

Thesis Websites for Visually Impaired Users

Stefan Woods
2de Licentie Toegepaste Informatica

Academiejaar 2006-2007

 Page 2/83

Samenvatting

In onze moderne maatschappij kan het belang van Websites niet overschat worden. Zij zijn de
digitale vertegenwoordigers van bedrijven en zijn 24h/24h actief, 7d/7d. Zij zijn ook het elektronische
gezicht van de overheid waardoor ze gebruikt worden. Bovendien is ook de academische wereld een
dankbare gebruiker voor zijn onderzoek, publications en informatieverspreiding voor studenten of het
algemene publiek. Ontelbare andere organisaties, kleine ondernemingen en miljoenen individuen
maken op de een of andere manier gebruik van het Internet en meer specifiek van Websites.
Veel Websites zijn geëvolueerd naar echte Web Toepassingen hetgeen veel meer voorstelt dan een
samenraapsel van enkele webpagina’s.

Tegelijkertijd heeft het Internet zich ontpopt tot een even belangrijk medium als radio en T.V. en
overschaduwt het deze soms1. Maar in de loop van zijn snelle ontwikkeling zijn de behoeften van
bepaalde gebruikersgroepen vergeten. Eén zo een groep zijn de blinden en slechtzienden. Deze
mensen surfen op het internet op een andere manier dan mensen met een normaal zicht en worden
daardoor ook geconfronteerd met andere, specifieke problemen. Recentelijk is er meer aandacht
voor hun behoeften en worden er inspanningen gedaan om hun het leven als Internet surfer
gemakkelijker te maken (b.v. het Web Accessibility Initiative (WAI) or W3C). Deze thesis is ook zo
een inspanning.

Wij bekijken de ontwikkelingskant van het probleem, liever dan een hulpmiddel te ontwikkelen om
blinden en slechtzienden te helpen bij hun Website navigatie. Een goede plaats om hier mee te
beginnen is de Web Site Development Methodology ontwikkeld aan de Vrije Universiteit Brussel,
beter bekend als WSDM. Deze methodologie bestaat uit 5 stappen en laat de designer toe om een
Website vanaf nul op te bouwen tot het punt van implementatie. Een andere aanpak, Dante
genaamd, neemt een bestaande Website en hervormt deze -met behulp van de designer- op een
zodanige manier dat hij beter geschikt wordt om te navigeren voor blinden en slechtzienden. Eerder
onderzoek [1] combineerde reeds deze 2 aanpakken met het ultieme doel een Website te bouwen
die beter geschikt is voor blinden en slechtzienden.

Deze thesis focust op de link tussen the Dante en WSDM aanpak, meer bepaald op de
overeenkomsten tussen hun respectievelijke ontologieën. WSDM gebruikt een specifieke ontologie
als een soort container of databank om elementen in op te slaan gedurende het ontwikkelingsproces.
Dante gebruikt een andere ontologie (de WAfA ontologie) om bestaande Webpagina’s te annoteren
om op die manier de pagina’s te transformeren. WSDM kan met Dante gecombineerd worden door
een WSDM tegenhanger te vinden van de concepten die we terugvinden in de WAfA ontologie. Dit
doen we door mapping regels op te zetten en de WSDM methodologie uit te breiden waar nodig.
Sommige van deze regels bestonden al (opgezet in eerder onderzoek [1]) maar zij omvatten niet alle
WafA ontologie Authoring concepten. Wij zullen deze regels herbekijken en nieuwe opzetten
waardoor we ook het WSDM proces zullen uitbreiden met de bedoeling zoveel mogelijk WAfA
ontologie concepten te “dekken”.

Eens deze regels opgezet, introduceren we enkele voorbeelden samen met een tool om de
besproken regels uit te voeren en op die manier de validiteit van ons werk aan te tonen.

1 Voor de eerste keer in de geschiedenis van de V.S. gingen presidentiële kandidaten een debat aan waar hen vragen werden
gesteld in de vorm van video’s gepost op de welbekende Website YouTube.com. Bij het ter perse gaan van deze thesis was
de ronde voor de Democratische kandidaten voorbij (23 juli) terwijl het Republikeinse debat gepland is voor 17 september.

 Page 3/83

Abstract

In our modern society, the importance of Websites cannot be overstressed. They are the digital
representatives of companies and are active 24 hours a day, 7 days a week. They are the electronic
face of the government that uses them to inform the public. The academic world is also a grateful
user for its research, publications and to inform students and the general public. Countless other
organisations, small businesses and millions of individuals make use of the Internet in general and
Websites in particular. Many Websites have evolved into Web Applications, being a lot more than a
motley collection of Webpages.
At the same time, the Internet is rapidly becoming a medium of the same importance of radio and
television, and regularly overshadowing the other two2. But in the course of it’s rapid development,
the requirements of certain user groups were ignored or forgotten. One specific user group whose
needs were overlooked is the Visually Impaired. Blind people or people with bad eyesight surf the
Internet in a different way than normally sighted users would and are therefore presented with a
whole different set of problems. In recent years their specific requirements were acknowledged and
efforts made to make their surfing life easier (e.g., the Web Accessibility Initiative (WAI) or W3C).
This thesis is also such an effort.

Instead of developing tools to help visually impaired users navigate Websites, we target the design-
side of the problem. The place to start is the Web Site Development Methodology developed at the
Vrije Universiteit Brussel, a.k.a. WSDM. This methodology consists of 5 steps and allows designing a
Website from scratch up to the point of implementation. Another approach called Dante takes an
existing Website and –with the help of the designer- redesigns it in such a way that it becomes easier
to travel for visually impaired users. Earlier research [1] already combined these two approaches with
the ultimate goal to produce a Website that is better suited to the visually impaired user’s needs.

This thesis focuses on the link between the Dante and WSDM approach, and more in particular on
the correspondence between their respective ontologies. WSDM uses a specialised ontology as a
sort of container to store elements during the design process. Dante uses another ontology (the
WAfA ontology) to annotate existing Web pages to allow the pages to be “reshaped”. The WSDM
approach can be combined with the Dante approach by establishing a WSDM counterpart for the
concepts found in the WAfA ontology. It is done by means of mapping rules and extending the
WSDM ontology where necessary. Some of these mapping rules were already set up through earlier
research [1] but they do not cover all the WAfA ontology Authoring concepts. We will review the
existing rules, and create new ones extending the WSDM methodology in the process in an effort to
cover as many of the WAfA ontology Authoring concepts as is possible.
Once these rules are in place we can introduce some examples along with a tool to execute the rules
to show the validity of our work.

2 For the first time in U.S. history presidential candidates engaged in a debate where questions were posed in the form of
videos uploaded via the well-known Website YouTube.com. At the time of writing the Democratic candidates already
completed their round (on july 23rd) with the Republican candidates debate scheduled to take place September 17th.

 Page 4/83

Acknowledgements

When I started my studies at the Vrije Universiteit Brussel as an evening student in Computer
Science in 1999 I had no idea of the journey that lay ahead. The first academic year was in a certain
sense a check – a test to see if university level studies could be combined at all with a full time job, a
wife, sports and a social life. This proved feasible – but only just. The birth of my son in 2000 and my
daughter in 2003 made the going even tougher. The duty of husband, father and full time consultant
with a few international job assignments ate away the time I could devote to my study, lengthening
my academic “career” as a result.
The road was long. It is appropriate at this point to extend my gratitude to my wife for putting up with
an absent and preoccupied husband for all those years and to my parents for helping out where they
could to facilitate my study.

Special thanks should also go to Dr. Sven Casteleyn and Prof. Dr. Olga De Troyer for answering my
many questions, correcting my errors and generally guiding me through my research.

 Page 5/83

Table of Content

1 Preface...8

1.1 Motivation ..8
1.2 Goal of the thesis ...8
1.3 Structure of this document..9

2 Accessibility for Visually Impaired Users – State of the Art ..10
2.1 Technical aids/assistive technology ..10

2.1.1 Braille Bars & Braille Keyboards...10
2.1.2 Screen readers ..10
2.1.3 Braille Printers..10
2.1.4 Scanners and OCR systems ..11
2.1.5 Speech Recognition Systems...11
2.1.6 Video-magnifiers ..11
2.1.7 Computer or Screen Magnifiers..11
2.1.8 Voice Browsers ..11

2.2 Guidelines..12
2.3 Accessibility Tools ..13

2.3.1 Transcoders...13
2.4 Related Work ...13
2.5 Underlying concepts, technologies and approaches..15

2.5.1 Dante...16
2.5.2 WSDM ...18

3 Accessibility Evaluation of the WISE Website..22
3.1 Preliminary Review...22

3.1.1 Selecting representative page samples ..22
3.1.2 Examining pages using a graphical browser ...22
3.1.3 Examining pages using specialized browsers ...23
3.1.4 Using automated Web evaluation tools...23
3.1.5 Summarize the results..23

3.2 Evaluation Results..24
3.2.1 Selecting representative page samples ..24
3.2.2 Examine pages using a graphical browser..24
3.2.3 Examining pages using specialized browsers ...24
3.2.4 Use of automated Web evaluation tools ...26

4 Extending WSDM ...30
4.1 WSDM & Dante combined..30
4.2 The combined WSDM-Dante methodology - Mapping rules explained33
4.3 The combined WSDM-Dante methodology – Extending WSDM......................................35

4.3.1 OrderedList & UnorderedList ..36
4.3.2 AttributeBreadcrumb, LocationBreadCrumb & PathBreadCrumb36
4.3.3 SpecialGraphic...37
4.3.4 SkipLink ...38
4.3.5 Bookmark, Favourites, ShoppingCart ...38
4.3.6 Index & SiteIndex...40
4.3.7 FAQ...40
4.3.8 Note, Citation, NB, PS..41
4.3.9 Abstract ...42
4.3.10 PageSummary...43
4.3.11 SiteSummary ...44
4.3.12 SearchEngine ..44
4.3.13 HistoryList..47
4.3.14 DataTable & LayoutTable...48
4.3.15 Headline ..48

4.4 Conclusion ...49
5 Test Case: WISE Website ..50

5.1 The combined WSDM-Dante methodology - Mapping rules put into practice...................50
5.1.1 The search for automation..50

 Page 6/83

5.1.2 Rule execution – a simple example ..50
5.2 Rule execution – more complex examples/rules ...53
5.3 The WISE Website example...56

5.3.1 Modeling the pages..56
5.3.2 Running the rule set ...67
5.3.3 Problems with rule execution..70
5.3.4 Conclusion ...71

6 Conclusions and further work..72
6.1 Conclusion ...72
6.2 Future work ..72
6.3 Final word ..73

7 References...74
8 Appendices ..75

8.1 Appendix A: Browser Tests ..75
8.2 Appendix B: Mapping Rules between WSDM and WAfA...78

 Page 7/83

List of Figures

Figure 1 – the Car ontology...15
Figure 2 – the Dante approach..16
Figure 3 – the WSDM design process ...18
Figure 4 – university audience class hierarchy...19
Figure 5 – Object Chunks and the Business Information Model ...19
Figure 6 – Navigational Design ...20
Figure 7 – Task Navigation Model ...20
Figure 8 - a typical Bobby report..26
Figure 9 - a typical ATRC report ..28
Figure 10 ..30
Figure 11 ..31
Figure 12 ..32
Figure 13 - VUB Website Search...45
Figure 14 - Search on Amazon.com ..45
Figure 15 - another Search on Amazon.com ...45
Figure 16 - a special search on www.immoweb.be ..46
Figure 17 - WSDM & WAfA Ontologies ...51
Figure 18 - WSDM Ontology Advertisement Instance ..52
Figure 19 - a simple mapping rule in Protégé using Jess/SWRL ..52
Figure 20 - WAfA Ontology Advertisement Instance ..53
Figure 21 - WISE Homepage and Header ...57
Figure 22 - WISE Homepage and Footer...57
Figure 23 - WISE Homepage and Sidebar...58
Figure 24 - Sven Casteleyn's Homepage...59
Figure 25 - Members page main content ...60
Figure 26 - Header-Sidebar-Footer model ...61
Figure 27- Grid individuals ..62
Figure 28 - The Members page Grid structure ...63
Figure 29 - The Members page Grid structure (cont'd)...63
Figure 30 - Sven's Homepage LayoutTable...65
Figure 31 - ListItem/NavigationReference combination ..66
Figure 32 - Link example...66
Figure 33 - Rule Execution Results ...68
Figure 34- Rule Execution Results (cont'd)..68
Figure 35 - New WAfA individuals ...69

Preface

 Page 8/83

1 Preface

1.1 Motivation
At present, the Web is becoming the first and foremost source of information worldwide. It is
consultable by anyone who can connect to the Internet and continues to expand. In recent years, it’s
value as an application platform is exploited, thereby expanding its functionality.

With the Web becoming a (large) part of every day life, it is becoming increasingly important for
people with disabilities to be able to access the information or functionality as a normal user would.
This is especially very important for visually impaired users; a blind person or someone with limited
vision cannot use a computer (and therefore neither a Web browser) in the same way normally
sighted users do. Moreover, in recent years the possibilities for visually impaired users with respect
to computer usage in general and Web use in particular, have in fact diminished [3]. This is due to
the fact that currently almost every interface is graphical, thereby limiting the usefulness of tools like
e.g. screen readers or Braille output.

To assist visually impaired users, the industry developed several assistive tools like e.g., screen
readers, magnifiers, Braille printers, etc… These tools provide visually impaired users with assistive
technology for computer usage in general and Web browsing in particular.
Unfortunately, such assistive technologies have their limitations. A Web page with a flashy graphical
intro cannot be “seen” by a visually impaired user. A solution to this problem would be to adapt the
design of the Website and drop the flashy graphical stuff altogether or even better, provide an
alternative. So, next to the assistive technology available to a disabled user, the design of a Web
application is at least equally important.
Thus, Web applications need to be built with accessibility (for the visually impaired) in mind.

Another problem area is navigation: It is, for example, very difficult for a screen reader to recognize a
collection of links as a menu because most of the time, these links are only visually grouped together
and thereby form a menu. Things get even more complicated through the usage of top (main)
menus, side menus and bottom menus or footers.
A solution would be to make a browser actually recognize navigational items on a Website.

1.2 Goal of the thesis
The purpose of this thesis is to embed VIA (Visually Impaired Awareness) in the Web design
process. We do this by adapting an existing design methodology so that, when applied correctly, the
navigational VIA is automatically build-in and one should not be worried about accessibility after the
Website is implemented.

Previous research [1] focused on the so-called Dante approach, which sports semantic annotation of
Web pages. This extra semantic knowledge can facilitate e.g. screen readers in their task of audio
representation of a web page.
Dante analyses Web pages to identify objects that support navigation. These objects are then
annotated with terms from an ontology, the so-called Web Authoring for Accessibility (or short: WAfA)
ontology. The resulting markup is used to transcode pages into a form that is easy to travel (and
therefore better suited to visually impaired users).

To eliminate its biggest drawback i.e. the manual extraction and annotation of objects, this process
has been automated to a certain extent by combining the Dante approach with the WSDM
methodology [1]. This was realized by creating a mapping between both the WSDM and WAfA
ontologies, with the WSDM ontology forming an integral part of the WSDM design process. In this
way WAfA annotations are generated “on the fly” by simply following the WSDM design methodology
(WAfA annotations are generated from the design specifications collected during the design phase).

Preface

 Page 9/83

This integration allows using roughly 70% of the concepts defined in the WAfA ontology. The goal of
the thesis is to raise this percentage. Therefore, it is necessary to adapt and expand the WSDM
process.

A case study will be used to illustrate the main issues and the results obtained in this thesis. For this,
the Website of the research group WISE will be used. First, the WISE Website is evaluated for its
accessibility for visually impaired users by using evaluation tools, which check a Website against
existing accessibility guidelines. Next, this Website will be used to illustrate and validate the WSDM
extensions introduced.

1.3 Structure of this document
The structure of this thesis is as follows: Chapter 1 introduced the problem of accessibility of
Websites for visually impaired users. In Chapter 2, an overview of tools and aids available to visually
impaired users is presented, as well as related work. In particular, the current state of research in the
field of Web design with an emphasis on visual-impaired awareness is discussed. In Chapter 3, we
discuss the results of the accessibility evaluation of the WISE Website. Chapter 4 discusses the
WSDM extension needed to support all WAfA concepts. In Chapter 5 the WISE Website is
reconsidered in the context of the extension discussed in Chapter 4. Finally, Chapter 6 presents
conclusions.

Accessibility for Visually Impaired Users – State of the Art

 Page 10/83

2 Accessibility for Visually Impaired Users – State of the
Art

Accessibility can be a problem in Web design but one that needs to be addressed. For example, the
U.S. government’s Section 508 of the Rehabilitation Act requires “Federal electronic and information
technology to be accessible to people with disabilities, including employees and members of the
public” [8].
Most modern governments state that no citizens may be deprived of the access to information
presented on governmental Websites. But this is exactly the case if such a Website has some
serious accessibility issues and thus the government can be held accountable for discrimination.
Another but less noble drive to address accessibility issues on (private-funded) Websites is the
economical potential of users with accessibility issues3.
As a consequence of this new awareness, several components supporting accessibility are available
to users as well as to Web developers. These components are meant to work together to make the
Web more accessible to the (visually) impaired user. They can be divided into Web
browsers/assistive technology for users on one hand, and evaluation tools/authoring tools for
Web developers on the other. In this chapter we provide an overview of these components. We will
also review related work in the context of the research on Web design and accessibility for visually
impaired users.

2.1 Technical aids/assistive technology
The Web is geared towards people with normal vision4. This makes it harder for visually impaired
people to browse Websites and find the information they are looking for. Technical aids or assistive
technology are tools developed to help visually impaired people working with a computer and
browsing the Web. An overview of available tools follows.

