, are described in this part. It consists of four chapters : initially, 

the Methodology chapter describes the VR-SDL approach in general, to provide the 

reader with an overview of how the technique works. The main chunk of this part 

concerns the chapters Actor Graphs and Scenario Graphs, providing a detailed 

description of these two components of VR-SDL. Finally, the chapter Conclusion 

and Future Work provides a summary of the approach, along with some pointers 

for future extensions.  
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Chapter 1 

State of the Art 

1.1. Introduction 

In this chapter, an overview of the literature consulted in preparation for this thesis 

is provided. Initially, some light is shed on the state of the art in scenario modeling. 

Afterwards, a number of similar modeling approaches are considered, and 

compared to the work performed, as described in part 2 of the thesis. Furthermore, 

an attempt is made to draw some conclusions from the literature, concerning some 

points of focus for designing a scenario modeling language, and pitfalls that should 

be avoided. 

 

Since no new work is introduced in this chapter, it may be skipped by readers who 

are simply looking to get an insight into the VR-SDL approach. It is mostly 

interesting for those interested in the field of scenario modeling in general, rather 

than scenario modeling in VR-DeMo. 

 

 

 

1.2. Legacy of VR Research 

Research in Virtual Reality has been conducted ever since 3D rendering was 

possible, but even today, most of it is aimed at the technology, rather than a design 

methodology. From the VR-WISE website [36] : 

 

“Indeed, most of the research today in the area of virtual reality happens in its 

deployment technology: hardware (dedicated computers, head mounted displays, 

gloves, etc.), visualisation algorithms and techniques; languages for interactive 3D 

applications (VRML, X3D, Java 3D, etc.); tools for building 3D environments, 

browser extensions and plugins for 3D; and several protocols like VRTP (Virtual 

Reality Transport Protocol), behaviour interaction protocols like DIS (Distributed 

Interactive Simulation). The virtual environment itself is usually designed in an ad 

hoc way; in fact little or no guidelines or methods are available for this.” 
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Of course, considering that VR is still relatively new
2
, this is quite understandable : 

one would not develop a revolutionary way to draw plans for a house without first 

making sure the bricks are solid and the mortar is sticky. And, as with any 

technology, improvements will always be possible, and thus, research is always 

relevant.  

 

However, we have arrived at a stage where the groundwork is solid enough to build 

professional applications that cost a small fortune to create, but have the potential 

to generate a massive profit. Consider the example of the commercial game 

industry [34] : its yearly income exceeds that of Hollywood, while the costs of 

creating a single game have skyrocketed, thus creating an extremely high-risk – 

and potentially high-revenue – environment. Game producers do what they can to 

minimize risks and the probability of flops, and in that context, it seems bizarre that 

most game developers do not seem to use a formal methodology to design their 

games. There is a gap between the game’s designers, who brainstorm about the 

game’s atmosphere and gameplay, and its programmers and level creators, who use 

their own artistic skills to create the content proposed by the designers. The whole 

process is comparable to building a cathedral by telling the foreman what it should 

look like, and allowing him to follow his instincts from there on out.  

 

It is clear that there is a missing piece in this puzzle, namely the VR design 

methodology. Analogous to UML for software programs, there should be a similar 

modeling technique for virtual reality applications. 

 

 

 

1.3. Finite State Machines 

As section 1.4 will show, finite state machines (FSMs) are a popular approach to 

modeling scenarios. FSMs are diagrams consisting of two main building blocks : 

states, and transitions between these states. They have a very wide range of 

applications, going from AI programming to building circuits in electrical 

engineering.  

 

FSMs can contain actions, which form the basis of a theoretical distinction between 

Mealy and Moore machines. In a Mealy machine, actions can be performed inside 

the states, while in a Moore machine, actions are performed on the transitions. 

Although Mealy machines usually reduce the number of necessary states, in 

practice a mixture form between both forms is often used, which eases the  

                                                      
2
 When compared to certain other fields in computer science, like programming language 

design, anyway. 
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modeling, and leads to more straightforward diagrams. UML state machine 

diagrams [10] are an example of a mixture form. 

 

FSMs display some interesting properties with regards to scenario modeling. They 

are formal, (usually) intuitive to interpret, and appear particularly useful to model 

the evolution of objects participating in a scenario. A popular example for 

demonstrating the use of FSMs is a door lock : put the key in and turn it and the 

door becomes unlocked, turn it the other way around and it becomes locked. This 

could be seen as a (partial) scenario, or at least, as the behavior of a door in some 

scenario.  

 

However, pure FSMs are too unwieldy to use for modeling large scenarios : they 

provide little support for handling data, they have trouble modeling many different 

objects changing states together, they can not be in more than one state at the same 

time, which leads to excessively large diagrams when many objects are present, 

and so on. Additionally, a scenario language for use within VR-DeMo should be 

integrated in that approach, and provide support for handling the constructs 

presented by the different branches of VR-DeMo.  

 

Therefore, an entirely new scenario modeling language will be created, called 

VR-SDL. The popularity of FSMs in scenario modeling approaches, and their 

useful properties will be taken into account when designing VR-SDL, however. 

 

 

 

1.4. Research in Scenario Modeling  

Evidently, some research has been performed on the subject of VR modeling in 

general, and scenario modeling in VR in particular. In this section, some scenario 

modeling approaches are described, and their relevance to and differences from 

VR-SDL are discussed. 

 

1.4.1. alVRed 

1.4.1.1. Description 

alVRed [13, 31-33] is a project by Wages (mentioned earlier in section 0.3.2), 

Grützmacher and others, aimed towards the creation of a set of tools for designing 

non-linear, interactive stories in virtual environments.  

 

As discussed before, the alVRed approach considers ‘scenario’ to be synonymous 

to ‘story’, and thus, the focus of the work lies in creating an authoring tool for 



 25 

scriptwriters. The tool allows for authors to model objects participating in the story, 

by creating a number of connected, story-relevant states for the objects. The story 

itself is seen as an object as well, and is modeled in the same way. 

 

The object states are little more than (possibly nested) nodes wherein an author can 

type – in prose – a description of the state. Additionally, media such as pictures, 

video or audio can be linked. State transitions can be scripted, using a very simple 

scripting language. Hence, the nodes basically serve as a structured storyboard for 

the designers, who use the actor graphs to implement the story structure. An 

example of a (partial) actor graph is given in figure 3. 

 

 

Figure 3 – A screenshot from an actor graph in the alVRed authoring tool 

 

1.4.1.2. Relevance 

The standard approach of writing down a story, storyboard or screenplay might 

work for linear scenarios, such as those used in television or film, but it is 

insufficient for the dynamic, non-linear stories proper to VR. Therefore, the work 

performed in the alVRed project is centered largely around providing scenario 

writers with a structured way to specify non-linear stories. 

 

While alVRed seems to be more informal than the work that will be attempted for 

this thesis, some of the ideas discussed are very interesting from the perspective of 

a graphical scenario modeling language. The fact that scenarios contain a variety of 
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different actors, who should themselves be modeled, is an interesting perspective, 

and one that is used in the extension to VR-DeMo as well. Additionally, the way in 

which the object modeling is specified – by using extended finite state machines – 

was adopted in VR-SDL as well.  

 

The fact that alVRed considers the scenario to be merely a special type of object, is 

a notable difference to the approach taken in this thesis. Early tests with this type of 

notation led to the conclusion that, while it might be sufficient for an informal 

scenario description, a scenario model that should be usable for code generation 

requires a more detailed specification.  

 

 

1.4.2. EDF + SDL 

1.4.2.1. Description 

Environment Description Framework (EDF) and Scenario Description Language 

(SDL) are two parts of a joint modeling technique for virtual urban traffic 

situations, presented in the PhD thesis of Peter Jason Willemsen [35]. 

 

EDF is the part of the modeling technique concerned with modeling the static 

portion of the scene : it describes how to model roads, sidewalks, intersections, and 

related objects. The modeling is based on certain building blocks, such as road 

segments, that are adjustable through the use of parameters (e.g. the length or 

curvature of a road segment) and connectable through connection points (called 

junctures). The technique is very intuitive, and reminiscent of construction toys, 

like Lego. 

 

SDL is a scripting language to describe scenarios in the world. Its syntax is very 

similar to Java or C++, but evidently contains only a limited amount of available 

constructs and operators. Two types of statements are distinguished : activities and 

monitors. Activities are simple commands, such as ‘change lane’, or ‘speed up’. 

Monitors are statements controlling the activities’ temporal conditions, in other 

words, they determine when the activities occur. Four commands are provided, 

varying in two dimensions : the amount of execution times (once or periodic), and 

the length of one execution (impulsive or continuous). Additionally, statements for 

creating or destroying objects in real time are available. Below is a short code 

snippet, demonstrating the SDL syntax : 

 

aslongas( vehicle.road_type() == FOUR_LANE_ROAD ) 

   { 

      whenever( vehicle.speed() < threshold ) 

         { 
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            send vehicle increase_speed( 0.10 ) 

         } 

   } 

 

The interpretation is straightforward : as long as the vehicle is driving on a four 

lane road, its speed is increased by 0.10 whenever it goes below a certain threshold. 

Note that the code displays this almost literally. 

 

1.4.2.2. Relevance 

The EDF+SDL methodology is very well thought-through. Willemsen’s thesis is 

an interesting read for anyone involved in the field of VR-modeling, as it 

introduces very simple yet complete constructs for modeling a road network, and 

thus provides an insight into the feasibility of  conceptual VR modeling. However, 

it seems to have one fatal flaw with regards to the work described in this thesis : 

the methodology, while very expressive for urban traffic environments, is 

completely unable to specify anything else. In other words, while it can be used to 

model any sort of road plan, it is useless in the more general case. This is logical, 

of course, as it was never intended to be used for anything else.  

 

However, continuing this train of thought, a new methodology would have to be 

designed for every domain one might want to model in VR. If a battlefield should 

be designed, a battlefield methodology should be created. If a building is required, 

a building methodology is needed. Not only would this lead to an enormous 

amount of time required to develop all these methodologies, but it would also entail 

problems when several methodologies should be combined. For instance, what if 

one would want to model a building on a battlefield? Because the focus of this 

thesis lies on creating a more general modeling technique, for any virtual 

environment, Willemsen’s work is largely disjoint from it. 

 

Additionally, while SDL is a scripting language, our scenario modeling language 

should be graphical, to be more intuitive for non-programmers. Although scripting 

might not be entirely avoidable, it should be circumvented as much as possible. 

 

 

1.4.3. SBSD 

1.4.3.1. Description 

Similar to SDL (section 1.3.2), Simulation Behavior Specification Diagrams 

(SBSD), presented in the master’s thesis of Carolyn R. Bartley [3], is a scenario 

description language tailored towards one particular type of VE : in this case, 

military mission simulations. However, unlike SDL, it is a visual language. 
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SBSD diagrams are constructed using nodes, representing (sequences of) activities, 

and transitions between them. All in all, there are two types of nodes, and four 

types of transitions (figure 4). 

 

The node types are (fig 4a) : 

 

� Atomic Node : Represents a single activity performed or assigned to an 

entity in a simulation scenario. 

� Multi-task Node : Represents a sequence of atomic and multi-task nodes 

connected by regular and conditional transitions (see below). Multi-task 

nodes can be expanded to show their lower level build-up. 

 

The transition types are (fig 4b) : 

 

� Regular Transition : The transition is based on the action being executed, 

in other words, the trigger is incorporated in the implementation of the 

action itself. Usually, this simply means the transition fires at completion 

of the action. 

� Conditional Transition : Identical to a regular transition, but with a 

condition which needs to be satisfied for the transition to take place. 

� Temporary Reaction Transition : Transitions which fire as a reaction to a 

certain event in the VE. After completion of the new action, execution 

returns to the action which was being executed previously.  

� Permanent Reaction Transition : Similar to a temporary reaction 

transition, but execution does not return to the previous node upon 

completion of the new action. 

 

 

Figure 4 – (a) SBSD nodes; (b) SBSD transitions 

 

Figure 5 provides an example scenario, modeled using SBSD. 
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Figure 5 – Example diagram for a travelling overwatch task 

 

1.4.3.2. Relevance 

While SBSD has some interesting properties (which are discussed below), it is not 

really used for describing full scenarios. One SBSD graph always models behavior 

for a single object, based on its mission and the way it should react to other entities. 

In other words, what is modeled is in a sense the AI of the object, so simulations 

can be run by releasing a certain number of objects in the VE. However, there is no 

way to model a covering sequence of events that describe a scenario. For example, 

while it is possible to define how an attack jet should react when its wingman is 

shot down, it is impossible to declare that it is shot down. This is simply a situation 

which might occur during the execution of the simulation, beyond the control of 

the designer. Additionally, SBSD lacks a way to specify interaction with the scene.  

 

Therefore, SBSD is incomplete – and not intended – as a full scenario modeling 

language. It is more akin to the behavior modeling in VR-DeMo, or the actor 

graphs described in this thesis (chapter 4).  

 

Still, SBSD contains some interesting ideas for modeling scenarios. For one, the 

notation with linked actions is very intuitive. Furthermore, the different types of 

transitions provide an insight into possible pitfalls when designing a scenario 

modeling language : it should be feasible to model behavior interruptions, and 

transitions based on events occurring in the environment. The notation, as shown in 

figure 5, also supplies an interesting notion, although a negative one : excessive 



 30 

labeling of transitions leads to needless cluttering of the diagram. Hence, it seems 

wise to attempt to keep transitions free from text as much as possible. 

 

 

1.4.4. Q 

1.4.4.1. Description 

The Q [17] language, an extension to Scheme (a Lisp dialect), is a scripting 

language for defining scenarios of interacting agents. It is based on cues and 

actions, the former being events that trigger interaction, while the latter are 

interactions between an agent and the environment. Additionally, guarded 

commands can be used, where based on a certain cue, a series of actions is 

performed.  

 

Scenarios in Q are defined as state machines. States are implemented as guarded 

commands – e.g., if execution is within a certain state, the actions of that state are 

performed. An example (partial) scenario is given below. 

 

(defscenario reception (msg) 
  (scene1 
    ((?hear "Hello" :from $x) 
     (!speak "Hello" :to $x) 
     (go scene2)) 
    ((?hear "Bye") 
     (go scene3))) 
  (scene2 
    ((?hear "Hello" :from $x) 
     (!speak "Yes, may I help you?" :to $x)) 
    (otherwise (go scene3))) 
  (scene3 ...)) 

 

This scenario contains three states : scene1, scene2, and scene3. In scene1, the 

agent will reply “Hello” to anyone who greets him with the same message. After 

this, he switches to state2. 

 

An important aspect of Q is that the implementation of an agent’s cues and actions 

is unknown to the scenario. They can be implemented by a different person than 

the scenario designer, as long as both agree on the vocabulary needed by the 

scenario. To aid the scenario designer (who is not usually a programmer) in 

creating the scenarios, interaction pattern cards (IPCs) are introduced, a 

spreadsheet-like card where the designer enters parameters, based on which the 

scenario’s script is generated. Unfortunately, like the agent vocabulary (e.g. cues 

and actions), IPCs are domain-dependent, implying that a one or more should be 

created for each new VE wherein scenarios are executed. 
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1.4.4.2. Relevance 

Again, like in alVRed (1.4.1) and SBSD (1.4.3), the notion of finite state machines 

(FSMs) to model scenarios returns. It is becoming apparent that FSMs are a 

favored tool among scenario researchers.  

 

With regard to the work performed in this thesis, the Q language suffers from the 

same problem as SDL (section 1.4.2) : rather than a graphical language, it is a 

scripting language. Besides this rather obvious complaint, the similarity to SBSD 

should be noted. In both languages, a scenario is modeled for a single actor, and 

there is a lack of a higher-level notation to specify the possible courses of a 

scenario with many interacting actors. Also, like SBSD, Q lacks a clearly defined 

way to interact with the environment. 

 

 

1.4.5. PAR 

1.4.5.1. Description 

Though the Parameterized Action Representation (PAR) language [1] is not really 

a scenario description language, it contains some interesting characteristics which 

justify it being incorporated here.  

 

 The PAR language is a scripting language for making agents respond to 

verbal(ized) commands in a context-sensitive fashion. A single PAR is an 

instantiatable description of an action, corresponding to a certain command. For 

example, one could define a PAR for the commando “walk around the room”, 

describing what it means for the agent to walk around the room. In this respect, the 

PAR language is more of a behavior definition language than a scenario definition 

language. 

 

Among other things, a PAR contains the following terminology : 

 

� Physical Objects : The objects referred to within the PAR. 

� Agent : The agent executing the action. 

� Applicability Conditions : Preconditions which need to be satisfied for the 

action to be executable.  

� Preparatory Specifications : A list of <Condition, Action> pairs. Before 

performing the execution steps (see below), this list is evaluated, and if any 

of the conditions are false, the corresponding actions are executed.  

� Execution Steps : The actual action being taken, possibly consisting of a 

number of nested PARs. 
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� Termination Conditions : Conditions that, when satisfied, complete the 

action. 

� Post Assertions : Statements that are executed after the termination 

conditions have been satisfied. 

 

1.4.5.2. Relevance 

Since a scenario will likely be composed of a web of linked actions, the PAR 

language imparts a few useful insights, particularly the usefulness of including 

preconditions and results when modeling an action. In addition, like the behavior 

modeling in VR-DeMo, PAR distinguishes between action definitions and 

instances. This is something that would undoubtedly prove useful if it could be 

incorporated in a scenario modeling language. 

 

Another interesting property of the PAR language is the coupling between verbal 

commands and PAR definitions. While the PAR definitions are (obviously) 

formally specified – using a Lisp-like notation – they are triggered using natural 

language commands. Using such a link between easily interpretable commands and 

intricately defined actions greatly improves the understandability of the language, 

while retaining expressiveness. This approach should be investigated for use in 

VR-SDL as well. 

 

 

1.4.6. Action Frame Based Scenario Description Language 

1.4.6.1. Description 

The nameless scenario description language designed by Atsushi Ohnishi and 

Colin Potts [19] is an informal way of specifying scenarios using structured natural 

language, reminiscent of UML use cases. Because of this, it is very intuitive to use. 

An example is given below. 

 

1. Passenger is at floor 2. 
2. Passenger decides to go to Floor 3. 
3. Passenger enters a car. 
4. Passenger pushes Button[3] 
5. Car feedback to Passenger the status(going to 3) by 

lighting the Dir[UP] and Button[3] on 
6. Car starts UP 
7. Car arrives at 3 and stops 
8. Car feedbacks to Passenger the status(at 3) by 

lighting DIR[UP] and Button[3] off and ringing the 
bell 

9. Doors open 

10. Passenger gets off the car 

 

Moreover, a number of action frames are defined, which are formally defined event 

templates. Each of the informally specified events in the example above can be 
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transformed into a formal action frame. Unfortunately, no rules are given for this, 

so the designer basically needs to redefine his scenario using the more formal 

syntax.  

 

1.4.6.2. Relevance 

Instead of modeling all possible courses of a scenario, the action frame scenario 

language only models a single execution of it. For the research in this thesis, this is 

inadequate, as it should be able to describe a branching scenario. For example, 

using Ohnishi’s language, one is unable to specify what happens if the passenger 

pushes a different button than 3. To model this, an entirely new scenario would 

have to be created, completely analogous to the example, but with a different 

button number. This would quite obviously lead to an enormous overhead. 

 

One thing about Ohnishi’s language that is remarkable, is the intuitiveness of the 

(informal) notation. When modeling actions, a similar notation, using roughly an 

<actor><action><object> syntax, where the actor performs the action on the 

object, would probably result in a comparably instinctive feel.   

 

 

 

1.5. Conclusion 

Even though plenty of research has been performed on the general subject of 

scenario and behavior modeling, it is clear that the exact subject of this thesis 

remains largely uncultivated. Most ‘scenario’ description languages face one or 

several of the following problems : 

 

� Rather than graphical languages, they are scripting languages. 

� They are too informal to retain any prospect of code generation. 

� Interaction with the environment is not – or too poorly – described. 

� They are too low level, over-focused on a single actor, and thus, more 

directed at behavior modeling than scenario modeling. 

� They are designed for a specific purpose (urban traffic, military 

operation...), and are too low-level to be used for modeling of scenarios in 

a general VE.  

 

While this certainly does not imply that these languages are bad, it does indicate 

that they were designed with a different perspective in mind than the work 

performed here. Regardless, many interesting ideas for general scenario modeling 

were extracted, and put into practice while designing VR-SDL. 
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Chapter 2 

VR-DeMo : An overview 

2.1. Introduction 

 

Figure 6 – Scope of this chapter : scene and interaction modeling 

 

Earlier in this thesis, the need for a conceptual modeling approach for VR was 

established. VR-DeMo is the name of a project, financed by the Flemish Subsidy 

Organization (IWT), which aims to achieve exactly this. Two research partners, the 

Universiteit Hasselt (Uhasselt) and the Vrije Universiteit Brussel (VUB) are 

cooperating in attempting to create such an approach. In general, the objectives
3
 of 

the project are : 

 

1. The definition of high-level modeling concepts that allow for the description of the 

objects in a virtual environment at a conceptual level. 

2. The definition of high-level modeling concepts that allow for the description of the 

behavior of objects in a virtual environment at a conceptual level. 

3. The definition of modeling concepts that allow for the description of rules and 

constraints in a virtual environment. 

                                                      
3
 as specified on http://www2.edm.uhasselt.be/vr-demo/ (access date 5/5/2007) 
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4. The definition of modeling concepts that allow for the description of the individual 

modalities for interaction with a virtual environment. 

5. The definition of modeling concepts that allow for the description of multi-modal 

interaction with a virtual environment. 

6. To couple this conceptual modeling concepts to low level, implementation 

concepts for a particular VR-technology. 

7. The design and development of a common test case that integrates the results of all 

work packages. 

 

The part of the research being conducted at the VUB is performed by the Web & 

Information Systems Engineering (WISE) research group, and is aptly named VR-

WISE. With regards to this thesis, it is the most important part of the VR-DeMo 

project, as it is most closely tied to the VR-SDL language for modeling scenarios 

in VR. 

 

As shown in figure 6, VR-WISE is mainly concerned with objectives 1, 2 and 3, 

creating a conceptual modeling technique for objects (both simple and complex) 

within the VE, and for the behaviors linked to these objects.  

 

The work performed at the Universiteit Hasselt is mostly concerned with user 

interaction with the VE, through interfaces and menus. In a sense, this can be seen 

as meta-level interaction, since the user does not manipulate the world directly, but 

uses concepts from outside the VE (menus, widgets, pointers...) to influence it. An 

approach called NiMMiT was developed for modeling this. Its position in the 

general VR conceptual modeling process is demonstrated in figure 6. 

 

Since the aim is to model scenarios involving the lower-level objects, there is a 

very strong coupling between the (high-level) scenario modeling, and the (lower-

level) object and behavior modeling. However, since the actions of the user might 

influence the course of a scenario, there is some affinity with interaction modeling 

as well. 

 

In the remainder of this chapter, a brief overview of VR-DeMo (mostly focused on 

VR-WISE) will be given, focusing on the research described in part 2 of the thesis. 

This serves a dual purpose : firstly, to supply the reader with a background against 

which to situate the work performed, and secondly, to ensure a better 

understanding of VR-SDL. The reader already familiar with VR-WISE may skip 

this chapter, but it is strongly recommended that others read at least sections 2.2 

and 2.6. For a full comprehension of the scenario modeling approach (and 

particularly the actor graph modeling described in chapter 4), knowledge of the 

constructs from sections 2.3 and 2.4 is required. 
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The chapter is structured as follows : initially, the general idea behind VR-WISE is 

described, and consequently, the object and behavior modeling phases are 

explained in more detail. Both phases are subdivided in two sections, explaining 

simple and more advanced modeling, respectively. Finally, a brief overview of the 

NiMMiT approach is given as well. The attention spent on both topics is 

proportionate to the tightness of their relation with VR-SDL. 