2.1.1 Braille Bars & Braille Keyboards
The Braille Bar (also called Braille Terminal or Braille Display) is the “computer screen for the blind”.
Applied to any computer, it enables the content of the screen to be “translated” in a Braille text. This
can then be “read” by the user.
Usually a Braille Bar is combined with a Braille Keyboard. Braille Keyboards are available in different
shapes and sizes (many resemble regular keyboards).
Few blind people read Braille however [3], making screen readers (see below) the preferred output
device for the visually impaired.

2.1.2 Screen readers
Screen readers are software programs that present graphics and text as speech. A screen reader is
used to verbalize, or "speak," everything on the screen including names and descriptions of control
buttons, menus, text and punctuation.
The general problem with this type of “browsers” is that they do a poor job in conveying the logical
structure and semantics of content in Web documents, nor do they provide users with easy ways to
select which parts of a document to listen to. As a consequence, users with a visual disability waste a
considerable amount of time and attention listening to irrelevant information [6].
Recently however, there is a tendency to make screen readers more “intelligent” – i.e. assist them in
several ways so they can better convey the content or even structure of the visited Web page. The
proposed annotation process Dante, mentioned earlier in this thesis is such an example.

2.1.3 Braille Printers
Braille printers (also called Braille Embossers) enable printing onto paper of any text from a word
processor in the raised characters of Braille format.

3 To name but one striking example : http://soundsdirty.com/ accessed 2007 – the fact that even a type of industry not usually
renown for it’s high standard or unquestionable morale makes efforts towards the visually impaired proves our case.
4
 Some information in this section is taken from the Microsoft Website (http://www.microsoft.com/enable/guides/vision.aspx ,

accessed 2006)

Accessibility for Visually Impaired Users – State of the Art

 Page 11/83

Various models differentiate by printing times and (the more sophisticated ones) by the ability to print
on both sides of the paper. Even though functioning of the printer is not dissimilar from a regular
printer, difficulties arise by the necessity to transcribe text in correct 6-point Braille format. It requires
that upper case letters or numbers are preceded by a special symbol. Braille printing is also
managed by software able to adapt the text to the needs of different Braille writings.

2.1.4 Scanners and OCR systems
A scanner is a tool that captures a graphic image and transforms it into digital information. OCR
programs (Optical Character Recognition) recognize characters on paper and transform the image in
a word processor document that can be saved onto disk, printed or read in Braille or by the screen
reader. Scanners and OCR’s are products for general use; however there are some OCR programs
specifically made for blind people: they can decode text even if it's not correctly positioned on the
scanner, they can recognize the page structure even if divided in columns, titles and paragraphs, as
well as eliminate drawings, photographs and diagrams. There are also OCR-connected scanners
that immediately read out the scanned text.

2.1.5 Speech Recognition Systems
Speech recognition systems, also called voice recognition programs, allow people to give commands
and enter data using their voices rather than a mouse or keyboard. Though this is a general
technology, it’s use for the visually impaired and people having trouble working with normal input
devices such as keyboard or mouse, is more than obvious.
Unfortunately speech as an interface still is a technology in its infancy, despite lots of research and
other efforts in this area.

2.1.6 Video-magnifiers
Video Magnifiers are tools that film the image of a text and magnify it before projecting it onto a
screen. With an electronic zoom it is possible to make enlargements. This can reduce the visual field;
therefore the user must move the text around in order to read it under the view-finder. Video-
magnifiers are essentially used for reading paper-printed text. It is a technology used by people who
have bad eyesight but who are not blind.

2.1.7 Computer or Screen Magnifiers
Computer or screen magnifiers are programs that interface with the computer’s graphical output,
enlarging the screen content. Apart from enlarging screen content, these programs also offer other
functionality like e.g., contrasting colors, smoothing (of enlarged text), offering different magnification
modes etc…
Magnifiers in general are assistive technology for visually impaired people with some degree of
functional vision. Users with no functional vision at all mostly use screen readers or other assistive
technology.

2.1.8 Voice Browsers
Voice Browsers are essentially Web Browsers that are speech-driven. They allow users to access
the Web using speech synthesis, pre-recorded audio and speech recognition. In this they are in a
way the opposite of screen readers who use speech to convey Web content (Though voice browsers
exist that also “speak” Web page content like screen readers making the distinction between them a
grey, shady area). Voice Browsers are not developed specifically for visually impaired users.
At the time of writing voice browser technology is still in its infancy but is developing rapidly [6].
Associated with it is a special markup language called VoiceXML5 that is designed for creating audio
dialogs. VoiceXML has acquired industrial backing and is consequently becoming the industry
standard in it’s field6.

5 See http://www.w3.org/Voice and http://www.hitmill.com/internet/browsers.html (accessed 2006)
6 See http://www.voicexml.org (accessed 2006)

Accessibility for Visually Impaired Users – State of the Art

 Page 12/83

2.2 Guidelines
The guidelines as referred to in this thesis are a set of rules or directives that aim at making Web
content accessible to people with disabilities. Whereas assistive technology is intended for users,
guidelines are intended for Web content developers, developers of authoring tools, browsers or
media players [5] and therefore highlight the development side of the problem. These guidelines are
general: they are not solely intended for the visually impaired but are intended to make Websites
more accessible for people with disabilities in general.
The de facto standard in this field are the Web Access Initiative (WAI)7 guidelines as published online
by the World Wide Web Consortium (W3C) 7. While these are general guidelines we will focus on
their visually impaired aspect.

W3C proposes three different sorts of guidelines [5]:

1. WCAG (Web Content Accessibility Guidelines) describe how to make accessible Web
content and Websites. Examples of requirements in WCAG include providing equivalent
alternatives to auditory and visual content, providing clear and consistent navigation
mechanisms, usage of features that enable activation of page elements via a variety of input
devices.

2. ATAG (Authoring Tool Accessibility Guidelines) describe how to make Web authoring
software that produces accessible content. Examples of requirements in UAAG is that
access to content needs to be provided through a variety of navigation mechanisms

3. UAAG (User Agent Accessibility Guidelines) describe how to make browsers and media
players accessible. Examples of requirements in ATAG include that Web authoring tools
need to generate valid markup & that they can be configured to prompt for accessibility
content such as e.g. alternative text for images, captions for audio, descriptions for video, etc
…

Of the three above-mentioned guidelines, WCAG are the most widely used. At the time of writing up
to version 2.0 they impact the HTML-code of a Website and advise a Web developer in some cases
what HTML-code to write. An example is the use of an image on a Website. Whatever the image
represents, it is meaningless to a blind user. The guidelines tell a developer to always add an HTML
alt-tag (alt=”description”) to an image, i.e. the alt-tag should provide a textual description of the
image. In this way, when a blind user navigates over the image, his screen reader can read out the
supplied alt-text to him e.g., “picture of a coastal landscape”, in stead of just informing him there is an
image present.
The more interesting part about WCAG is that some of its checks can be automated [5]. This in turn
lead to the development of tools like e.g. Watchfire’s Bobby8 or ATRC’s Web Accessibility Checker9.
These tools are explained in more detail in chapter 3 Accessibility Evaluation of the WISE Website.

The guidelines as proposed by W3C/WCAG can be arranged in three levels of “severity” called
priority 1, 2 and 3. We will explain them briefly:

• Priority 1: if the guidelines of this level aren’t followed, some user groups may find it
impossible to access certain information on the site.

• Priority 2: if the guidelines of this level aren’t followed, some user groups may find it (very)
difficult to access certain information on the site.

• Priority 3: if the guidelines of this level aren’t followed, some user groups may find it
somewhat difficult to access certain information on the site.

In a perfect world, or rather on a perfect Website, all three priorities levels should be dealt with. The
reality is that in most Websites, problems with priority level 2 and 3 occur and even problems of

7
 See http://www.w3.org/WAI/ (accessed 2006)

8
 See http://www.watchfire.com/products/desktop/accessibilitytesting/default.aspx (accessed 2005)

9 See http://checker.atrc.utoronto.ca/servlet/Submit (accessed 2007)

Accessibility for Visually Impaired Users – State of the Art

 Page 13/83

priority 1 are commonplace, leaving much to be desired for the visually impaired surfer. So there is
definitely room for improvement here.

2.3 Accessibility Tools
Accessibility tools are software programs or Websites that offer a service aimed at testing or
enhancing/improving the accessibility of Websites. They analyze the degree of accessibility of a
Website or of individual Web pages or assist in adapting a Web page in accordance with the
accessibility guidelines mentioned earlier. Some tools even offer a different view of an existing
Website better suited to the particular (visual) impairment of the user.

Accessibility Tools can be classified in 3 different categories:

• Evaluation Tools perform an analysis of pages or sites with regard to their accessibility. The
result of this analysis is usually a report or a rating.

• Repair tools assist an author in making a page more accessible once the accessibility
shortcomings are identified (through the use of an evaluation tool).

• Filters and transformation tools modify a page and are aimed at the user instead of the
developer/designer. They are exlained in more detail in section 2.3.1.

There are many accessibility tools. Here are some examples:

Watchfire’s Bobby8 is a desktop evaluation tool aimed at Web masters and Web developers.
It tests a Website page by page using the W3C’s WAI guidelines and delivers a report as a
result. Web masters or designers can then use this report to improve the accessibility of their
Website. Bobby is a general tool, i.e. it focuses on all aspects of accessibility, not only those
relevant to the visually impaired.
aDesigner10 is a disability simulator that Web designers can use to test the accessibility of
their Website for the visually impaired. aDesigner is a focused tool i.e. it focuses on the
visually impaired and not on other disabilities.
A-Prompt11 is a repair tool developed at the University of Toronto. It repairs Web pages
automatically or with the assistance of the developer. Recently the creators of A-Prompt
introduced an online accessibility checker12 as a replacement of A-Prompt. Being Web-
based it is more an evaluation tool than a repair tool.

2.3.1 Transcoders
On-line transcoders such as LIFT13 transform Websites to text-only, eliminating the navigation
problem. Others like e.g., {textualise;}14 provide a transformation proxy service that adjusts the
content of a Website before conveying it to the user’s Web agent thereby providing a version more
suited to the visually impaired. Users can even “tune” their view on certain Websites, enlarging fonts,
using contrasting colors, etc...
Though undoubtedly very useful, also transcoders have their limitations, as it is very hard to recover
the implicit semantics conveyed in Web pages by means of the visualization.

2.4 Related Work
As a result of the general ineffectiveness of existing screen readers for Web browsing tasks, several
specialized Web audio browsers have been developed. The JAWS15 system and IBM’s Home Page
Reader16 e.g. permit hyperlink-based navigation.

10

 See http://www.alphaworks.ibm.com/tech/adesigner (accessed 2006)
11

 See http://aprompt.snow.utoronto.ca/ (accessed 2006)
12

 See http://checker.atrc.utoronto.ca/index.html (accessed 2006)
13

 See http://www.usablenet.com/products_services/text_transcoder/text_transcoder.html (accessed 2005)
14

 See http://aquinas.venus.co.uk/solutions/products/textualise/what.html (accessed 2006)
15

 See http://www.freedomscientific.com/fs_products/JAWS_HQ.asp (accessed 2007)
16

 See http://www-03.ibm.com/able/guidelines/web/webhprtest.html (accessed 2007)

Accessibility for Visually Impaired Users – State of the Art

 Page 14/83

Other systems like HearSay perform structural and semantic analysis on the HTML-documents. The
resulting partition trees from this analysis are used to create VoiceXML dialogs which in turn facilitate
audio browsing without information overload [6].

Other technologies like Aural Style Sheets17 should help in writing content for speech-enabled
browsers. Aural style sheets resemble regular style sheets with the difference that their markup/code
is vocal-oriented. The added advantage here being the separation of the presentation (CSS
properties) from the content.

Separating form from content is a school of thought that has proved its worth in general but also in
terms of accessibility [7]. Apart from the obvious advantages it offers it also has the potential to at
least ease problems of accessibility. When content is clearly distinct from format, it can be presented
in numerous ways, including the ones needed or used by the visually impaired. It is, after all, the
medium that is visual, not the information itself.

Apart from the assistive technology, guidelines and tools discussed above and in previous sections,
research is done to tackle the stated VIA-problem18 in a more fundamental way. Despite the available
technologies and tools, the mobility, or ease of travel, of visually impaired Web users is reduced
since Web pages are designed primarily for visual interaction and part of the information is only
transferred in a visual way. Therefore, in a visually impaired person's environment objects that
support travel are missing or inaccessible altogether. Screen readers, unlike sighted users, cannot
see the implicit structural and mobility knowledge encoded within the visual presentation of Web
pages.
Semantic Web technologies on the other hand allow making the implicit structural and mobility
knowledge of a Web page explicit and accessible to screen readers. In this context, Semantic Web
technology is not used to convey the semantics of the content, but to convey the structural and
mobility properties of Web pages. E.g. Dante19 is a tool that follows this approach.

Research was done to use WSDM in the context of accessibility for visually impaired users. To
achieve this, WSDM was combined with the Dante-approach. Dante identifies objects that support
navigation in Web pages. These objects are annotated with terms from an ontology and the resulting
mark-up is used to transcode Web pages into a form that is easier to travel for a visually impaired
user. The ontology used in this process is the WAfA-ontology.

17

 See http://www.w3.org/TR/REC-CSS2/aural.html (accessed 2007)
18 VIA: Visually Impaired Awareness – see section 1.2
19

 See http://dante.man.ac.uk/ (accessed 2006)

Accessibility for Visually Impaired Users – State of the Art

 Page 15/83

2.5 Underlying concepts, technologies and approaches
Dante and WSDM, the two prominent approaches in this thesis, both rely on the ontology concept.
Let us take a look at this in more detail.

An Ontology is a specification of a conceptualization of a knowledge domain; it is a controlled
vocabulary that describes objects and the relations between them in a formal way. It has a grammar
for using the vocabulary terms to express something meaningful within a specified domain of interest.
Less formally defined an ontology is a special kind of language where concepts are defined with
respects to specific user groups or knowledge domains. It can be thought of as a structured list of
concepts.

Consider e.g. an ontology for describing all sorts of cars. The objects in this Car Ontology could be
Steeringwheel, Seat, Gearbox, Engine, etc… Relations between these objects could be “Car has
Gearbox” and furthermore Gearbox can have a Type property containing the values “Manual” or
“Automatic”. This simplistic example allows describing if a car has an automatic or a manual gearbox.

Figure 1 – the Car ontology

An automated system deployed in the automotive context could of course benefit from the usage of
this ontology. But it gets really interesting when two systems (even different ones) use the same
ontology because then their communication is facilitated by the very ontology usage – it’s so much
easier to understand each other if we’re talking about the same thing using the same language. The
same is true for computers.

A web ontology language (like OWL20) allows defining an ontology. OWL is a language designed for
processing information on the Web. It was build to be interpreted by computers, not to be read by
people21.
More formally we could say it is a language and framework for representing ontological knowledge
and information about the way that “a world” (in this case the Web) is structured and fits together. In
this case the ontology or domain of interest we are reasoning about is in fact the World Wide Web.
As such the ontology will contain objects like Websites, pages, links, banners, etc…

20

 See http://www.w3.org/2004/OWL/ (accessed 2007)
21

 See http://www.w3schools.com/rdf/rdf_owl.asp (accessed 2007)

Gearbox

Engine

Steeringwheel

Seat

…

Car ontology objects:

Gearbox

Type property:

“Manual”
“Automatic”

Car

hasGearbox

Car ontology object relations:

Accessibility for Visually Impaired Users – State of the Art

 Page 16/83

The Semantic Web is an enhancement/evolution of the current World Wide Web where information is
annotated by means of metadata, making it understandable for machines. This enables e.g.,
automatic relations between and in documents.
RDF (Resource Description Framework)22, developed by the W3C is a set of specifications that
provide a lightweight ontology system for supporting exchange of knowledge on the Web – in other
words RDF is a general-purpose language for representing information on and about the Web. This
is one concrete example where the ontology concept is put to use.
Putting the definitions of OWL and RDF next to each other, we can see that the OWL language is
actually an extension of RDF.

2.5.1 Dante
Dante is a semi-automated tool that encodes techniques for Web travel support. It focuses on
navigation or mobility for visually impaired people, i.e. how they access Web pages and navigate
through them.
The Dante-approach takes a Web page, annotates it using the WAfA ontology and then transforms
that Web page based on the annotations to enhance the provided mobility support. This process is
supported through four steps illustrated in Figure 2.

Figure 2 – the Dante approach23

The four Dante-steps explained:

1. Analyze Web pages to identify objects that support mobility and travel.
Examples of such objects include links or menus …

2. Discover their roles.
E.g. when a link is identified, what is its role? It can be an advertisement in which case it will
point to the advertiser’s homepage or it can be a breadcrumb, a favorite, part of a menu,
etc…

22 See http://www.w3.org/RDF/ (accessed 2006)
23 the basic architecture of Dante as found on http://dante.man.ac.uk/index.htm

Accessibility for Visually Impaired Users – State of the Art

 Page 17/83

3. Annotate them with concepts from the WAfA ontology in order to make their roles explicit.

Once the role of an object is known, i.e. we know to which class of objects it belongs, it can
be annotated with a term from the WAfA ontology.

4. Transform pages based on the annotations to enhance the provided mobility support.
This transformation takes as input the annotations of step 3 and the Webpage itself (for the
sake of example, suppose in HTML-form). The output is the same Webpage but with
different HTML better suited to navigation for visual impaired users.

In the case of the WAfA ontology, the domain of interest is the modeling of structural and
navigational organization of Web pages.

Basically Dante makes a Website easier to navigate for blind people or people with reduced vision.
Although the approach is promising, the drawback is that the annotation process (steps 1 � 3) must
be performed manually. This is very time-consuming and therefore limits its applicability in practice.

Accessibility for Visually Impaired Users – State of the Art

 Page 18/83

2.5.2 WSDM

WSDM is a Web application design methodology developed at the research group WISE of the Vrije
Universiteit Brussel. Unlike other such methodologies, it is audience-driven, i.e. it takes as starting
point the needs and requirements of the intended audience and creates a Web structure based on
this. The result is a Website that is better tailored to the user’s needs.
Figure 3 gives an overview of the WSDM design process.

Figure 3 – the WSDM design process

The design process involves 5 steps:

1. Mission statement Specification.

Here we define the purpose of the site and the site’s main subject. Also the question what
the target audiences are is answered here.
Consider the following mission statement for a University Example: “Provide general
information about the available programs to attract more students and enhance the internal
communication between students and lecturers by providing detailed information about
programs and courses”.

2. Audience Modeling.

As a first step, an Audience Class Hierarchy is built based on the target audiences identified
in the mission statement. From each audience class, a set of Information requirements,

Conceptual Design

Mission statement
Specification

Audience Modeling
Audience

Classification

Audience Class
Characterization

Navigational
Design Task & Information

 Modeling

Implementation design
Site Structure

Design
Presentation

Design
Data Design

Implementation

Accessibility for Visually Impaired Users – State of the Art

 Page 19/83

Functional requirements and Usability requirements is derived. In the University Example
consider the following Audience Class Hierarchy:

Figure 4 – university audience class hierarchy

Yielding as audience classes Potential Students, Enrolled Students and Lecturers; all
subclasses of the class Visitor.

3. Conceptual Design.

The conceptual design step consists of 2 substeps:

i. Task & Information modeling
ii. Navigational design:

Task modeling & Information modeling (or the conceptual “what”)

The information requirements of different audience classes are translated into so-called
object chunks through tasks. First, for every information or functional requirement (resulting
from the Audience Modeling step) a task must be defined. Each task needs to be broken
down into elementary tasks, and for every elementary task a corresponding object chunk is
created.
So Object chunks model information and/or functionality required by tasks. All object chunks
combined together form the business object model (example Figure 5).

Information Chunk C1

in *a Author
out !({*p} union {*p'}) Paper

AuthorSubmissions

�����
����	

�
���
����

�
����

���

������

���

������

������������������

����

�� ���

� �

Business Information Model

���
�

������

!"�
�

������

#�	����	
�
$���

�������%%%%�

��
!������	�������	����

���&��'�������	����

�	�����
����	�������	����

���

������

���

������

��� ������

#�	����	
��	���

����

��

�����
����	

�
���
����

�
����

���

������

���

������

���

������

��	

�������������������!����
�

(���

�)*+�

����

��

�����
!������	

���
�

������

��� ������

���������������
����	

Figure 5 – Object Chunks and the Business Information Model

Visitor

Lecturer Potential Student Enrolled Student

Enrolled Distance Student Potential Distance Student

Accessibility for Visually Impaired Users – State of the Art

 Page 20/83

Navigational design (or the conceptual “how”)

The navigational design models the conceptual structure of the Web site resulting in the so
called Conceptual Structural Model. This model is a collection of navigation tracks where
each navigation track consists of components and links. Going back to the same university
example the main Web site structure looks as follows (Figure 6):

Figure 6 – Navigational Design

For every task (resulting from the Task Modeling & Information Modeling step) corresponding
to an audience class, a task navigation model should be created (Figure 7).

Figure 7 – Task Navigation Model

Each task navigation model consists of components and links.
Each elementary task corresponds with a component. But the Task & Information Modeling
step also connected tasks to their corresponding object chunks. This allows us to link object
chunks with their components.

4. Implementation Design.

The Implementation design consists of three different substeps:

i. Site structure design
ii. Presentation design
iii. Data design

The site structure design groups information into pages: Starting from the navigation
model, the conceptual structure is translated into pages with the default setup being one
component plus several links on one page.

The presentation design specifies the look and feel of the Website. This can be done e.g.
through usage of templates (to base page layout on) in combination with CSS.

The data design comprises the definition of the data source structure – it is this step that
defines the actual datastore (which does not have to be an actual database like e.g. Oracle
or MySQL – it can also be achieved applying technologies like XML DTD, RDF definitions,
etc…) with the business object model acting as the conceptual schema.

Find student courses program

Find student’s
courses

Give student
courses overview

Visitor track

Lecturer track

Potential
Student track

Enrolled Student
track

Enrolled Distance
Student track

Potential Distance
Student track

Accessibility for Visually Impaired Users – State of the Art

 Page 21/83

5. Implementation.

At his point the actual (HTML) pages can be built. This can be performed manually or
through some form of automated process.

Note that WSDM makes a distinction between the conceptual design and the design of the actual
presentation. This effectively decouples the design and the technical implementation
details/limitations and makes WSDM suitable for all types of Web applications.

Accessibility Evaluation of the WISE Website

 Page 22/83

3 Accessibility Evaluation of the WISE Website
To obtain a better insight in the problems related with the design of accessible Websites, we decided
to first exam a Website that was developed in a systematic way (i.e. using a Web design method) but
not developed with accessibility in mind. We wanted to detect what kind of accessibility problems
such a Website would have. The WISE Website24 is used for this purpose.

Evaluating a Website’s accessibility is harder than it may seem. It is more than simply taking a look
at the site and concluding it is ok or not. Nor is it sufficient to walk through the HTML-code to identify
possible accessibility issues. Evaluating a Website and, more to the point, the WISE Website means
checking if all accessibility guidelines are followed.
Evaluating the accessibility of a Website requires a systematic approach. One such approach, the
preliminary review, is proposed by the W3C25. We explain the approach in the next sub section.

3.1 Preliminary Review
A preliminary review is a “quick way” to identify some accessibility problems on a Website. It
combines manual checking of representative pages, along with the use of several semi-automatic
accessibility evaluation tools. Reviewers do not need to know Web mark-up languages (hence, no
extensive HTML-knowledge is required), but should be able to download software and familiarize
themselves with some evaluation tools, and change certain settings on their browser. To conduct a
preliminary review, the following tasks need to be completed:

1. Select representative page samples.
2. Examine pages using a graphical browser.
3. Examine pages using a specialized browser.
4. Use automated Web evaluation tools.
5. Summarize the results.

3.1.1 Selecting representative page samples
From the Website to be reviewed, in our case the WISE Website, a number of representative
sampling of pages should be selected. The sampling pages should match the following criteria:

• Include all pages on which people are more likely to enter the site ("index.html",
“default.html”, etc.).

• Include a variety of pages with different layouts and functionality, for example:
• Web pages with tables, forms, or dynamically generated results;
• Web pages with informative images such as diagrams or graphs;
• Web pages with scripts or applications that perform functionality.

3.1.2 Examining pages using a graphical browser
The pages selected must be examined using a graphical browser (such as Mozilla Firefox, Internet
Explorer, Netscape Navigator/ Mozilla, Opera, Safari, or others). While examining the selection of
pages some settings in browser or operating system should be adjusted as follows (some of these
manual checks may require additional software):

• Turn off images, and check whether appropriate alternative text for the images is available.
• Turn off sound, and check whether audio content is still available through text equivalents.

The WISE Website has no sound. Therefore this will not be included in our test.
• Use browser controls to vary font-size: verify that the font size changes on the screen

accordingly; and that the page is still usable at larger font sizes.
• Test with different screen resolution, and/or by resizing the application window to less than

maximum, to verify that horizontal scrolling is not required (caution: test with different

24 See http://wise.vub.ac.be (accessed 2006)
25

 See http://www.w3.org/WAI/eval/preliminary.html (accessed 2006)

Accessibility Evaluation of the WISE Website

 Page 23/83

browsers, or examine code for absolute sizing, to ensure that it is a content problem and not
a browser problem).

• Change the display color to gray scale (or print out page in gray scale or black and white)
and observe whether the color contrast is adequate.

• Without using the mouse, use the keyboard to navigate through the links and form controls
on a page (for example, using the "Tab" key), making sure that you can access all links and
form controls, and that the links clearly indicate what they lead to.

3.1.3 Examining pages using specialized browsers
Next a voice browser (such as Home Page Reader26) or a text browser (such as Lynx27) should be
used and the selection of pages should be examined while finding the answer to the following
questions:

• Is equivalent information available through the voice or text browser as is available through
the GUI browser?

• Is the information presented in a meaningful order if read serially?

3.1.4 Using automated Web evaluation tools
At least two automated Web accessibility evaluation tools should be considered to analyze the
selection of pages. Note that these tools will only check the accessibility aspects that can be tested
automatically, the results from these tools should not be used to determine a conformance level
without further manual testing.

3.1.5 Summarize the results
Using the results obtained from the previous four tasks, the types of problems encountered, as well
as positive aspects that should be continued or expanded on the site should be summarized. Indicate
the method by which problems were identified. Follow-up steps, including full conformance
evaluation which includes validation of markup and other tests, should be recommended as well as
ways to address any problem identified.

26

 See http://www.soundlinks.com/hprgen.htm
27

 See http://lynx.browser.org/

Accessibility Evaluation of the WISE Website

 Page 24/83

3.2 Evaluation Results

The preliminary review method has been applied to the WISE Website.

3.2.1 Selecting representative page samples
From the WISE Website, the following pages were chosen as representative sample. Each page is
followed by a brief explanation why it is chosen.

http://wise.vub.ac.be/default.htm: default page, the page most users will enter the site through;
http://wise.vub.ac.be/members/ : this page contains some pictures;
http://wise.vub.ac.be/researchers/researchtopics.html: of technical interest, so probably lots of hits;
http://wise.vub.ac.be/researchers/publications.php; php script, which means it is a dynamically
generated page;
http://wise.vub.ac.be/students/proposals.html: popular page because of its content;
http://wise.vub.ac.be/students/courses.htm: popular page because of its content;
http://wise.vub.ac.be/metovr/default.htm: the default startpage for the MeTo-VR subsite;
http://wise.vub.ac.be/webmaster.html: several fields to fill out – different structure than the previous
pages.

3.2.2 Examine pages using a graphical browser
Three different browsers were chosen: two based on an MS Windows platform and one based on a
Linux platform. The combination of MS Internet Explorer and MS Windows was chosen because it
will obviously be the most widely used combination. Versions are 6.0 for IE and XP for Windows.
Through lack of time it was simply not feasible to test other version combinations like e.g. IE
5.0/Windows 2000 as this would lead us too far off track.
An alternative for MS Internet Explorer was needed on the MS Windows platform for people who
cannot or will not use this combination. This alternative was Opera (v8.51); Opera is free at the time
of printing.
Lastly an alternative for the MS Windows operating system was needed, so on the basis of popularity
and cost Linux was an obvious choice. It is the most popular free alternative for Windows (for
personal use). For this platform, Mozilla 1.1 was chosen as browser on a Mandrake Linux
distribution.

The results of this test can be found in Appendices

Appendix A: Browser Tests.

We can summarize the results as follows. In general, the site didn’t produce dramatically different
results over the three tested browsers. The font resizing proved the most “troublesome” as some
elements didn’t resize consistently over all three browsers. Textual descriptions of images are in
some cases lacking and when reducing the color set (b/w) it becomes hard to distinguish the
clickable hyperlinks because of the subtle grayscale difference.

3.2.3 Examining pages using specialized browsers

As specialized browser lynx was used on a Linux platform. The URL of the default page was entered
at startup but all other pages were accessed via the Lynx browser.

On the http://wise.vub.ac.be/members/ page only Prof. Dr. Olga De Troyer and the former members
at the bottom of the page had a text indicating the file name of a picture that was supposed to show.
This was not the case for the others, so this is an inconsistency.
On the http://wise.vub.ac.be/webmaster.html page all fields are accessible.

���������	����������	

���
���	�

Accessibility Evaluation of the WISE Website

 Page 25/83

In summary it can be concluded that all features28 are accessible, the links are ok and the order in
which they are traversed is logical.

28

 Though in fairness it must be said that the content of the WISE-site is mainly text-based and thus better suited for this kind
of “browsing”.

Accessibility Evaluation of the WISE Website

 Page 26/83

3.2.4 Use of automated Web evaluation tools
Our first tool of choice for automatic Web evaluation is the desktop version of Watchfire’s Bobby
(v5.30.4.16). It was chosen because of its popularity and the availability of a free (albeit time-limited)
trial version that can be installed locally.
Bobby analyses individual Web pages starting from a designated starting page and following (and
analyzing) all the links it encounters. It can be tuned to limit the amount of links to be
followed/checked. In all, Bobby checked 721 pages but in this thesis we shall limit our findings to the
8 sample pages.
Each page is checked for Priority 1 and Priority 2 issues. Bobby reports errors or warnings. An error
is something that can automatically be checked and that needs to be corrected. A warning is
something that needs to be checked manually and may need correction (but that is not necessarily
the case). Priority 3 is not tested in this free trial version.

A typical Bobby Report is given below.

Figure 8 - a typical Bobby report

In all, out of our 8 sample pages, two times a Priority 1 error was encountered. Each time the error
was the same:

• No alternative text for an image. All images should contain a short alternative text description
that represents the function of the graphic excepting e.g. bullets, spacers (where this would
be distracting or unnecessary). Computers cannot interpret images and present them in a
meaningful alternative format. Alternative text gives the computer something to present to
the user.

Regarding Priority 2, eighteen errors were encountered. The most common error types were:

Accessibility Evaluation of the WISE Website

 Page 27/83

• Use relative size & positioning rather than absolute. Absolute sizes are units like pixels,
points, etc… - they are relative to an absolute measurement and cannot be scaled. Relative
units like % or ems are automatically scaled when the base unit is scaled, allowing text to
change size or page layout to flow without running off the edge of the screen.

• Nest headings properly. E.g. H1 followed by H2 instead of H1 followed by H3. Some access
aids extract the headings to create an outline of the page. Incorrect nesting will result in an
incorrect outline structure which may disorient users.

• Same link phrase used more than once (on same page and points to different URL). If more
than one link on a page shares the same link text, all those links should point to the same
resource. This aids Web design as well as accessibility.

• Associate FORM controls & labels explicitly with the LABEL-element. For each FORM-
control, place its label in a LABEL-element so the label’s text gets associated explicitly with
the form control. This allows a browser to tell the user definitively which label applies to the
given control. E.g. clicking on the label positions the cursor in the form field or toggles the
value of radio buttons or check boxes. Besides being intuitive it also provides a bigger target
for the mouse thus aiding the visually impaired user.

Accessibility Evaluation of the WISE Website

 Page 28/83

Our second tool of choice for automated Web evaluation is the online version of ATRC’s Web
Accessibility Checker29. This is a free service provided by the Adaptive Technology Resource Center
(ATRC) at the University Of Toronto30.
Usage of the Web Accessibility Checker is simple: enter the URL of the Web page that needs
checking, and click the “Check It”-button. Unlike Bobby, checks are performed on a page-by-page
basis, and each page’s URL needs to be entered manually which could be a problem for large
Websites.
ATRC’s Web Accessibility Checker features the choise of different guidelines. All checks in this
paper were performed first with the WCAG 1.0 (Level AA) and second with the WCAG 2.0 L2
guidelines.
The check produces a list of known, likely and potential problems. Known problems necessitate a
Web page change to solve, likely problems will probably (but not necessarily) result in Web page
change and potential problems might be solved without having to adapt the Web page. We will focus
mostly on the known problems.

A typical ATRC Web Accessibility Checker Report is given below.

Figure 9 - a typical ATRC report

To summarize, he following errors were encountered on the 8 sample pages.

29 See http://checker.atrc.utoronto.ca/servlet/Submit (accessed 2007)
30 See http://www.utoronto.ca/ (accessed 2007)

Accessibility Evaluation of the WISE Website

 Page 29/83

• No alternative text for an image. Computers cannot interpret images and present them in a
meaningful alternative format. Alternative text gives the computer something to present to
the user.

• Make sure text content is readable and understandable: the document language is not
identified. The lang attribute serves to specify the base language of an element's attribute
values and text content31.

• Make sure the information & structure can be separated from presentation. Header nesting
was found to be inconsistent (e.g. H1 element not followed by an H2 element, etc. …).

• Form controls & labels are not associated explicitly. E.g. text boxes, radio buttons etc. need
labels explicitly to them. A browser can thus tell the user definitively which label applies to
the given control.

• Provide mechanisms to help users find content & navigate through it – anchor element <a>
was found that contains no text. Each source anchor must contain text.

• Possible misuse of <p>-element: if all the text in the paragraph is marked with a
presentational element, text might be better marked as header.

In conclusion, both tools although different in usage yield very much the same results. Given the fact
that these results only relate to the 8 tested sample pages, it is the author’s opinion that part or all of
the WISE Website pages would benefit from a Priority 1 and 2 overhaul in terms of accessibility. The
need to follow the new university Website layout-style does present limitations however so not all
issues that arose may be addressed.
Color contrast is inadequate with regards to hyperlinks: the university’s house Style does not
underline hyperlinks unless the mouse is positioned directly over them. Their color is a light
green/dark yellow which makes it difficult to distinguish the clickable hyperlinks in a b/w environment.
We recommend to change the color of the hyperlinks to a more contrasting tint of green/yellow.

31

 See http://www.w3.org/TR/html4/struct/dirlang.html (accessed 2007)

Extending WSDM

 Page 30/83

4 Extending WSDM

This chapter explains how the WSDM methodology is extended in combination with the Dante
approach and what this extension means for the combined WSDM/Dante process as a whole.
Some basic proposition logic understanding is assumed.

4.1 WSDM & Dante combined

WSDM is a Website design methodology with an alternative approach (see earlier) whilst Dante
focuses on the accessibility of web pages for Visual impaired users. Combining both approaches
could result in a rather unique Web site design methodology taking the user and his requirements as
starting point for the design and ending with a Web site that is better suited for visually impaired web
travelers. Combining two approaches that at first glance have very few things in common is no easy
feat.
To accomplish this, we look at both approaches from an ontology point of view. In the course of the
WSDM design process a lot of ontology concepts, items and objects result from the different design
steps. Dante starts with manually identifying certain objects – in concreto this means one or more
persons have to review an existing Web site, taking note of any objects that are of interest to Dante
and entering them in some form into the WAfA ontology. These WAfA annotations are then used as
input for the transformation of the web pages as the final step in the Dante approach.
It was noted that a lot of the objects entered in the WAfA ontology resemble those existing in the
WSDM ontology which indicated some form of similarity.