 

 

 

2.2. VR-WISE : General Approach 

The design process for conceptual modeling of a VE using the VR-WISE approach 

[21], consists of three steps : the specification step, the mapping step and the 

generation step (figure 7). Each of these steps uses ontologies [18] as an 

underlying representation formalism. Ontologies in VR-WISE are employed for 

two different purposes : to explicitly represent the knowledge about the domain of 

the VE (e.g. traffic), and to internally define the available modeling concepts, and 

relations between them. In other words, ontologies are both used to represent 

knowledge about what is modeled, and to specify how to model things (meta-

level). 

 

Below, the three steps in the design process, and the corresponding ontologies, are 

outlined. 

 

 

Figure 7 – VR-WISE approach 
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The specification step consists of the highest-level modeling. In this step, the 

designer specifies the structure of the VE using domain knowledge, without 

describing implementation details (such as the representation of the concepts used 

in the VE). This step uses three ontologies : 

 

� The Domain Ontology describes the concepts used in the VE’s domain 

(much like object types in OO-programming), their properties and the 

relations between them. For example, in the traffic domain, this ontology 

would include concepts such as Car, Pedestrian, Street, Crossroad, 

Building, and relationships like “a Car drives on a Street” or “a 

Crossroad connects several Streets”. If possible, it is of course a good idea 

to use an existing ontology for this, rather than creating one from scratch. 

� The World Specification contains the actual conceptual description of the 

VE to be built. It is created by instantiating the concepts from the domain 

ontology, and adding instance-specific information (such as color, size, 

location...) and world-specific information (gravity, lighting...). In the 

traffic example, this means that, instead of saying there are “cars” in the 

world, one would specify the kind of cars (the make) and how many of 

them there are. 

� The Virtual Reality Conceptual Modeling Ontology is a meta-level 

ontology, describing the constructs available for modeling the VE 

(concepts, instances, properties...). Both the Domain Ontology and the 

World Specification are built using the specification defined in this 

ontology. It contains a number of sub-ontologies, each describing a certain 

aspect of the modeling process (object modeling, behavior modeling...) 

 

The mapping step provides a connection between the conceptual level and the 

implementation level. Like the specification step, it uses three different ontologies. 

 

� The Virtual Reality Language Ontology defines a number of low-level VR 

primitives which can be used for the implementation of the higher level 

concepts. Examples include geometrical items like spheres or cubes. Note 

that, contrary to the VR Conceptual Modeling Ontology from the previous 

step, this is not a meta-level ontology : it specifies items usable for 

modeling (what), rather than the way to use them (how). 

� The Domain Mapping defines mappings between the high-level modeling 

concepts from the Domain Ontology in step 1, and the primitives specified 

in the VR Language Ontology. For example, in the traffic example, 

suppose the application built has as its sole purpose to study mass-

behavior, then it would be wise to choose very abstract representations for 
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the different concepts, to avoid wasting computing power on rendering the 

objects’ avatars. Hence, a pedestrian could for example be mapped to a 

cone, and a car to a prism. Obviously, more elaborate mappings are also 

allowed, should the focus of the application lie more on the visual side of 

things. 

� The World Mapping is entirely similar to the Domain Mapping, with the 

obvious exception that it maps items from the specification step’s World 

Specification to primitives from the VR Language Ontology. This is useful 

to designate a different representation to certain instances : while a 

Lamborghini Gallardo and a Volkswagen Beetle are both cars, they clearly 

do not look the same, and thus, require different mappings. 

 

The generation step is the final act in the design process. In this stage, the 

definition of the VE given by the Domain and World Ontologies, are converted 

into a working application, using the corresponding mappings. 

 

With this methodology in mind, it is clear that the specification step is of the 

greatest interest to this thesis. After all, it is the modeling techniques used in this 

step that will be extended to include a scenario description language. To fully 

comprehend the extension, it is of course imperative to grasp the basis on which it 

is built. Therefore, the next two sections will explain the two parts of the modeling 

technique currently present in VR-WISE : object modeling, and behavior modeling. 

Recall that both modeling approaches employ a graphical notation, for maximum 

intuitiveness amongst non-programmers.  

 

 

 

2.3. Object Modeling in VR-WISE 

 

Figure 8 – Scope of this section : object modeling 

 

As its name suggests, the object modeling phase consists of modeling the objects 

populating the virtual world. Two important issues are tackled : firstly, the objects’ 

internal structure should be defined, and secondly, their positioning within the 

virtual world should be specified. 
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2.3.1. Simple Objects 

2.3.1.1. Internal structure 

In many ways, the approach taken to object modeling in VR-WISE is reminiscent 

of objects in an object-oriented programming language. The different types of 

objects in the world are modeled as concepts (analogous to OO classes), which are 

then instantiated into the entities populating the VE (figure 8). 

 

Concepts represent the object types at domain level. Similar to data fields in OO 

classes, they may contain a number of properties, each of which might have a 

default value assigned to it. There are two different types of properties : 

 

� Visual properties represent visual information about the object, like its 

geometrical representation (limited to simple shapes, like spheres), colors 

and / or texture. 

� Non-visual properties can contain information like the object’s weight, 

name, mass, etc...  

 

Visually, concepts are represented by a rectangle containing the concept name, and 

a drop-down box detailing the properties with their default values. This is 

illustrated in figure 9. 

 

 

Figure 9 – (a) Simple concept notation; (b) Detailed concept notation, with the 

property drop-down box shown 

 

Instances are the actual objects populating the VE. They share the same 

characteristics as the concept they instantiate, though some of the default property 

values may be overwritten. The instance notation, as shown in figure 10, is an 

ellipse, containing a similar drop-down box as the concept notation. 
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Figure 10 – (a) Simple instance notation; (b) Detailed instance notation, with the 

property drop-down box shown 

 

2.3.1.2. Spatial Relations 

Aside from specifying the outlook and properties of an object, it should also be 

placed in the world. To avoid having to enter low-level coordinates, a graphical 

notation has been developed for denoting spatial relations between objects. 

Basically, three types of relationships are present :  

 

� Directional relationships express an object’s position in terms of another 

one, using concepts such as left, right, above, under, front, and behind.  

� Orientation relationships are concerned with the rotation of an object. 

Object’s are given an internal coordinate system defining their front, back 

and sides, and consequently, this can be used to determine the orientation 

of an object in terms of another one. 

� Metric relationships specify distances. They are often combined with 

directional relationships, to express things like “the chair is 3 meters left of 

the table”. 

 

Figure 11 provides an example of the notations used to express positioning. It 

describes that instance A is positioned 2 meters in front of instance B (and not the 

other way around, mind the arrow), and both instances are facing each other with 

their front sides. 

  

 

Figure 11 – Example demonstrating the spatial relationship notation 
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2.3.2. Complex Objects 

Since simple objects are limited in their visual display, a new concept is needed to 

be able to model more elaborate objects : complex objects. These are objects which 

consist of several subobjects, which are themselves either simple or complex. 

Complex objects are defined on the concept level, and like simple objects, they 

should be instantiated before they can populate the VE. Instantiating a complex 

object is straightforward : one should merely instantiate all of its subobjects. 

 

2.3.2.1. Connecting Objects 

Naturally, when combining objects, it is imperative to specify how they are 

combined. Therefore, three connection relations are defined : 

 

� Connection point : using this techniques, the connected objects share a 

single point. This is useful to model ball and socket joints, like human 

shoulders. 

� Connection axis : both objects share a single axis. An obvious application 

of this type of connection is a hinge joint (e.g. a human knee). 

� Connection surface : the objects are connected through a common surface. 

This implies a rigid connection, and thus, it is most useful for creating 

immovable connections between objects. 

 

The graphical notation for connection relations is similar to that of directional 

relationships. Figure 12 gives an example for the case of a connection point, 

modeling a door by connecting two simple objects : a door board and a door 

handle. Note the specification of a spatial relationship between the two concepts 

(the top rectangle), to indicate the planes in which the connection point will lie. 

The bottom-most rectangle describes the actual connection relation. It is shifted 0.4 

meters to the right of its initial position (the centre of the door board). 

 

 

Figure 12 – Example demonstrating the connection point notation 

 

Connection axes and surfaces use a completely analogous notation, the sole 

variation being the use of a different symbol in the connection relation box. 
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2.3.2.2. Roles 

It is easily imaginable that one would want to create a complex object where a 

single concept is used for multiple purposes. For example, consider a table, 

consisting of a top with four legs : each of these legs would be modeled in the 

exact same way, suggesting the legs would be  members of the same concept (e.g. 

TableLeg). However, merely making four separate connections between the 

TableTop and TableLeg concepts would entail the issue of the legs not being 

mutually distinguishable.  

 

Therefore, roles are introduced. When multiple objects of the same concept are 

used in the construction of a complex object, each object is labeled with a role 

name. Roles are graphically denoted by a double-edged rectangle with the role 

name, and the concept name below it, between “< >”. Figure 13 illustrates this by 

means of the table example. 

 

Roles are an important concept from the perspective of the scenario modeling, 

since objects participating in the scenario might be complex, in which case the role 

names are the way to reference their subobjects. 

 

Note that figure 13 provides a definition of a complex object Table, it does not 

instantiate it. As mentioned at the start of section 2.3.2, instantiating a complex 

object concerns instantiating all of its subobjects. This is demonstrated in figure 14, 

by instantiating the table object. 

 

 

Figure 13 – Role example : definition of a table 
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Figure 14 – Complex object instance notation 

 

2.3.2.3. Unconnected Complex Objects 

The description provided so far in section 2.3.2 was concerned with modeling 

connected complex objects; objects consisting of several simpler objects glued 

together, much like a Lego car is created by piling up blocks. 

 

However, consider the example of a soccer team : while the objects of the team 

(the players) are clearly stand-alone, it does in some respects make sense to 

consider the team as a whole. Tactics can be executed in which all the players of 

the team should cooperate, and properties can be thought up, referring to the entire 

team, instead of individual players – for example, the time they have been playing 

together, a property which could influence the smoothness of execution in the 

team’s play.  

 

Therefore, it is allowed to define unconnected complex objects : these are, as the 

name suggests, objects whose subobjects are not physically connected to one 

another, but do belong together conceptually. The notation is completely similar to 

that of (connected) complex objects, except that the surrounding rectangle is drawn 

with a dashed border, and that no connection relations can be defined. It is possible 

to describe spatial relations, however, signifying the initial position of the 

subobjects. In the soccer team, for instance, this could signify a 4-4-2 or 4-3-3 

positioning at the start of the game. Naturally, when the game is in session, the 

players would move around freely and break this initial positioning. 
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2.4. Behavior Modeling in VR-WISE 

 

Figure 15 – Scope of this section : behavior modeling 

 

The object modeling technique, as described in section 2.3, provides the designer 

with the means to design an attractive virtual world, filled with a variety of objects. 

However, as it stands, there is no way to attach behaviors to the objects, prompting 

them to stand idly. Therefore, in order to increase the realism, and provide the VE 

with a bustling, vivid atmosphere, a behavior modeling technique is present in VR-

WISE. 

 

As displayed in figure 15, modeling a behavior involves two different kinds of 

diagrams : behavior definition diagrams, and behavior invocation diagrams. 

Behavior definition diagrams contain the general specification of the behavior, 

loose from the actual objects populating the VE. Behavior invocation diagrams 

consequently couple the defined behaviors to either concepts or instances, thus 

inserting them into the virtual world – in a sense, this can be viewed as 

instantiating the behavior. 

 

 

2.4.1. Behavior Definition Diagram 

2.4.1.1. Actors 

In a behavior definition diagram, an abstract concept called actors is introduced. 

Behaviors are defined in terms of these actors, thus providing the ability to reuse 

them by linking the actors to different objects at behavior invocation. 

 

Actors are similar to interfaces in Java or C++. They can contain a number of 

properties, which objects playing the role of a certain actor must also posses. 

Figure 16 provides an example of the actor notation. 
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Figure 16 – Actor notation 

 

Figure 16 a and b show an actor, respectively with properties hidden and shown. 

Figure 16 c and d show a practical example, a chair actor with properties Position, 

Width, Height and Depth. Any object able to play the role of the chair actor in its 

corresponding behavior should contain at least these properties.  

 

Additionally, an inheritance mechanism is in place to allow for the declaration of 

parent and child actors. Child actors inherit all of the properties and behaviors of 

their parent actor, but may add new ones or overwrite some of them.  

 

2.4.1.2. Simple and Complex Behavior 

Knowing how to specify the actors participating in a behavior, the next step is to 

model the behavior itself. An overview of the approach will be given in this 

section, but since it can be seen as a black box to the rest of the thesis, it will be 

kept brief. 

 

Behaviors are defined as either primitive or complex. Primitive behaviors consist 

of actions like move, turn, roll, or mechanical behaviors, defining movements over 

a connection point or axis in a complex object. To form complex behavior, other 

behaviors (either primitive or complex) are combined using operators. There are 

temporal operators (e.g. behavior A is executed before behavior B), life time 

operators (e.g. behavior A is suspended for some time and resumed later) or 

conditional operators (e.g. behavior A is executed if a certain condition is true).  

 

Graphically, both primitive and complex behaviors are represented by a rectangle. 

The top-level behavior has its actors linked to it. Note that within the definition of a 

behavior, the actor’s parameters are accessible, and can be manipulated. Two 

behaviors are connected by an operator by linking their representations using an 

arrow with the operator notation (a rounded rectangle containing the operator’s 

symbol) on it. 
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The way in which actors are linked to a behavior deserves special notice : an actor 

can either be actively participating in a behavior, or passively undergoing it. In this 

second case, the actor (called a reference actor) can be used to specify some 

primitive behavior in terms of it. Regular actors are linked to behaviors using a 

line, reference actors are linked with a dashed arrow. To clarify the concept of a 

reference actor, assume one would like to model a behavior where an actor points 

at some object. Obviously, to know where to point, the location of the target object 

should be known, and thus, it should be linked to the behavior as a reference 

object. 

 

Figure 17 displays a behavior definition diagram, in the context of a robot in a 

manufacturing plant. Rather than as a comprehensive example, it is merely 

intended as an illustration of the notations used.  

 

 

Figure 17 – Behavior definition diagram example 

 

There are a number of more complex behavioral concepts, but these fall outside the 

scope of this thesis. Refer to [21] for a more comprehensive overview of behavior 

modeling in VR-WISE. 

 

 

2.4.2. Behavior Invocation Diagram 

2.4.2.1. Instances 

As mentioned before, simply defining the behavior is obviously insufficient. For it 

to be incorporated in the VE, its actors should be linked to actual objects in the 

world. This is called invoking the behaviors. It is achieved by using behavior 

invocation diagrams. 
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Behavior invocation diagrams do little more than linking the abstract actors to 

concrete objects from the VE. Basically, there are two ways of invoking a 

behavior : either the actors can be linked to a concept, or to an instance. In the first 

case, all instances of the concept will exhibit the behavior. In the second case, only 

the particular instance will. Both concepts and instances are denoted as described 

in section 2.3.1.1 : concepts as rectangles, instances as ellipses. As mentioned 

earlier, for a concept or instance to be eligible to be linked to an actor, it must 

contain the same properties as the actor. 

 

Besides actor instantiations, behavior invocation diagrams are linked to events, 

specifying what triggers them : a mouse click, an interaction with some other 

object, a certain amount of time passed, and so on. Events are represented by a 

hexagon. 

 

Figure 18 demonstrates the invocation notation, by displaying a behavior 

invocation diagram compatible with the definition diagram shown in figure 17. 

 

 

Figure 18 – Behavior invocation diagram example 

 

 

 

2.5. NiMMiT : Modeling User Interaction 

 

Figure 19 – Scope of this section : interaction modeling 
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So far, everything discussed in this chapter was directly related to modeling the 

contents of a VE. However, to model a VR application, merely constructing a 

virtual environment is insufficient : the user should be able to interact with the 

environment, through some interface. NiMMiT [29] is a notation for modeling user 

interaction in VR (figure 19). It is a low-level technique, used to specify the actions 

a user should take through input devices, in order to perform tasks in a VE. Figure 

20 illustrates the NiMMiT notation, by providing a diagram for selecting an object 

in the VE. This is achieved by moving a pointer over the object, at which point it 

will be highlighted, and clicking to select it. 

 

 

Figure 20 – A NiMMiT diagram modeling the selection of an object in a VE 

 

The main components of a NiMMiT diagram are : 

 

� States and Events : States, drawn as circles, represent the different stages 

an interaction can be in. Figure 20 contains only two states, Select and 

End. Events are actions taken by the user (or more specifically, by input 

devices), which cause task chains to fire. They are drawn as arrows, 

labeled with the event name. In the example, the blue arrows are events. 

� Task chains and Tasks : A task chains is a linear succession of tasks, 

drawn as a white box with a grey border. Each task chain contains at least 

one task (depicted as yellow rectangles), representing actions to be taken 

by the user. A number of predefined tasks exist (e.g. selecting, moving or 

deleting objects), but it is also possible to define new tasks using a 

scripting language, or to hierarchically use an entire interaction diagram as 

a task. 
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� Data flow, Data types and Labels : NiMMiT diagrams contain constructs 

for handling data : a task may have several input and output ports, denoting 

data required and returned by the task, respectively. The shape of the port 

(in figure 20, all ports are shown as black squares) indicates the data type. 

Output ports of a task may be connected to input ports of a follow-up task 

in the chain, but only if they are of the same type. Evidently, connecting 

two ports means the output from the former task is used as input for the 

latter. Finally, output data might also be placed in labels, variables to allow 

transition of data between different task chains. Labels are drawn as small 

boxes, connected to an input or output port. 

� State transition and Conditional state transition : After successful 

execution of a task chain, a state transition (drawn as a green arrow in the 

example) takes place. State transitions may be conditional, in which case 

the next state is dependent on the value of some label. 

 

Using these components, NiMMiT diagrams can be constructed that are both event, 

state, and data driven. 

 

 

 

2.6. Conclusion 

In this chapter, the parts of the VR-DeMo approach relevant to this thesis were 

explained. VR-DeMo is a project aimed at creating a conceptual modeling 

technique for virtual environments. From the perspective of scenario modeling, the 

most important part of VR-DeMo is VR-WISE, the technique for modeling the 

objects populating the virtual environment, and the behaviors they execute. Both 

the object and behavior modeling phases were described in this section, giving the 

reader an initial feel for the concepts and notation behind the approach.  

 

Additionally, a concise overview of NiMMiT was provided, the technique 

employed by VR-DeMo for modeling user interaction. Though not as closely tied 

to scenario modeling as VR-WISE, it is still linked to it. 

 

In the next part of the thesis, the VR-DeMo approach will be extended with VR-

SDL, a notation for modeling scenarios for virtual environments.  
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Part II 

Modeling Scenarios in VR-DeMo 
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Chapter 3 

Methodology 

3.1. Introduction 

 

Figure 21 – Scope of this chapter : scenario modeling 

 

In the previous chapter, the current state of the VR-DeMo project for conceptual 

modeling of virtual reality was described. A number of interesting results have 

been achieved so far : through VR-WISE, the static scene can be modeled by 

designing the structure and position of the objects therein, and these objects can be 

assigned behaviors to make the world feel more vivid and realistic. Additionally, 

NiMMiT provides a way to model user interaction. 

 

However, there is still an obvious gap in the modeling process. As it stands, 

modeling an intricately detailed VE with VR-WISE has little purpose, since it is 

impossible to model the goal of this VE. Elaborate interactions can be specified 

with NiMMiT, but they have no context to be used in. Therefore, VR-SDL is 

introduced, a notation for modeling VR scenarios (figure 21). Through VR-SDL, 

the application for which the VE was created may be modeled, and the interactions 

can be utilized in higher level descriptions. 
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In part 2 of this thesis, VR-SDL will be presented. However, rather than jumping 

straight into the deep end of the pool, with the formal specifications of the notation, 

it is wise to start off slowly, and familiarize the reader with the general 

methodology of the approach first. Due to the duality of the VR-SDL notation, 

with two different types of graphs, a failure to include a general introduction might 

cause the reader to lose track of the larger picture. Hence, this chapter is a 

recommended read for anyone trying to gain insight in VR-SDL. 

 

The duality mentioned above follows from the fact that in VR-SDL, the actors of 

the scenario are modeled separately from the scenario itself. When designing a 

scenario, the first thing to do is to get a global picture of what will happen. Once 

the designer has this in mind, he must analyze the different types of scenario 

actors
4
 that will be participating in the scenario. Consequently, an actor graph is 

created for each actor type, detailing the evolution it can undergo during execution 

of the scenario. After completing this step, the actors of the scenario should be 

defined formally (their types and names), and only then, everything is available for 

modeling the scenario. This is done by drawing a scenario graph, describing the 

possible courses the scenario might take, and the influence this has on the actors. 

 

An additional aim of this section is to demonstrate the practical benefit of a VR 

scenario modeling language. Therefore, an example of a useful VR application will 

be provided, modeled using the VR-SDL technique. This also constitutes as a 

preliminary test for intuitiveness of the notation, since the reader will be confronted 

with it before having received a detailed explanation. 

 

 

 

3.2. Design Guidelines 

Before delving deeper into the specifics of the approach, it seems advisable to 

consider the guidelines that were followed when designing the VR-SDL scenario 

notation.  

 

First of all, the notation should be formal. Rather than a guideline, this is an actual 

requirement, since diagrams created with the VR-SDL language should eventually 

be usable for automatically generating code for the scenario – this can not be done 

if the notation is informal (using natural language, for example).  

 

                                                      
4
 Not to be confused with behavior actors, as described in section 2.4.1.1. 
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Since the notation should be usable by laymen and professionals alike, the most 

important concern is that it should be intuitive. This is the reason why a graphical 

notation is chosen, rather than a scripting language. Of course, badly-designed 

graphical languages may still be unintuitive, so a few additional points were taken 

into consideration : 

 

� Inconsistency greatly decreases intuitiveness, so the language should be as 

consistent as possible. That is, as often as possible, identical constructs 

should be used for identical concepts. 

� Contrarily, using the same notation for different constructs should be 

avoided as much as possible. 

� To further increase consistency, naming conventions should be provided 

for different constructs. As long as it does not decrease readability, it may 

not be a bad idea to stay conform to the naming conventions of a popular 

programming language (Java, for example). This would entail an 

increased familiarity for programmers using the language, while not 

making the notation less instinctive for non-programmers. 

� For ease of learning, it is important that the amount of constructs remains 

limited, while at the same time providing enough flexibility to model any 

type of scenario.  

� Inevitably, textual notations will be required for some of the modeling. 

These are kept as brief and simple as possible. In addition, each textual 

notation is preceded by a keyword, indicating what it describes (e.g. a 

property, a behavior, etc.). 

 

In addition to intuitiveness, an extra guideline is that the diagrams created with the 

VR-SDL language should be as compact as possible. Therefore, needlessly 

elaborate notations should be avoided as much as possible. 

 

 

 

3.3. An Example : Room Furnishing 

3.3.1. Virtual Reality in Practice 

Redecorating a room can be a tedious job. Just coming back from the hardware 

store, having bought some color paint. Then, after having painted a single wall, you 

realize the color is too dark after all. Or suppose you have just bought an expensive 

new table, but upon installing it, you notice that it actually takes up a bit too much 

space in your living room, and thus, does not look as good as it seemed in the shop. 
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The problem, of course, is that you have to rely solely on your imagination to 

picture how things will look, often using incomplete information (like the tiny 

paint color square).  It would obviously help considerably if you could see a 

representation of what the room would look like, before actually having changed it. 

This is where VR comes in. 

 

As mentioned in the introduction to this thesis, real estate already uses 3D house 

models to communicate with customers from time to time : aside from providing 

the ability to view their prospective new home at any time, and from any angle, it 

offers homeowners-to-be the ability to customize the appearance of their dream 

house. In one mouse-click, they can see how the bedroom would look without that 

antique rug they do not like, or decide whether the living room would look better in 

light green, or light blue. This is not science fiction : applications such as this 

actually exist today, like the one described in [16], which is freely downloadable. 

 

Taking things a step further, one could even envision a cooperation with furniture 

stores, handing out promotional CD-ROMs (or DVDs, if you prefer) with 3D 

models of their products, which can be placed in a virtual house. Looking even 

further into the future, advanced user interaction devices like visors and sensor 

gloves can make the experience so realistic, that it is barely distinguishable from 

reality. 

 

But for now, let us stick to the present, and take a look at a detailed description of a 

similar – yet somewhat simplified – application. 

 

 

3.3.2. A Room Furnishing Application 

Consider a simplified version of the application described above. The application 

allows the user to model and customize a room layout. Note that this application 

will be used for demonstrating the VR-SDL notation, and is thus quite limited in 

scope. Nevertheless, while a fully functional, commercial application would 

include more options, it would not necessarily require more elaborate modeling 

constructs. 

 

The interface of the application consists of a window displaying the virtual room, 

and a number of interaction buttons. The user has no physical representation in the 

VE, he merely uses a point-and-click device (a mouse, in the simplest case) to click 

the correct buttons or locations in the VE. Customizing a room is done in three 

steps, which the user can alternate between at will :  
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� Pick the shape and size of the room. The available shapes are a long-

stretched rectangular room, a wide rectangular room, a square room, and 

an L-shaped room. Obviously, more shapes could be added in a later stage. 

The room shape is altered by clicking the corresponding shape button, and 

buttons are provided to increase or decrease the diameter by 0.1 meter.  

� Choose the wall color or wallpaper. Walls can be given a color and a 

wallpaper, chosen from a number of available motives. Coloring is done by 

right-clicking when the pointer is aimed at a wall, and selecting the correct 

color from a drop-down menu. Wallpaper and colors are complementary, 

one of each can be chosen. For example, if flower wallpaper and a red 

color are chosen, the flowers on the wallpaper will be red. Both the color 

and the wallpaper have a default value (White and None, respectively). 

� Furnish the room. In this step, a number of actions can be taken to adjust 

the room furnishing : 

- Add a piece of furniture. The user can choose between a chair, 

bed, desk or cupboard. Furniture is added by clicking the 

corresponding button, and left-clicking the location in the VE 

where it should be added. 

- Select or deselect furniture. Furniture is selected by clicking on it 

when it is not selected, and deselected by clicking on it if it is 

selected. Any amount of furniture can be selected at the same time. 

- Move furniture. By dragging the selected furniture, it is moved 

across the room. Note that if multiple pieces of furniture are 

selected, they are all moved simultaneously. 

- Delete the selected furniture. 

- Rotate furniture. By clicking the rotate left or right buttons, all 

selected furniture is rotated 45 degrees in the selected direction. 

- Recolor furniture. Furniture can be recolored or retextured in the 

same way as walls can. Be advised, however, that unlike for walls, 

textures and colors are not complementary for furniture : if one is 

chosen, the other is cancelled out. 

 

Next, let us elaborate on how to model such an application using VR-SDL. 

 

 

3.3.3. Modeling the Room Furnishing Application  

3.3.3.1. Actor Graphs 

When considering how to model the room furnishing application, a first thing to 

notice is that the world contains objects that can be manipulated : the room itself, 

the furniture which is added or altered, ...  Since these objects are clearly lower-
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level than the actual scenario, the modeling of the objects in VR-SDL is separated 

from the modeling of the actual scenario
5
. Using this approach leads to an 

increased separation and reusability of the lower-level objects. This is achieved by 

using actor graphs, an advanced form of state machines tailored specifically 

towards objects in a scenario. An actor graph models the way an object can evolve 

over the course of the scenario, by describing different states it can be in, and 

possible ways to transitions between them. A state may contain various 

information, such as conditions, behaviors, and visual information. 

 

In VR-SDL, objects participating in a scenario are called actors. Note that this is 

unrelated to the concept of actors as defined in behavior modeling. In part 2 of the 

thesis, whenever actors are mentioned, it will always refer to actors within a 

scenario (unless explicitly stated otherwise). 

 

Returning to the room furnishing example, it would seem from the description in 

the previous section that the only actors in the VE which can actually change 

significantly over the course of their life are the room and the furniture pieces. VR-

SDL uses actor graphs to model the states an object can be in (relevant to the 

scenario) : basically, these are an advanced form of state machines. Figures 22 and 

23 give the example actor graphs for the room and a piece of furniture. 

 

 

Figure 22 – Room actor graph    

 

 

Figure 23 – Furniture actor graph 

                                                      
5
 A similar approach is taken in the alVRed project (section 1.4.1) 
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Obviously, at this point it is impossible to understand these graphs completely, but 

when keeping the application in mind, trying to read them proves to be quite 

straightforward.  

 

Recall that a room can have 4 possible shapes : these are exactly equal to the dual 

rectangles shown in the center of the room actor graph in figure 22. These 

rectangles represent the states of the room object, with the state name displayed in 

the top (green) box, and extra information in the bottom (white) box. From the info 

in the white boxes, it would appear that every state has a different visual 

representation (notice the keyword VISUAL), which is of course logical, as the 

states express different shapes the room can take. In addition to the shape of the 

room, the user can increase its size, or change its color or texture. These three 

parameters are precisely the ones shown in the white box to the left of the graph. 

They represent the room’s properties. 

 

The furniture actor graph in figure 23 looks very similar to that of a room, with two 

states (Selected and NotSelected) and some properties which can be altered by the 

user (position and rotation, texture and color). The most striking difference when 

compared to the room graph are the four “states” which are attached to the bottom 

of the graph. The reader proficient in UML will note that the arrows connecting 

these boxes to the top box are identical to the UML inheritance notation – in fact, 

they are used for the same purpose here. The four boxes at the bottom of the 

diagram are not states, but child graphs. This is indeed intuitive, as chairs, beds, 

desks and cupboards are all furniture. The child graphs display the same states and 

properties as their parent graph, with the exception of having a different visual 

representation. 

 

3.3.3.2. Scenario Graph 

While actor graphs are essential to scenario modeling, the most important part is of 

course the scenario itself. In VR-SDL, scenarios are modeled using special 

flowcharts, containing linked events (things which happen in the VE). These events 

can contain pre-conditions (things that should be true for the event to be 

executable) and post-conditions (things that become true after execution of the 

event). Pre- and post-conditions are the main way in which the scenario graph is 

linked to the actor graphs, as conditions usually include a change in the actor graph 

of some actor (a state transition, a property assignment...). 

 

 In the application description from section 3.3.2, a clear hierarchy of the possible 

actions taken is discernable. At the highest level, there are three actions : change 

the room’s shape or size, adjust the room’s wall color or paper, and manipulate the 
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furniture. Figure 24 shows a high-level scenario, modeling this in VR-SDL. The 

select action event is the initial event, where the execution starts, the three other 

events are the actual actions which can be performed by the user. Note that after 

any of the three actions on the right are performed, execution returns to the select 

action event. 

 

 

Figure 24 – Top level scenario  graph 

 

Obviously, the three events on the right of the diagram should be modeled on a 

lower level. The full specification of these events is quite complex, and too 

elaborate to show here. They can be found in appendix B. Instead of showing the 

full graphs, a few snapshots will be described. 

 

 

Figure 25 – Scenario graph for modifying the size of a room 

 

 

Figure 26 – Scenario graph for selecting furniture 
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Figure 25 shows a part of the pick room shape and size event, and describes how to 

increase or decrease the size of a room. The user has two options : he can click 

either the increase or the decrease button. Clicking the increase button results in an 

enlargement of the room diameter by 0.1, while clicking decrease reduces the room 

diameter by 0.1. This is quite literally visible from the graph, and shows an initial 

coherence between the actor graphs and the scenario graph : the diameter property 

being altered is the exact same one which was displayed in the room actor graph 

(figure 22). 

 

The graph for selecting furniture, displayed in figure 26, is more complicated. 

While the user still has only two possible actions, there are significantly more pre- 

and post-conditions present in this graph. Initially, regardless of which action is 

taken by the user, all selected events are deselected at the start. This is shown by 

the post-conditions in the start event. Basically, there are two sets, furniture 

(containing the non-selected furniture) and selectedFurniture (containing the 

selected furniture. To deselect all furniture, the elements from the 

selectedFurniture set are copied to the furniture set, after which the 

selectedFurniture set is cleared. Finally, all elements of the furniture set have their 

state shifted to NotSelected. This final post-condition demonstrates another 

association between the object and scenario graphs : the state change in the actor 

graphs of the furniture actors is triggered by the scenario graph. 

 

The pre- and post-conditions present in the remaining two events of figure 26 are 

very similar, except that one single object is switched from one set to another, and 

has its state changed. Again, this can be read quite literally from the graph. 

 

 

 

3.4. Methodology 

At this point, the reader should have a general idea about the VR-SDL approach, 

and some insight into the required items for modeling a scenario. An important 

question which remains to be answered, before going into the details of the 

notation, is how one should use the available constructs for modeling a scenario – 

in other words, which approach is followed when modeling a scenario? 

 

 

3.4.1. Four Steps 

The modeling process is quite intuitive, but in general, four steps can be identified : 

the description step, the actor graph modeling step, the actor definition step, and 
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the scenario graph modeling step. When looking at figure 21, at the start of this 

chapter, one can see that only the last three steps are presented in the diagram. The 

description step is not included in the figure, since it is not formally defined, and 

does not yield any formal output. 

 

3.4.1.1. Description Step 

In the description step, the goal is to create an informal description of the scenario. 

Since this step will not be formally linked to the rest of the scenario, any technique 

may be used for this : a text description, a brainstorming meeting, a UML use case 

specification, or possibly just an idea in the head of the designer. Though this phase 

in the scenario modeling requires no physical output, it does have certain goals 

which should be attained :  

 

� Define the number and type of the actors participating in the scenario. 

� Identify the general structure of the scenario. 

� Create a casual, but complete, scenario description. 

 

3.4.1.2. Actor Graph Modeling Step 

The actor graph modeling step consists of defining the actor graphs for the actors 

referenced in the scenario. The required actor graphs can be deduced from the 

different actor types, as specified in the description step. Actor graph modeling is 

described in detail in chapter 4. 

 

3.4.1.3. Actor Definition Step 

In this phase, the actors participating in the scenario are formally defined. Actors 

are given a name, a type (an actor graph from the actor graph modeling step), and 

if required, they are instantiated by linking them to an actual object populating the 

VE. While the output of the actor definition step is not physically linked to either 

the actor or scenario graphs (it is simply text), it is considered to be part of the 

scenario graph, since the actors will be referenced in that graph. For an elaborate 

description of the actor definition notation, see section 5.4.1. 

 

3.4.1.4. Scenario Graph Modeling Step  

When the actors have been formally defined, all information is present for 

modeling the scenario graph itself. During modeling of the graph, the iterativeness 

of the VR-SDL scenario modeling approach will likely become apparent, as new 

actors and extensions to actor graphs might be discovered. Hence, it is probable 

that the designer should return to the results from the previous steps, in order to 

improve them. 
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3.5. Conclusion 

In this chapter, a general overview of the VR-SDL approach for modeling 

scenarios in VR was provided. After discussing the guidelines by which the 

technique was designed, the practical use of scenarios in VR was illustrated by 

means of an example application for room furnishing. Consequently, this example 

was modeled using the VR-SDL approach, to provide the reader with an overview 

of the notation. The chapter also presented some insights into the connections 

between the different concepts in the scenario modeling language. Finally, the 

general methodology for modeling scenarios using VR-SDL was introduced. 

 

Overall, there are two important things to remember from this chapter : 

 

� The VR-SDL approach contains two sub-notations : 

- Actor graphs : Model the evolution of the actors participating in a 

scenario. 

- Scenario graphs : Describe the scenario itself. 

 

� Four steps are traversed when modeling a scenario :  

- Description step : Gives an informal description of the scenario 

and its actors. 

- Actor graph modeling step : Design of the actor graphs for the 

different types of actors. 

- Actor definition step : Formal definition of the actors in the 

scenario.  

- Scenario graph modeling step : Creation of the actual scenario 

graph. 

 

Now that a general overview of VR-SDL has been sketched, it is time to go into 

more detail about the available concepts and notations. This will be done in two 

stages : in chapter 4, the specifics of actor graphs are unfolded, and in chapter 5, a 

closer look is taken at scenario graphs. 
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Chapter 4 

Actor Graphs 

4.1. Introduction 

 

Figure 27 – Scope of this chapter : actor graph modeling 

 

To model a scenario, one needs to be aware of the objects participating in it – i.e. 

the actors
6
 of the scenario. These scenario actors represent the dynamic entities in 

the VE that can change under the impulse of the scenario, and thus, they are used to 

model scenario-triggered alterations to the VE. It is imperative to realize that the 

word “dynamic” does not imply an object can move by itself : a building or a piece 

of furniture can just as well be an actor in a scenario as a security guard or an 

enemy soldier can be. The only requirement is that the object can in some way be 

manipulated during the execution of the scenario : a static wall will not usually be 

seen as a scenario actor, but a wall which can be shot to pieces, smashed down with 

a hammer, or repainted, might just be. 

 

                                                      
6
 Not to be confused with behavior actors. As mentioned in chapter 3, all mentions of actors 

in part 2 of the thesis refer to scenario actors, unless explicitly stated otherwise. 
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Actor graphs are modeled from the perspective of a certain scenario – one must not 

make the mistake of trying to model the real world. For instance, while real walls 

are definitely repaintable, if you are modeling a war simulation, this is irrelevant – 

all that you care about (and thus, all that should be modeled) is that they can be 

shot to pieces. On the other hand, when modeling the room furnishing application 

discussed in the previous chapter, it does not matter that real walls can be shot to 

pieces, since this will never happen in your application. In this case, only the 

recoloring of walls will be modeled. 

 

In VR-SDL, the actors in a scenario are modeled using actor graphs. This chapter is 

dedicated to the explanation of the actor graph notation (figure 27). It opens with a 

brief explanation of the actor graph modeling approach in general, after which the 

different components are described in detail. This is done as comprehensively as 

possible, so the interested reader is provided with an explanation of the reasoning 

behind the introduction of certain constructs, and examples to clarify them where 

feasible. Readers who are not looking for so much detail may limit themselves to 

sections 4.2 and 4.12, to obtain a general idea of the approach for modeling actor 

graphs. 

 

 

 

4.2. Approach 

As a simple example of an actor graph, consider a castle guard with two states, 

Friendly and Hostile, depicted in figure 28. Depending on the user’s actions (as 

modeled in the scenario graph), the guard could be in either of these two states. 

 

 

Figure 28 – Actor graph example : castle guard
7
 

 

Actor graphs consist of four important elements : a frame, a linked concept, states, 

and transitions. 

 

                                                      
7
 The red names and lines are not a part of the VR-SDL notation 
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An actor graph is always encased in a dual or triple box, called its frame, which 

contains the graph’s name in its top box (in figure 28, this is CastleGuard), and the 

states and transitions in the bottom one. Additionally, the frame may contain 

property definitions and subobject initializations (in an optional third box, below 

the previous two), and the linked concept is graphically connected to it. Frames are 

elaborated upon in section 4.3. 

 

Each actor graph has exactly one concept linked to it. This is a lower-level concept, 

modeled using the VR-WISE approach (as described in section 2.3). It represents 

the graphical composition of the object, and possibly some concept properties. 

Both simple and complex concepts are available for linking to actor graphs. For 

more information, refer to section 4.4. 

 

The main building blocks of an actor graph are its states. States are represented by 

a double rectangle, the top box of which contains the state’s name, while the 

bottom may contain qualifications, behaviors, visuals, or nested subgraphs. States 

and their contents are explained in sections 4.5.  

 

States are connected by means of transitions. A transition connects two or more 

states, and indicates a possible state change from the start state to the end state. 

Transitions may contain a linked behavior or a trigger expression. However, most 

transitions do not contain a trigger, since the impulse for a state change will usually 

be given on the scenario level (and thus, it will be modeled in the scenario graphs). 

A more detailed description of transitions can be found in section 4.10. 

 

 

Figure 29 – Components of an actor graph 

 

Figure 29 graphically illustrates the different components of an actor graph, and 

the sections they are described in. The arrows signify that properties, 

qualifications, behaviors and visuals may depend on the linked concept. Note that 

this graph may be substituted for the grey box in figure 27. The arrow in figure 27, 
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going from object modeling to actor graph modeling, would then be connected to 

the linked concept in figure 29 (since the linked concept is a concept modeled on 

the VR-WISE level). The arrow in figure 27 from behavior modeling to actor 

graph modeling would be connected to behaviors in figure 29, since these are 

dependent on the some lower-level VR-WISE behavior. This is explained in detail 

in the corresponding sections. 

 

 

 

4.3. Frame 

Each actor graph is encased in a top-level box, called the frame of the graph (figure 

30).  

 

 

Figure 30 – Frame notation 

 

The frame consists of two mandatory boxes, the name field and the content field, 

and an optional third box, called the declaration field. Additionally, the frame is 

always connected to the actor graph’s linked concept. 

 

� The name field
8
 contains the name of the actor graph. It is this name which 

is used to refer to the actor graph, for example, to specify the role of a 

scenario actor (section 5.4.1). 

� At the very least, the frame’s content field contains the actual states and 

transitions making up the graph. Additionally, the frame’s content field 

may include everything that can be added to a regular state’s content field : 

qualifications, behaviors, and visuals. These constructs are described in 

detail throughout the remainder of this chapter. 

� The declaration field is optional, and is only present if the actor graph 

contains actor graph properties (section 4.6.3) or if the linked concept is 

complex (section 4.4.3). 

 

 

 

                                                      
8
 The name field is colored turquoise in the remainder of this thesis. This coloring is not 

required, it merely clarifies the notation. 
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4.4. Linked Concept 

An actor graph’s linked concept determines which kinds of objects from the VE 

are allowed to function as the type of actor defined by the actor graph. Since the 

linked concept is simply a concept modeled on the lower level (section 2.3), it 

forms the connection between the actor graph modeling phase, and the lower level 

object and behavior modeling phases.  

 

 

4.4.1. Notation 

Linked concepts are represented by a rectangle (figure 31), in analogy with the 

concept notation from VR-WISE object modeling. Per convention, the concept 

name is written in capitals. The concept is linked to the actor graph’s frame by a 

single line.  

 

 

Figure 31 – Linked concept notation 

 

 

4.4.2. Actor Graphs as Concept Profiles 

As described in chapter 2, concepts are used to model the types of objects 

populating the world, and are instantiated to create the actual entities in the VE. For 

scenario modeling, however, an additional step is required. Suppose that for 

example, a concept GUARD
9
 has been defined. It is not at all unimaginable that 

several different kinds of guards are required in a scenario : patrolling guards, 

cowardly guards who get scared instead of fighting, bodyguards who protect a 

person instead of patrolling along a route, ... All these different types of guards 

define different profiles for the GUARD objects in a scenario. 

 

Modeling these profiles is exactly what actor graphs are used for. In this particular 

example, three actor graphs would be created with a linked GUARD concept : a 

PatrolGuard graph, a ScaredGuard graph, and an Bodyguard graph. Each of these 

graphs would define different states for their particular type of guard, thus creating 

a distinction between them. This distinction might be quite radical : it is obvious 

that a patrolling guard may behave entirely different during the course of the 

                                                      
9
 From now on, concept names will always be denoted in capital letters, to distinguish them 

from state names. 
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scenario than a bodyguard. At the same time, the fact that each of these guards is 

linked to the same lower level concept causes them to display certain similarities, 

i.e. the graphical representation of the guards, their properties, and possibly linked 

behaviors (more on the latter in section 4.8.4). 

 

The objective of actor graphs is to define the different types of actors present in the 

scenario. Hence, an actor graph is not an instance, and therefore, it should be 

instantiated before being usable within a scenario. Instantiating a scenario actor is 

done by linking an instance of its linked concept from the VE to the actor graph. 

For instance, if there are four GUARD objects in the VE, called guard1, guard2, 

guard3, and guard4, each of these could be linked to any of the guard actor graphs, 

thus creating a usable actor for the scenario. A full description on defining actors is 

given in section 5.4.1. 

 

 

4.4.3. Complex Concepts 

4.4.3.1. Referencing Subobjects in Actor Graphs 

Naturally, an actor graph’s linked concept could be a complex concept. If this is the 

case, it should be possible to reference the subobjects of the concept, so their 

properties, behaviors etc. can be used within the actor graph. Below, the available 

notations for referencing subobjects in an actor graph are shown : 
 

<subobject-ref> ::= <role-name> 
                  | <concept-name> 
                  | <actor-graph-name> 
                  | <subobject-ref>.<subobject-ref> 

 

If a concept contains multiple subobjects instantiated from the same concept (such 

as a table with four legs), each of them is given a unique role name (section 

2.3.2.2). If there is only one subobject instantiated from a certain concept, a role 

name is facultative. However, in such a case, the concept name is unique. Thus, the 

subobjects of a linked concept are uniquely referable by using either their role 

name or concept name. For continuity, subobjects are always given a role name 

throughout this thesis. 

 

In the event of multiple subobjects instantiated from the same concept, the concept 

name may still be used for referencing the subobjects : it will simply return the set 

of all subobjects instantiated from the correct concept. 

 

Since subobjects should be linked to an actor graph themselves (as explained in 

section 4.4.3.2), actor graph names can be used to reference them as well. The 

interpretation is completely analogous to using the concept name : referencing 
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subobjects through their actor graph names, returns the set of all subobjects linked 

to that actor graph. Due to the similarity to referencing through concept names, this 

notation will be largely disregarded in the rest of this thesis.  

 

To provide an overview of the available subobjects, with their concepts and names, 

the linked concept notation is extended with a drop-down box, similar to the one in 

the object modeling phase. As an example, figure 32 illustrates a guard, modeled as 

a union of a head, a torso, two arms, two legs and a sword. 

 

 

Figure 32 – Complex object example 

 

The items in the GUARD concept’s drop-down box are written in a 

<concept> <role> notation, meaning the names used to reference the subobjects 

within the actor graph are guardHead, guardTorso, etc. Alternatively, the concept 

names GUARD_HEAD, GUARD_TORSO... may be used. Note that using 

GUARD_ARM or GUARD_LEG returns a set with two elements. 

 

If a subobject in turn has subobjects itself, these can be referenced by using a dot-

operator. For example, suppose that an arm has subobjects hand, lowerArm, and 

upperArm, then the guard’s left hand is referable through the expression 

guardLeftArm.hand. 

 

It is important to realize that the linked concept’s drop-down box exclusively 

contains concept-specific information, in other words, things which are not part of 

the actor graph modeling, but are modeled on the lower level. Later in this chapter, 

other items which can be displayed in this drop-down box are mentioned. Since the 

drop-down box only contains an overview of existing elements of the GUARD 

concept, and no new scenario modeling elements are ever displayed in it, the 

notation of its contents are not formalized. It may for example be dependent on the 

tool used to create the scenario diagrams.  
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4.4.3.2. Linking Subobjects to Actor Graphs 

Simply mentioning the existence of subobjects is not enough : if an actor graph’s 

linked concept is complex, all of its subobjects should be assigned to an actor 

graph as well. This is done by modeling the required actor graphs separately, and 

adding statements linking subobjects to these actor graphs to the initial graph’s 

declaration field. These statements are of the form 
 

<subobject-link> ::= SUB <role-name> is <actor-graph-name> 
                   | SUB <concept-name> is <actor-graph-name> 
 

The first type of statement links one particular subobject to an actor graph, while 

the second type links all subobjects of a certain concept to the same actor graph. 

This second notation can cause a drastic reduction in the number of statements 

needed if a concept contains many subobjects of the same type (for example, a 

centipede with dozens of legs).  

 

Figure 32 illustrates both notations. Note that the first form is used for linking the 

arms to the ComplexGuardArm actor graph, while the second form is used for the 

legs. As you can see, this means that two statements are needed for the arms, while 

a single one suffices for the legs.  

 

4.4.3.3. Unconnected Complex Objects 

Since unconnected complex objects (section 2.3.2.3) behave in the exact same way 

as connected ones, they are modeled similarly. For example, consider a platoon of 

guards, displaying coordinated behavior (such as using intricate strategies to sneak 

up on the enemy, or regrouping when one of the platoon’s members has been 

killed). While each guard is clearly a stand-alone object, modeling them all 

separately is insufficient. Designing the platoon as an unconnected complex object 

is the obvious solution to this problem.  