Figure 10

After taking a closer look at these similarities, a mapping was conceived starting from the WSDM
ontology objects and projecting them onto the WAfA ontology objects.
So combining the WSDM and Dante approach starts primarily with the definition of a mapping
between their respective ontologies. In this way objects from the WSDM ontology can be translated
into objects in the WAfA ontology. The WAfA ontology still functions as an input for the Dante
transformation step but is now populated by the mapping of objects from the WSDM ontology. This
means the first 3 steps of the Dante approach can be discarded as shown in Figure 11.

The bottom line is the ability to automatically generate WAfA annotations whilst applying the WSDM
methodology.

Mission statement
specification

Audience modeling

Conceptual design

Implementation design

Implementation

Analyse webpages
to identify objects

Disciver objects’ roles

Annotate them with
the WAfA ontology

Transform pages

WSDM Dante Ontologies

Advertisement
…
Figure
Footer
…
Menu
List
…
OrderedList
…

Advertisement
…
Figure
Footer
…

…
OrderedList
Webdirectory
FAQ
Favorites
…

WSDM
ontology

WAfA
ontology

Extending WSDM

 Page 31/83

Figure 11

As shown in the resulting WSDM + Dante methodology (see Figure 12) the resulting combined
approach consists of 6 consecutive steps. The advantage here is the automation of the Dante
annotation process and achieving this almost without additional effort from the designer (as a side-
effect so to speak).

However, this combination is not yet 100% waterproof. As of yet, the existing mappings from WSDM
to WAfA [1] cover about 69% of WAfA concepts, so additional work is needed to raise this
percentage and attain a higher degree of “coverage” and thus automation.

How this is achieved is explained in the following sections.

Mission statement
specification

Audience modeling

Conceptual design

Implementation design

Implementation

Transform pages

WSDM Dante Ontologies

Advertisement
…
Figure
Footer
…
Menu
List
…
OrderedList
…

Advertisement
…
Figure
Footer
…

…
OrderedList
Webdirectory
FAQ
Favorites
…

WSDM
ontology

WAfA
ontology

Ontology
Mapping

Extending WSDM

 Page 32/83

Figure 12

Conceptual Design

Mission statement
Specification

Audience Modeling

Implementation design

Implementation

Execute mapping +
Transform pages

Analyze Web pages

Discover object roles

Annotate objects with WAfA
ontology

Transform pages

Conceptual Design

Mission statement
Specification

Audience Modeling

Implementation design

Implementation

WSDM

Dante

WSDM & Dante combined

Extending WSDM

 Page 33/83

4.2 The combined WSDM-Dante methodology - Mapping rules
explained

Section 2.5.2 explains what WSDM stands for and how it works. To summarize briefly we can state it
is a Web Site design methodology developed at the Vrije Universiteit Brussel, consisting of 5 distinct
phases:

1. Mission statement specification

2. Audience modeling

3. Conceptual design

4. Implementation design

5. Implementation.

WSDM also uses the ontology concept. The WSDM ontology was especially created to store the
information collected during the design process.

Section 2.5.1 explains what Dante stands for and how it works. Dante is an approach consisting of
four steps:

1. Analyze Web pages to identify objects that support mobility and travel.

2. Discover their roles.

3. Annotate them with the WAfA ontology in order to make their roles explicit.

4. Transform pages based on the annotations to enhance the provided mobility support.

Dante also relies heavily on the ontology concept; the WAfA ontology (formerly known as the Travel
ontology) is used as an integral part of the annotation (step 3) process.

A further step (Section 4.1) combined these two methods by means of their ontologies: A mapping
was conceived to map WSDM ontology objects onto WAfA ontology objects.

Now, let us take a closer look at how this concept works:

One-to-one relation/mapping

Some objects exist in the WAfA ontology and in the WSDM ontology under the same name and
meaning the same thing. This means a simple one-to-one relation is possible between the WSDM
ontology object and the WAfA ontology object.
Take for example the Advertisement object. This exists in both WAfA and WSDM ontologies under
exactly the same name. In a formal definition using first-order predicate logic, this one-to-one relation
is translated into a mapping rule as follows:

∀ i ∈ I: wsdm:Advertisement(i) � wafa:Advertisement(i)

Where I stands for the set of all instances of the collection of all WSDM modeling concepts for a
Web site [1].
This rule means the following: if we have an Advertisement object (or instance would be more correct
here) in the WSDM ontology, the rule maps it to its corresponding WAfA ontology object (again,
instance applies better than object).
In practice, as a result of the WSDM design process, we would have a collection of objects (or
instances) in the WSDM ontology. Then, after building the Web site, in stead of performing the first 3

Extending WSDM

 Page 34/83

Dante steps manually (Analyze Web pages, Discover object roles & Annotate objects with WAfA
ontology), we see that this information is already present, not in the Dante-usable form (meaning not
as instances of WAfA-objects) but as instances of WSDM ontology objects. So in order to get the
information in a Dante-usable form, the WAfA ontology instances are created starting from the
WSDM ontology instances through the execution of the before-mentioned mapping rules.
Coming back to our example, this means the WAfA ontology Advertisement instance
(wafa:Advertisement(i)) is created starting from the WSDM ontology Advertisement instance
(wsdm:Advertisement(i)). This WAfA instance is now readily available for the fourth and final step of
the Dante process (Transform pages), completing the combined methodology.

More complex relation/mapping.

Not all objects in the WSDM ontology have a WAfA counterpart. Nevertheless a mapping rule can
still be defined provided we get a bit more “creative”. Consider the following example: in the WAfA
ontology several symbol separators are defined:

• CommaSeparator
• DashSeparator
• TriangleLeftSeparator
• TriangleRightSeparator
• VerticalBarSeparator

They have no immediate WSDM ontology counterpart. However, the WSDM ontology does have the
CustomSeparator as an object. If this CustomSeparator were to be represented by a string having
the same value as the value the corresponding WAfA ontology object represents, they would both
mean the same thing and these “conditions” could be combined into a mapping rule.
Taking the TriangleLeftSeparator as an example from the WAfA ontology, we would need a WSDM
ontology CustomSeparator object represented by a “<” to have a correspondence. This is exactly
what the following mapping rule represents:

∀ i ∈ I, ∃ x ∈ I: wsdm:CustomSeparator(i) ^ wsdm:representedBy(i, x) ^
wsdm:String(x) ^ wsdm:hasValue(x, “<”) � wafa:TriangleLeftSeparator(i)

Although a bit more complex than the one-to-one mapping no “special magic” is needed. In fact, with
these two kinds of mapping we were able to generate about 70% of the relevant WAfA ontology
objects starting from our existing WSDM ontology.

The complete list of mappings can be found in Appendix B: Mapping Rules between WSDM and
WAfA.

Extending WSDM

 Page 35/83

4.3 The combined WSDM-Dante methodology – Extending WSDM

At the time of writing there are 84 WAfA ontology concepts that are subject of this investigation. 3
WAfA concepts are abstract classes however (Object, AuthoringConcept, Atom), meaning they do
not need to be mapped. This leaves us with 81 concepts to take into account. The mapping rules
explained before account for 56 of those yielding coverage of 69%.

This leaves us the following 25 WAfA ontology Concepts that do not have a WSDM ontology
counterpart/mapping:

1. OrderedList
2. UnorderedList
3. AttributeBreadcrumb
4. LocationBreadCrumb
5. PathBreadCrumb
6. SpecialGraphic
7. Skiplink
8. Bookmark
9. Favorites
10. ShoppingCart
11. Index
12. SiteIndex
13. FAQ
14. Note
15. Citation
16. NB
17. PS
18. Abstract
19. PageSummary
20. SiteSummary
21. SearchEngine
22. HistoryList
23. DataTable
24. LayoutTable
25. Headline

“Extending WSDM” to also support these 25 remaining concepts means adding classes to the
WSDM ontology, creating new mapping rules for these newly-added classes and specifying what
part of the WSDM design process is impacted and how. We shall do this for the WAfA ontology
objects specified above.

Typographical conventions:

When adding concepts to the WSDM ontology, existing concepts will also be shown to clearly
demonstrate where in the WSDM ontology concept hierarchy the new concepts are added. These
new concepts will have a typeface of italics and bold. This is illustrated by the following figure:

ExistingConcept1

ExistingConcept2

NewConcept

Extending WSDM

 Page 36/83

4.3.1 OrderedList & UnorderedList

Ontology extension:

We add the two objects (classes is a more appropriate term here and we will use it henceforth)
OrderedList & UnorderedList as a subtype of the existing List object (again, class is a better term
here). Since every list is either ordered or unordered, we could make the list an abstract class,
forcing the use of either OrderedList or UnorderedList instead. This however would impact the
existing mapping rules. Furthermore there are cases where nothing about the order in the list is
known. It is exactly for these cases that the List is retained as a concrete class.

New mapping rules:

∀ i ∈ I: wsdm:OrderedList(i) � wafa:OrderedList(i)

∀ i ∈ I: wsdm:UnorderedList(i) � wafa:UnorderedList(i)

Methodology impact:

In the Implementation Design, the Presentation Design is impacted. The List class is a non-basic
presentation concept [10]. Now however, when adding lists to the design, the designer has the added
option of adding ordered or unordered lists. If nothing is known about the list ordering, the existing list
concept can still be used.

4.3.2 AttributeBreadcrumb, LocationBreadCrumb & PathBreadCrumb

Ontology extension:

In the WAfA ontology, these three concepts are subtypes of the NavigationalBreadCrumbTrail
concept, a concept that also exists in the WSDM ontology. As such it is a bit strange that the suffix
“Trail” is missing in all three concept names since their class inheritance and their respective (WAfA
ontology) definitions clearly state they are in fact breadcrumb trails. To illustrate this, take e.g. the
WAfA ontology definition of the LocationBreadCrumb concept: “Conveys the position of the current
page within the site hierarchy. A page has the same breadcrumb trail, no matter how users get
there.” – this is clearly a LocationBreadCrumbTrail.
So our first recommendation, surprisingly, would be to alter the WAfA ontology to add the suffix
“Trail” to all three concept names. To avoid confusion, we will refer to the WAfA ontology concepts
AttributeBreadCrumb, LocationBreadCrumb and PathBreadCrumb as AttributeBreadCrumb[Trail],
LocationBreadCrumb[Trail] and PathBreadCrumb[Trail].

OrderedList

UnorderedList

PresentationConcept

ComplexPresentationConcept

IndependentComplexPresentationConcept

List

Extending WSDM

 Page 37/83

Coming back to WSDM, we add the three classes AttributeBreadCrumbTrail,
LocationBreadCrumbTrail & PathBreadCrumbTrail as a subclass of the existing
NavigationBreadCrumbTrail class thereby replicating the 4 concepts’ WAfA ontology hierarchy in the
WSDM ontology.
The PresentationConcept is chosen over the NavigationConcept because in most cases,
breadcrumbs are used for reasons of clarity or explanatory nature in stead of pure navigation.
Breadcrumbs don’t even have to be clickable hyperlinks. But even when they are, they seldom form
an integral part of a site’s navigation design.

New mapping rules:

∀ i ∈ I: wsdm:AttributeBreadcrumbTrail(i) � wafa:AttributeBreadcrumb[Trail](i)

∀ i ∈ I: wsdm:LocationBreadcrumbTrail(i) � wafa:LocationBreadcrumb[Trail](i)
∀ i ∈ I: wsdm:PathBreadcrumbTrail(i) � wafa:PathBreadcrumb[Trail](i)

Methodology impact:

In the Implementation Design, the Presentation Design is impacted. These three new types of non-
basic presentation concepts [10] offer new BreadCrumbTrail options to the designer to choose from,
while retaining the existing NavigationBreadCrumbTrail.

4.3.3 SpecialGraphic

Ontology extension:

This is an abstract class in WAfA meaning it is not instantiated. Therefore it does not need a WSDM
ontology counterpart and hence no mapping.

New mapping rules:

N/A.

Methodology impact:

N/A.

AttributeBreadCrumbTrail

PresentationConcept

ComplexPresentationConcept

IndependentComplexPresentationConcept

BreadCrumbTrail

LocationBreadCrumbTrail

PathBreadCrumbTrail

NavigationBreadCrumbTrail

Extending WSDM

 Page 38/83

4.3.4 SkipLink

Ontology extension:

In the WSDM ontology, we add the class SkipLink as a subtype of the existing NavigationalAidLink
class.

New mapping rules:

∀ i ∈ I: wsdm:SkipLink(i) � wafa:SkipLink(i)

Methodology impact:

In the WAfA ontology, a SkipLink is defined as follows: “A link that enables users, in particular
visually impaired users, to avoid certain areas that are considered as obstacles or not of interest. For
example, a skip link is usually provided to skip a header or sidebar. Since it provides movement
within the page, it is also a child of the Intra concept.”
In the Conceptual Design, the Navigational Design is impacted [10]. This new type of link is
something that is especially geared towards aiding the navigation of visually impaired users.
Therefore it is considered a NavigationalAid link and should be used in this context (e.g. for skipping
recurring headers as stated in the WAfA ontology definition).
As far as WSDM is concerned, it might be considered a drawback to introduce a concept that has
little use outside the visual impaired “sphere of interest”. The designer should be (made) aware of the
fact that this link needs to be introduced manually and thus does not get created automatically.
A possible solution might be to introduce SkipLinks as a standard feature in e.g. headers or rather
the WSDM ontology Header concept since SkipLinks will be very often used in this way.

4.3.5 Bookmark, Favourites, ShoppingCart

Ontology extension:

When looking at the WAfA ontology definition, Favourites and ShoppingCart are two “special cases”
of a Bookmark collection of links. In [10] the example of the Shopping Cart is taken as a suspend-
resume link which in turn is a special case of a process logic link. E.g. a user might suspend his
buying activity temporarily to check out his shopping cart or basket, to resume his shopping activities
afterwards. Hence the type suspend-resume link. It is obvious the ShoppingCart should be created
as a ProcessLogicLink subtype.
Favourites however is something different, this is more often used as navigational aid, thereby
making it a candidate for a NavigationalAidLink subtype. The problem here is we lose the WAfA
ontology grouping of the 3 concepts Bookmark, Favourites and ShoppingCart.

NavigationConcept

Link

SkipLink

NavigationalAidLink

Extending WSDM

 Page 39/83

This is solved by creating two types of bookmark: one used for process logic purposes with
ShoppingCart as a subtype or subclass and one used for navigational aid purposes with the
Favourites as subclass.
One last issue remains: note that the WAfA concept speaks of Favourites as a collection or list of
links and not of a single link. This means in the WSDM ontology a list of FavouriteLinks constitutes a
WAfA ontology Favourites concept. The same applies to Bookmark/BookmarkLink and
ShoppingCart/ShoppingCartLink. So all 4 WAfA concepts are created in the WSDM ontology as
individual links and it is the collection of them bundled in a WSDM ontology list concept that maps
onto the corresponding WAfA concept. Though we now have 4 new WSDM ontology concepts as
opposed to 3 existing WAfA concepts this is solved by mapping both WSDM ontology bookmark
concepts to the existing WAfA ontology bookmark concept.

New mapping rules:

In the WSDM ontology, a list consists of a collection of elements/items which in turn point to a link.
This link can be a.o. a ProcessLogicBookmarkLink, NavigationalAidBookmarkLink, FavouriteLink or
ShoppingCartLink. Note that these rules resemble the NavigationalList rule, where NavigationalList is
a WAfA ontology concept and it’s WSDM ontology counterpart is a list consisting of a collection of
(regular) links. This reasoning yields the following 4 rules:

∀ a ∈ I, ∃ b, c, d, e ∈ I: wsdm:List(a) ^ wsdm:hasChild(a, b) ^ wsdm:ListElement(b) ^
wsdm:hasChild(b, c) ^ wsdm:ListItem(c) ^ wsdm:hasNavigationReference(c, d) ^
wsdm:NavigationReference(d) ^ wsdm:pointingToLink(d, e) ^
wsdm:NavigationalAidBookmarkLink(e) � wafa:Bookmark(a)

∀ a ∈ I, ∃ b, c, d, e ∈ I: wsdm:List(a) ^ wsdm:hasChild(a, b) ^ wsdm:ListElement(b) ^
wsdm:hasChild(b, c) ^ wsdm:ListItem(c) ^ wsdm:hasNavigationReference(c, d) ^
wsdm:NavigationReference(d) ^ wsdm:pointingToLink(d, e) ^
wsdm:ProcessLogicBookmarkLink(e) � wafa:Bookmark(a)

∀ a ∈ I, ∃ b, c, d, e ∈ I: wsdm:List(a) ^ wsdm:hasChild(a, b) ^ wsdm:ListElement(b) ^
wsdm:hasChild(b, c) ^ wsdm:ListItem(c) ^ wsdm:hasNavigationReference(c, d) ^
wsdm:NavigationReference(d) ^ wsdm:pointingToLink(d, e) ^ wsdm:FavouriteLink(e) �
wafa:Favourites(a)

∀ a ∈ I, ∃ b, c, d, e ∈ I: wsdm:List(a) ^ wsdm:hasChild(a, b) ^ wsdm:ListElement(b) ^
wsdm:hasChild(b, c) ^ wsdm:ListItem(c) ^ wsdm:hasNavigationReference(c, d) ^
wsdm:NavigationReference(d) ^ wsdm:pointingToLink(d, e) ^ wsdm:ShoppingCartLink(e) �
wafa:ShoppingCart(a)

ShoppingCartLink

NavigationConcept

ProcessLogicLink

ProcessLogicBookmarkLink

FavouriteLink

NavigationalAidLink

NavigationalAidBookmarkLink

Link

Extending WSDM

 Page 40/83

Methodology impact:

In the Conceptual Design, the Navigational Design is impacted. During construction of the navigation
track of an audience class, a task navigation model is build for each task in this audience class. Task
navigation models are basically defined in terms of components and navigational aid links or process
logic links [10]. It is precisely here that the designer has extra choices with the addition of the four
proposed WSDM ontology concepts.