 

Using complex linked concepts leads to numerous other issues, which will be 

described in the appropriate sections throughout the remainder of this chapter. 

Keep in mind that all of these descriptions hold for both connected and 

unconnected complex objects. 
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4.5. States 

4.5.1. Notation and Contents 

A state in an actor graph represents a certain status of the object during the 

execution of the scenario. The notation of a state is very similar to a frame 

(figure 30). States are drawn as dual rectangles, with a name and a content field. 

Unlike frames, states never have a declaration field. 

 

 

Figure 33 – State notation 

 

The name field contains the state’s name, per convention written in the same style 

as Java classes (e.g. StateName). In addition to being simple to interpret for non-

programmers, this notation provides the advantage of being intuitive for 

programmers with notions of UML. This is due to the analogy they will 

undoubtedly make between states (the main building blocks of actor graphs) and 

classes (the main building blocks of UML class diagrams). Note that the same 

naming convention is used for the name of the graph, entered in the frame’s name 

field. 

 

The state’s content field may contain qualifications (section 4.7), behaviors 

(section 4.8), visuals (section 4.9), and nested subgraphs. The first three items use a 

textual notation, while subgraphs simply consist of a number of linked states – in 

other words, just like a regular actor graph, except that they do not contain a frame 

or linked concept. 

 

 

4.5.2. Start State 

Obviously, an actor graph should always have a start state. This is the state in 

which the object initially resides. Start states are drawn like regular states, but with 

a double edge (figure 34). 

 

 

Figure 34 – Start state notation 
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Aside from the actor graph itself, every subgraph should have exactly one start 

state as well.  

 

 

 

4.6. Properties 

An object can have certain data associated with it, called properties. Properties can 

either be strings or scalars (free properties), or values from a predefined set 

(enumeration properties). Properties are not statically typed : a free property may 

be assigned a string value at some point during its existence, and a scalar later on. 

On the other hand, enumeration properties can only take on values from the 

specified domain. 

 

 

4.6.1. Scope 

Properties can be divided into two groups based on their scope : they are either 

assigned to an entire concept (concept properties) or to a single actor graph (actor 

graph properties). Concept properties are modeled on the lower level, during the 

object modeling phase, while actor graph properties are defined within the actor 

graph itself. However, within the graph, both can be utilized in the same way. 

 

Consider the guard mentioned in section 4.2. A guard (an instance of the GUARD 

concept) could have several general characteristics, such as his strength, stamina, 

or courage. These are concept properties of the GUARD concept. However, 

suppose there is a scenario requiring two different types of guard : a patrolling 

guard, and a bodyguard. Both are clearly guards, so they have the properties 

described above, but they act differently – for example, in case of turmoil, the 

patrolling guard would go investigate, while the bodyguard would try to secure his 

client. This means that both types of guards have a different actor graph. 

 

It is not at all unthinkable that one would like to include properties in one of the 

actor graphs which are irrelevant to the other. For example, the bodyguard could 

have a loyalty property, determining how dedicated he is to protecting his client, 

while the patrolling guard could have a curiosity property, indicating the 

probability that he will get distracted from his regular patrol route. Both properties 

would obviously be useless to the other type of guard. Hence, loyalty and curiosity 

are actor graph properties of their corresponding actor graphs. 
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Figures 35 and 36 show two actor graphs modeling these guards. The notations are 

described in  sections 4.6.2 and 4.6.3.  

 

 

Figure 35 – Patrol guard actor graph 

 

 

Figure 36 – Bodyguard actor graph 

 

 

4.6.2. Referencing Concept Properties in Actor Graphs 

4.6.2.1. Simple Concepts 

Since concept properties are defined on the lower level, the designer can get an 

overview of a concept’s available properties in the linked concept’s drop-down box 

(as displayed in figures 35 and 36), in the same way as subobjects (also modeled on 

the lower level) are visible there. Remember that concept properties may have an 

initial value assigned to them. 

 

Since concept properties all fall within the same scope, they have a unique name. 

Thus, for properties of the top-level concept, this name can be used to reference 

them within the actor graph.  

 

4.6.2.2. Complex Concepts 

For complex concepts, things are slightly more complicated. Like simple concepts, 

complex concepts can contain concept properties. The properties of the complex 

concept itself are no problem : since they are uniquely named within the scope of 

the top-level concept, they can be referenced in the exact same way as properties 

belonging to a simple concept. However, the subobjects of a complex concept 

might contain properties of their own, and the scope of these properties is limited 

to the concept they belong to. Therefore, using only their name to reference these 
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properties might give rise to naming conflicts. This is solved by adding a subobject 

reference (as described in section 4.4.3.1) in front of the property name, with a dot-

operator : 
 

<complex-prop-ref> ::= <subobject-ref>.<property-name> 
 

The dot-operator will be the standard VR-SDL notation for accessing a certain 

segment of an item. 

 

Consider the complex guard from figure 32, for example, and suppose the 

GUARD_ARM concept contains a property length. Simply using the name length 

within the ComplexGuard actor graph is not possible, since there are at least two 

different length properties within the linked GUARD concept (one for each arm). 

Additionally, other subconcepts may also contain a length property (the SWORD or 

GUARD_LEG concepts, for example). However, since property names are unique 

within their own concept, the combination of an object reference and a property 

name provides unique identifiers for the properties – in this case, leftArm.length 

and rightArm.length (and possibly, leftLeg.length, rightLeg.length and 

guardSword.length). 

 

 

4.6.3. Defining Actor Graph Properties 

While concept properties are existing properties from the lower level modeling, 

actor graph properties should be defined within the actor graph itself. This is 

achieved by adding actor graph property definition statements, labeled with the 

keyword PROP, to the graph’s declaration field. A newly defined property should 

be given a name, a possible initial value, and in the case of an enum property, the 

possible values should be specified as well. 

 

A property definition statement is written as 
 

<free-prop-definition> ::= PROP <property-name> 
                         | PROP <property-name> = <value> 

 

In case of an enum property, this is extended to   
 

<enum-prop-definition> ::= PROP <property-name> {<enum-list>} 
                         | PROP <property-name> {<enum-list>} = <value> 

 

<enum-list> ::= <enum-value> 
              | <enum-value>, <enum-list> 

 

Note that the initial value assignment is optional in both cases. 

 

Once an actor graph property has been defined, its name is available to reference it 

within the entire actor graph. However, this also means none of the property names 
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should conflict with any of the linked concept’s properties, which are referenced in 

the same way. For example, in figures 35 and 36, it is impossible to define an actor 

graph property called strength, since this name is already taken by a concept 

property. 

 

 

 

4.7. Qualifications 

When modeling the possible evolution of an actor in a scenario through a state 

machine, one would obviously like to add content to these states. After all, saying 

that a guard can be friendly or hostile has very little meaning without defining what 

it means to be friendly or hostile – and particularly, what separates one state from 

another one. To specify this, states can be filled with visuals, behaviors, or 

qualifications. The latter is the subject of this section. 

 

Qualifications are a way to specify requirements for a state. Informally, some 

example qualifications could be “while in the friendly state, a guard’s curiosity is 

equal to 30”, “a hostile guard has a courage between 25 and 50”, or “when a guard 

is hostile, his face has an angry look”. Two types of qualifications are 

distinguished : property qualifications, and state qualifications. 

 

 

4.7.1. Property Qualifications 

As the name suggests, property qualifications define constraints on a certain 

property. More specifically, they assign a value to a property. Remember though, 

that enumeration properties can only take values from a pre-defined domain. 

 

Assigning a new value to a property can be done in two ways : 

 

� Fixed value assignment. Quite simply, a fixed value is assigned to the 

property. For strings and enumeration properties, the value is always a 

simple static value, but for scalars, it may be the result of an expression 

based on the value of other properties (or even recursively dependent on 

the property being assigned). Notation : 
  

<prop-single-qlf> ::= QLF <prop-ref> = <value> 

 

� For scalar assignments, random value assignment is also available. In this 

case, min and max values are defined, and the property is assigned a 

random value from within this interval. The precision of the final result 
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(and thus, the amount of variation possible) is equal to the most precise 

argument. In other words, a lower boundary of 30 and an upper boundary 

of 50 will cause an assignment of a random integer from the interval 

[30,50], but if the lower boundary is defined as 30.0, a floating point value 

with a decimal place of 1 (thus, a value from the set {30.0, 30.1, ..., 50.0}) 

will be selected. Notation : 
 

<prop-random-qlf> ::= QLF <prop-ref> = [ <num-value>, 
                          <num-value> ] 

 

Figure 37 shows the use of both assignment types in practice. When entering the 

Friendly state (since Friendly is the start state, this includes object initialization), 

the value of the curiosity property is decreased by 20, and a random value between 

15 and 50 is assigned to courage. When the guard goes hostile, his curiosity is 

increased by 20, and all other properties remain unchanged. Note that, when the 

guard changes back from Hostile into Friendly, courage is once again assigned a 

random value. Hence, if the object keeps changing back and forth, curiosity will 

only ever take two values (20 and 40), while courage will keep changing pseudo-

randomly. 

 

 

Figure 37 – Patrol guard, extended with property qualifications 

 

 

4.7.2. State Qualifications 

The second type of qualifications, state qualifications, are reserved for actor 

graphs with complex linked concepts. When a certain state, called someState, 

contains a state qualification, this indicates that some subobject is in a particular 

state for as long as its parent object remains in someState. 

 

4.7.2.1. Single State Qualifications 

The most straightforward type of state qualifications, called single state 

qualifications,  indicates that a subobject is in exactly one state. Single state 

qualifications are written as follows : 
 

<single-state-qlf> ::= QLF <subobject-ref> : <state-ref> 
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The subobject reference is identical as specified before : subobjects can be 

referenced by their role name, concept name, or their actor graph name. The first 

approach returns a single object, while the latter two may return a set. Referencing 

a set of subobjects in a state qualification signifies that all objects in the set are in 

that state.  

 

Like in section 4.4.3.2, the set notation is introduced to greatly reduce the number 

of statements needed  in case of a large number of subobjects with similar behavior 

(for example, a number of small lights in a christmas tree). It should be noted that 

the single object notation has priority over the set notation : if a state contains a 

single state qualification about a particular subobject (denoted by its role name) 

and another one about the concept this subobject belongs to, it is the former 

qualification which holds for the object. 

 

Figure 38 demonstrates single state qualification notations. It displays an office 

with a door and two windows, a left one and a right one. Each of these have actor 

graphs with two states, Normal and Burning (the actor graph for both windows is 

the same). During the course of the scenario, either the left or the right window can 

catch on fire. 

 

 

Figure 38 – Burning office displaying state qualifications 

 

Note that, for demonstration purposes, the approach taken for modeling the 

LeftWindowBurning state is different from that used for the RightWindowBurning 

state. The latter uses the role notation for each qualification, while the former uses 

a concept notation to state that all subobjects of concept WINDOW are normal in 

the LeftWindowBurning state, except leftWindow, which is burning. This is an 

example of the role notation getting priority over a set notation. This modeling 

approach may seem silly, and in this particular case, it arguably is. However, the 

notation’s usefulness quickly becomes apparent when considering an OFFICE 

concept with – say – ten windows instead of two. 
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4.7.2.2. Multiple State Qualification 

The single state notation has a problem : it may lead to an explosion in the number 

of states needed. To understand why, let us revisit the burning office example.  

 

Suppose that the office’s door and windows have an additional state, Doused, and 

that the scenario is a game where the player is a fireman, dropped in a room where 

every object is burning, and tasked with extinguishing the burning office, one 

object at a time. On a first hunch, one might attempt to model the office actor graph 

for this scenario as shown in figure 39. 

 

 

Figure 39 – Badly modeled burning office actor graph
10
 

 

However, this office model presents a problem : during execution of the scenario, 

player interaction might lead to the office object being “between states”. For 

example, it is possible that the player puts out the front door and one of the 

windows, but not the other window. In this case, the burning office is neither in the 

Burning, nor the Doused state. 

 

It is entirely unpractical to include a new state for each of the possibilities. In this 

case, even though there are only 3 subobjects, each with a mere 2 relevant states 

(Burning and Doused, since the player can not revert the objects to the Normal 

state by interacting with them), this would lead to 6 extra states in the actor graph : 

one for each possible combination of states for all the subobjects (there are in fact 8 

combinations, but the cases where the subobjects are all burning or doused are 

already present). Figure 40 illustrates this new situation. Note that using the 

concept notation for the state qualifications here instead of the role names is not 

allowed : the whole point is that every subobject’s state should be separately 

changeable, if the concept notation would be used, both windows would always be 

in the same state. 

                                                      
10
 This graph exclusively uses the role notation for single state conditions. This is purposely 

done, for clarity, and is unrelated to the graph being badly modeled. 
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Figure 40 – Example of the cluttering caused by adding a new state for each possible 

combination of subobject states.  

 

Now imagine that the office would have ten windows, instead of two, for a total of 

11 subobjects; and that doors and windows and door can not only be doused by the 

player, but also smashed, adding a third possible state to each subobject. In this 

case, the amount of required states would equal 3
11
 = 177147 states. Clearly, this is 

unfeasible to model using the current approach. 

 

There are two possible ‘solutions’ : either accept figure 39 as a correct graph after 

all, and allow this ‘hovering between states’. This is a pretty serious case of non-

determinism, however, as objects could be in states which don’t really exist. In 

fact, this is not a solution at all : the problem is merely being swept under the 

carpet. 

 

The second option, which is adopted in VR-SDL, is to introduce a new type of 

state qualification, which allows for a subobject to be in a ‘set of states’. This 

means that the object it is in actuality in one of the states from the set, based on 

some event from the scenario. This still implies non-determinism, but far more 

controlled. Not only is it now known in which state the object is, but also which set 

of states the subobjects may be in. In fact, in combination with the executed 

scenario, each object’s state will be known. 

 

This new type of qualification is called a multiple state qualification, and it is 

denoted as follows (note that both a single or multiple objects may be referenced 

again) : 
 

<multiple-state-qlf> ::= QLF <subobject-ref> : { <state-list> } 
 
<state-list> ::= <state-ref> 
               | <state-ref>, <state-list> 
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Figure 41 shows the final, correct actor graph for the office, modeled using 

multiple state qualifications. Observe that the cluttering is drastically reduced when 

compared to figure 40. 

 

 

Figure 41 – Correct remodeling of the office graph, using multiple state qualifications 

 

 

 

4.8. Behaviors 

Consider the aforementioned patrolling guard : in figure 37, a possible actor graph 

is given for this guard, but in neither of the two states, any indication is given that 

the guard is walking along a patrol route. Additionally, one would expect a hostile 

guard to take action against his enemies, but this is not present in the graph either.  

 

To be able to model situations like those described above, behaviors are introduced 

to the actor graph modeling. Like properties, they are a way to further detail the 

graph’s states, and to distinguish them from one another.  

 

This section is divided into four subsections. Section 4.8.1 provides an introduction 

to behaviors in actor graphs, detailing the different behavior types and illustrating 

them by means of the guard example. Afterwards, a more in-depth description of 

the notations of the various behaviors is given in section 4.8.2. Consequently, 

section 4.8.3 provides more insight into the way behaviors are executed, and the 

related modeling issues. Finally, section 4.8.4 clarifies the link with the lower level 

behavior modeling phase in VR-WISE (as described in 2.4) 

 

 

4.8.1. Behavior Types 

Initially, let us assume that the designer is provided with a selection of behaviors 

(modeled on the lower level) which can be performed by the concept linked to the 

actor graph. Like all concept-related items modeled on a lower level than the 
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scenario modeling, an overview of the available behaviors is shown in the 

concept’s drop-down box. 

 

Within an actor graph, behaviors are generally labeled with a DO keyword
11
, and 

are given a name for referencing purposes. In general, the notation is 
 

DO <behavName> = <specification>(<parameters>) 
 

where <behavName> is a random string, <specification> is the name of the 

lower level behavior, and <parameters> is an optional list of parameters (more 

explanation on this in section 4.8.4). 

 

Under the assumption above, figure 42 displays an example of behaviors in actor 

graphs, by providing an extended graph for the patrolling guard described earlier in 

this chapter. This example contains several different types of behavior. 

 

 

Figure 42 – Patrolling guard actor graph, extended with behaviors 

 

First and foremost, the Friendly and Hostile states each contain a state behavior. In 

general, state behaviors – such as pat and atk – are behaviors which are executed 

while the object is in the state that contains them. In this particular case, the pat 

behavior implies that the guard is patrolling along a predefined route while he is in 

the Friendly state, while the atk behavior signifies that in the Hostile state, he 

attacks hostile targets on sight. 

 

Obviously, it is possible that one would want to attach a behavior which remains 

constant over all states. Suppose, for example, that the guard from figure 42 is very 

upbeat, and continuously whistles a tune, regardless of whether there are enemies 

nearby. This is modeled by means of a global behavior, which is nothing more 

than a state behavior of the graph’s encasing frame – and thus, it is always 

                                                      
11
 There are also CONT behaviors, these are explained in section 4.8.3.1. 
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executed, regardless of which state the object is in. The wstl behavior in figure 42 

is an example global behavior. 

 

Not only the states can contain behaviors, but also the transitions between states : 

these behaviors are called transition behaviors. They are written in a rounded 

rectangle, which is connected to the appropriate transition by a dashed line. 

Unsurprisingly, transition behaviors are executed when the object switches from 

the transition’s start state to its end state. In figure 42, the guard will draw his 

weapons when he turns hostile, and hug the player after sheathing his weapons 

when becoming friendly.  

 

This last behavior (called frnd in the graph) displays another interesting quality : it 

is composed out of two independent behaviors. Such behaviors are called 

composite behaviors. Composite behaviors are simply sequences of a number of 

behaviors, executed serially : the next behavior in the sequence is only started 

when the previous one has completed. Composite behaviors only have a single 

name, and both state and transition behaviors can be composite. 

 

 

4.8.2. Notation of Behaviors 

After presenting an overview of the different types of behaviors usable in actor 

graphs, it is time to revisit the notation in more detail. Primarily, the notion of an 

execution counter is introduced, and after that, the notation for behaviors is 

described formally. 

 

4.8.2.1. Execution Counter 

State behaviors are executed at least once, but they may also be looped several 

times – or possibly even infinitely. The amount of times they are executed can be 

specified by the designer : a behavior is followed by an optional execution 

counter, indicating how many times it is looped. An execution counter is written as 

*x, where x is an integer or ∞.  

 

For example, if the patrol behavior in figure 42 were written as ‘patrol() *1’, the 

guard would run his patrol route once, and then stand idle. If ‘patrol() *3’ were 

used, he would run it three times, and so on. It is also possible to create a behavior 

which is looped infinitely : this is what the execution counter *∞ is used for. The 

default amount of times a behavior is executed is one, so it is allowed not to 

specify an execution counter: in this case, the behavior is simply executed once.  
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For composite behaviors, it is possible to specify an execution counter for the 

entire behavior sequence, and an additional execution counter for each separate 

behavior within the sequence. This implies that it is possible to write a behavior 

such as ‘[ danceMove() *2, clapHands() *1 ] *∞’, which would result in an infinite 

loop of the object performing 2 consecutive dance moves, and clapping hands after 

that. Note also that in this particular case, the execution counter after clapHands() 

may be omitted. 

 

It may at first glance appear as though an execution counter is too limiting, and 

additional constructs are needed : granted, behaviors with much more elaborate 

timing are definitely imaginable. Consider, for example, a guard with ten different 

idle animations (scratching his head, looking around, yawning, ...), each of which 

should be displayed pseudo-randomly, and within randomly timed intervals of each 

other. Clearly, this is impossible to model using nothing but an execution counter 

and complex behaviors. 

 

However, one must not forgot that a very complete, well thought through behavior 

modeling technique is already present in VR-WISE (section 2.4). There is no need 

for trying to reinvent the wheel by formulating an overload of extra behavior 

modeling constructs within the actor graph notation : at best, this would lead to a 

trimmed down version of a more complete, already existing approach, and in the 

worst case scenario, it would cause inconsistencies between the behavior modeling 

on the two different levels, and severely complicate the notation by introducing an 

abundance of needless constructs. Thus, rather than ending up with an inferior, 

trimmed down version of the present behavior definition language, the existing one 

is used to define the behaviors on a lower level, and these behaviors are used 

within the actor graphs. This approach offers a great deal of flexibility, while still 

keeping the notation compact and intuitive. 

 

4.8.2.2. Full Notation 

In section 4.8.1, a rough overview of the behavior notation was given. It is now 

time for a more complete explanation. 

 

The standard behavior notation uses a DO keyword, a reference name, and a 

behavior definition part. At the very least, this definition part consists of the name 

of a lower level behavior, followed by closed parentheses. Possibly, a list of 

parameters is added inside the parentheses (consisting exclusively of actors 

participating in the behavior, as explained in section 4.8.4) and an execution 

counter is attached to the back. Finally, in the case of a composite behavior, 

multiple of these behavior definitions are separated by commas, and the whole is 

enclosed in brackets. 
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Formally, this translates to : 
 

<do-behavior> ::= DO <behav-name> = <behav-def-ctr> 
                | DO <behav-name> = [ <behav-list> ] 
 
<behav-list> ::= <behav-def-ctr> 
               | <behav-def-ctr>, <behav-list> 
 
<behav-def-ctr> ::= <behav-definition> 
                  | <behav-definition> <execution-counter> 
 
<behav-definition> ::= <behav-specification> () 
                     | <behav-specification> ( <actor-list> ) 

 

Aside from regular behaviors, there are also continued behaviors. These are used to 

indicate the continued execution of a behavior initiated in a different state. Their 

notation is very simple : 
 

<cont-behavior> ::= CONT <behav-ref> 
 

The philosophy behind continued behaviors is explained in detail in section 4.8.3.1.  

 

 A final concern involves the scope of the reference name given to a behavior. It is 

defined to be equal to the state the behavior appears in, plus its outgoing 

transitions. In other words : A state and its outgoing transitions may not contain the 

same behavior name more than once, but names may be reused between states. 

 

This limited scope implies the need for a scope delimiter, so the designer has the 

possibility of referencing a behavior outside of a state. The scope delimiter used is 

the double colon operator (noted as ‘::’), which programmers will be familiar with 

from languages such as C++. Hence, the full specification of a behavior reference 

is as follows : 
 

<behav-ref> ::= <behav-name> 
              | <state-ref> :: <behav-name> 

 

In summary, consider figure 42 once more. Since the pat and wstl behaviors fall 

within the same scope, their names are required to be different. However, should 

one be so inclined, these names may be reused instead of atk and frnd, respectively 

: both of these behavior fall within an entirely different scope. To reference the pat 

behavior within the Hostile state, one would write Friendly::pat. 

 

 

4.8.3. Execution of Behaviors 

Now that the details of the notation are known, some additional modeling issues, 

related to the way behaviors are executed, will be explored. The bulk of this section 
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concerns state behaviors, but a short overview for transition behaviors is added as 

well. 

 

4.8.3.1. Modeling State Behaviors 

It is possible for multiple behaviors to be defined within a state. In this case, they 

are all executed simultaneously. For example, suppose the guard from figure 42 

should juggle his sword while walking his patrol route. This could be specified by 

adding a behavior ‘DO jgl = juggleSword() *∞’ to the Friendly state. Now, 

whenever the guard is in the Friendly state, three behaviors are being executed : 

pat, jgl, and wstl – since the latter is a global behavior, it is always executing! Note 

that, when modeling states with multiple behaviors, care should be taken that no 

conflicting behaviors are added to the same state (like a patrol and an attack 

behavior). This, however, is the responsibility of the designer. 

 

A slight adjustment of the situation described above yields figure 43. In this case, 

instead of patrolling and juggling his sword indefinitely, the guard walks along his 

patrol route twice, while performing the juggle routine three times. 

 

 

Figure 43 – Patrol guard with multiple behaviors in one state 

 

However, this example unveils a problem : allowing multiple behaviors to be 

included in a single state, combined with the fact that behaviors may be finite (if 

their execution counter is not equal to *∞), may lead to certain behaviors finishing 

their execution earlier than others. Indeed, in figure 43, it is possible that either of 

the two behaviors in the Friendly state concludes before the other one.  