4.3.6 Index & SiteIndex

Ontology extension:

Consider the example of reading a book. A table of content is a standard feature of a book (in the
beginning), but so is an index (at the end). An index is usually an alphabetical list of references. A
site index is also an alphabetical list of references, all pointing to pages within that site.
It is thanks to the addition of the OrderedList concept that we can map to both WAfA concepts
through usage of mapping rules only. The WSDM ontology does not need to be extended.

New mapping rules:

∀ i ∈ I, ∃ x, y ∈ I: wsdm:OrderedList(i) ^ wsdm:hasChild(i, x) ^ wsdm:ListItem(x) ^
wsdm:hasNavigationReference(x, y) ^ wsdm:NavigationReference(y) ^

(wsdm:pointingToNode(y,) ∨ wsdm:pointingToLink(y,)) � wafa:Index(i)

∀ i ∈ I, ∃ x, y, z ∈ I: wsdm:OrderedList(i) ^ wsdm:hasChild(i, x) ^ wsdm:ListItem(x)
^ wsdm:hasNavigationReference(x, y) ^ wsdm:NavigationReference(y) ^
wsdm:pointingToNode(y, z) ^ wsdm:InternalNode(z) � wafa:SiteIndex(i)

Methodology impact:

As explained above, the WSDM ontology is not extended, hence the methodology is not impacted.

4.3.7 FAQ

Ontology extension:

A frequently asked questions-list as such is an unknown concept in the WSDM ontology. It is
impossible to create a single mapping rule to cover this WAfA concept. Therefore we add it to the
WSDM ontology as a separate class. The FAQ shall be added as another non-basic presentation
concept and is thus a subclass of the existing IndependentComplexPresentationConcept.
Whether it should be added as an IndependentComplexPresentationConcept or as a List subclass
has no impact on the new mapping rule (it is always a one-to-one relation) nor on the methodology,
since in both cases the same phase of the methodology is impacted.

Extending WSDM

 Page 41/83

-or-

New mapping rules:

∀ i ∈ I: wsdm:FAQ(i) � wafa:FAQ(i)

Methodology impact:

In the Implementation Design, the Presentation Design is impacted. As stated above, the FAQ is a
non-basic presentation concept offering an alternative to the existing List concept when it comes to
adding a frequently asked questions part to the Web site design.

4.3.8 Note, Citation, NB, PS

Ontology extension:

The WAfA ontology describes the Note concept as follows: “A comment that is usually added as
supporting information to the main content of the document- additional information”.
There are no concepts in the WSDM ontology that have any resemblance to this one. The WSDM
Summary comes closest but even that differs too much to create the Note as a subclass of the
Summary class. Therefore the Note class is created as a separate
IndependantComplexPresentationConcept. In the WAfA ontology, Citation, NB and PS are
subclasses of the Note class. This hierarchy is retained, so in the WSDM ontology they are also
created as subclasses. We add the Note class to the WSDM ontology with Citation, NB and PS as
subclasses.

FAQ

PresentationConcept

ComplexPresentationConcept

IndependentComplexPresentationConcept

List

FAQ

PresentationConcept

ComplexPresentationConcept

IndependentComplexPresentationConcept

List

Extending WSDM

 Page 42/83

New mapping rules:

∀ i ∈ I: wsdm:Note(i) � wafa:Note(i)

∀ i ∈ I: wsdm:Citation(i) � wafa:Citation(i)
∀ i ∈ I: wsdm:NB(i) � wafa:NB(i)
∀ i ∈ I: wsdm:PS(i) � wafa:PS(i)

Methodology impact:

Adding these classes impacts the Presentation Design of the Implementation Design. Notes,
Citations, NB and PS are all new concepts offered to the designer to use at his or her own discretion.

4.3.9 Abstract

Ontology extension:

In the terms of WAfA, the Abstract concept is defined as follows: “a sketchy summary of the main
points of an argument or theory”. This means an abstract is a sort of summary. As a consequence, in
the WSDM ontology, the Abstract class is created as a subclass of the existing Summary class.

PresentationConcept

ComplexPresentationConcept

IndependentComplexPresentationConcept

Abstract

Section

Summary

Citation

PresentationConcept

ComplexPresentationConcept

IndependentComplexPresentationConcept

NB

PS

Note

Extending WSDM

 Page 43/83

New mapping rules:

∀ i ∈ I: wsdm:Abstract(i) � wafa:Abstract(i)

Methodology impact:

In the Implementation Design, the Presentation Design is impacted. Abstract as a new WSDM
ontology concept is another non-basic presentation concept as a “special summary” which in turn is a
special case of the section concept. Note that the Abstract concept is not tied to a page or a site like
the PageSummary or SiteSummary concepts (see below).

4.3.10 PageSummary

Ontology extension:

The WAfA ontology defines the PageSummary concept as follows: “a chunk that provides the
summary of the page”.
In WSDM, a WAfA chunk is represented by a grid that represents an object chunk as is illustrated by
the following rule:

∀ i ∈ I, ∃ x ∈ I: wsdm:Grid(i) ^ wsdm:representsChunk(i, x) ^ wsdm:ObjectChunk(x) �
wafa:Chunk(i)

So we can think of a PageSummary as a part of that grid containing the summary. In the WSDM
ontology, the general Summary concept already exists. It is not hard to see the PageSummary as a
special case meaning it should be added as a subclass of the Summary class. Like a grid represents
an ObjectChunk it would be nice to be able to tie the PageSummary to it’s corresponding page.
This means that apart from the addition of the PageSummary concept, a new relation needs to be
created: summarizesPage(x, y) which should be read in the following way: “a PageSummary x
summarizes the Page y”.

New mapping rules:

∀ i ∈ I: wsdm:PageSummary(i) � wafa:PageSummary(i)

PresentationConcept

ComplexPresentationConcept

IndependentComplexPresentationConcept

Abstract

Section

PageSummary

Summary

Extending WSDM

 Page 44/83

Methodology impact:

Again, the Presentation Design of the Implementation Design phase is impacted since another non-
basic presentation concept is added [10]. Note that Page and ObjectChunk should not be confused:
in WSDM-terms a page can consist of one or more ObjectChunks so it would be incorrect to tie the
PageSummary to the WSDM ontology ObjectChunk concept.

4.3.11 SiteSummary

Ontology extension:

The WAfA ontology defines the SiteSummary concept as follows: “a chunk that provides a summary
of the site”.
In the WSDM ontology, a site is represented by the SiteStructureConcept WebSite. Much like with
the PageSummary, this new concept can be added as a subclass of the existing Summary class but
with some kind of “link” to a Web site. This link is formed by the relation summarizesWebSite. As with
the PageSummary addition, a new relation needs to be created: summarizesWebSite(x, y) which
should be read in the following way: “a SiteSummary x summarizes the site WebSite y”.

New mapping rules:

∀ i ∈ I: wsdm:SiteSummary(i) � wafa:SiteSummary(i)

Methodology impact:

Again, the presentation design of the implementation design phase is impacted since another non-
basic presentation concept is added [10].
Apart from this, it is not hard to see that a summary about the entire Website would resemble the
Mission Statement (first phase of the WSDM methodology). The Mission Statement is not modelled
in the WSDM ontology though so this phase is not impacted. For the designer however it should be
noted that the “inspiration” for the content of the Site Summary can be found there.

4.3.12 SearchEngine

PresentationConcept

ComplexPresentationConcept

IndependentComplexPresentationConcept

Abstract

Section

SiteSummary

Summary

Extending WSDM

 Page 45/83

Ontology extension:

The WAfA definition of a Search Engine is “Consists of an edit box, a button and is usually identified
by a label. It could be used to search the site or the Web”. Plotted against this definition, consider the
following examples:

Figure 13 - VUB Website Search

Figure 13 shows the standard VUB Website search. Notice however that apart from the standard
textbox/button combination there are also 2 radio buttons offering a choice between searching the
Internet or searching the VUB Website.

Figure 14 - Search on Amazon.com

-and-

Figure 15 - another Search on Amazon.com

Figure 14 and Figure 15 both are from the Amazon.com Web site and both reside in the same
header but one can clearly see the difference in build between the two.

Extending WSDM

 Page 46/83

Figure 16 - a special search on www.immoweb.be

Figure 16 on the left hand side allows users to input a number related to a property featured on the
Website www.immoweb.be (Belgian real estate site). Upon clicking the Go button the site opens the
relevant property page which is faster than having to browse through all the properties in your area of
choise. So this too, has something of a search functionality, rapidly finding the desired property.

The above examples demonstrate the SearchEngine concept definition needs to be extended. The
button can be a link, represented by some text (e.g. Go!, Get It!, Search, Find, etc…) or a graphic.
The label itself can also be a graphic. In lots of cases there is some text present indicating the
presence of a search possibility (e.g. “enter your search criteria here”, etc…).
Next consider the placement – the accompanying text or even the button/link are not always placed
in the same area.

The need to be able to search for something, i.e. to have a search capability or search engine is a
functional requirement. When taking a look at the I-F-ModelingConcept part of the WSDM ontology,
notice the ObjectChunkFunction concept. This concept has several subconcepts or subclasses like
e.g. FillOutFunction or UploadFileFunction. The uploading of a file resembles a search somewhat: in
most cases we’ll find a label or some accompanying text, a textbox and an upload button or link.
Based on these observations, the class SearchFunction is added as a subclass of the
ObjectChunkFunction superclass.

The SearchEngine concept represents a very specific kind of functionality or in other words functional
requirement. Since in WSDM-terms an ObjectChunk is a model of information and/or functional
requirements, we can think of a search engine as a special kind of ObjectChunk. This means in the
WSDM ontology the SearchEngine is created as a subclass of the existing ObjectChunk concept.

I-F-ModelingConcept

FillOutFunction

UploadFileFunction

SelectFunction

SearchFunction

ObjectChunkFunction

Extending WSDM

 Page 47/83

New mapping rules:

∀ i ∈ I: wsdm:SearchEngine(i) � wafa:SearchEngine(i)

Methodology impact:

The addition of the SearchFunction and SearchEngine concepts impact the Conceptual Design, Task
& Information Modeling (also functional modelling). This is the conceptual “what” of the design.

As an afterthought, the SearchEngine concept could be split up in an InternalSearchEngine and
ExternalSearchEngine – depending if the engine searches the site or the Internet. This was not
implemented however as the SearchEngine concept suffices for our current research.

4.3.13 HistoryList

Ontology extension:

The WAfA ontology definition32 : “Provides links to the pages that the user has visited before. It
usually presents the links in a particular time order therefore it is also a child of the OrderedList”. The
good news is the OrderedList was added as a concept to the WSDM ontology. The bad news is that
there is no distinction between the types of ordering.
This poses a problem because in order to make a distinction between e.g., a HistoryList concept and
an Index concept the only thing separating them is the type of ordering: they are both ordered lists of
links. The links can point both internally as well as externally. The only difference is an Index is
sorted alphabetically (or alfanumerically) while a HistoryList is sorted according to timestamp of link-
access. This leaves us no alternative but to create the concept as a subtype of the existing (albeit
recently created) OrderedList WSDM ontology concept.

32 See http://www.schemaweb.info/schema/SchemaInfo.aspx?id=275 (accessed 2007)

I-F-ModelingConcept

ObjectChunk

SearchEngine

HistoryList

PresentationConcept

ComplexPresentationConcept

IndependentComplexPresentationConcept

List

OrderedList

Extending WSDM

 Page 48/83

New mapping rules:

∀ i ∈ I: wsdm:HistoryList(i) � wafa:HistoryList(i)

Methodology impact:

Since the HistoryList is a subtype of the List class which is a non-basic presentation concept [10], in
the Implementation Design, the Presentation Design is impacted. Apart from the added OrderedList
and UnorderedList concepts, the designer now has an additional or more specific OrderedList class
available.

4.3.14 DataTable & LayoutTable

Ontology extension:

The Table concept already exists in the WSDM ontology. It is not hard to see that both WAfA
concepts are specialised cases of the table concept so they are added in the WSDM ontology as
subtypes of the Table concept.

New mapping rules:

∀ i ∈ I: wsdm:DataTable(i) � wafa:DataTable(i)
∀ i ∈ I: wsdm:LayoutTable(i) � wafa:LayoutTable(i)

Methodology impact:

Since a Table is a presentation concept, the presentation design is impacted. It is left to the
discretion of the designer to choose the purpose of the table. The existing Table concept is retained
as a class in case it is unclear which type of table to choose from.

4.3.15 Headline

Ontology extension:

PresentationConcept

ComplexPresentationConcept

IndependentComplexPresentationConcept

DataTable

LayoutTable

Table

Extending WSDM

 Page 49/83

The WAfA ontology defines the headline concept as follows: “Is a widely known concept in
newspapers; it is usually set in large type to indicate an important or sensational piece of news. In
the context of Web pages, it is the highlighted heading which can be the latest updated or the most
important heading in the page.”
In the WAfA ontology, Headline is a subtype of the Heading concept, as is SectionHeading. In
WSDM ontology terms, the WAfA Heading and SectionHeading concepts are mapped to the Title
concept. The difference between the WAfA concepts Heading and SectionHeading in the WSDM
ontology mapping is the object the Title is linked to. Simply put, in WSDM ontology terms a
(WAfA)Heading is a (WSDM)Title on a (WSDM)Page and a (WAfA)SectionHeading is a (WSDM)Title
on a (WSDM)Section.
This however leaves us no room for mapping a WAfA ontology Headline concept. We therefore
create this concept in the WSDM ontology as a subtype of the existing Title class.

New mapping rules:

Unlike Heading and SectionHeading, no mapping rule deduction is needed. There exists a one-to-
one mapping.

∀ i ∈ I: wsdm:Headline(i) � wafa:Headline(i)

Note that we do not require the Headline to be tied to a Page or Section object. It can occur on either
one, hence the simple one-to-one mapping rule.

Methodology impact:

Since the new WSDM ontology Headline class is another subtype of the PresentationConcept class,
the presentation design is impacted. The newly added concept offers the designer a choice in titles:
regular title or headline. There is no need for another SectionHeading subtype since a WAfA
ontology SectionHeading concept can be mapped to from existing WSDM ontology elements.

4.4 Conclusion

In this chapter, we presented an extension of the WSDM methodology. This was achieved by adding
classes to the ontology and creating new mapping rules with the purpose of attaining a higher
coverage of WAfA ontology elements.
Of the 81 WAfA concepts, a mapping and/or similar WSDM ontology concept was presented for 80 of
them giving a coverage of almost 99%. To say the least this is a marked improvement over the initial
69% we set out to increase.

PresentationConcept

ComplexPresentationConcept

DependentComplexPresentationConcept

Title

Headline

Test Case: WISE Website

 Page 50/83

5 Test Case: WISE Website
The previous chapter explained how mapping rules and some extensions to WSDM (the method and
the ontology) allows to combine both the WSDM and the Dante approach. This, in turn, would lead to
the development of Web sites that are much better suited for the visual impaired Web user.
But does the mapping rules concept actually work? And how is this done in practice, how is this
concept implemented? Chapter 5 will attempt to answer these questions. Firstly a simple example
testing the mapping rule implementation is given, secondly more complex mapping rule examples
and implementation problems are discussed, and thirdly a larger example (or rather test case) is set
up and discussed.

5.1 The combined WSDM-Dante methodology - Mapping rules put
into practice

5.1.1 The search for automation.

In the previous section, it was explained how mapping rules were set up to have a formalized way of
tying WSDM ontology concepts to the WAfA ontology counterpart, meaning that starting from WSDM
ontology individuals we would be able to generate WAfA ontology individuals.
Even nicer would be to find some automatic way to do this. For example a tool that understands both
the WSDM and WAfA ontologies and would also understand and be able to execute the mapping
rules as defined before.
In this search for automation, SWRL presented itself as a useful means to accomplish this.

SWRL33 or the Semantic Web Rule Language is in a fact a combination of two things: the Web
ontology Language OWL and the Rule Language RuleML[4].
OWL is intended for use by applications that need to process the content of information in stead of
presenting this information to humans. OWL consists of 3 sublanguages34 OWL Lite, OWL DL and
OWL Full.
RuleML is a markup language for publishing & sharing rule bases on the World Wide Web.
Molded together as they are in SWRL, they offer the advantage of combining Horn-like rules (as
provided by RuleML) with the OWL knowledge base (as provided by OWL).

We were able to map WSDM concepts onto their WAfA counterparts using SWRL. Moreover, and of
much more practical use, SWRL allowed us to create WAfA ontology individuals automatically, taking
as input both WSDM and WAfA ontologies and the WSDM ontology individuals.
Since the WAfA and WSDM ontologies are a given, and WSDM ontology individuals are generated
as part of the WSDM methodology, this only leaves the effort to enter the rules in the SWRL system.
This however, is only a one-time effort. The result is the quasi automatic generation of WAfA
individuals requiring no additional actions from the designer/user.

To illustrate this an implementation of SWRL was needed. Protégé-OWL35 is a program that meets
this need. This Java-based tool supports a.o. the usage (edit, create, etc…) of ontologies (see Figure
17) and the editing and execution of rule sets much to our convenience exactly like the sort of rule
sets we created with the WSDM/WAfA mapping rules.

5.1.2 Rule execution – a simple example

33

 See http://www.daml.org/rules/proposal/rules-all.html (accessed 2006/2007)
34

 See http://www.w3.org/TR/owl-features/ (accessed 2007)
35

 See http://protege.stanford.edu/overview/protege-owl.html (accessed 2006/2007)

Test Case: WISE Website

 Page 51/83

We will first use a small example to illustrate how a mapping rule can be implemented with Protégé-
OWL. Suppose that, after the design phase, we have an instance (in protégé terminology also called
an individual) of the WSDM ontology Advertisement class. Since there exists a one-to-one mapping,
we expect to see, after execution of the mapping rules, an instance of the WAfA ontology
Advertisement class.
Our example consists of 4 steps:

1. Start a new Protégé project and import both WAfA and WSDM ontologies.
2. Add the WSDM Advertisement individual (an instantiation of the WSDM Advertisement class)
3. Enter the necessary mapping rules (using the protégé build-in SWRL-tab)
4. To execute the rules: activate the reasoner (called Jess)

Let us take a look at these steps in detail.

Step 1: starting from a new project, import both ontologies (WAfA & WSDM).

Figure 17 - WSDM & WAfA Ontologies

Step 2: create the WSDM Advertisement individual. Note that at this point there are no WAfA
individuals.

Test Case: WISE Website

 Page 52/83

Figure 18 - WSDM Ontology Advertisement Instance

Step 3: enter the mapping rules We will at this point only enter the rule that is relevant to this
example.

Figure 19 - a simple mapping rule in Protégé using Jess/SWRL

Step 4: activate the reasoner (called Jess, it is activated by clicking on the “J”-button on the
right of Figure 19) which is the actual execution of the mappig rule(s). As a result of our
example, a new WAfA ontology Advertisement individual is automatically created.

Test Case: WISE Website

 Page 53/83

Figure 20 - WAfA Ontology Advertisement Instance

This simple example proves the applicability of the automated rules concept in the form of the
Protégé/SWRL tool. It is not hard to imagine the gains to be made after the complete design with
dozens or hundreds of WSDM individuals is subjected to this automatic mapping rule execution.

However, one obvious drawback is that if one or both ontologies change, then also the mapping rules
will need to be re-examined and -if necessary- changed. But this is standard maintenance inherent to
any IT-system and should not be considered as a drawback specifically related to our mapping
approach. The advantages of the mapping approach still far outweigh the drawbacks.

5.2 Rule execution – more complex examples/rules

As explained above, SWRL extends OWL-axioms to include Horn-like rules. Such a rule axiom
consists of a so-called antecedent and a consequent written in the following form: antecedent �
consequent. Which is read as “if antecedent is true, then consequent must also be true”. Both
antecedent and consequent are conjunctions of atoms, so can be written in the form a1 ^ a2 ^ a3
… ^ an where a1 to an represents the atoms and the ^ symbol represents the conjunction. This, in
turn should be read as “if a1 and a2 and … and an”. This is well suited for our intended
usage. In all, of the 81 WAfA concepts we were able to map 69% of them through usage of rules.
Most of those rules are written as the so called “conjunctions of atoms” explained above and can
therefore directly be applied through the SWRL/Protégé combination explained in 5.1.2. This was not
the case for all rules however.

The current SWRLTab/Jess implementation only supports conjunction(AND), no disjunction(OR) nor
negation(NOT).

Test Case: WISE Website

 Page 54/83

Observe the following rule:

∀ i ∈ I, ∃ x ∈ I: (wsdm:String(i) ∨ wsdm:Image(i)) ^ (wsdm:Textbox(x) ∨
wsdm:Checkbox(x) ∨ wsdm:Radiobutton(x) ∨ wsdm:Pushbutton(x)) ^
wsdm:hasLabel(x, i) � wafa:Label(i)

This rule means that, starting from the WSDM ontology, a string or image that functions as a label for
a textbox, a checkbox, a radio button or a push button maps to a WAfA ontology Label concept. The
problem here is the disjunction (symbol ∨). We cannot write one SWRL rule that corresponds to the
above-mentioned mapping rule, since SWRL only recognizes the concept of conjunction. This can be
solved however in the following way:

In Propositional Logic, 2 formulae are Logically Equivalent if they both yield the same result with the
same value of input parameters [9].
This means that

p ^ (q ∨ r)

Is logically equivalent to

(p ^ q) ∨ (p ^ r)

Which, coming back to our problematic rule, means that

(wsdm:String(i) ∨ wsdm:Image(i)) ^ (wsdm:Textbox(x) ∨ wsdm:Checkbox(x) ∨
 wsdm:Radiobutton(x) ∨ wsdm:Pushbutton(x)) ^ wsdm:hasLabel(x, i)

can be rewritten as

(wsdm:String(i) ^ wsdm:Textbox(x) ^ wsdm:hasLabel(x, i)) ∨
(wsdm:String(i) ^ wsdm:Checkbox(x) ^ wsdm:hasLabel(x, i)) ∨
(wsdm:String(i) ^ wsdm:Radiobutton(x) ^ wsdm:hasLabel(x, i)) ∨
(wsdm:String(i) ^ wsdm:Pushbutton(x) ^ wsdm:hasLabel(x, i)) ∨
(wsdm:Image(i) ^ wsdm:Textbox(x) ^ wsdm:hasLabel(x, i)) ∨
(wsdm:Image(i) ^ wsdm:Checkbox(x) ^ wsdm:hasLabel(x, i)) ∨
(wsdm:Image(i) ^ wsdm:Radiobutton(x) ^ wsdm:hasLabel(x, i)) ∨
(wsdm:Image(i) ^ wsdm:Pushbutton(x) ^ wsdm:hasLabel(x, i))

which gives us one complex rule consisting of 8 disjunctions. However, if the following holds

A ∨ B � C

then the following also holds if both rules are executed independent from each other at the same
time:

A � C
B � C

So the solution for us lies in simply creating extra rules for disjunctions. Coming back to our
WSDM/WAfA ontology example this leads to the creation of 8 simple, separate rules that SWRL
understands:

∀ i ∈ I, ∃ x ∈ I: wsdm:String(i) ^ wsdm:Textbox(x) ^ wsdm:hasLabel(x, i) �
wafa:Label(i)
∀ i ∈ I, ∃ x ∈ I: wsdm:String(i) ^ wsdm:Checkbox(x) ^ wsdm:hasLabel(x, i) �
wafa:Label(i)

∀ i ∈ I, ∃ x ∈ I: wsdm:String(i) ^ wsdm:Radiobutton(x) ^ wsdm:hasLabel(x, i) �
wafa:Label(i)

∀ i ∈ I, ∃ x ∈ I: wsdm:String(i) ^ wsdm:Pushbutton(x) ^ wsdm:hasLabel(x, i) �
wafa:Label(i)

Test Case: WISE Website

 Page 55/83

∀ i ∈ I, ∃ x ∈ I: wsdm:Image(i) ^ wsdm:Textbox(x) ^ wsdm:hasLabel(x, i) �
wafa:Label(i)
∀ i ∈ I, ∃ x ∈ I: wsdm:Image(i) ^ wsdm:Checkbox(x) ^ wsdm:hasLabel(x, i) �
wafa:Label(i)

∀ i ∈ I, ∃ x ∈ I: wsdm:Image(i) ^ wsdm:Radiobutton(x) ^ wsdm:hasLabel(x, i) �
wafa:Label(i)
∀ i ∈ I, ∃ x ∈ I: wsdm:Image(i) ^ wsdm:Pushbutton(x) ^ wsdm:hasLabel(x, i) �
wafa:Label(i)

Executing these rules would have the same outcome as executing the original rule. The small theory
explained above states that in general all disjunction problems can be solved in the described way,
which solves our “disjunction-in-rules” problem.

This leaves us with the negation.

As explained before, the SWRLTab/Jess implementation does not support the negation (NOT).
However, we do have some rules (4 of them) that have a negation element as one of their
components.
A possible solution is to create specific fact-denouncing WSDM ontology classes or relations that the
designer must instantiate explicitly. This would then just be another class or relation with it’s
corresponding individual. Consider e.g. the following rule:

∀ a ∈ I, ∃ b, c, d, e ∈ I: wsdm:List(a) ^ wsdm:hasChild(a, b) ^ wsdm:ListElement(b) ^
wsdm:hasChild(b, c) ^ wsdm:ListItem(c) ^ wsdm:hasChild(b, d) ^ wsdm:ListItem(d) ^
¬wsdm:hasNavigationReference(c,) ^ ¬wsdm:hasNavigationReference(d,) �
wafa:DefinitionList(a)

When a new relation hasNotNavigationReference is created which e.g. can only contain one string
value (“true”, “noref”, etc…). It is however up to the designer’s discretion to see to it that an
element does not have both relations hasNavigationReference and hasNotNavigationReference
activated simultaneously.
To say the least this is not an elegant solution.

Test Case: WISE Website

 Page 56/83

5.3 The WISE Website example

As a final example, a few pages from the WISE Website are modeled in the WSDM ontology. Then
the mapping rules seen earlier are executed on these pages and the results will be discussed.

5.3.1 Modeling the pages

The pages included in this example are: the WISE Homepage, the WISE members page and finally
Sven Casteleyn’s Homepage.
It can be clearly seen that all three pages use the same basic header-sidebar-footer layout.

All pages use the same header and footer (Figure 21 and Figure 22). Sven’s homepage uses a
different sidebar (menu) than the other two WISE pages (Figure 23 and Figure 24).

header

footer

Left sidebar content

Test Case: WISE Website

 Page 57/83

Figure 21 - WISE Homepage and Header

Figure 22 - WISE Homepage and Footer

Test Case: WISE Website

 Page 58/83

Figure 23 - WISE Homepage and Sidebar

Test Case: WISE Website

 Page 59/83

Figure 24 - Sven Casteleyn's Homepage

The main difference obviously lies in the main content of the pages. Whereas the WISE homepage’s
main content is basically a big chunk of text, the members’ main content is somewhat more complex,
consisting of repeating blocks of information for each member (Figure 25).

Test Case: WISE Website

 Page 60/83

Figure 25 - Members page main content

The next step is a bit of reverse engineering – in stead of going through the complete WSDM design
process for the entire WISE Website, we describe a few existing pages using the WSDM ontology,
which has exactly the same result as doing it the other way round. The point is to have a few real-life
examples modeled into the WSDM ontology to test our rules on.

Looking at the page structure from a WSDM ontology perspective, the header-footer-sidebar
combination can be modeled as such (Figure 26).

Test Case: WISE Website

 Page 61/83

Figure 26 - Header-Sidebar-Footer model

To model this template, we create instances (or individuals as they are called in our tool of choice) of
the appropriate WSDM ontology concepts.
The WSDM ontology Header-LeftSideBar-Footer-Template concept has a ContentPane, a Footer, a
Header and a LeftSideBar, for all of which individuals are created. This modeling combination can be
used for the WISE pages as well as Sven’s Homepage. In fact, the Header and Footer can be used
on both templates.

For the main content we use a Grid. The grid is a basic building block in the WSDM ontology’s
presentation design. In fact, every webpage can be considered to consist mainly of a grid, the grid
dividing the page in areas which in turn can contain grids etc… This is reflected in the WSDM
ontology Grid concept shown by the following hierarchy:

A WSDM ontology Grid concept can have one or more GridRowElements as a child concept. A
GridRowElement can have one or more Rows as a child. The same goes for the GridCellElement
and finally the individual Cell as building block in the WSDM ontology Grid concept hierarchy. A Cell,
in turn, can contain several different IndependentComplexPresentationConcepts (e.g., a List, Table,
Banner, etc…), a ConceptReference, a MultimediaConcept (String, Email, Image, etc…) or another
Grid.
This is shown in Figure 27.

Grid

GridRowElement

Cell

Row

GridCellElement

Test Case: WISE Website

 Page 62/83

Figure 27- Grid individuals

Coming back to our 3 pages, the WISE Homepage Grid content is basically a big block of text. We
can think of the main content part as a grid containing one row with one cell that contains a big lump
of text.
The members page is somewhat more complex. Simplified for the sake of not getting lost in too
many details it can be thought of as a Grid, consisting of several rows per GridRowElement.
Basically each member’s data represents a GridRowElement with its accompanying GridCellElement
and Cell concepts (Figure 28 and Figure 29).

Test Case: WISE Website

 Page 63/83

Figure 28 - The Members page Grid structure

Figure 29 - The Members page Grid structure (cont'd)

On Sven Casteleyn’s Homepage we can clearly distinct a citation, a table (used for layout purposes
only), some text and a list of links as being part of the main Grid/Layout.

Test Case: WISE Website

 Page 64/83

All these elements are modeled in the WSDM ontology, the Citation and the LayoutTable actually
being new concepts that were introduced into WSDM in the course of this research.
The Table concept (of which DataTable and LayoutTable are children concepts thereby inheriting the
same properties/structure) actually shows a lot of similarities in construction with the Grid element:

Table

TableRowElement

TableCell

TableRow

TableCellElement

Test Case: WISE Website

 Page 65/83

The table containing information like room, phone, fax, email, etc… is modeled as a LayoutTable: the
Table element is primarily used for visual purposes.

Figure 30 - Sven's Homepage LayoutTable

Another type of element we encounter frequently on the WISE pages (header/footer/sidebar) and
Sven Casteleyn’s Homepage is the List of links. The hierarchical structure of a WSDM ontology List
concept looks like this:

The List concept has several subtypes, some of which are new elements introduced in the course of
this research. Of those, we used the UnorderedBullettedList and the UnorderedList concept the
most. The basic list element, the ListItem, can refer to a NavigationReference concept which in turn
can point to a Link concept that can have an InternalNode or an ExternalNode as its target (Figure
31).

List

ListElement

ListItem

Test Case: WISE Website

 Page 66/83

Figure 31 - ListItem/NavigationReference combination

A WSDM Link concept has several subtypes, some of which were introduced during the course of
this research. The one we use here is the NavigationalAidLink (Figure 32).

Figure 32 - Link example

Although not going into the smallest detail of every page of the WISE Website, this section’s purpose
is to give the reader an insight into how a Webpage can be described using the WSDM ontology. The
end result is a collection of WSDM ontology individuals. This is also exactly what would happen if a

Test Case: WISE Website

 Page 67/83

new Website is developed using the WSDM design methodology: the end result in the WSDM
ontology would be a collection of individuals.

In total, 237 WSDM ontology individuals were created. Broken down in separate classes/concepts
this gives us the following list:

WSDM Class/Concept Individuals
Cell 8
Citation 1
ContentPane 3
CustomSeparator 1
Email 1
ExternalNode 7
Footer 1
Grid 8
GridCellElement 19
GridRowElement 16
Header 1
Header-LeftSideBar-Footer-
Template 2
Image 7
InternalNode 12
LayoutTable 1
LeftSideBar 2
ListItem 31
Menu 2
NavigationalAidLink 25
NavigationReference 26
ObjectChunk 3
Page 3
PageRegion 1
RootNode 2
Row 16
Separator 2
String 6
TableCell 12
TableRow 6
Title 2
UnorderedBulletedList 3
UnorderedList 6
Website 1
Total 237

5.3.2 Running the rule set

The next step is the introduction and execution of the mapping rules that map WSDM ontology
concepts or combinations of WSDM ontology concepts to their WAfA ontology counterparts. How a
mapping rule is introduced is already explained in the beginning of this chapter. Important to note is
that although more mapping rules were introduced, it is not expected that all of them would actually
fire because in many cases the WSDM ontology individual necessary to trigger the rule is not

Test Case: WISE Website

 Page 68/83

present. For example the pages modeled here do not contain anything in the form of
BreadCrumbTrails so we do not expect any of those rules to fire (and consequently we do not expect
any of those WAfA individuals to be created as a result).

The result after the execution of our rule set is a collection of new WAfA ontology individuals (which
can be clearly identified as “Asserted Individuals” in our tool of choice – see Figure 33, Figure 34 and
Figure 35 - New WAfA individuals). These WAfA ontology individuals have no other origin than the
execution of the rules in combination with the introduced WSDM ontology individuals.

Figure 33 - Rule Execution Results

Figure 34- Rule Execution Results (cont'd)

Test Case: WISE Website

 Page 69/83

Figure 35 - New WAfA individuals

After running the rules and transferring that knowledge back to the ontologies (using SWRLTab/Jess)
we observe 38 newly created WAfA ontology individuals.

WAfA Class/Concept Individuals
Chunk 3
Citation 1
Collection 1
Footer 1
Header 1
Heading 2
LayoutTable 1
List 9
Node 3
Note 1
RunningFooter 1
RunningHeader 1
Separator 2
SideBar 2
Table 1
Title 2
UnorderedList 6
Total 38

The newly-created WAfA ontology individuals have the same name as the WSDM ontology
individuals they originated from, so their conception can always be traced back to the WSDM
ontology individual. For example, the WSDM ontology Page concept WISE_PageSvenHome maps to
the WAfA ontology Node concept WISE_PageSvenHome. This leaves us some sort of structure so

Test Case: WISE Website

 Page 70/83

we are not left with a bag of WAfA ontology individuals all called Generated_Individual_1,
Generated_Individual_2, etc…

SWRLTab/Jess does not explicitly say which rules were fired and which weren’t. This can be
deducted however by looking at the “Asserted Individuals” Tab. The fired rules are the following:

WSDM/WAfA fired rules
∀ i ∈ I: wsdm:Page(i) � wafa:Node(i)

∀ i ∈ I: wsdm:WebSite(i) � wafa:Collection(i)

∀ i ∈ I: wsdm:Header(i) � wafa:Header(i)

∀ i ∈ I, ∃ x ∈ I: wsdm:Header(i) ^ wsdm:IndependantTemplateConcept(x) ^
wsdm:hasHeader(x, i) � wafa:RunningHeader(i)

∀ i ∈ I: wsdm:Footer(i) � wafa:Footer(i)

∀ i ∈ I, ∃ x ∈ I: wsdm:Footer(i) ^ wsdm:IndependantTemplateConcept(x) ^
wsdm:hasFooter(x, i) � wafa:RunningFooter(i)

∀ i ∈ I: wsdm:Separator(i) � wafa:Separator(i)

∀ i ∈ I, ∃ x ∈ I: wsdm:Grid(i) ^ wsdm:representsChunk(I, x) ^
wsdm:ObjectChunk(x) � wafa:Chunk(i)

∀ i ∈ I, ∃ x ∈ I: wsdm:Title(i) ^ wsdm:Page(x) ^ wsdm:hasTitle(x, i) �
wafa:Heading(i)
∀∀∀∀ i ∈∈∈∈ I: wsdm:Note(i) ���� wafa:Note(i)

∀ i ∈ I: wsdm:Citation(i) � wafa:Citation(i)
∀∀∀∀ i ∈∈∈∈ I: wsdm:List(i) ���� wafa:List(i)

∀ i ∈ I: wsdm:UnorderedList(i) � wafa:UnorderedList(i)

∀ i ∈ I: wsdm:Title(i) � wafa:Title(i)

∀ i ∈ I: wsdm:SideBar(i) � wafa:Sidebar(i)
∀∀∀∀ i ∈∈∈∈ I: wsdm:Table(i) ���� wafa:Table(i)

∀ i ∈ I: wsdm:LayoutTable(i) � wafa:LayoutTable(i)

So at first sight, the rules executed correctly. Not only the basic one-on-one rules but also the more
complex ones (e.g. ∀ i ∈ I, ∃ x ∈ I: wsdm:Header(i) ^ wsdm:IndependantTemplateConcept(x) ^
wsdm:hasHeader(x, i) � wafa:RunningHeader(i)). Note however that the rules in bold are not
supposed to fire because they have no corresponding WSDM ontology individual to prompt their
execution. This problem is discussed in the next section. In all it can be concluded that too many
rules executed given the existing WSDM ontology individuals (there were no List, Table or Note
individuals created during the WISE pages modeling phase).