 

Thus, a choice must be made : either allow behaviors to finish executing while the 

object remains within the state, or force a state transition when a behavior has 

terminated. The former leads to non-determinism : even when the current state of 

an object is known, it is impossible to determine which of the (finite) state 
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behaviors are executing, which defeats the purpose of modeling behaviors inside 

states.  

 

The latter approach implies adding a number of extra states, to make sure every 

behavior within a state is actually executing. It also means behaviors should be able 

to continue between states : for example, if the juggle behavior terminates before 

the patrol behavior, the object should transition into a new state. In this new state, 

the patrol behavior continues executing. This is what continued behaviors (section 

4.8.2.2) are used for.  

 

Because the non-determinism of the former approach would in essence cause a 

breakdown of the entire state machine system – one would be designing states with 

unspecified contents – the latter one is adopted in VR-SDL. Figure 44 shows the 

remodeled actor graph using this technique. 

 

 

Figure 44 – Remodeled patrol guard with deterministic states 

 

Note that the newly added states are irrelevant to the scenario : all that matters to 

the scenario is whether the guard is friendly or hostile. Therefore, it makes sense to 

model the new states as a subgraph of the original state, so the top-level states – 

and the transitions between them – remain unchanged. This also provides the 

possibility to leave qualifications or possible infinite behaviors in the encasing 

state. 

 

Since behaviors might be modeled pseudo-randomly on the lower level (for 

example, the juggleSword() behavior could select a random juggle routine to 

perform from a number of predefined ones), it is impossible to know which of the 

state behaviors will finish first. Therefore, a state should be added for each 

combination of finished behaviors. One might expect this to lead to an 

uncontrollable explosion in the number of states, but this will never happen in 
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practice : since all state behaviors in the same state should be simultaneously 

executable, the grand majority of the states will contain zero or one behaviors. And 

in the off chance that a state contains more behaviors, most of them will likely be 

small animations to increase realism (blinking eyes, twiddling fingers, scratching 

head, ...) which should be looped infinitely, and thus, do not cause the problem of 

early termination. 

 

To conclude this section, consider the transitions in figure 44. They are labeled 

with trigger expressions (explained in section 4.10), causing them to fire when 

certain behaviors finish. Within these triggers, the behaviors are referenced : notice 

that the behaviors in the leftmost triggers do not contain a scope delimiter, while 

the right ones do. This is an illustration of the scope of behaviors names : recall 

that the scope of a name is equal to the state it is defined in, plus that state’s 

outgoing transitions. Hence, while the pat and jgl behaviors are defined within the 

scope of the transitions leaving the PatJgl state, they lie outside the scope of the  

Pat and Jgl states. 

 

4.8.3.2. Modeling Transition Behaviors 

Transition behaviors are quite similar to state behaviors, but without the main 

difficulties of the latter. 

 

Unlike state behaviors, transition behaviors are executed only once : it is not 

possible to specify an execution counter (nor is it needed : 1 is the default amount 

of times a behavior is executed anyway). The state transition is only considered 

complete after all transition behaviors have been executed, until that point, the 

object is still in its previous state. Because of this, transition behaviors are 

supposed to be short, usually small animations or similar. Additionally, it makes no 

sense for a transition behavior to be defined using a CONT structure. After all, 

which behavior would be continued? Therefore, the only available notation for a 

transition behavior is the DO behavior.  

 

Note that, like all DO behaviors, transition behaviors should be named. While they 

are never referenced inside an actor graph, this is needed from the viewpoint of the 

scenario graphs (as explained in section 5.7.2.1). 

 

 

4.8.4. Behavior Definition and Parameters 

In the previous sections, an overview was provided of how to insert behaviors into 

an actor graph, and how they are executed. The actual definition of the behaviors 

was left largely unspecified, aside from mentioning that they should be modeled 
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using lower level VR-WISE techniques (section 2.4). In this section, the link to the 

lower level behavior modeling approach will be described in detail. First, single-

actor behaviors will be described, consequently, more complicated behaviors with 

multiple actors are explained, and finally, some issues related to behaviors with 

reference actors are clarified. 

 

4.8.4.1. Single Actor Behaviors 

Recall from the figures shown earlier in this chapter that the available behaviors of 

the GUARD concept were shown in its drop-down box. The most important 

question to answer, is which behaviors are available to a certain concept.  

 

To answer this, let us recapitulate the VR-WISE behavior modeling approach. It 

consists of two steps : defining the behavior (in terms of abstract behavior actors), 

and invocating the behavior. In this last step, the abstract actors are linked to either 

static concepts or instances thereof. In other words, once a concept is linked to a 

certain behavior through an invocation diagram, it is known that that concept can 

perform the behavior in question. 

 

Considering that it is precisely one of these concepts which is linked to each actor 

graph, the answer to the question is straightforward : if a behavior modeling step is 

performed first, the behaviors that can be executed by a certain concept can be 

tracked by looking at the invocation diagrams containing the concept. In a sense, 

this provides an interface of all of the concept’s behaviors. It is exactly these 

behaviors which are accessible for use in an actor graph (and consequently, which 

will be shown in the drop-down box). Figures 45-47 illustrate this idea. Note that 

these are behavior diagrams, not actor graphs – although the notation used is very 

similar to that of actor graphs, its semantics are entirely different!  

 

 

Figure 45 – Behavior Definition Diagram Schematic 

 

 

Figure 46 – Behavior invocation diagram schematic – instance 
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Figure 47 – Behavior invocation diagram schematic – concept 

 

Figure 45 displays the definition of a behavior. At this stage, no behaviors are 

available to the GUARD concept. Figure 46 invokes the behavior, by linking it to 

guard1 (an instance of the GUARD concept). Still, the GUARD concept has no 

behaviors to choose from. Finally, in the invocation diagram in figure 47, the 

behavior’s actor is specified to be of type GUARD. Now, GUARD does have 1 

available behavior, namely someBehavior(). The semantics of this behavior are 

modeled by the diagram in figure 45, the actor is the guard object executing it. 

 

Note the use of a Java/C++ method-like notation for the behaviors. This is done 

because behaviors are reminiscent of methods in an object oriented programming 

language. The notation is chosen to improve continuity with the property and state 

notations, which also used a Java-style syntax. 

 

4.8.4.2. Multiple Actor Behaviors 

Next, let us take a look at a more complicated behavior, with multiple actors, as 

shown in figures 48 and 49. 

 

 

Figure 48 – Definition of a patrol behavior with 4 different actors 

 

 

Figure 49 – Invocation of the behavior defined above 

 

Since this behavior has multiple actors, things get a bit more complicated. If the 

behavior is rewritten in textual form, with the actors as parameters  
 

squadPatrol( GUARD Leader, GUARD Sniper, GUARD Scout,  
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DOCTOR Medic ) 
 

It becomes apparent that a single guard can play three different roles in this 

behavior (leader, sniper, or scout of the patrol). The fourth role, the medic, can not 

be played by a GUARD, but only by an instance of the DOCTOR concept. 

 

Thus, an initial hunch could be to view an invocation diagram like the one in figure 

49 as the definition of three new behaviors for the GUARD concept : one for each 

of the roles played by the guard. Using this approach, each of these behaviors 

would be used in a separate actor graph, and thus, four actor graphs would be 

constructed : one for a LeaderGuard, one for a SniperGuard, one for a 

ScoutGuard, and one for a MedicDoctor. This is illustrated in figure 50. Note that 

for demonstration purposes, the name of the behavior was adjusted to reflect the 

role played by the object. 

 

 

Figure 50 – Example actor graphs including the squadPatrol behavior 

 

However, this approach has a severe problem : when each of these graphs is 

initialized as a scenario actor in a scenario graph, the pat behavior in each of the 

actor graphs would represent the same instance of the behavior, but with a different 

role being played by the current object.  

Sadly, there is no way to know that the behavior is the same in each of the actor 

graphs, and thus, that it requires coordinated execution. This can lead to problems 

such as the LeaderGuard object being killed, prompting the behavior to break 

down : with the leader gone, the behavior can not be executed further. Events like 

these should be factored into the actor graphs (for example, by defining a new 

Regroup state to transition to when the leader is dead), but this can not be achieved 

by using four separate actor graphs, as shown in figure 50. 
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Therefore, for behaviors in which multiple actors actively participate (such as the 

squadPatrol() behavior), the actors should be restructured into an unconnected 

complex object (section 2.3.2.3). Using this technique, the squadPatrol() behavior 

can be defined as a behavior of the group of objects, and thus, its participants are 

automatically coordinated. Figures 51 and 52 show example graphs for the 

complex concept squad and its subobjects. The squadPatrol() behavior is now 

correctly represented as a single behavior, in the Patrolling state. 

 

 

Figure 51 – Revamped actor graphs – the behaviors have all been moved to the Squad 

actor graph 

 

 

Figure 52 – Squad actor graph 

 

4.8.4.3. Behaviors with Reference Actors 

One final nuance remains : in the VR-WISE behavior modeling approach, it is 

possible to define an actor as enduring the behavior passively, rather than actively 

participating in it. These actors are called reference actors (section 2.4.1.2). In the 

case where only one actor actively executes the behavior, while being dependant 

on multiple reference actors, the behavior is simply available to the concept of the 

active actor. The reference actors are added to the behavior as parameters, and the 

actual instances being used as reference actors in the execution of the behavior, are 

specified in the scenario graphs. This is explained in section 5.7.1.1. 



 91 

 

For example, suppose that a behavior would be defined where a guard points at 

some object. In this case, the object in question would be a reference actor in the 

behavior, and the behavior added to the actor graph would look something like 

point( OBJECT target ). Of course, it is possible for multiple passive objects to be 

defined within a single behavior, in which case they are simply all added as 

parameters. 

 

Take note that the only possible parameters in the behavior definition expression 

are actors. Other possible behavior-influencing variables, like speed or 

acceleration, are specified in the lower level behavior definition, and are hence un-

adjustable within the actor graphs.   

 

 

 

4.9. Visuals 

4.9.1. General 

It is possible that one would want to model an object which changes its appearance 

or sound between states. Consider a world with a castle, which can be occupied by 

an evil king or a good king. When the evil king has occupied the castle, its walls 

are black, its courtyards are neglected and in the background, an ominous violin 

tune sounds. When the good king takes over the castle, however, the walls swiftly 

turn white, flowers blossom in the courtyards, and the music changes to an upbeat 

lute melody. Suppose this is a game where smoothness of the gameplay is more 

important than realism, so the transformation between good and evil castle (and 

vice versa) should happen fluently, in a couple of seconds, giving the player a 

visual indication when a castle has just been conquered.  

 

How would something like this be modeled? With the modeling techniques 

described so far, it is easy to see how the sound change would be designed : this is 

as simple as creating two states for the castle, Good and Evil, and add a separate 

(infinite) sound behavior in each state. 

 

The graphical part however, is less obvious. There is currently no notation to 

specify this. Therefore, visuals are introduced : if a certain state is associated with a 

graphical representation of an object, then a visuals construct is added to the state. 

Such a construct consists of a keyword VISUAL, followed by the name of the 

graphics used. Per convention, graphic names are denoted like Java variables, to 

remain consistent with the rest of the notation. Hence, a visuals construct is 

denoted as : 
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<visual> ::= VISUAL <graphics-name> 
 

States without a specified graphical representation use the concept’s default one. 

 

Figure 53 models the castle described above, using the visuals constructs. The 

transition behaviors morph between the views, and fade the music out. Should no 

animation have been specified, then the change in visual representation would have 

been abrupt and instantaneous. 

 

 

Figure 53 – Transforming castle, example of visuals 

 

 

4.9.2. Views 

An important question remains : visuals include the name of a graphical 

representation, but which graphics are available? Where are they modeled?  

 

The most logical answer to this is, of course, at the lower level object modeling 

phase (section 2.3). After all, this phase is about modeling the (graphical) 

properties of a certain concept. However, concepts contain far more information 

than just a graphical representation : they posses properties, and are linked to a 

number of behaviors, for example. Therefore, simply modeling a number of 

different concepts, with a slightly different look, and using these to represent the 

graphics, is unacceptable : the new concepts would have to be linked to the exact 

same behaviors and have the exact same properties as the original concept – in 

other words, they should be completely similar, except for the graphics.  

 

Thus, the most obvious solution is simply to introduce a new construct in the object 

modeling phase, namely views. A view of a concept is nothing more than a 

graphical representation for it, and a single concept can have any number of views 

assigned. Consequently, properties would still be defined once, for the concept, and 

behaviors should still be linked exclusively to the concept, while the concept itself 

could have several graphical variations. A concept always has a default view, 
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representing its standard looks. Unsurprisingly, it is this view which is used as a 

graphical representation for state without specified visuals. 

 

While views are not explicitly present in the VR-WISE object modeling phase, all 

the necessary constructs are available. Recall from section 2.2 that domain and 

world mapping ontologies are used to link concepts from the VE’s domain to 

graphical representations. Views would simply be defined as mappings in either 

one of these ontologies : the default view is a mapping in the domain mapping 

ontology, while additional views may be defined as mappings in the world 

mapping ontology.  

 

It is not hard to come up with examples demonstrating the use of views : modeling 

different types of chairs, for example, which have the same basic buildup (four 

legs, a sitting board and a back support board). Or the GUARD concept, mentioned 

numerous times throughout this chapter, could be given views for representing 

several types of wounded guards (missing a limb, sporting blood stains in various 

places, ...).  

 

Like any relevant element modeled on a lower level than scenario modeling, views 

can be displayed in the concept’s drop-down box (as shown in figure 53). Here, the 

default view is underlined
12
. 

 

 

 

4.10. Transitions 

Up until now, all examples in this chapter used only one-way transitions. In the 

current section, different types of transitions will be introduced to make the 

designer’s life easier, and the diagrams less cluttered. Additionally, the concept of 

triggers is explained. 

 

Transitions are used to model the connection between states : if a transition from 

state A to state B exists, this means the object can switch to state B from state A. 

There are several types of transitions : 

 

� One-way transitions indicate a transition which is possible from one state 

to another, but not the other way around. They are denoted as a single 

arrow. This is by far the most common type of transition. 

                                                      
12
 But remember that no formal specification exists for the notation of the contents of the 

drop-down box, since they are not modeled here, yet merely displayed. 
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� Two-way transitions (drawn as a line with arrowheads at each end) 

indicate a transition which is possible in both directions between two 

states. They are a shorthand notation for two one-way transitions between 

the same two states (one in each direction). 

� Branching transitions are used when many states are interconnected (each 

state should be reachable from every other state). Instead of using a 

number of two-way transitions, which would quickly lead to cluttering of 

the graph, a dot is used, connected to each state through a single arrow. 

The name ‘branching transition’ is chosen because the dot essentially 

functions as a branching point : at this point, any of the lines can be 

followed to reach the next state. Note that this does not mean that the graph 

transitions into multiple states at once (this would be nonsensical), but 

rather, that the next state can be chosen from a number of options. 

 

Figure 54 provides an example of the notation for each transition. Pictures a and b 

have identical semantics, picture c shows a partial graph for a guard with 5 moods, 

which can randomly be changed between. 

 

 

Figure 54 – Transition notations: (a) one-way transition; (b) two-way transition; 

(c) branching transition 

 

In general, transitions only specify the possibility of a state change. The event 

triggering the state change is usually modeled within the scenario graphs, 

particularly for top-level transitions (transitions connected to at least one non-

nested state). However, for one-way transitions, it is possible that a trigger is 

specified on the transition itself, enabling the designer to create more detailed 

objects, which change state automatically, based on some condition. These triggers 

are marked with a TRIG keyword. There are four different kinds : 

 

� Behavior finish trigger : trigger fires when a certain behavior within the 

start state finishes execution. Notation : 
 

<behavior-finish-trigger> ::= TRIG atBehaviorFinish( <behav-

ref> ) 
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� Property qualification trigger : trigger fires when a certain property 

qualification becomes true. Unlike in section 4.7.1, the property 

qualifications used here are not assignments, but rather comparisons of the 

property value. Properties could for example be manipulated by behaviors 

within the states, or by the scenario graph, causing the trigger to be 

activated. Notation : 
 

<prop-qlf-trigger> ::= TRIG <prop-ref> <comparator> <num-value> 
 

� State qualification trigger : for complex objects, a change in state of one 

of the subobjects might prompt a state change of the entire object as well. 

Notation : 
 

<state-qlf-trigger> ::= TRIG <subobject-ref> : <state-ref> 

 

� Elapsed time trigger : trigger fires after a set amount of milliseconds. 

Notation : 
 

<elapsed-time-trigger> ::= TRIG onElapsedTime( <num-value> ) 

 

On a final note, it is possible (though extremely rare) that a transition could be 

triggered in several ways, and multiple triggers should be specified. This is 

achieved by separating the triggers using an OR keyword. 

 

 

 

4.11. Inheritance 

Consider two different types of guard : one is the regular patrol guard, mentioned 

numerous times in this chapter, who is either friendly or hostile towards the player. 

The other is a cowardly guard, who patrols along his route, like a regular patrol 

guard, but instead of turning hostile and attacking the player, he gets scared and 

runs away instead. Both guards have a Friendly state which is entirely similar, and 

identical transitions to a second state. The only difference is this second state itself.  

 

To the reader familiar with object oriented programming languages, this will 

immediately sound familiar : indeed, it sounds remarkably similar to inheritance in 

OO programming. The concept of defining a new graph as a slightly altered 

version of an existing graph is one which sounds attractive for scenario modeling : 

while it requires little extra work to model the example above as two separate actor 

graphs, it would be considerably more laborious to model if the guards had thirty 

matching states, and one divergent one. Therefore, inheritance is included in the 

VR-SDL object modeling approach. 
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4.11.1. General Approach 

To define an actor graph as a child of another actor graph, a UML-like notation is 

used (a line with a triangular white arrowhead, going from the child graph to its 

parent). The child graph inherits everything from the parent graph, including states, 

their contents, and transitions – except when specified otherwise. Therefore, 

everything bar that which changes can be omitted from the child graph. 

 

For example, suppose that a child graph is defined, identical to its parent graph, 

with the exception of one altered state. Let us call the original state (in the parent 

graph) S, and the new state (in the child graph) S’. Then S’, called an overwriting 

state, should have the form newName:S. Qualifications, behaviors and visuals from 

S do not propagate over to S’, and thus, S’ effectively starts as a blank state : if it 

should contain properties, behaviors or visuals that were also present in S, they 

need to be written down explicitly in S’ as well.  

 

If S’ is the only thing that changes compared to the parent graph, while all other 

states and transitions remain identical, all that needs to be included in the child 

graph is the changed state. Figure 55 shows an example actor graph for the guards 

described above.  

 

 

Figure 55 – Inheritance example : cowardly guard 

If the full CowardGuard graph were to be drawn out, it would look exactly the 

same as the PatrolGuard graph, with the exception of the Hostile state being 
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replaced by the Scared state. Note that, although the scared state contains the exact 

same qualification as the Hostile state, it should still be added explicitly. 

 

Note that the child graph needs not be linked to a concept, since it is obligatory for 

it to be linked to the same concept as its parent graph. This is because the parent 

graph may utilize numerous characteristics specific to its linked concept 

(properties, behaviors, ...), which means the child graph should know these as well. 

This can only be acquired by linking it to the same concept as its parent graph. 

 

When modeling inheritance, care should be taken that an overwriting state does not 

delete items which are referenced somewhere else in the graph (such as a behavior 

which is continued in another state). However, this is the responsibility of the 

designer. 

 

 

4.11.2. Dummy States 

The approach in the previous section works fine if the only changes take place 

inside the states. In other words, if the triggers on the transitions are the same as in 

the parent graph, if there are no extra or fewer transitions, if the transition 

behaviors are identical, and so on. Naturally, there is no guarantee that this will 

always be the case. Therefore, it is allowed to add dummy states, and specify the 

transition between the dummy state(s) and the overwriting state(s).  

 

A dummy state is simply an empty state (inside the diagram), all contents of the 

state (behaviors, properties, etc...) are identical to the parent graph. There is no risk 

confusing a dummy state and an overwritten state, since dummy states always have 

the same name as a state from the parent graph, while new states follow the naming 

convention described earlier. 

 

If a dummy state is added to the child graph, all transitions between it and other 

dummy states, or states which are not mentioned in the child graph, are identical to 

the parent graph. Hence, there is no need to draw them. On the other hand, any 

transitions between dummy states and overwriting states become void. If a 

transition between a dummy state and an overwriting state was already present in 

the parent graph (in the state that was overwritten), then it still needs to be redrawn 

in the child graph, along with any new or changed transitions.   

 

The reason for this lies in the removal of transitions. The alternative to the former 

approach is to provide a notation for the removal of a transition, and only include 

adjusted transitions in the child graph (in this context, ‘adjusted’ means added, 

deleted or changed). However, this would lead to a child graph in which certain 
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visible transitions would only be drawn to signify that they are not really there, 

while other transitions would be drawn because they are there now, but were not 

before. Even with a clear notation, this would be highly unintuitive, and thus, the 

former approach is used in VR-SDL. 

 

Figure 56 provides an example of dummy states. It shows the scared guard from 

before, but now, the guard can no longer revert to the Friendly state after getting 

scared. This is achieved by removing the transition from Scared to Friendly, using 

a dummy Friendly state. 

 

 

Figure 56 – Remodeled cowardly guard, using a dummy Friendly state to model an 

omitted transition 

 

The only thing which might be difficult to express with the current notation, is the 

removal or modification of a transition between dummy states. As it stands, a 

changed transition is easy enough: the transition is simply added, with the 

appropriate alterations (new behavior, new trigger, different type of transitions, ...) 

A removed transition can also be modeled, but it requires a bit of a detour. One of 

the dummy states connected by the transition should be changed to an overwriting 

state (and consequently, all properties, behaviors and such should be re-entered), 

and all transitions between the two states, excluding the one which should be 

deleted, need to be redrawn. 
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This is a smaller problem then it may at first glance appear to be, since it is 

unlikely to happen that a transition between two unchanged states should be 

changed or deleted. Most likely, if a transition changes, one of the states it connects 

to will change as well. 

 

 

 

4.12. Conclusion 

In this chapter, a concise overview of the modeling constructs for actor graphs in 

VR-SDL was given. Actor graphs are used to model the relevant states for the 

types of actors participating in a scenario. Their main components are : 

 

� Linked concept : The lower level concept linked to the actor graph. This 

provides a link to the object modeling phase in VR-WISE. 

� States : The main building blocks of an actor graph. States are used to 

model the changes that might occur in the actors during the course of a 

scenario. They can contain qualifications, behaviors and visuals. An actor 

graph has one encasing state, called its frame. 

� Properties : Mutable assets of an actor graph. 

� Qualifications : Specify a value for a property or state for a subobject, 

while the object is in a certain state. 

� Behaviors : Signify that the object is performing some behavior(s) while 

in a certain state, or when switching from one state to another. The 

behaviors are defined on the lower level, using the VR-WISE behavior 

modeling technique. 

� Visuals : Declare a look for the object while it is in a certain state.  

� Transitions : Forms the connection between the different states, detailing 

the possible state changes. They may or may not be labeled with a trigger : 

in the former case, the actor graph is in control of when the transition fires, 

while in the latter case, this is the responsibility of the scenario graph. 

 

Additionally, an inheritance notation is included for modeling similar types of 

actors. 

 

Once the necessary actor graphs for a scenario have been designed, they can be 

used to define the scenario’s actions. In the next stage of the scenario modeling, a 

scenario graph will be constructed, specifying the possible courses of the scenario, 

and the influence they will have on the actor graphs of its actors. 
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Chapter 5 

Scenario Graphs 

5.1. Introduction 

 

Figure 57 – Scope of this chapter : actor definition and scenario graph modeling 

 

In the previous chapter, actor graphs were described as a way to model the actors 

which can be manipulated during the scenario. However, the scenario itself is yet 

to be modeled. In VR-SDL, this is done by using scenario graphs (figure 57). A 

detailed overview of their components and notation is provided in this chapter. 

 

Scenario graphs are a kind of flowcharts, consisting of a web of linked events – 

actions performed by the user or an actor – defining the possible flows of the 

scenario. They provide facilities to formally define the amount and type of actors in 

the scenario (figure 57), and to manipulate these actors during the course of the 

scenario (through pre- and post-conditions of the events). 

 

This chapter opens with an example scenario, which is used as a recurring theme 

throughout the explanation of the different concepts involved in modeling the 

scenario graph. Consequently, a general overview of the approach and different 
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constructs for modeling a scenario is given. After that, a closer look is taken at the 

different parts of a scenario graph. 

 

Like the chapter on actor graphs, the bulk of this chapter consists of a very in-depth 

description of the scenario graph notation, issues with scenario modeling, reasons 

behind the introduction of several components, and so on. Therefore, the reader 

who is not concerned with these details, and is mostly interested in getting a 

general overview of the approach, may skip most of the technicalities and limit 

himself to sections 5.2, 5.3, and 5.10. 

 

 

 

5.2. An Example : Fire Alert 

Before turning to the explanation of the scenario graph notation, let us consider an 

example scenario, describing a fire alert in a building. This example will be used 

throughout the chapter, to demonstrate the different constructs involved in the 

modeling of scenarios. A full VR-SDL specification of the scenario (including 

actor graphs for the actors) is presented in appendix C. Chapter 6 returns to this 

example, reiterating the entire VR-SDL approach. 

 

The fire alert case study is a small game, where the user plays the role of a fireman 

tasked with rescuing as many workers as possible from a burning office building. 

The building has two floors, each containing a hallway and five offices : the first 

floor is accessible through the building’s front door, while the second floor can be 

reached by climbing a fire escape at the side of the building.  

 

The user takes control of a 3D fireman avatar, carrying a portable fire extinguisher 

with an unlimited supply of fire repressing foam. Before commencing play, the 

user may alter his fireman’s appearance by selecting a face type and skin color 

from a menu. Once this has been done, he is given control of the fireman and must 

enter the burning building to get the workers out.  

 

The player can choose whether he enters the building via the front door, or via the 

fire escape. In the former case, he needs to extinguish the entrance first, which may 

cause the corroded door to collapse. If this happens, the rubble needs to be doused 

and cleared before the front entrance is available again. In case the fire escape is 

selected as the means of entry, there is a chance it may collapse under the fireman’s 

weight. Since the player does not have the necessary tools at his disposal to repair a 

broken fire escape, an occurrence of this event would leave only the front door 

available for entering the building. 
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Once inside, the player can look for trapped workers, either in the hallways or in 

the offices. Since all the office doors are burning, they need to be extinguished in 

order to grant access, which may once again lead to a cave-in, similar to that of the 

front door. However, inside the building, there is not enough room for clearing a 

collapsed door. Therefore, these rooms become permanently unavailable.  

 

When a worker is encountered, either in a hallway or in an office, the player must 

talk to it and agree to escort it out of the building. There are two options for 

achieving this : either the worker may be lead out of the front door, or the fireman 

may extinguish and break an office window. Then, he can attach a rope to it so the 

worker can climb down.  

 

The fireman has a final ace up his sleeve : he has one experimental foam bomb in 

his backpack, which may be used inside an office, to extinguish it entirely. 

However, due to his unfamiliarity with the device, he must first build up his 

confidence level by rescuing enough people, before being able to deploy it. 

 

 

 

5.3. Approach 

Recall from the VR-SDL methodology explanation in section 3.4 that modeling a 

scenario consists of four steps (remember that step 1 is informal, and thus does not 

show up on the diagram in figure 57) : 

 

1. Description step : Informally describing the scenario and the different 

kinds of actors participating in it. 

2. Actor graph modeling step : Modeling actor graphs for the different 

types of actors. 

3. Actor definition step : Formally defining the actors. 

4. Scenario graph modeling step : Modeling the scenario graph. 

 

Step three and four constitute the modeling of the actual scenario, as described in 

this chapter. 

 

Although the actor definitions (section 5.4) are not physically a part of the scenario 

graph (they are merely written down in a textual form), they are very closely tied to 

the scenario graph modeling step. This is because the actor definitions specify the 

name by which the actors will be referenced in the scenario graph, as well as their 

role (an actor graph), which determines their possible evolution during execution of 
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the scenario. Hence, the actor definitions contain plenty of information which is 

used in – and thus essential to – the scenario graph. 

 

Scenario graphs themselves are a special kind of flowchart. A scenario is described 

as a web of events (section 5.5), drawn as rounded rectangles, which are connected 

to their possible follow-up events through transitions (section 5.8). There are two 

types of events : events describing an action taken by the user or one of the actors 

in the scenario (section 5.6), and events used for enhancing the graph structure and 

expressing additional information, unrelated to one particular action.  

 

Both kinds of events may contain conditions (section 5.7), which are used for two 

purposes : pre-conditions specify requirements that must be fulfilled for the event 

to be able to occur, while post-conditions describe side-effects of an event. The 

latter can be used for triggering state changes in actors, altering the value of some 

actor property, and more.  Additionally, terminals are introduced to denote points 

of no return in a scenario (section 5.9).  

 

 

Figure 58 – Top-level scenario graph for the fire alert example 

 

In figure 58, the scenario graph notation is illustrated by means of the top-level 

scenario graph for the fire alert example. The events containing a plus-sign in their 

upper right corner can be expanded to view the more detailed models, but the 

general flow of the scenario is clearly visible : at the start, the building (called b) is 

burning , the workers are in a state of emergency and the fireman’s appearance is 

being selected. After finishing this, the player enters the building, and decides on 

the action to take : either enter an office, or evacuate a worker. After completing 

the former tasks, he needs to select an action again, while completing the latter may 

also leave him outside the building, prompting him to re-enter it.   
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Figure 59 shows a graphical overview of the different components described in this 

chapter, labeled with the corresponding section they are described in. Note that 

these could be substituted for the grey boxes in figure 57.  

 

 

Figure 59 – Actor definition and components of a scenario graph 

 

 

 

5.4. Actors 

As explained in chapter 3, and repeated in section 5.3, the actors participating in a 

scenario need to be formally defined before the actual scenario graph is modeled. 

This is logical, of course : not defining the actors before the scenario graph is 

created would be like filming a movie before the roles have been cast.  

 

This section provides a detailed overview of a number of issues related to actors in 

a scenario graph. Section 5.4.1 describes how actors are defined, while section 

5.4.2 describes how to reference them. Consequently, two additional modeling 

issues concerning actors are explained : actor subgroups (section 5.4.3) and user-

controlled actors (5.4.4). 

 

 

5.4.1. Defining Actors 

While the actor definitions are strongly coherent with the scenario graph, they are 

not a physical part of it. Instead of using some graphical notation, linked to the 

actual graph, the actor definitions are written down in a text form. There are 

multiple reasons for this decision : 

 

� While the actors participate in the scenario, their definition is not a part of 

it. Therefore, it makes little sense to include it in the actual graph. 
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� Because actor definitions are very short and simple, the benefits of a 

graphical notation over a textual one are negligible. In fact, the extra space 

taken up by a graphical notation would vastly outweigh the increase in 

readability (if any). 

 

There are two types of actor definitions : single actor definitions, and actor set 

definitions. Both types contain two mandatory segments : the role played by the 

actor, and its name. Additionally, actors may be instantiated by linking them to 

physical objects from the VE. 

 

5.4.1.1. Single Actor Definition 

A single actor definition has the following form : 
 

<single-actor-definition> ::= ACTOR <actor-name> role <actor-role> 
                                    playedBy <instance-ref> 
                            | ACTOR <actor-name> role <actor-role> 

 

Note that actor definitions always contain a name and a role, and possibly an 

initialization. Two example actor definitions (one initialized, and one non-

initialized) are given below : 

 

1. ACTOR fireman role Fireman playedBy fireman1 

2. ACTOR bomb role FoamBomb 

 

Each actor has a name, which is used to reference it in the scenario graph. Actors 

also have a role
13
 : this is defined by an actor graph, which models its behavior 

during the course of the scenario. The available role names are the names of all the 

actor graphs defined in the actor graph modeling step. Hence, for the examples 

shown above to be valid, the actor graphs in figure 60
14
 need to exist. Note that the 

role in the first example, Fireman, is the name of the actor graph in 60a, while the 

role in the second example, FoamBomb, is the name of the actor graph in 60b.  

 

Observe that by linking an actor to an actor graph (through its role), it is indirectly 

linked to a concept as well (the actor graph’s linked concept). In the examples 

above, the concept of the fireman actor is FIREMAN, and the concept of the bomb 

actor is BOMB. 

                                                      
13
 Not to be confused with role names in complex concepts (section 2.3.2.2). 

14
 The full definition of these actor graphs is presented in appendix C. 



 106

 

Figure 60 – Example actor graph frames for the fire scenario 

 

So far, actors have been described in a rather abstract way : they have a name, a 

role and (through the role) a concept. Essentially, this provides enough information 

to model the entire scenario graph : it is known what actors are called, how they 

will behave, and how they are constructed. However, one final part is still missing 

from the actor definitions : the abstract actors should be made concrete by linking 

them to concrete objects (or instances, as described in section 2.3) from the VE. 

This process is called initializing (or instantiating) the actor. Obviously, actors can 

only be linked to instances of the correct concept. 

 

To understand what it means to initialize an actor, consider the fireman actor. It is 

possible that the VE in which the fire alert scenario will take place, will have 

multiple FIREMAN objects. Each of these objects have an id to reference them in 

the world, such as fireman1, fireman2, and so on. By initializing the fireman actor, 

one of these FIREMAN instances is now selected to play the role of the fireman in 

the scenario – in this case, fireman1. The rest may be used as actors in different 

scenarios, or not at all.  

 

Note that actor initialization is not mandatory. Initialized and non-initialized actors 

are interpreted differently in the scenario : when an actor is initialized, it means 

that it is available from the start of the scenario. Non-initialized actors are actors 

that do not yet exist when the scenario commences, but could be added at run-time. 

Note that this implies that every actor which might at some point take part in the 

scenario, is defined at the start. In the fire alert example, the foam bomb is an 

example of an actor that could be defined as non-initialized : the foam bomb is 

only created in the VE, when the player decides to place it in some room. The fact 

that the player has the possibility to place a foam bomb, however, means that it 

should be added to the list of actors from the start – albeit not initialized. 

 

Now that the components of an actor definition have been explained, let us return 

to the example definitions at the start of this section. Their interpretation is as 

follows : 
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1. Defines an actor called fireman of role Fireman (an actor graph), and 

initializes it by linking it to a FIREMAN
15
 instance from the VE, namely 

fireman1. 

2. Declares a non-initialized actor called bomb, of role FoamBomb (again, 

this is an actor graph). This means that at some point in the scenario, the 

bomb actor may (but does not have to!) be initialized (e.g. when the 

fireman places it). 

 

5.4.1.2. Actor Set Definition 

Actor sets are used to describe collections of indistinguishable actors within a 

scenario. This means that they all play the same role, and are in the same state at 

each point of the scenario (except when in a different actor subgroup, as explained 

in section 5.4.3). 

 

As shown below, an actor set definition is quite similar to a single actor definition. 
 

<actor-set-definition> ::= ACTORS <set-name> role <actor-role>[Integer] 
                                  playedBy [ <instance-list> ] 
                         | ACTORS <set-name> role <actor-role>[] 

 

Note the use of the keyword ACTORS, as opposed to ACTOR in a single actor 

definition. 

 

The basic components of a single actor definition return in an actor set definition : 

actor sets have a name, a role (identical for all objects in the set), and are possible 

initialized. In addition, initialized actor sets also have a specified size – but non-

initialized sets do not. Unlike with single actor definitions, non-initialized actor 

sets are not used to add newly created actors during the course of the scenario, but 

rather, to add already existing actors at some point. They are used for defining 

subsets with deviating properties from a basic actor set. As mentioned above, this 

concept is called an actor subgroup. 

 

The initialization of actor sets is very similar to that of a single actor. The 

difference is that, instead of adding a single instance, a comma-separated list is 

used, delimited by square brackets. 

 

 

Figure 61 – Another example actor graph frame from the fire scenario 

                                                      
15
 Remember that this can be deduced by looking at the actor graph’s linked concept. 
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With the actor graph from figure 61 available, examples of both an initialized and a 

non-initialized actor definition are : 

 

1. ACTORS stressedWorkers role StressedWorker[4] playedBy  

       [w1, w2, w3, w4] 

2. ACTORS rescuedWorkers role StressedWorker[] 

 

These are interpreted as follows : 

 

1. Defines a set of workers, called stressedWorkers. Each member of the set 

plays the role of StressedWorker (the actor graph shown above). The set 

has four members, and contains the objects w1, w2, w3, and w4 from the 

VE. Each of these is an instance of the WORKER concept.  

2. Defines an empty set of workers, called rescuedWorkers. During the 

course of the scenario, actors of type StressedWorker may be added to this 

set. Note that actors can be in multiple sets at once, so members of 

stressedWorkers may (and will) be added to rescuedWorkers at some 

point. Also observe that no size is specified here, this is not allowed, as the 

set must remain dynamic – it is not known in advance how many actors 

will be added to the set. 

 

 

5.4.2. Referencing Actors in Scenario Graphs 

Once the actors participating in a scenario have been defined, they are available for 

use in  the actual scenario graph. To indicate that an actor changes under the 

influence of a scenario, one must of course be able to reference it therein. 

 

As mentioned before, this is what actor names are used for. In the simplest case, for 

single actors, an actor can be referenced by simply using its name. The first 

example actor from section 5.4.1.1 can be referenced as fireman.  

 

In addition, if an actor’s concept contains subobjects, these can be referenced in the 

same way as in the actor graph specification : by using a dot-notation. In other 

words, if a foam bomb is modeled as shown in figure 60, its detonator could be 

referenced by using bomb.detonator. Again, like in actor graphs, the concept 

names of the subobjects can be used to reference the set of all subobjects of a 

particular concept. The reference bomb.CILINDER would return a set with the 

container1 and container2 subobjects of the bomb actor. 
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Referencing an entire set of actors (for example, to denote a state change for all of 

the actors in the set) is entirely similar to referencing a single actor : the set name is 

used to reference it. Obviously, since sets may not contain subobjects, it is 

impossible to reference subobjects from a set. 

 

Referencing a single actor from a set is a bit more involved. Recall that, from the 

viewpoint of a scenario, actors in the same set are undistinguishable from one 

another. Therefore, it does not make sense to use an index to access one actor from 

a set (e.g., stressedWorkers[2]) – if this were required, the actors would have been 

defined separately. The specifics of referencing an actor from a set are explained in 

section 5.5.2.2. 

 

 

5.4.3. Actor Subgroups 

As stated in section 5.4.1, it is possible that one would want to reference a subset of 

the actors from the same set, instead of the whole set. For example, there are a 

number of stressed workers participating in the fire scenario, but the ones among 

them that have been rescued by the player will obviously behave differently from 

their counterparts which are still trapped in the building. This implies that some of 

the stressed workers should be in a different state than others. 

 

To tackle this issue, a new concept is introduced: actor subgroups. An actor 

subgroup is a group of actors with the same role. The sub- prefix follows from the 

fact that all actors with the same role will initially be defined as one set (such as the 

stressedWorkers set from section 5.4.1.2), so an actor subgroup is essentially a 

subset of this initial set. 

 

Subgroups are entirely dynamic : during the course of the scenario, actors could be 

added to or deleted from the subgroup, and it is unknown how large it will be at 

any point in the scenario. The addition and deletion of actors from the subgroup is 

discussed in section 5.7.2.4. Here, the focus lies on how to define actor subgroups. 

 

The possible actor subgroups should be known before executing the scenario – 

thus, while modeling its graph. In a sense, these subgroups define the different 

conditions an actor might endure in a scenario. Obviously, these should be known 

from the start, otherwise they could not be modeled. For instance, returning to the 

fire alert example, two sets would be defined : stressedWorkers and 

rescuedWorkers. The first set represents the workers still trapped inside the 

building (and thus, it initially contains all workers), while the second one – the 

subgroup – contains the workers that have been freed (and hence, it is empty at the 
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start). As the scenario progresses, actors will be added to or deleted from the 

subgroup, based on the occurrence of some event. 

  

The notation used for defining actor subgroups has already been declared in section 

5.4.1.2 : a non-initialized actor set is used, specifying the role of the actors in the 

subgroup and the name used to reference it. Remember that a non-initialized actor 

set definition is not allowed to have a pre-specified size – this is because it is 

impossible to predict how the scenario will develop, and thus, how many actors 

will be added to the subgroup. 

 

An interesting property of actor subgroups is that, although they are completely 

flexible in terms of membership (each actor of the correct type can be added to or 

deleted from the set at runtime), they can be referenced in the same way as regular 

actors can. In other words, one could say “all workers who have been rescued are 

cheering” by declaring that all actors in the set must be in the Rescued state, 

wherein a cheering behavior is recorded. Consequently, when a player rescues a 

worker, he would be added to the rescuedWorkers subgroup. 

 

 

5.4.4. User-Controlled Actors 

While scenarios can be defined without any form of user interaction, this would not 

prove to be very interesting : In such a case, the scenario would consist of a 

predetermined series of events, with the only possible variation being based on 

pure randomness – by haphazardly selecting a next event from a number of 

possibilities. Clearly, user-interaction is required to provide for  more appealing 

scenarios. 

 

In general, the user can interact with a scenario in two ways, both of which have 

some impact on the definition of actors. Primarily, there is avatar user interaction, 

where the user manipulates the VE through some actor (his avatar – hence the 

name). Secondly, there is interface user interaction, where the user represents the 

actual person sitting behind the computer
16
, manipulating the VE through menus 

and widgets which are not physically part of it. 

 

Note that it is possible for multiple users to interact with the application at the same 

time. This case is not considered here, and is left for future work. In the remainder 

of this chapter, user interaction always assumes a single user. 

 

                                                      
16
 Or in more advanced VR environments, the person wearing the visor and sensor gloves. 
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5.4.4.1 Avatar User Interaction 

Avatar user interaction represents all interaction the user has with the actual virtual 

environment, through the use of his avatar – in the fire alert example, this is the 

fireman. For example, the user can not extinguish a fire himself, but the fireman 

actor can. An actor functioning as the user’s avatar is modeled and defined in the 

exact same way as a regular actor, with one minor difference : when defining or 

referencing the user’s avatar, its name is underlined. The slightly altered fireman 

actor definition now looks as shown below : 

 

ACTOR fireman role Fireman playedBy fireman1 

 

At any point during the execution of a scenario, the user has at most one avatar. 

This makes sense, as the user can only control a single object at a time. However, 

the avatar is not limited to a single actor, it can be an actor set as well. The latter is 

possible because all the objects in the set will perform the exact same actions. 

Hence, the user is really just entering a single stream of actions, which happen to 

be performed simultaneously by a number of different actors. An example of this 

are real-time strategy games like the recently announced Starcraft 2 by Blizzard 

Entertainment
17
, where the player can select a random number of units of a certain 

type, and give them instructions like moving to a certain spot, or killing a group of 

enemies. 

 

Additionally, it is possible for the user to get a different avatar during the course of 

the scenario. Consider a squad-based shooting game
18
, for example, where the user 

commands a group of four soldiers, each with their own specific skills. At any 

point during gameplay, the player has direct control of exactly one soldier, while 

the other three are being steered by AI. The player can freely switch between the 

four soldiers, to maximally utilize their individual capacities. 

 

Due to this possible change in avatar during the execution of a scenario, it is 

imperative that the actor which currently serves as the avatar is clear at any point in 

the scenario. Therefore, at definition, and whenever the avatar is referenced, its 

name is underlined.  

 

5.4.4.2. Interface User Interaction 

In the fire alert scenario, an example of interface user interaction would be the 

start, where the user selects a face style and skin color for his fireman. In the actual 

application, this could be done through a pop-up menu which is brought up by 

                                                      
17
 http://www.starcraft2.com/ (access date 19/05/2007) 

18
 Such as the popular Conflict games : http://www.conflict.com/ (access date : 30/5/2007) 
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right-clicking the fireman, by using a menu which automatically appears when the 

scenario commences, and so on... Figure 62 illustrates such a character 

customization interface. 

 

 

Figure 62 – Character customization menu from the game Asheron’s Call
19
 

 

In this case, the user is clearly not interacting with the VE through an avatar, but 

rather, he is interacting with a menu that is not actually part of the virtual 

environment, but provides information about it. 

 

In scenario graphs, the actor name user is reserved for modeling interface user 

interaction, and is thus unavailable for naming regular actors. No definition is 

specified for the user actor, since it has no physical representation in the VE, and 

thus, it needs not be linked to an actor graph either. Its sole purpose is to describe 

active events (section 5.5.2) taking place on the interface level, as human-computer 

interaction. Like the avatar of the user, any time the user actor is mentioned, its 

name is underlined. 

 

 

 

5.5. Events 

While actors are essential to the interpretation of a scenario graph, their definitions 

are not actually a part of it. As described in section 5.3, a scenario graph is 

                                                      
19
 Picture from http://acvault.ign.com/ (access date 19/05/2007) 
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basically a sort of flowchart, connecting events in the world to possible follow-up 

events, thus creating a web of actions that may influence and lead to one another. 

 

This section describes these events. In section 5.5.1, a general overview of the 

event notation is provided. Afterwards, two different types of events are described : 

active events in section 5.5.2, and passive events in section 5.5.3.  

 

 

5.5.1. Notation and Contents 

5.5.1.1. Event Notation 

Events display many similarities to actor graph states : 

 

� The notation for events is similar to that of states in actor graphs, namely a 

double rectangle, with the event name in the top box and extra information 

in the bottom one. Equivalent to states, these boxes are called the event’s 

name field and content field, respectively.  

� Like actor graph states, each (sub)graph for a scenario may contain a single 

start event, where the scenario execution starts. Start events are drawn with 

a double edge (again, in analogy with start states). 

 

However, to avoid confusion between the concepts of state and event, events are 

denoted by rounded rectangles. Figure 63 demonstrates the event notation. 

 

 

Figure 63 – (a) Event notation; (b) Start event notation 

 

There are two main types of events : active events, representing an action taken by 

some (possibly user-controlled) actor, and passive events, used to clarify the graph 

structure and facilitate modeling. Both are described later, in sections 5.5.2 and 

5.5.3.  

 

Notation-wise, the main difference between an active event and a passive event lies 

in the rules for writing the event name – in other words, in the name field. The 

content field displays both similarities and deviations between the two event types. 

 

The content field of both active and passive events may contain conditions : 

primarily, there are pre-conditions – conditions  which must be true for the event 

to be able to be executed – and secondly, there are post-conditions – results (or 
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side-effects) of executing the event. The latter imply some change in the VE, such 

as an actor changing state. Note the subtle difference in interpretation of pre- and 

post-conditions : pre-conditions imply something being true before entering the 

event, while post-conditions imply something becoming true after exiting the event. 

A pre-condition can only hold if it is true from the start of the scenario, or if some 

event has occurred which has it as a post-condition. There are numerous different 

types of both pre- and post-conditions, all of which are described in detail later 

(section 5.7).  

 

 

Figure 64 – An event containing one pre-condition and one post-condition 

 

Figure 64 shows an event with both a pre- and a post-condition. Informally, this 

event models the fireman entering the building on the second floor, via the fire-

escape. It states that, for this to be possible, the fireEscape actor (a subobject of the 

Building actor b, which was mentioned earlier in the description of 58) should be in 

the Ok state – in other words, the fireman can not enter the building using a 

collapsed fire escape, which makes sense. Additionally, after the event is executed, 

the fireman actor will be in the InBuilding state. 

 

 

5.5.2 Active Events 

This section goes into detail about active events. As mentioned previously, active 

events model some action being taken by an actor. Actions are written in the 

event’s name field. The content field contains requirements and side-effects of the 

action, specified through pre- and post-conditions. 

 

There are three different types of actions which can occur : 

 

� An AI actor performs an action or interacts with another AI actor. For 

example, a worker in the fire alert scenario could spontaneously start 

talking to one of his coworkers. 