5.3.3 Problems with rule execution

For some concepts which are the subtype of a parent concept, we expect the subtype to be created
in the WAfA ontology. However, in practice, both subtype and supertype (or parent type) are
instantiated as WAfA ontology individuals. This was the case with the List/UnorderedList and
Table/LayoutTable concepts: in the WSDM ontology, we started from an UnorderedList individual
WISE_UnorderedListGeneral. After rule execution however, we noticed a WAfA ontology
UnorderedList individual WISE_UnorderedListGeneral with the same name (which is correct) but
also a List individual WISE_UnorderedListGeneral with the same name (which is not correct). The
same occurred with the LayoutTable individuals (e.g. WISE_SvenHomeLayoutTable).

Of the 81 rules, 4 had negations in them. With the remaining 77 rules it was discovered that there
was a problem running some of them. In the end the problem was broken down to the
wsdm:hasNavigationReference relationship and wsdm:String class. Any rule containing one or both

Test Case: WISE Website

 Page 71/83

caused errors and stopped the complete rule set from working. After elimination there remained 54
rules that executed without problems. This set was run for our example case.

The cause of the errors with the above mentioned elements was unclear. The
wsdm:hasNavigationReference relationship error is probably due to an incorrectly edited WSDM
ontology file. With more research this could be solved. However the cause of the wsdm:String class
error is unclear, also necessitating more research.

5.3.4 Conclusion

In this chapter we set up and explained a few examples including a test case to test the viability of
the mapping rule concept. It has been shown that this concept works outside a purely theoretical
environment but its implementation is not 100% trouble-free and thus more work/research in this field
is needed. It is our belief the hasNavigationReference/String problem can be solved, but the negation
and super/subtype double creation both present a more fundamental problem. The next chapter
draws a general conclusion and explains what future research would be of interest.

Conclusions and further work

 Page 72/83

6 Conclusions and further work

This chapter presents a general conclusion about this thesis and possible avenues of future
research.

6.1 Conclusion

The ever-increasing importance of Internet and the use of Websites have also put more emphasis on
the problems that visually impaired users encounter while travelling the Web. During the course of
this research we gave an overview of the technology and tools employed to help Visually impaired
users with their internet travels.
By way of test, the WISE Website was evaluated using a specialised method to see how it would
score with regards to the visually impaired. As a result of this test some suggestions were made as to
what could be improved.
After determining the nature of the problem and the need to do something about it, we looked more
closely at the WSDM Methodology. The Website Development Methodology developed at the VUB is
a good place to start if you want to create a Website that is suitable for the visually impaired to
navigate. For this reason, earlier research [1] linked this methodology to the Dante approach. The
Dante approach is another effort to make the surfing life for the visually impaired a bit easier. It takes
existing Webpages that are annotated using the WAfA ontology to produce “transformed” Webpages
better suitable to be navigated by the blind or people with bad eyesight. WSDM also uses its own
ontology as a container of the results of the design process. With both ontologies showing some
similarities, they formed the connecting point between the two approaches, the goal being for Dante
to continue where WSDM stops. To achieve this the information contained in the WSDM ontology
needs to be transferred to the WAfA ontology. This is done by mapping the objects in the WSDM
ontology to the objects in the WAfA ontology through special mapping rules. Some of these mapping
rules already existed [1] attaining a coverage of 69%. The goal of this thesis was to achieve as high a
coverage as possible, extending the WSDM methodology in the process.
We achieved this goal and set up a proof of concept to test the applicability of these mapping rules in
practice. This example case showed that although difficult to implement at this stage the mapping
rule concept does work (The complete set of mapping rules can be found in Appendix B).
The advantages of this mapping rule approach are:

• The combined effort of WSDM and Dante combined through the mapping rule concept is
less than the sum of both separate efforts: the WAfA annotations do not need to be inserted
manually because they are generated by the mapping rules.

• The mapping rule concept is a flexible one: ontologies and individual mapping rules can be
changed, allowing fine tuning and facilitating maintenance – a necessity inherent to any IT
system.

• Setting up the mapping rules is a one-time effort. It does not need to be repeated with every
run of the combined WSDM/Dante process.

6.2 Future work

The completion of our experimental research opens up the path for some interesting future work.

Given the problems we encountered in the mapping rule implementation through the Protégé
SWRLTab/Jess combination, this implementation needs to be re-evaluated. The development of an
entirely new tool is unnecessary, since Protégé is still very useful for editing ontologies (e.g. the
WSDM and WAfA ontologies). However, a bug-free Protégé plug-in (much like SWRLTab/Jess) that
understands conjunction, disjunction and negation would be a step forward.

Conclusions and further work

 Page 73/83

This in turn, though beyond the scope of this thesis, might prompt the research and development of a
general tool that connects two ontologies through a set of mapping rules. Where two systems using
the same ontology speak the same language, two systems using a different ontology speak a
different language. So a translator is necessary in the form of a tool executing a set of mapping rules.

The research in this thesis focussed on a mapping between the WSDM ontology concepts and the
WAfA ontology Authoring concepts. Future work can examine the possibilities of mappings between
the WSDM ontology concepts and the WAfA ontology Mobility concepts.

6.3 Final word

After presenting our experimental research içn the form of this thesis it is the author’s hope and belief
that another step is made towards the design of Websites that make the surfing life for the visually
impaired easer.

References

 Page 74/83

7 References

[1] Peter Plessers, Sven Casteleyn, Yeliz Yesilada, Olga De Troyer, Robert Stevens, Simon Harper
and Carole Goble – Accessibility: A Web Engineering Approach. WWW 2005, May 10-14, 2005
Chiba -Japan. pages 357 - 361

[2] Sven Casteleyn, Peter Plessers and Olga De Troyer – Generating Semantic Annotations during
the Web Design Process. ICWE’06 July 11-14, 2006 Palo Alto, California, USA.

[3] Human-Computer Interaction (second edition) – Alan Dix, Janet Finlay, Gregory Abowd and
Russel Beale. ISBN 0-13-239864-8

[4] Christine Golbreich - Combining Rule and Ontology Reasoners for the Semantic Web. RuleML
2004. International workshop No3, Hiroshima , Japan (08/11/2004)

[5] Judy Brewer – Web Accessibility Highlights and Trends. W4A at WWW2004, may 18th, 2004, New
York, U.S.A.

[6] I.V. Ramakrishnan, Amanda Stent and Guizhen Yang – HearSay: Enabling Audio Browsing on
Hypertext Content. WWW2004, may 17th – 22nd 2004, New York, U.S.A.

[7] Joseph Scheuhammer – Accessibility and Separating Form from Content. Adaptive Technology
Resource Centre, july 6th, 2000.

[8] U.S. Department of Justice – A Guide to Disability Rights Laws, Rehabilitation Act, Section 508.
http://www.usdoj.gov/crt/ada/cguide.htm#anchor65610 accessed 2007

[9] Logica voor Informatici (tweede editie) – J. F. A. K. Van Benthem, H. P. Van Ditmarsch, J. Ketting,
W. P. M. Meyer-Viol. ISBN 90-7869-484-2

[10] Web Site Design Method WSDM – Prof. Dr. Olga De Troyer. Syllabus for the course Design
Methods for Internet Based Information Systems – 2007.

[11] Use and Advantages of Ontology-based Web Design – unpublicised paper, see WISE

[12] The W3C Web Accessibility Initiative: http://www.w3.org/WAI/ (accessed 2006)

Appendices

 Page 75/83

8 Appendices

8.1 Appendix A: Browser Tests

 MS Windows/IE MS Windows/Opera Linux/Mozilla
Normal Everything looks ok though on

http://wise.vub.ac.be/members/ some photos look
distorted. Furthermore on the Web master and
publications pages the menu fonts are different
from the other pages.

Everything looks ok, though on
http://wise.vub.ac.be/members/
some photos look distorted.

Everything looks ok, though on
http://wise.vub.ac.be/members/
some photos look distorted.

Images off http://wise.vub.ac.be/members.html no textual
description for pictures; All other pages ok

http://wise.vub.ac.be/members.html
some pictures have an “image”
description, but most have no
description at all.

http://wise.vub.ac.be/members/ no
textual description replacing any of
the images.

Varying font size Internet Explorer offers limited font sizes: only 5
different settings ranging from smallest to largest.
But even the “largest” setting comes nowhere near
the 400%-setting of e.g. Mozilla thus limiting the
use of the browser somewhat. Nevertheless, all
pages were checked with the “largest” text size
setting.
On some pages certain portions of text did not
resize (e.g. names on
http://wise.vub.ac.be/members/ page). On the
following pages nothing resizes at all:
http://wise.vub.ac.be/researchers/publications.php,
http://wise.vub.ac.be/metovr/default.htm,
http://wise.vub.ac.be/webmaster.html
On the proposals page
http://wise.vub.ac.be/students/proposals.html titles
do not resize either.
The footer page does not resize on any page.

Opera offers a zoom function that
enlarges everything on the page: not
only the font size but images as well.
A 300% as well as a 400% resize is
possible.
All pages check out ok with the radio
buttons on the
http://wise.vub.ac.be/webmaster.html
page resizing as well. One minor
drawback though is that the page as
a whole resizes, resizing borders as
well and making horizontal and
vertical scrolling necessary.

Fonts at 400%: left column overflows
in right column on most pages.
Overall text resizes according to
chosen specification. On
http://wise.vub.ac.be/webmaster.html
page, pushbuttons also resize, but
not the radio buttons (their text
resizes though).

Appendices

 Page 76/83

Different screen
resolution/resizing
application

The browser was resized to a size which
corresponds roughly to full screen mode in a
640*480 resolution screen setting36.
A horizontal (as well as a vertical) scrollbar
appeared on all pages.
When resizing the browser, the content re-centers
automatically as long as the site width is less than
the browser screen width. When site width is
larger than browser width, text is aligned left.

As with Internet Explorer, the
browser was resized to a size which
corresponds roughly to full screen
mode in a 640*480 resolution screen
setting.
A horizontal (as well as a vertical)
scrollbar appeared on all pages.
When resizing the browser, the
content re-centers automatically as
long as the site width is less than the
browser screen width. When site
width is larger than browser width, as
on IE, text is aligned left.

As with both Internet Explorer and
Opera, the browser was resized to a
size which corresponds roughly to
full screen mode in a 640*480
resolution screen setting37.
A horizontal (as well as a vertical)
scrollbar appeared on all pages.
When resizing the browser, the
content re-centers automatically as
long as the site width is less than the
browser screen width. When site-
width is larger than browser width,
text is aligned left.

Change display color
to gray scale (or print
out page in gray scale
or black and white

Due to the inability to change the color settings to
grayscale on the test platform (Windows XP
Laptop) all test pages were printed on a grayscale
laser printer.
Contrast is adequate (dark/black text on light/white
background) but it is difficult to distinguish the
clickable hyperlinks.

Same platform as Internet Explorer,
so same problem: due to the inability
to change the color settings to
grayscale on the test platform
(Windows XP Laptop) all test pages
were printed on a grayscale laser
printer in stead.
Contrast is adequate (dark/black text
on light/white background) but it is
difficult to distinguish the clickable
hyperlinks.

The printouts made from the Linux-
running Mozilla were horrible: the
fonts were much too small, the links
of the left-hand side menu were
barely visible and links in the main
content weren’t visible at all!
To rule out printer problems a newer
version was installed (now called
Mozilla Firefox) on the Windows XP
machine and again, printouts were
made using the same laser printer as
used with Internet Explorer and
Opera. This produced better results;
very much the same as with Internet
Explorer but with much smaller fonts.
The dark text on white background
contrasts well but the color
difference of hyperlinks is hardly
noticeable.

No mouse Mouseless navigation was found to be ok on all
tested pages. The TAB order was logical (first top

The Opera browser can also be
operated without a mouse but the

As with Internet Explorer, navigation
without use of a mouse was found to

36

 Both Internet Explorer and Opera tests were performed on a Windows XP Laptop. The laptop did not allow the Windows resolution to be set to 640*480 so it was kept at 1024*768. In stead, the browser
window was resized.
37

 The browser was resized to about 60% of the total screen area. Given the fact the linux platform ran in a 1024*768 pixels environment, this roughly corresponds to full screen mode in a 640*480
resolution screen setting.

Appendices

 Page 77/83

menu, then main menu on the left, then page
content) and all links could be activated by
pressing the ENTER-key.

key combinations differ somewhat
from the other 2 tested browsers,
requiring more time to get used to.
As an alternative Opera does offer
voice commands – it’s a feature that
can be installed and activated
separately and allows the user to
give voice commands to the
browser38 and/or have the browser
read out selected sentences or
words. Since things to be read out
need to be selected with the mouse
first however, the usability of this
feature for the visually impaired is
limited which makes it a doubtful
alternative for a screen reader.

be ok on all tested pages. The TAB
order was logical (first top menu,
then main menu on the left, then
page content) and all links could be
activated by pressing the ENTER-
key.
Oddly, pushbuttons don’t display the
same visual effect when activated
through the keyboard contrary to
using a mouse. Given the context
and the intended usage (visually
impaired) this is not a problem.

Table 1: browser comparison

38

 See also the section on Voice Browsers 2.1.8

Appendices

 Page 78/83

8.2 Appendix B: Mapping Rules between WSDM and WAfA

Nr WAfA Ontology Concept WSDM Ontology Concept Mapping Rule

1 Object N/A N/A
2 AuthoringConcept N/A N/A
3 Atom N/A N/A
4 Advertisement Advertisement ∀ i ∈ I: wsdm:Advertisement(i) � wafa: Advertisement(i)

5 AdvertisementBanner Banner *

∀ a ∈ I, ∃ b, c, d, e, f, g ∈ I: wsdm:Banner(a) ^ wsdm:hasChild(a, b) ^
wsdm:Grid(b) ^ wsdm:hasChild(b, c) ^ wsdm:GridRow(c) ^ wsdm:hasChild(c, d) ^
wsdm:Row(d) ^ wsdm:hasChild(d, e) ^ wsdm:GridCellElement(e) ^
wsdm:hasChild(e, f) ^ wsdm:Cell(f) ^ hasChild(f, g) ^ wsdm:Advertisement(g)
� wafa:AdvertisementBanner(a)

6 Caption Caption ∀ i ∈ I: wsdm:Caption(i) � wafa:Caption(i)
7 FigureCaption FigureCaption ∀ i ∈ I: wsdm:FigureCaption(i) � wafa:FigureCaption(i)
8 TableCaption TableCaption ∀ i ∈ I: wsdm:TableCaption(i) � wafa:TableCaption(i)

9 Heading Title *
∀ i ∈ I, ∃ x ∈ I: wsdm:Title(i) ^ wsdm:Page(x) ^ wsdm:hasTitle(x, i) �
wafa:Heading(i)

10 Headline Headline ∀ i ∈ I: wsdm:Headline(i) � wafa:Headline(i)

11 SectionHeading String or Image *
∀ i ∈ I: wsdm:Title(i) ^ wsdm:Section(x) ^ wsdm:hasTitle(x, i) �
wafa:SectionHeading(i)

12 Label String or Image *

∀ i ∈ I, ∃ x ∈ I: (wsdm:String(i) ∨ wsdm:Image(i)) ^ (wsdm:Textbox(x) ∨
wsdm:Checkbox(i) ∨ wsdm:Radiobutton(x) ∨ wsdm:Pushbutton(x)) ^
wsdm:hasLabel(x, i) � wafa:Label(i)

13 Link Link
∀ i ∈ I, ∃ x ∈ I: wsdm:hasNavigationReference(i, x) ^
wsdm:NavigationReference(x) � wafa:Link(i)

14 AssociativeLink SemanticLink ∀ i ∈ I: wsdm:SemanticLink(i) � wafa:AssociativeLink(i)

15 ReferentialLink Link *

∀ i ∈ I, ∃ x, y ∈ I: wsdm:Link(i) ^ wsdm:hasSource(i, x) ^ wsdm:hasTarget(i,
y) ^ wsdm:Node(x) ^ wsdm:Node(y) ^ ∀ u, v ∈ I: wsdm:hasChunk(x, u) ^
wsdm:hasChunk(y, v) ^ (∀ a, b ∈ C: (wsdm:isComposedOf(u, a) �
wsdm:isComposedOf(v, b)) ^ ∃ c ∈ C: wsdm:isComposedOf(v, c) ^
¬wsdm:isComposedOf(u, c)) � wafa:ReferentialLink(i)

16 SkipLink SkipLink ∀ i ∈ I: wsdm:SkipLink(i) � wafa:SkipLink(i)
17 StructuralLink StructuralLink ∀ i ∈ I: wsdm:StructuralLink(i) � wafa:StructuralLink(i)