� The user’s avatar performs an action or interacts with an AI actor. This is 

avatar user interaction, as described in section 5.4.4.1. In the fire alert 

scenario, every action taken by the fireman actor is an example of this.  

� The user interacts with the application through an interface (interface user 

interaction, as described in section 5.4.4.2). The start of the fire alert 
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scenario, where the user selects the skin color of the fireman, is an 

illustration of this. 

 

It is clear that actions always have a subject
20
, which is performing them, and 

possibly an object
21
, undergoing the action. Both subject and object are actors from 

the scenario.  

 

Additionally, an action may both require and return parameters. However, the only 

possible input parameters are properties belonging to the actors participating in 

them. For example, the force with which a fireman chops something, could be 

dependent on his strength, meaning strength would be an input parameter for the 

chopping action. Since the actors participating in the action are known (the subject 

and the object), and their properties can be accessed, the required parameters are 

already available to the action. Thus, there is no need to provide a way for 

declaring extra input parameters.  

 

Return parameters on the other hand, do need to be declared explicitly. For 

instance, the action of selecting a skin color returns the chosen color as a return 

parameter.  

 

Important to note is that these actions are only mentioned in the events, using an 

intuitive name to describe what they do. The formal specifics of what they mean 

and how they are executed should be modeled using VR-DeMo interaction 

modeling techniques, as explained in section 5.6. All that is important from the 

event’s point of view are the actors participating in an action, and optionally, the 

parameters it returns. 

 

The information above leads to the following notations for an active event name : 
 

<action-event-name> ::= <subject> <action> 
                      | <subject> <action> <object> 
                      | <subject> <action> ( <parameterlist> ) 
                      | <subject> <action> ( <parameterlist> ) <object> 

 

The event displayed in figure 64 is an example of an active event. Its name is 
 

fireman ENTERS_2F b 

 

where <subject> = fireman; <action> = ENTERS_2F; and <object> = b. 

Recall that b is the building. This event has no return parameters. 

 

                                                      
20
 The word ‘subject’ is used in analogy with the grammatical term. 

21
 The word ‘object’ is used in analogy with the grammatical term.  
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The remainder of section 5.5.2 provides an overview of the different parts of an 

active event name. 

 

5.5.2.1. Subject 

The subject of an action is the most straightforward part. It is simply an actor – or a 

set of actors – participating in the scenario. In case of a set, all actors therein 

perform the action simultaneously. As suggested in section 5.4.4.1, a practical 

example of this is a real-time strategy game, where the user gives orders to many 

identical units at the same time. The subject is denoted as an actor reference 

(section 5.4.2). 

 

5.5.2.2. Object 

There are several ways to select the actor(s) undergoing the action. The simplest 

one is, again, to reference one of the scenario’s defined actors. Note that the object 

(or the subject) need not be top-level : it is equally possible to reference some 

subobject of an actor (e.g. foamBomb.detonator). Like the subject, the object can in 

fact be a set of actors, both top-level (e.g. stressedWorkers, returning the set of all 

stressed workers) or not (e.g. foamBomb.CILINDER, returning the set of all of the 

foam bomb’s subobjects of the CILINDER concept). 

 

Additionally, it is also possible for the object to be a single actor from a set. To 

understand this, consider the fireman finds a worker somewhere in the building, 

and talks to it to escort it out. Note that it doesn’t really matter which worker the 

fireman talks to : he has the same options for each one. However, once he has 

agreed to escort a certain worker out, the follow-up actions (lead the actor to the 

door, or to a window and let him climb out using a rope) refer to the same worker 

that was originally talked to. Once the worker is rescued, another one should be 

searched for, and the process starts over.  

 

In this case, the scenario should contain an event where the fireman talks to a  

random member of the stressedWorkers set, which he can consequently refer to. To 

model this, a temporary variable is created, which is bound to the worker in 

question for as long as needed. Once the worker is rescued, the variable is released, 

and can be reused for rescuing another worker.  

 

Releasing the variable can only be done by using a post-condition (section 5.7.2.6). 

Binding it, however, can be done in two ways : using a post-condition, and by 

specifying the variable’s name as  the object of some action. In this latter case, the 

object should be written as  
 

<object> ::= <set-reference> <variable-name> 
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Once this event has been executed, variable-name is bound to the correct object in 

the set until it is released through the post-condition of some later event.  

 

 

Figure 65 – Fire alert scenario graph fragment : escort decision 

 

Figure 65 shows a fragment of the fire alert scenario graph, modeling the situation 

described above, where the fireman talks to a worker, and either decides to escort it 

out or not. The event labeled 1 is an active event, where an actor from the 

stressedWorkers set is bound to the variable s. Note that the object notation equals 

‘stressedWorkers s’. This variable is consequently used to reference this worker in 

events 2 and 3 (in their content fields). 

 

5.5.2.3. Action 

The action, per convention written in capitals, describes what happens. It is merely 

a name, nothing more : the actual modeling of the action does not happen in the 

events, but on different levels of the VR-DeMo approach. As a final step in the 

construction of a scenario graph, all its actions should be linked to a formal 

specification (section 5.6).  

 

For instance, an event modeling a fire being put out by the fireman could be named 

‘fireman DOUSES fire’. By reading this name, it is instantly clear what happens in 

the event. However, the DOUSES action might be quite complicated : the closer 

the fireman is to the fire, the faster it is extinguished; the fireman needs to be 

facing the fire, he should keep spraying long enough, etc... Luckily, these are issues 

that the event needs not be worried about. 
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Note that the scope for the action names is limited to the event itself. Therefore, the 

designer is free to use whichever names he pleases, to optimally clarify what 

happens in the event. 

 

The approach of allowing designers to freely specify the name of actions, and later 

link them to a more formal definition, should allow for more intuitive modeling, 

and a more understandable diagram (this was inspired by the work discussed in 

[19] ). 

 

5.5.2.4. Return Parameters 

If an action should return some value(s), a comma-separated list of return 

parameter names is added behind the action name, between parentheses. These 

parameter names provide a link to the lower level at which the actions are 

modeled : the same parameter names should be used for the return values of the 

formally defined actions. For example, in event 1 of figure 65, the player’s decision 

is assigned to the choice parameter. From then on, this name is bound to the 

player’s decision – either ‘rescue’ or ‘ignore’ – until overwritten. 

 

The namespace of the return parameters is graph-wide : if a different color 

parameter is defined in a later event, the value from the previous one is 

overwritten. This is beneficial, since it provides the designer with the opportunity 

to save the value of a parameter until much later in the scenario graph, or the 

possibility to reuse names two events after they were first defined. 

 

Return parameters are not typed, they may contain any possible type of value. This 

should increase both the clarity of the graph and the modeling flexibility, since the 

same parameter can be reused to contain different types of values. 

 

 

5.5.3. Passive Events 

5.5.3.1. Purpose 

Passive events are events that do not actually represent an action being carried out, 

but are simply used to express extra pre- or post-conditions, facilitate modeling, or 

merely clarify the graph. In some situations, passive events are required to model 

some course of actions, while at other times they merely provide the designer with 

multiple options to model a certain part of the scenario, allowing him to choose the 

modeling style that he prefers – while still remaining formal.  

 

In certain situations, it is impossible or unpractical to use an active event. For 

example, suppose that one would like to define an event with a somewhat 
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randomized outcome – like spraying water against a burning door, which may 

either cause the door to stop burning, or collapse. Figure 66 shows this example 

situation.   

 

 

Figure 66 – Non-deterministic event, modeling the possible consequences of 

attempting to extinguish a burning door 

 

In such a case, it is unfeasible to model the post-conditions within the initial event, 

since they might vary depending on which outcome is selected. Therefore, a new 

event is added for each possible result, defining both the probability that the result 

is chosen, and its post-conditions. Clearly, these resulting events do not represent 

an action being carried out, so they can not be modeled as active events.  

 

Passive events are modeled in the exact same way as active events, with the 

exception that their name can be chosen freely. The only requirement is enclosing 

the name in parentheses, to make the distinction from active events even clearer. 

Since passive events do not signify an action being performed, there is obviously 

no need for passive event names to be linked to a formal action definition. 

 

Roughly speaking, three types of passive events can be distinguished : 

 

• Nondeterministic events: Like the example displayed in figure 66. As the 

name suggest, they are used to model an event with a nondeterministic 

outcome. 

• Complex events: Events containing a subgraph. They are used to include a 

higher-level structure in the scenario graph. A detailed explanation is 

provided in section 5.5.3.2. 

• Branching events: Branching points in the scenario, usually used for 

points where a multitude of followup events are available, or where many 

events come together. These events often have a name prompting the user 

to do something, like ‘select action’. 

 



 120

Even though passive events can be used for several notably different purposes, they 

all use the same notation. This is because, while the events are used differently, 

they all have in common that they do not contain an action, and that they are used 

to enhance the structure of the graph.  Introducing three different notations for 

these three types of events instills more confusion than it would solve, particularly 

due to the possibility of multiple uses of the passive event to appear simultaneously 

(e.g. an event may be a complex and a branching event at the same time). 

 

5.5.3.2. Complex and Reused Events 

Aside from conditions, the content field of a passive event may also contain a 

subgraph. In such a case, the event is said to be a complex event. Events containing 

a subgraph are automatically labeled with a minimize / maximize button in the right 

corner of the name field, allowing the designer to collapse complex events so only 

the name is shown. Other than that, the notation is identical to regular events. 

Complex events are useful for clarifying the structure of the diagram, for showing 

the scenario on a higher level, and for reusing elaborate events inside the same 

scenario graph, to avoid having to model them twice.  

 

Figure 67 illustrates the concept with a complex event from the fire scenario, 

modeling the possible sequence of actions taken to enter an office. The reader does 

not need to be concerned about the unfamiliar specifics of the notation (aside from 

the events) at this point; they will explained later in this chapter. 

 

 

Figure 67 – (a) Full complex event example; (b) Collapsed version of the event 
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It was mentioned above that complex events can be reused inside the scenario 

graph. This deserves some extra explanation. Suppose a graph contains a complex 

sequence of actions which returns in several places during the execution of the 

scenario. Then, instead of remodeling the whole thing, it would be far easier to 

simply include a reused event with the same name, referring to an event defined 

somewhere else. This is allowed, by using an event with the exact same name, and 

an arrow symbol in the left corner of the name field. The contents field is left 

blank. Note that a reused event may be a start event while the original event is not, 

and vice versa. Figure 68 shows how to refer to the complex event from figure 67 

by means of a reused event. 

 

 

Figure 68 – Notation for reusing the event from figure 67 

 

 

 

5.6. Actions 

5.6.1. Action Types 

As described in section 5.5.2, active events contain some action to be executed by a 

subject, and possibly some object acted upon, and required return parameters. It 

was also mentioned that actions are simply written as strings within an event, and 

that their formal specification should be defined elsewhere. The current section 

describes the approach taken for this, thereby providing a firmer integration of VR-

SDL within the lower level VR-DeMo modeling techniques. 

 

Before looking at how to model things, consider the possible action types based on 

the subject executing the action : 

 

� AI action : the subject is an AI-controlled actor, the object (if present) 

might either be AI controlled or user controlled. 

� Avatar action : the subject is an avatar, controlled by the user, the 

facultative object is AI controlled. 

� User action : the subject is the user, who interacts with the application on 

meta-level (e.g., through menus and interfaces). Possible objects might be 

either AI- or user-controlled. If an object is present, this means the user 

interacts with it through high-level interaction devices (for example, by 

clicking on an object using his mouse). 
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5.6.2. Defining Actions 

The contrast between an AI action on one hand, and avatar and user actions on the 

other hand, is apparent. In the former case, the action is entirely deterministic, as it 

is executed by the AI, and thus, dependent on program code. Any possible 

randomness in the execution or outcome of the action can only occur because it is 

added by the designer. Avatar and user actions, however, are inherently non-

deterministic : it is impossible to predict exactly what the user will do, which 

buttons he will press, and for how long. Therefore, it seems clear that a different 

modeling approach will have to be taken for action, based on the involvement of 

the user. 

 

Initially, consider an AI action. Suppose an AI-controlled fireman would douse a 

flaming door. In this case, the subject is the fireman, the object is the door, and the 

action is to douse the object. The approach to take for modeling this is quite 

straightforward : modeling actions performed by some AI object, possibly 

dependent on another object, is precisely what VR-WISE behaviors (section 2.4) 

are used for. Hence, to model an AI action, a new behavior is defined, performed 

by an actor
22
 of the subject’s concept, and possibly including a reference actor of 

the object’s concept. In this particular case, a douse(DOOR door) behavior would 

be defined for the FIREMAN concept. Roughly, this behavior would model the 

fireman approaching the fire to a certain distance, facing it, and squirting it with 

foam for a preset amount of time. 

 

Now suppose that in the dousing action above, the fireman is controlled by the 

player. In this case, the action is an avatar action, and a behavior is insufficient to 

model the possible actions taken by the player : while he would take the same 

approach – aim – squirt steps as the AI actor, he might get closer than specified in 

the behavior, not aim perfectly at the fire, stop squirting foam too early so the fire 

is reanimated, and so on. Since the focus in this case lies far more on the actions 

taken by the user – who controls the avatar – the NiMMiT approach (section 2.5) 

seems appropriate to model this situation. One would create a NiMMiT diagram 

with the subject and object as input parameters, and the output parameters specified 

by the action  (if any). However, it is possible that the existing NiMMiT approach 

will have to be slightly extended to allow for greater compatibility with the VR-

WISE object and behavior modeling techniques, as these might both influence the 

                                                      
22
 The word ‘actor’ is used in the sense of an actor executing a behavior here, rather than a 

scenario actor. 
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action being performed (for one, actor properties might influence the execution of 

the action, as described in section 5.5.2). 

 

The final type of action, a user action, is more straightforward to model, since the 

NiMMiT approach was designed precisely for the purpose of modeling human-

computer interaction. Combined another part of VR-DeMo, VRIXML [7], even a 

language for modeling the composition and contents of the interface is available. 

 

 

5.6.3. Linking Actions to Action Definitions 

Now that the possibilities for defining actions are apparent, all that remains is to 

discuss how to link them to events. In fact, no formal specifications for this exist in 

VR-SDL. There is no formal notation for linking an action name, as declared in an 

event, to an action definition. The reason lies in the visual overhead such a notation 

would entrain. Since actions would have to be uniquely referable, at least one of 

the following would have to hold : 

 

� Action names should be unique graph-wide. This would likely be 

achieved by adding an id at the end of the action, hampering readability 

and complicating the modeling, particularly in large graphs. 

� Events should be given a unique id. While this approach would maintain 

the clarity of the action names, it would fore an extra id to be included in 

every event, therefore cluttering up the diagram with meaningless text. 

� The linking should be written down in the event’s content field. This 

has the same problem as the previous technique, but much more severe. It 

is particularly unadvisable because – from a scenario viewpoint – how 

actions are defined does not matter. Therefore, it would be particularly bad 

modeling to explicitly write the link down in each active event. 

 

The conclusion from the above is that the downsides of forcing a formal link 

specification are much more significant than the upsides (a quick and easy 

overview of the lower level design of a scenario’s actions). Therefore, the designer 

is given freedom in how to define the links : in a dedicated tool, each event would 

likely be given a menu in which to link the action definition, while on paper, a 

logical approach would be to write a table in combination with the event id 

technique. 
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5.7. Conditions 

Both active and passive events may contain conditions in their content field. There 

are two kinds of conditions, pre-conditions and post-conditions: the former are 

conditions which need to be fulfilled for the event to be able to occur, while the 

latter describes side-effects of the event. 

 

Care should be taken when trying to interpret the valid conditions in a scenario : 

they are determined by the path the scenario has taken through the graph. After all, 

when an event has been executed, its post-conditions are true. Thus, the valid 

conditions at any point during the execution of the scenario, are all the post-

conditions of events which have been executed, except of course the ones that were 

overwritten by a later event. 

 

This section describes the different types of available pre- and post-conditions. For 

each type of condition, the notation and a short explanation is provided. Examples 

of most types of transitions can be found in the scenario graph of the fire alert case 

study (appendix C). 

 

 

5.7.1 Pre-Conditions 

Pre-conditions are labeled with a PRE keyword. There are several different types of 

pre-conditions : 

 

� Actor state condition 

� Actor property condition 

� Actor set condition 

� Actor exists condition 

� Randomness condition 

 

Each of these conditions types is briefly described below. 

 

5.7.1.1. Actor State Condition 

This is the most common type of pre-condition. The basic idea is very simple : it 

states that an actor – or group of actors – is in a certain state, exactly like in actor 

graphs (section 4.7.2). Naturally, actors are referenced as described in the section 

5.4.2. To increase continuity, actor state conditions use roughly the same notation 

as state conditions in actor graphs : 
 

<asc-without-parameters> ::= PRE <actor-ref>:<state> 
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However, when comparing the two, there is an important addition to be 

contemplated. 

 

Consider the fire alert scenario. After a worker w has been rescued, he should be in 

the Rescued state. Within this state, the worker has the following behavior defined, 

indicating he is cheering at his rescuer : ‘DO chr = cheer(FIREMAN target)’. Note 

that, since the behavior includes pointing at the rescuer and patting him on the 

shoulder when he is nearby, it has a parameter target specified – otherwise, the 

worker would not know where to point or pat. 

 

However, when looking exclusively at the actor graph, the object still does not 

know which object to cheer at – since the target parameter is not bound to an 

object. Therefore, by simply writing the actor state condition as w:Rescued, it is 

unknown which object the worker is cheering at, and thus, who his rescuer is. This 

is clearly insufficient : instead of stating the worker has been rescued, one should 

declare by whom he was rescued.  

 

This is denoted by assigning some actor to the target parameter. In order to achieve 

this, the previously described state condition notation is extended with an optional 

list of parameters, linking the parameters of the state’s behaviors to actors from the 

scenario (in this particular case, fireman). Since a state will rarely contain more 

than one behavior, and even less frequently more than one behavior with 

parameters, this notation will not cause extensive overhead.  

 

Care should be taken to specify exactly which parameters a value is assigned to. 

Thankfully, all the tools required for such an endeavor are already available :  

 

� State and transition behaviors are named, so they can be referenced - using 

a scope delimiter if needed (section 4.8.2.2). 

� For accessing a certain parameter in a behavior, the dot-operator is used. 

� An actor is assigned to a parameter by using an equals sign. 

  

This leads to an extension of the notation, as shown below : 
 

<asc-with-parameters> ::= PRE <actor-ref>:<state> ( 

                              <behav-parameter-list> ) 

 

<behav-parameter> ::= <behav-ref>.<parameter-name> = <actor-ref> 

 

Using this notation, the full fire example condition would be specified as follows : 

PRE w:Rescued(chr.target=fireman). 
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Note that the majority of the states in actor graphs will not contain parameterized 

behaviors, in which case the parameter list is not needed, and the more compact 

condition notation from the start of this section is used. 

 

5.7.1.2. Actor Property Condition 

An actor property condition signifies that a certain actor property is equal to, 

greater than or smaller than some value. Again, the dot-operator is used to access a 

property. Additionally, actor property conditions can be used on all elements of a 

set. Rather than using a forced, shorter notation using only the set name, a longer, 

but more intuitive notation is used, employing a foreach keyword. 

 

Notation for a single actor : 
 

<apc-single-actor> ::= PRE <actor-ref>.<property> <comparator> <value> 

 

Notation for an actor set : 
 

<apc-actor-set> ::= PRE (foreach <name> in <set-ref>) <name>.<property> 

                        <comparator> <value> 

 

5.7.1.3. Actor Set Condition 

An actor set condition performs a test related to an actor set (or subgroup). 

Currently, two actor set conditions are defined : testing whether a set is empty, and 

testing whether some actor is in a set.  

In this type of condition, and the next two, a special keyword is used. These 

keywords are always succeeded by a question mark, to clarify the fact that they are 

pre-condition keywords. 

 

Notations : 
 

<actor-set-condition> ::= PRE empty? <set-ref> 
                        | PRE in? <actor-ref> <set-ref> 

 

5.7.1.4. Actor Exists Condition 

Tests whether a certain actor exists. Non-initialized actors return false here. This 

condition provides a way to check whether an actor has been created or deleted. It 

is in a sense the single actor equivalent of an actor set condition. 

 

Notation : 
 

<actor-exists-condition> ::= PRE exists? <actor-ref> 
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5.7.1.5. Randomness Condition 

Defines the probability of this event being chosen after a branching transition 

(section 5.8). If a single event at the end of a branching transition contains a 

randomness condition, so does the rest, and the sum of their probabilities should 

equal 1. The probability value can be any expression, for example, some object 

property might be used to determine it. 

 

Notation : 
 

<randomness-condition> ::= PRE random? <probability-value>  

 

 

5.7.2. Post-Conditions 

Post-conditions express side-effects of the event being executed. Hence, post-

conditions always indicate some change, while pre-conditions imply a continuity 

from some previous event. Unsurprisingly, post conditions are labeled with a POST 

keyword. The following types of post-conditions are distinguished : 

 

� State change condition 

� Property assignment condition 

� Actor creation / destruction condition 

� Subgroup manipulation condition 

� Behavior execution condition 

� Bind / release condition 

� Avatar change condition 

 

Many of these are counterparts to an equivalent pre-condition. They are explained 

below. 

 

5.7.2.1. State Change Condition 

A state change condition indicates a change of state in a certain actor, or actor set. 

It is specified in the same way as an actor state pre-condition (section 5.7.1.1), with 

a two alterations : 

 

� Instead of the colon notation, an arrow -> is used, to indicate the actor 

changes state, rather than simply being in one. 

� If a transition behavior is present, it is possible that this behavior will 

contain parameters (e.g. a ‘DO pt = point(FIREMAN target)’ behavior). 

Therefore, it is required to assign some actor to these parameters as well. 

The notation is entirely analogous to that of state behavior parameters. 
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Notation without parameters : 
 

<ssc-without-parameters> ::= POST <actor-ref> -> <state> 

 

Full notation :  
 

<ssc-with-parameters> ::= POST <actor-ref> -> <state> (  

                               <behav-parameter-list> ) 

 

<behav-parameter> ::= <behav-ref>.<parameter-name> = <actor-ref> 

 

5.7.2.2. Property Assignment Condition 

The equivalent of the actor property pre-condition, property assignment conditions 

assign a new value to a property of an actor. Like the actor property pre-condition, 

property assignment conditions can be specified on a set, using a foreach notation. 

 

Notation for a single actor : 
 

<pac-single-actor> ::= POST <prop-ref> = <value> 

 

Notation for an actor set : 
 

<pac-actor-set> ::= POST ( foreach <actor-name> in <set-ref> ) 

                         <prop-ref> = <value> 

 

 

5.7.2.3. Actor Creation / Destruction Condition 

Recall from section 5.4.1 that it is possible to define a non-initialized actor, which 

is available for initialization by the scenario. This is achieved by using an actor 

creation condition. Furthermore, an actor graph (and thus, a role) may serve as the 

parent graph for one or more child graphs (section 4.11). In such a case, the actor’s 

role may be defined as the parent graph, while the actual object linked to it is an 

instance of one of the child graphs. To specify this, the type of child which is 

created is written in the creation condition. 

 

Alternatively, existing actors can be destroyed by using an actor destruction 

condition. Destruction conditions can also be defined on an actor set, prompting the 

destruction of all actors in the set. 

 

In this condition and the following ones, special keywords are used, delimited by 

an exclamation mark, to indicate they are causing a change in the VE. 

 

Notations : 
 

<actor-condition> ::= POST create! <actor-name> ( <x>, <y>, <z> ) 
                    | POST create! <actor-name> as <actor-role-child> ( 
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                           <x>, <y>, <z> ) 
                    | POST destroy! <actor-name> 
                    | POST destroy! <set-name> 

 

5.7.2.4. Subgroup Manipulation Condition 

Subgroup manipulation conditions add an actor to a set, delete it from one, clear a 

set, or copy its elements into a different set.  

 

Notations : 
 

<subgroup-condition> ::= POST add! <actor-ref> <set-ref> 
                       | POST remove! <actor-ref> <set-ref> 
                       | POST clear! <set-ref> 
                       | POST copy! <set-ref> to <set-ref> 

 

5.7.2.5. Behavior Execution Condition 

A behavior execution condition prompts the execution of a certain behavior by an 

actor. It is much simpler than the behavior specification within states, however : 

the behavior is executed exactly once, and it needs no special naming. 