Appendices

 Page 79/83

18 ToTextOnlyPage Link *

∀ l, is, it, cs, ct, is, it, gs, gt, cls, clt, jt ∈ I, ∃ js ∈ I:
wsdm:Link(l) ^ wsdm:hasSource(l, is) ^ wsdm:InternalNode(is) ^
wsdm:hasTarget(l, it) ^ wsdm:InternalNode(it) ^ wsdm:hasChunk(is, cs) ^
wsdm:ObjectChunk(cs) ^ wsdm:hasChunk(it, ct) ^ wsdm:ObjectChunk(ct) ^
wsdm:Grid(gs) ^ wsdm:representsChunk(gs, cs) ^ wsdm:Grid(gt) ^
wsdm:representsChunk(gt, ct) ^ wsdm:hasChild(gs, cls) ^ wsdm:Cell(cls) ^
wsdm:hasChild(gt, clt) ^ wsdm:Cell(clt) ^ wsdm:hasChild(cls, js) ^
(wsdm:MultiMediaConcept(js) ∨ wsdm:Graphic(js)) ^ wsdm:hasChild(clt, jt) ^
¬(wsdm:Graphic(jt) ^ wsdm:Image(jt) ^ wsdm:Video(js)) à
wafa:ToTextOnlyPage(l)

19 Note Note ∀ i ∈ I: wsdm:Note(i) � wafa:Note(i)
20 Citation Citation ∀ i ∈ I: wsdm:Citation(i) � wafa:Citation(i)
21 FootNote Footnote ∀ i ∈ I: wsdm:Footnote(i) � wafa:Footnote(i)
22 Copyright Copyright ∀ i ∈ I: wsdm:CopyRight(i) � wafa:CopyRight(i)
23 NB NB ∀ i ∈ I: wsdm:NB(i) � wafa:NB(i)
24 PS PS ∀ i ∈ I: wsdm:PS(i) � wafa:PS(i)
25 Separator Separator ∀ i ∈ I: wsdm:Separator(i) � wafa:Separator(i)
26 Boundary Boundary ∀ i ∈ I: wsdm:Boundary(i) � wafa:Boundary(i)
27 Banner Banner ∀ i ∈ I: wsdm:Banner(i) � wafa:Banner(i)

 AdvertisementBanner see 5

28 TitleBanner Banner *

∀ i ∈ I, ∃ x, y, z ∈ I: wsdm:Banner(i) ^ wsdm:hasChild(i, x) ^
(wsdm:String(x) ∨ wsdm:Image(x)) ^ wsdm:Page(y) ^ wsdm:hasTitle(y, z) ^
wsdm:representedBy(z, x) � wafa:TitleBanner(i)

29 Space CustomSeparator *
∀ i ∈ I, ∃ x ∈ I: wsdm:CustomSeparator(i) ^ wsdm:representedBy(i, x) ^
wsdm:String(x) ^ wsdm:hasValue(x, “ “)� wafa:Space(i)

30 SymbolSeparator (used to be Symbol) Separator *
∀ i ∈ I, ∃ x ∈ I: wsdm:Separator(i) ^ wsdm:representedBy(i, x) ^
wsdm:String(x) � wafa:Separator(i)

31 CommaSeparator CustomSeparator *
∀ i ∈ I, ∃ x ∈ I: wsdm:CustomSeparator(i) ^ wsdm:representedBy(i, x) ^
wsdm:String(x) ^ wsdm:hasValue(x, “,”) � wafa:CommaSeparator(i)

32 DashSeparator CustomSeparator *
∀ i ∈ I, ∃ x ∈ I: wsdm:CustomSeparator(i) ^ wsdm:representedBy(i, x) ^
wsdm:String(x) ^ wsdm:hasValue(x, “-”) � wafa:CommaSeparator(i)

33 TriangleLeftSeparator CustomSeparator *
∀ i ∈ I, ∃ x ∈ I: wsdm:CustomSeparator(i) ^ wsdm:representedBy(i, x) ^
wsdm:String(x) ^ wsdm:hasValue(x, “<”) � wafa:CommaSeparator(i)

34 TriangleRightSeparator CustomSeparator *
∀ i ∈ I, ∃ x ∈ I: wsdm:CustomSeparator(i) ^ wsdm:representedBy(i, x) ^
wsdm:String(x) ^ wsdm:hasValue(x, “>”) � wafa:CommaSeparator(i)

35 VerticalBarSeparator CustomSeparator *
∀ i ∈ I, ∃ x ∈ I: wsdm:CustomSeparator(i) ^ wsdm:representedBy(i, x) ^
wsdm:String(x) ^ wsdm:hasValue(x, “|”) � wafa:CommaSeparator(i)

36 SpecialGraphic N/A N/A

Appendices

 Page 80/83

 Banner see 27
 AdvertisementBanner see 5
 TitleBanner see 28
37 Icon Icon ∀ i ∈ I: wsdm:Icon(i) � wafa:Icon(i)
38 Logo Logo ∀ i ∈ I: wsdm:Logo(i) � wafa:Logo(i)
39 Title Title ∀ i ∈ I: wsdm:Title(i) � wafa:Title(i)

 TitleBanner see 28

40 Chunk Grid *
∀ i ∈ I, ∃ x ∈ I: wsdm:Grid(i) ^ wsdm:representsChunk(I, x) ^
wsdm:ObjectChunk(x) � wafa:Chunk(i)

41 Figure Figure ∀ i ∈ I: wsdm:Figure(i) � wafa:Figure(i)
42 Footer Footer ∀ i ∈ I: wsdm:Footer(i) � wafa:Footer(i)

43 RunningFooter Footer *
∀ i ∈ I, ∃ x ∈ I: wsdm:Footer(i) ^ wsdm:IndependantTemplateConcept(x) ^
wsdm:hasFooter(x) � wafa:RunningFooter(i)

44 Header Header ∀ i ∈ I: wsdm:Header(i) � wafa:Header(i)

45 RunningHeader Header *
∀ i ∈ I, ∃ x ∈ I: wsdm:Header(i) ^ wsdm:IndependantTemplateConcept(x) ^
wsdm:hasHeader(x, i) � wafa:RunningHeader(i)

46 List List ∀ i ∈ I: wsdm:List(i) � wafa:List(i)
47 BreadcrumbTrail BreadcrumbTrail ∀ i ∈ I: wsdm:BreadCrumbTrail(i) � wafa: BreadCrumbTrail(i)

48 DefinitionList List *

∀ a ∈ I, ∃ b, c, d, e ∈ I: wsdm:List(a) ^ wsdm:hasChild(a, b) ^
wsdm:ListElement(b) ^ wsdm:hasChild(b, c) ^ wsdm:ListItem(c) ^
wsdm:hasChild(b, d) ^ wsdm:ListItem(d) ^ ¬wsdm:hasNavigationReference(c,) ^
¬wsdm:hasNavigationReference(d,) � wafa:DefinitionList(a)

49 NavigationalList List *

∀ a ∈ I, ∃ b, c, d, e ∈ I: wsdm:List(a) ^ wsdm:hasChild(a, b) ^
wsdm:ListElement(b) ^ wsdm:hasChild(b, c) ^ wsdm:ListItem(c) ^
wsdm:hasNavigationReference(c, d) ^ wsdm:NavigationReference(d) ^
wsdm:pointingToLink(d, e) ^ wsdm:Link(e) � wafa:NavigationalList(a)

50 Bookmark

List *

∀ a ∈ I, ∃ b, c, d, e ∈ I: wsdm:List(a) ^ wsdm:hasChild(a, b) ^
wsdm:ListElement(b) ^ wsdm:hasChild(b, c) ^ wsdm:ListItem(c) ^
wsdm:hasNavigationReference(c, d) ^ wsdm:NavigationReference(d) ^
wsdm:pointingToLink(d, e) ^ wsdm:NavigationalAidBookmarkLink(e) �
wafa:Bookmark(a)

Appendices

 Page 81/83

∀ a ∈ I, ∃ b, c, d, e ∈ I: wsdm:List(a) ^ wsdm:hasChild(a, b) ^
wsdm:ListElement(b) ^ wsdm:hasChild(b, c) ^ wsdm:ListItem(c) ^
wsdm:hasNavigationReference(c, d) ^ wsdm:NavigationReference(d) ^
wsdm:pointingToLink(d, e) ^ wsdm:ProcessLogicBookmarkLink(e) �
wafa:Bookmark(a)

51 Favourites List *

∀ a ∈ I, ∃ b, c, d, e ∈ I: wsdm:List(a) ^ wsdm:hasChild(a, b) ^
wsdm:ListElement(b) ^ wsdm:hasChild(b, c) ^ wsdm:ListItem(c) ^
wsdm:hasNavigationReference(c, d) ^ wsdm:NavigationReference(d) ^
wsdm:pointingToLink(d, e) ^ wsdm:FavouriteLink(e) � wafa:Favourites(a)

52 ShoppingCart List *

∀ a ∈ I, ∃ b, c, d, e ∈ I: wsdm:List(a) ^ wsdm:hasChild(a, b) ^
wsdm:ListElement(b) ^ wsdm:hasChild(b, c) ^ wsdm:ListItem(c) ^
wsdm:hasNavigationReference(c, d) ^ wsdm:NavigationReference(d) ^
wsdm:pointingToLink(d, e) ^ wsdm:ShoppingCartLink(e) � wafa:ShoppingCart(a)

53 Directory List *

∀ a ∈ I, ∃ b, c, d, e, f ∈ I: wsdm:List(a) ^ wsdm:hasChild(a, b) ^
wsdm:ListElement(b) ^ wsdm:hasChild(b, c) ^ wsdm:ListItem(c) ^
wsdm:hasNavigationReference(c, d) ^ wsdm:NavigationReference(d) ^
wsdm:pointingToLink(d, e) ^ wsdm:Link(e) ^ wsdm:hasTarget(e, f) ^
wsdm:AbstractNode(f) � wafa:Directory(a)

54 SiteMap List *

∀ a ∈ I, ∃ b, c, d, e, f ∈ I: wsdm:List(a) ^ wsdm:hasChild(a, b) ^
wsdm:ListElement(b) ^ wsdm:hasChild(b, c) ^ wsdm:ListItem(c) ^
wsdm:hasNavigationReference(c, d) ^ wsdm:NavigationReference(d) ^
wsdm:pointingToLink(d, e) ^ wsdm:Link(e) ^ wsdm:hasTarget(e, f) ^
wsdm:InternalNode(f) � wafa:Directory(a)

55 WebDirectory List *

∀ a ∈ I, ∃ b, c, d, e, f ∈ I: wsdm:List(a) ^ wsdm:hasChild(a, b) ^
wsdm:ListElement(b) ^ wsdm:hasChild(b, c) ^ wsdm:ListItem(c) ^
wsdm:hasNavigationReference(c, d) ^ wsdm:NavigationReference(d) ^
wsdm:pointingToLink(d, e) ^ wsdm:Link(e) ^ wsdm:hasTarget(e, f) ^
wsdm:ExternalNode(f) � wafa:Directory(a)

56 FAQ FAQ ∀ i ∈ I: wsdm:FAQ(i) � wafa:FAQ(i)
57 HistoryList HistoryList ∀ i ∈ I: wsdm:HistoryList(i) � wafa:HistoryList(i)

 PathBreadcrumb see 65

58 Index OrderedList

∀ i ∈ I, ∃ x, y ∈ I: wsdm:OrderedList(i) ^ wsdm:hasChild(i, x) ^
wsdm:ListItem(x) ^ wsdm:hasNavigationReference(x, y) ^

wsdm:NavigationReference(y) ^ (wsdm:pointingToNode(y,) ∨
wsdm:pointingToLink(y,)) � wafa:Index(i)

Appendices

 Page 82/83

59 SiteIndex OrderedList

∀ i ∈ I, ∃ x, y, z ∈ I: wsdm:OrderedList(i) ^ wsdm:hasChild(i, x) ^
wsdm:ListItem(x) ^ wsdm:hasNavigationReference(x, y) ^
wsdm:NavigationReference(y) ^ wsdm:pointingToNode(y, z) ^
wsdm:InternalNode(z) � wafa:SiteIndex(i)

60 LinkMenu Menu *
∀ i, x ∈ I, ∃ y ∈ I: wsdm:Menu(i) ^ wsdm:representedBy(i, y) ^ wsdm:List(y)
^ ¬wsdm:hasBehavior(y, x) � wafa:LinkMenu(i)

61 DropDownLinkMenu Menu *

∀ i ∈ I, ∃ x, y, z, u ∈ I: wsdm:Menu(i) ^ wsdm:representedBy(i, x) ^
wsdm:List(x) ^ wsdm:hasBehavior(x, y) ^ wsdm:Behavior(y) ^ wsdm:onEvent(y, z)
^ wsdm:Event(z) ^ wsdm:hasValue(‘onClick’) ^ wsdm:doAction(y, u) ^
wsdm:Action(u) ^ wsdm:hasValue(u, ‘dropDown’) � wafa:LinkMenu(i)

62 NavigationalBreadcrumbTrail NavigationalBreadcrumbTrail
∀ i ∈ I: wsdm:NavigationBreadCrumbTrail(i) �
wafa:NavigationalBreadcrumbTrail(i)

63 AttributeBreadcrumb AttributeBreadcrumbTrail ∀ ι ∈)ι(λιαρΤβµυρχδαερΒετυβιρττΑ:µδσω :Ι �)ι(βµυρχδαερΒετυβιρττΑ:αφαω
64 LocationBreadcrumb LocationBreadcrumbTrail ∀ ι ∈)ι(λιαρΤβµυρχδαερΒνοιταχοΛ:µδσω :Ι �)ι(βµυρχδαερΒνοιταχοΛ:αφαω
65 PathBreadcrumb PathBreadcrumbTrail ∀ ι ∈)ι(λιαρΤβµυρχδαερΒηταΠ:µδσω :Ι �)ι(βµυρχδαερΒηταΠ:αφαω
66 TableOfContent NavigationTableOfContent ∀ i, ∈ I: wsdm:NavigationTableOfContent(i) � wafa:TableOfContent(i)

67 Toolbar Menu *

∀ i ∈ I, ∃ x, y, a, b, c, d ∈ I: wsdm:Menu(i) ^ wsdm:representedBy(i, x) ^
wsdm:List(x) ^ wsdm:hasBehavior(x, y) ^ wsdm:Behavior(y) ^ wsdm:onEvent(y, a)
^ wsdm:Event(a) ^ hasValue(a, ‘onClick’) ^ wsdm:doAction(y, b) ^
wsdm:Action(b) ^ wsdm:hasChild(i, c) ^ wsdm:MenuItem(c) ^ wsdm:hasIcon(c, d)
^ wsdm:Icon(d) � wafa:Toolbar(i)

68 OrderedList OrderedList ∀ i ∈ I: wsdm:OrderedList(i) � wafa:OrderedList(i)
 AttributeBreadcrumb see 63
 Directory see 53
 SiteMap see 54
 WebDirectory see 55
 HistoryList see 57
 PathBreadcrumb see 65
 Index see 58
 SiteIndex see 59
 LocationBreadcrumb see 64
 TableOfContent see 66
69 UnorderedList UnordenedList ∀ i ∈ I: wsdm:UnorderedList(i) � wafa:UnorderedList(i)

Appendices

 Page 83/83

70 ReferentialChunk Grid represents ObjectChunk

∀ a ∈ I, ∃ b, c, d, e, f, g, h, I, j, k, l ∈ I: wsdm:Grid(a) ^
wsdm:representsObjectchunk(a, b) ^ wsdm:ObjectChunk(b) ^ wsdm:hasChild(a, c)
^ wsdm:GridRowElement(c) ^ wsdm:hasChild(c, d) ^ wsdm:Row(d) ^
wsdm:hasChild(d, e) ^ wsdm:GridCellElement(e) ^ wsdm:hasChild(e, f) ^
wsdm:Cell(f) ^ wsdm:hasChild(f, g) ^
wsdm:IndependentComplexPresentationConcept(g) ^ wsdm:hasChild(g, h) ^
wsdm:Section(h) ^ wsdm:hasChild(h, i) ^ wsdm:Summary(i) ^
wsdm:hasNavigationReference(f, j) ^ wsdm:NavigationReference(j) ^
wsdm:pointingToNode(j, k) ^ wsdm:AbstractNode(k) ^ wsdm:hasChild(k, l) ^
wsdm:InternalNode(l) � wafa:ReferentialChunk(a)

71 SearchEngine SearchEngine ∀ i ∈ I: wsdm:SearchEngine(i) � wafa:SearchEngine(i)
72 Section Section ?? ∀ i ∈ I: wsdm:Section(i) � wafa:Section(i)
73 Abstract Abstract ∀ i ∈ I: wsdm:Abstract(i) � wafa:Abstract(i)
74 Sidebar Sidebar ∀ i ∈ I: wsdm:Sidebar(i) � wafa:Sidebar(i)
75 Summary Summary ∀ i ∈ I: wsdm:Summary(i) � wafa:Summary(i)

 Abstract see 73
76 PageSummary PageSummary ∀ i ∈ I: wsdm:PageSummary(i) � wafa:PageSummary(i)
77 SiteSummary SiteSummary ∀ i ∈ I: wsdm:SiteSummary(i) � wafa:SiteSummary(i)
78 Table Table ∀ i ∈ I: wsdm:Table(i) � wafa:Table(i)
79 DataTable DataTable ∀ i ∈ I: wsdm:DataTable(i) � wafa:DataTable(i)
80 LayoutTable LayoutTable ∀ i ∈ I: wsdm:LayoutTable(i) � wafa:LayoutTable(i)
81 URI ExternalNode ∀ i ∈ I: wsdm:ExternalNode(i) ^ wsdm:refersToURI(i, string) � wafa:URI(i)
82 Collection Website ∀ i ∈ I: wsdm:Website(i) � wafa:Collection(i)
83 Node Page ∀ i ∈ I: wsdm:Page(i) � wafa:Node(i)

84 HomePage Page *
∀ i ∈ I, ∃ x ∈ I: wsdm:Page(i) ^ wsdm:hasNode(i, x) ^ wsdm:RootNode(x) �
wafa:HomePage(i)