 

Notation : 
 

<behavior-execution-condition> ::= POST <actor-ref>.<behav-ref>( 

                                        <behav-parameter-list> ) 

 

5.7.2.6. Bind / Release Condition 

A bind condition binds a certain object from a set to a variable name. It remains 

bound until it is released by a release condition. Note that objects can also be 

bound to names by using a special notation structure for the object in an active 

event name. For a full explanation, refer to section 5.5.2.2. 

 

Notation : 
 

<bind-release-condition> ::= POST bind! <actor-name> <actor-ref> 
                           | POST release! <actor-name> 

 

5.7.2.7. Avatar Change Condition 

An avatar change condition defines a change in the user’s avatar. In other words, 

the user will stop controlling a certain actor in the world, and start controlling a 

different one. This was described in section 5.4.4.1. 

 

Notation : 
 

<avatar-change-condition> ::= POST setAvatar! <actor-name> 
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5.8. Transitions 

A transition in a scenario graph connects an event to its possible follow-up events. 

Unlike actor graph transitions, transitions in a scenario graph are never labeled 

with a trigger : it is the subject of an event which decides whether the event gets 

executed (by performing the appropriate action).  

 

Like in actor graphs (section 4.10), both one- and two-way transitions are 

available. They use the same notation : a full line with an arrowhead on one or both 

sides, respectively. Unlike in actor graphs, each event can only have a single 

transition leaving it. If the event has more than one follow-up, this transition 

branches towards each of them. The branching point is drawn as a diamond, a 

notation introduced for a better visualization of the choices in flow of the scenario. 

Figure 69 shows the different transition types. 

 

Be advised that a branching transition in a scenario graph is interpreted differently 

from branching transitions in actor graphs : in scenarios, they connect one event to 

possible follow-ups, while in actor graphs, they connect a number of states that can 

be randomly changed between. 

 

Figure 69 – (a) One-way transition; (b) Two-way transition; (c) Branching transition 

 

One final remark remains : complex events (section 5.5.3.2) may contain 

transitions connected to some lower level events, instead of the complex event 

itself. When such a complex event is collapsed, these transitions are shown as 

connected to the top-level event, to preserve the structure of the graph. 

 

 

 

5.9. Terminals 

Due to the inevitably complex nature of scenario graphs, it is easy to lose track of 

certain important key points in the scenario. Therefore, an extra construct is 

introduced to denote ‘points of no return’ in the scenario, simply as a visual aid to 

the designer or a reader of the diagram : terminals.  
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 A terminal is a black cross, connected to an event with a dashed line. It is always 

labeled with some text, describing what bridges have been blown up. Since this is 

an informal construct, solely used for increased readability, there are no special 

rules for writing the text. It is merely a natural language sentence. 

 

An example from the fire scenario is the collapse of the fire escape : once this has 

happened, the fire escape is forever inaccessible, since the fireman has no means to 

repair it. Therefore, the event describing the collapse of the fire escape might have 

a terminal connected to it, as shown in figure 70, to clarify this milestone in the 

scenario. 

 

 

Figure 70 – Terminal signifying the collapse of the fire escape 

 

 

 

5.10. Conclusion 

In this chapter, the notation and modeling concerns for scenario graphs were 

discussed. With the information presented in this chapter and the previous one, all 

that is necessary to model a scenario using VR-SDL has been put forward. 

 

Before creating a scenario graph, its actors should be formally defined. A textual 

notation is used for this, specifying the names and types of all actors involved. 

Additionally, actor sets and subgroups can be defined, representing a group of 

actors with similar behavior in the scenario.  

 

The scenario graph itself is a type of flowchart, describing the possible execution 

flows for the scenario. Scenario graphs may contain the following elements : 

 

� Events : Something that happens in the scenario. Two types of events 

exist : active events, representing an action taken by certain actors, and 

passive events, used for modeling extra conditions, important branching 

points in the scenario, and higher level or non-deterministic events. 

� Actions : The actions modeled in active events. They are formally 

specified on a lower level, either by behavior modeling or by interaction 

modeling. 
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� Conditions : Pre-conditions describe requirements for an event to be 

executable, and post-conditions express side effects of an event’s 

occurrence. 

� Transitions : Connect events to their possible follow-ups, thus specifying 

the possible flow of the scenario.  
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Chapter 6 

Conclusion and Further Work 

6.1. Conceptual Modeling of VR using VR-DeMo 

In this thesis, VR-SDL, a graphical scenario modeling language for virtual 

environments, was presented.  

 

 

Figure 71 – An overview of modeling a VR application using VR-DeMo 

 

 

6.1.1. Scene and Interaction Modeling 

VR-SDL is a part of the overall VR-DeMo approach (figure 71), a methodology 

developed for the conceptual modeling of virtual reality applications. Such a 

methodology has the potential to greatly reduce the time and costs involved in 

creating a virtual environment, since it eliminates the designer – implementer 

overhead, and because conceptual diagrams may be used as a basis for the 

generation of source code. In its current form, VR-DeMo provides support for 

modeling the scene of a virtual environment and the behavior of the objects therein. 

Furthermore, it also allows modeling user interaction with such a virtual 

environment, through interfaces and menus. 
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Modeling the scene of a VE together with the behavior of its objects is done using 

VR-WISE, an approach consisting of two steps (as shown in figure 71). Primarily, 

there is an object modeling phase, where the static objects populating the world are 

modeled. These objects may be given a graphical representation and some 

properties. For example, in an urban VE, objects modeled might include an office 

building, the components of that building (offices, doors, windows...), the workers 

populating it, and some additional types of people, such as a fireman. A fireman 

could have properties such as strength or face color. Additionally, there is a 

behavior modeling phase : after the objects have been designed, they may be given 

behavior to increase the realism of the VE. In the office building, for instance, 

workers may be talking to one another, walking towards a vending machine when 

they get hungry, or typing a report on their computer.  

 

Being able to model such a VE is very nice, but it has very little utility if the user 

can not interact with it. Therefore, VR-DeMo contains an interaction modeling 

approach called NiMMiT. Using NiMMiT, one may for example model the actions 

the user would have to take to change the skin color of some fireman.  

 

 

6.1.2. Scenario Modeling 

Even with the addition of interaction modeling, the virtual environment described 

in section 6.1.2 still lacks a purpose. One could imagine it being used in a shooting 

game, where the player would have to infiltrate the office building and eliminate 

some terrorists occupying it. A different game could have the building set aflame, 

and the player controlling a fireman, tasked with rescuing as many workers as 

possible. Alternatively, the VE may be employed for a room furnishing application, 

where the user can redecorate his own office, and walk around in it with a worker-

avatar. Another use might be that of a 3D chat room, where multiple users inhabit 

the world simultaneously, each controlling their own avatar, talking to their friends 

online. Though all these applications use the same underlying VE, they are clearly 

very distinct. Using only VR-WISE and NiMMiT, it is impossible to design this 

with VR-DeMo. 

 

Therefore, VR-SDL is introduced, a graphical language for modeling scenarios for 

VEs. A scenario is a sequence of events happening in the world, possibly 

influencing its objects. Any of the illustrated uses above could be seen as a single 

scenario, describing the possible occurrences in the VE. For example, if the 

application were a shooting game, the scenario would include the possibility of 

some worker being shot, while this would be impossible in any of the other 

applications.  
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A dual approach is used for modeling scenarios with VR-SDL : first, the objects 

participating in the scenario (called actors) are modeled using actor graphs, and 

after that, the scenario itself is designed as a scenario graph. 

 

6.1.2.1. Actor Graphs 

Actor graphs, a special kind of finite state machines, describe the way in which 

objects may evolve during the course of a scenario. Consider using the urban VE 

for the fire alert game mentioned above (a complete description of this scenario 

was presented earlier in this thesis, in section 5.2). In this scenario, many actors 

(such as doors, windows, offices...) may be either on fire or not on fire. This 

information is important to the course of the scenario : a door which is on fire can 

be extinguished, but a door which is not burning obviously can not.  

 

Actor graphs contain many facilities to express a complicated evolution during a 

scenario, such as : 

 

� Different behaviors may be executed in different states (i.e. a burning door 

displays a flaming animation, while a non-burning door does not). 

� Property values could be changed (i.e. the fireman may be given a different 

skin color at the start of the scenario).  

� The visual appearance of an object may be altered (i.e. a burning door 

looks different from an extinguished door). 

 

Many of these expressions are closely tied to the constructs modeled using the 

lower level VR-WISE approach. A full specification of the actor graphs of the fire 

alert scenario, demonstrating the notation, may be found in appendix C. 

 

6.1.2.2 Scenario Graphs 

When the actor graphs have been created, all that remains is the scenario itself. 

Scenarios are modeled using scenario graphs, a special type of flowchart. Before 

designing this graph, the actors in a scenario need to be formally defined. In an 

actor definition, a scenario actor is given a name, an actor graph, and it is possibly 

linked to some object from the VE. For example, while there may be multiple 

firemen present in the VE, the fire alert scenario only requires one. Through the 

actor definition, one of the fireman objects is selected as the actor in the scenario. 

Furthermore, actor definitions also specify which actor (if any) is controlled by the 

user.  

 

An actual scenario graph describes a web of events occurring in the world (i.e. the 

fireman douses a door), and their post-conditions : these are the effects that 



 136

executing the event has on the remaining actors (the aforementioned door would 

change from being on fire, to being doused). Events might also have certain pre-

conditions that should be fulfilled before they are able to occur. Through 

transitions, scenario graphs define the way in which events may follow up on each 

other, thus defining the possible flow of the scenario. For example, a fireman can 

only enter a room after having extinguished its door, and once he is inside a room, 

he can either talk to some worker inside it, douse the room’s window, or go back 

outside again. 

 

The full scenario graph for the fire alert scenario is included in appendix C. 

 

 

 

6.2. Further Work 

While VR-SDL is undoubtedly an interesting first step towards a finalized scenario 

modeling language, it would be quite pretentious to state that it is perfect in its 

current form. The results of the research performed for this thesis could be labeled 

‘VR-SDL 1.0’, and like any modeling, programming or scripting language, this 

initial version should evolve as the needs of its users dictate. Hence, the most 

important work to be performed in the future is experimentation with the VR-SDL 

approach. 

 

Throughout the thesis, it was often stated that the intuitiveness of the notation was 

an important design guideline while creating VR-SDL. However, during the 

creation of the approach, all one can do is to attempt to achieve intuitiveness, based 

on precedents set by popular existing languages such as UML. Whether VR-SDL is 

in fact intuitive or not, should be examined through user experiments. Such 

experiments would comprise of asking a group of volunteers to familiarize 

themselves with the notation, instruct them to model a few simple scenarios, and 

record their feedback. In order to obtain a valid sample of VR-SDL’s target 

audience, care should be taken to include people with different backgrounds, 

ranging from programmers to domain experts with lacking computer skills. 

Through such experiments, it would be interesting to investigate – among other 

things – whether the adoption of Java naming conventions does not make the 

notation harder to grasp for people unfamiliar with Java (or a language with similar 

conventions). Additionally, feedback would be provided about the intuitiveness of 

certain constructs or construct names.  

 

Additional case studies should be performed for examining the completeness of the 

VR-SDL notation. This could be evaluated by collecting a few scenarios (possibly 
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rather complex) from existing applications. Next, a VR-SDL expert would try to 

model these scenarios, to track down possible limitations in the approach. The most 

probable extensions include new pre- or post-conditions for the events in scenario 

graphs. 

 

One such gap in the present state of the approach, is support for scenarios with 

multiple users. This is currently not supported by VR-SDL, and should be added in 

the future. It would likely involve user definitions, next to actor definitions, and 

allow to link actors to a user as well as an instance. Some other possible extensions 

include the definition of common scenario patterns (similar to design patterns in 

programming [12]), or the introduction of scenarios that can change at run-time 

(for example, under the influence of a designer).  

 

Furthermore, the suitability of NiMMiT for modeling avatar interaction is open for 

debate. There is a possibility that the current NiMMiT approach would have to be 

extended to provide a tighter link with the output of the VR-WISE object and 

behavior modeling phases. 

 

Finally, the ability to generate source code for scenarios deserves looking into. 

Currently, the diagrams created by VR-WISE are already used to generate source 

code for the VE, and it would be interesting to see if the same can be done with 

VR-SDL diagrams – and to what extent. 
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Appendix A 

BNF Specifications 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



A.1. Actor Graph BNF Specification 

//Concept-related syntax 

 
<subobject-ref> ::= <role-name> 
                  | <concept-name> 
                  | <actor-graph-name> 
                  | <subobject-ref>.<subobject-ref> 
 
<subobject-link> ::= SUB <role-name> is <actor-graph-name> 
                   | SUB <concept-name> is <actor-graph-name> 
 
<prop-ref> ::= <property-name> 
             | <subobject-ref>.<property-name> 
 
<property-definition> ::= PROP <property-name> 
                        | PROP <property-name> = <value> 
                        | PROP <property-name> { <enum-list> } 
                        | PROP <property-name> { <enum-list> } = <value> 
 
<enum-list> ::= <enum-value> 
              | <enum-value>, <enum-list> 
 
 
 
//State-related syntax 

 
<qualification> ::= <property-qualification> 
                  | <state-qualification> 
 
<property-qualification> ::= QLF <prop-ref> = <value> 
                           | QLF <prop-ref> = [ <num-value>, <num-value> ] 
 
<state-qualification> ::= QLF <subobject-ref> : <state-ref> 
                        | QLF <subobject-ref> : { <state-list> } 
 
<state-ref> ::= <state-name> 
              | <state-ref>.<state-name> 
 
<state-list> ::= <state-ref> 
               | <state-ref>, <state-list> 
 
<do-behavior> ::= DO <behav-name> = <behav-def-ctr> 
                | DO <behav-name> = [ <behav-list> ] 
 
<behav-list> ::= <behav-def-ctr> 
               | <behav-def-ctr>, <behav-list> 
 
<behav-def-ctr> ::= <behav-definition> 
                  | <behav-definition> <execution-counter> 
 
<behav-definition> ::= <behav-specification> () 
                     | <behav-specification> ( <actor-list> ) 
 
<execution-counter> ::= * Integer 

                      | * ∞ 

 
<actor-list> ::= <behav-actor-param> 
               | <behav-actor-param>, <actor-list> 
 
<behav-actor-param> ::= <concept-name> <behav-actor-name> 
 
<cont-behavior> ::= CONT <behav-ref> 
 
<behav-ref> ::= <behav-name> 
              | <state-ref> :: <behav-name> 
 
<visual> ::= VISUAL <graphics-name> 
 
<overwriting-state-name> ::= <state-name> : <state-name> 
 
 
 
//Transition-related syntax 
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<transition-trigger> ::= TRIG <behavior-finish-trigger> 
                       | TRIG <property-qualification-trigger> 
                       | TRIG <state-qualification-trigger> 
                       | TRIG <elapsed-time-trigger> 
 
<behavior-finish-trigger> ::= atBehaviorFinish( <behav-ref> ) 
 
<property-qualification-trigger> ::= <prop-ref> <comparison-operator> <num-value> 
 
<state-qualification-trigger> ::= <subobject-ref> : <state-ref> 
 
<elapsed-time-trigger> ::= onElapsedTime( <num-value> ) 
 
 
 
//General syntax 

 
<role-name> ::= <name> 
<concept-name> ::= <name> 
<actor-graph-name> ::= <name> 
<property-name> ::= <name> 
<state-name> ::= <name> 
<behav-name> ::= <name> 
<behav-actor-name> ::= <name> 
<graphics-name> ::= <name> 
 
<name> ::= Identifier 
 
<enum-value> ::= String | Decimal | Integer 
 
<value> ::= String | <num-value> 
 
<num-value> ::= <number> 
              | <sign-operator> <value> 
              | <value> <arithmetic-operator> <value> 
              | ( <value> ) 
 
<number> ::= Decimal | Integer | <prop-ref> 
 
<arithmetic-operator> ::= + | - | * | / | div | mod 
 
<sign-operator> ::= + | - 
 
<comparison-operator> ::= < | > | == | <= | >= | != 
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A.2. Scenario Graph BNF Specification 

//Actor-related syntax 

 
<actor-definition> ::= <single-actor-definition> 
                     | <actor-set-definition> 
 
<single-actor-definition> ::= ACTOR <actor-name> role <actor-role>  
                            | ACTOR <actor-name> role <actor-role> playedBy <instance-ref> 
 
<actor-set-definition> ::= ACTORS <set-name> role <actor-role>[] 
                         | ACTORS <set-name> role <actor-role>[ Integer ] playedBy  
                           [ <instance-list> ] 
 
<instance-list> ::= <instance-ref> 
                  | <instance-ref>, <instance-list> 
 
<instance-ref> ::= <instance-name> 
                 | <instance-name>.<instance-ref> 
 
<actor-role> ::= Identifier 
 
<actor-ref> ::= <actor-name> 
              | <actor-ref>.<actor-name> 
 
<set-ref> ::= <set-name> 
            | <actor-ref>.<concept-name> 
            | <actor-ref>.<actor-role> 
 
 
 
//Event-related syntax 

 
<action-event-name> ::= <subject> <action> 
                      | <subject> <action> <object> 
                      | <subject> <action> ( <parameter-list> ) 
                      | <subject> <action> ( <parameter-list> ) <object> 
 
<subject> ::= <actor-ref> 
 
<action> ::= Text 
 
<object> ::= <actor-ref> 
           | <set-ref> <actor-name> 
 
<parameter-list> ::= <parameter-name> 
                   | <parameter-name>, <parameter-list> 
 
<structure-event-name> ::= ( Text ) 
 
 
 
//Condition-related syntax 

 
<pre-condition> ::= PRE <pre-condition-single> 
                  | PRE <pre-condition-list> 
 
<pre-condition-list> ::= ( <pre-condition-list> ) 
                       | <pre-condition-or-list> 
                       | <pre-condition-and-list> 
 
<pre-condition-or-list> ::= <pre-condition-single> 
                          | ( <pre-condition-and-list> ) 
                          | ( <pre-condition-and-list> ) or <pre-condition-or-list> 
 
<pre-condition-and-list> ::= <pre-condition-single> 
                           | ( <pre-condition-or-list> ) 
                           | ( <pre-condition-or-list> ) and <pre-condition-and-list> 
 
<pre-condition-single> ::= ( <pre-condition-single> ) 
                         | not <pre-condition-single> 
                         | <actor-state-condition> 
                         | <actor-property-condition> 
                         | <actor-set-condition> 
                         | <actor-exists-condition> 
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                         | <randomness-condition> 
 
<actor-state-condition> ::= <asc-without-parameters> 
                          | <asc-with-parameters> 
 
<asc-without-parameters> ::= <multi-actor-ref> : <state-ref> 
<asc-with-parameters> ::= <asc-without-parameters> ( <behav-parameter-list> ) 
 
<multi-actor-ref> ::= <actor-ref> 
                    | <set-ref> 
 
<state-ref> ::= <state-name> 
              | <state-ref>.<state-name> 
 
<behav-parameter-list> ::= <behav-parameter> 
                         | <behav-parameter>, <behav-parameter-list> 
 
<behav-parameter> ::= <behav-ref>.<parameter-name> = <actor-ref> 
 
<behav-ref> ::= <behav-name> 
              | <state-ref>::<behav-name> 
 
<actor-property-condition> ::= <apc-single-actor> 
                             | <apc-actor-set> 
 
<apc-single-actor> ::= <prop-ref> <comparison-operator> <value> 
<apc-actor-set> ::= ( foreach <actor-name> in <set-ref> ) <apc-single-actor> 
 
<prop-ref> ::= <actor-ref>.<property-name> 
 
<actor-set-condition> ::= empty? <set-ref> 
                        | in? <actor-ref> <set-ref> 
 
<actor-exists-condition> ::= exists? <actor-ref> 
 
<randomness-condition> :: random? <value> 
 
 
<post-condition> ::= POST <state-change-condition> 
                   | POST <property-assignment-condition> 
                   | POST <actor-manipulation-condition> 
                   | POST <subgroup-manipulation-condition> 
                   | POST <behavior-execution-condition> 
                   | POST <bind-release-condition> 
                   | POST <avatar-change-condition> 
 
<state-change-condition> ::= <scc-without-parameters> 
                           | <scc-with-parameters> 
 
<ssc-without-parameters> ::= <multi-actor-ref> -> <state-ref> 
<ssc-with-parameters> ::= <ssc-without-parameters> ( <behav-parameter-list> ) 
 
<property-assignment-condition> ::= <pac-single-actor> 
                                  | <pac-actor-set> 
 
<pac-single-actor> ::= <prop-ref> = <value> 
<pac-actor-set> ::= ( foreach <actor-name> in <set-ref> ) <pac-single-actor> 
 
<actor-manipulation-condition> ::= <actor-creation-condition> 
                                 | <typed-actor-creation-condition> 
                                 | <actor-destruction-condition> 
                                 | <set-destruction-condition> 
 
<actor-creation-condition> ::= create! <actor-name> ( <position> ) 
<typed-actor-creation-condition> ::= create! <actor-name> as <actor-type> ( <position> ) 
<actor-destruction-condition> ::= destroy! <actor-name> 
<set-destruction-condition> ::= destroy! <set-name> 
 
<position> ::= Integer, Integer, Integer 
 
<subgroup-manipulation-condition> ::= <subgroup-add-condition> 
                                    | <subgroup-remove-condition> 
                                    | <subgroup-clear-condition> 
                                    | <subgroup-copy-condition> 
 
<subgroup-add-condition> ::= add! <actor-ref> <set-ref> 
<subgroup-remove-condition> ::= remove! <actor-ref> <set-ref> 
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<subgroup-clear-condition> ::= clear! <set-ref> 
<subgroup-copy-condition> ::= copy! <set-ref> to <set-ref> 
 
<behavior-execution-condition> ::= <actor-ref>.<behav-ref>( <behav-parameter-list> ) 
 
<bind-release-condition> ::= <bind-condition> 
                           | <release-condition> 
 
<bind-condition> ::= bind! <actor-name> <actor-ref> 
<release-condition> ::= release! <actor-name>  
 
<avatar-change-condition> ::= setAvatar! <actor-name> 
 
 
 
//General syntax 
 

<actor-name> ::= <name> 
<instance-name> ::= <name> 
<set-name> ::= <name> 
<concept-name> ::= <name> 
<state-name> ::= <name> 
<parameter-name> ::= <name> 
<behav-name> ::= <name> 
<property-name> ::= <name> 
  
<name> ::= Identifier 
 
<value> ::= <number> 
          | <sign-operator> <value> 
          | <value> <arithmetic-operator> <value> 
          | ( <value> ) 
 
<number> ::= Decimal | Integer | <prop-ref> 
 
<arithmetic-operator> ::= + | - | * | / | div | mod 
 
<sign-operator> ::= + | - 
 
<comparison-operator> ::= < | > | == | <= | >= | != 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix B 

Room Furnishing Example 
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B.1. Actor Definitions 

 

 

B.2. Choose Wall Color or Wallpaper 
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B.3. Pick Room Shape and Size 
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B.4. Furnish Room 
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Appendix C 

Fire Alert Example 
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C.1. Building Actor Graph 

 

 

C.2. Office Actor Graph 

 

 

C.3. Window Actor Graph 
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C.4. Door Actor Graph 

 

 

C.5. Fire-Escape Actor Graph 

 

 

C.6. Foam Bomb Actor Graphs 
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C.7. Worker Actor Graph 

 

 

C.8. Fireman Actor Graphs 

 

 

C.9. Actor Definitions 
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C.10. Fire Scenario Graph : Top Level 

 

 

C.11. Fire Scenario Graph : Select Fireman Appearance 
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C.12. Fire Scenario Graph : Enter Building 

 

 

C.13. Fire Scenario Graph : Enter Office 
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C.14. Fire Scenario Graph : Evacuation Decision 

 

 

C.15. Scenario Graph : Evacuate Worker 

 

 


