

FACULTEIT VAN DE WETENSCHAPPEN
Departement Computer Wetenschappen
Web & Information Systems Engineering

An Approach to Web-based
Ontology Evolution

Proefschrift ingediend met het oog op het behalen van de graad van Doctor in de wetenschappen

Peter Plessers

Academiejaar: 2005 – 2006

Promotor: Prof. Dr. Olga De Troyer

“It is an error to imagine that evolution signifies a constant
tendency to increased perfection. That process undoubtedly in-
volves a constant remodelling of the organism in adaptation to
new conditions; but it depends on the nature of those condi-
tions whether the directions of the modifications effected shall
be upward or downward.”

— Thomas H. Huxley (1825 - 1895)

Abstract

The World Wide Web has become one of the biggest success stories in recent
history. It has allowed global exchange of information on a scale unprece-
dented in human history, and has an impact on almost all facets of our
daily lives. Notwithstanding its enormous success, one of the shortcomings
of the Web is that most information is represented in a form only usable
for human interpretation i.e., the current Web can be considered to be
machine-readable, but unfortunately not machine-understandable. The Se-
mantic Web has been proposed as a solution to overcome this shortcoming
by making the semantics of Web content explicit by means of ontologies.

As is the case with everything in the world that surrounds us, ontolo-
gies are not indifferent to changes. Ontologies evolve as a consequence of
changes of domains they describe as well as changes in business and user
requirements. Because ontologies are intended to be used and extended by
other ontologies, and because they are deployed in a highly decentralized en-
vironment as the Web, the problem of ontology evolution is a far from trivial
problem. The fact that ontologies depend on other ontologies means that
the consequences of changes don’t remain local to the ontology itself, but
affect depending ontologies as well. Furthermore, the decentralized nature
of the Web makes it impossible to simply propagate changes to depending
artifacts.

In this dissertation, we propose an ontology evolution approach that (1)
allows ontology engineers to request changes for the ontologies they manage;
(2) ensures that the ontology evolves from one consistent state into another
consistent state; (3) guarantees that the depending artifacts of an ontology
remain consistent after changes have been applied; (4) provides a detailed
overview of the changes that occur. The cornerstones of our approach are
the notion of a version log and the Change Definition Language. A version
log stores for each concept ever defined in an ontology the different versions
it passes through during its life cycle. The Change Definition Language is
a temporal logic based language that allows ontology engineers to formally
define changes. The purpose of the change definitions expressed in this
Change Definition Language are twofold: they are used for both requesting
and implementing changes to an ontology, as well as detecting occurrences
of change definitions in the evolution of an ontology.

vi Abstract

Samenvatting

Het World Wide Web is één van de grootste successverhalen in de recente
geschiedenis. Het heeft de uitwisseling van informatie mogelijk gemaakt op
een schaal die ongezien was in de gehele menselijke geschiedenis, en heeft een
impact op bijna alle facetten van ons dagelijks leven. Niettegenstaande dit
enorm succes is één van de tekortkomingen van het Web dat de meeste infor-
matie aangeboden wordt in een vorm die enkel voor mensen begrijpbaar is.
Het huidige Web kan beschouwd worden als zijnde machine-leesbaar, maar
helaas niet machine-begrijpbaar. Het Semantisch Web werd voorgesteld als
een oplossing voor deze tekortkoming door de betekenis van informatie ex-
pliciet te maken door gebruik te maken van ontologieën.

Zoals alles in de wereld rondom ons, zijn ontologieën ook niet onver-
schillig aan veranderingen. Ontologieën evolueren niet enkel als gevolg van
veranderingen in domeinen die zij beschrijven, maar ook door wijzigingen
in business en user requirements. Doordat ontologieën bedoelt zijn om ge-
bruikt en uitgebreid te worden door andere ontologieën, en omdat zij ont-
plooid worden in een erg gedecentraliseerde omgeving zoals het Web, is het
probleem van ontologie evolutie verre van een triviaal probleem. Het feit dat
ontologieën afhankelijk zijn van andere ontologieën betekent dat de gevolgen
van veranderingen niet beperkt blijven tot de ontologie zelf, maar eveneens
mogelijke gevolgen kunnen hebben voor afhankelijke artefacten. Bovendien
zorgt het gedecentraliseerde karakter van het Web ervoor dat het onmo-
gelijk wordt om veranderingen simpelweg te propageren naar afhankelijke
artefacten.

In deze thesis stellen we een ontologie evolutie benadering voor die (1)
ontologie ingenieurs toelaat om veranderingen aan te vragen voor de ontolo-
gieën die zij beheren; (2) er voor zorgt dat een ontologie steeds evolueert van
een consistente versie naar een andere consistente versie; (3) er voor zorgt
dat de afhankelijke artifacten van een ontologie eveneens consistent blijven
nadat veranderen zijn toegebracht; (4) een gedetaileerd overzicht geeft van
alle aangebrachte veranderingen. De hoekstenen van onze benadering zijn
de notie van een version log en de Change Definition Language. Een version
log bewaart voor ieder concept dat ooit gedefinieerd is in een ontologie de
verschillende versies die dat concept doormaakt gedurende zijn hele levenscy-
clus. De Change Definition Language is een taal gebaseerd op een temporele

viii Samenvatting

logica die het ontologie ingenieurs mogelijk maakt om veranderingen formeel
te definiëren. Het doel van de definities van veranderingen uitgedrukt in deze
Change Definition Language is tweeledig: zij worden gebruikt voor zowel het
aanvragen en implementeren van veranderingen in een ontologie, als het de-
tecteren van gebeurtenissen van definities van veranderingen in de evolutie
van een ontologie.

Acknowledgement

My greatest gratitude goes to my promoter, Prof. Dr. Olga De Troyer. The
start of my PhD, now four years ago, was not what one would call a plain
sailing, but she always kept believing in me and has put in a lot of effort to
keep me going. She deserves all the thanks for giving me the opportunity
to join the WISE research group and for guiding and supporting me during
these past years. Furthermore, she was always willing to give me her much
appreciated advice whenever I needed it.

I would also like to thank the members of my jury, Jeen Broekstra, York
Sure, Geert-Jan Houben, Robert Meersman and Dirk Vermeir for providing
me with interesting comments and pointers to further improve the quality
of my work. I especially would like to thank Dirk Vermeir for taking the
time to proofread an early version of a chapter of my dissertation.

I would like to address a word of thank you to everyone involved in the
Advanced Media project. The project gave me the opportunity to explore
various research problems and denotes the beginning of my research on on-
tology evolution. The work done during this project has greatly contributed
to the end result of my dissertation. In this context, I especially would like
to thank Johan Brichau, Thomas Cleenewerck and Dirk Deridder for mak-
ing my time in building X, the farthest corner of the VUB campus, more
enjoyable.

A BIG thank you goes to my colleague and friend Sven Casteleyn with
whom I have been working together in the past four years. His proof readings
have certainly improved the quality of my work significantly. Furthermore,
the many discussions I had with him have contributed a lot to my work, but
even more importantly also to me, as a person.

I would also like to thank my thesis student Johan Van den Broeck for his
excellent help on the implementation on some of the tools needed to validate
my work and for playing the role of guinea pig for my Change Definition
Language.

Furthermore, I would also like to thank my colleagues at the WISE
research group for all the valuable discussions and the (maybe less produc-
tive, but certainly enjoyable) chit-chat. Thanks go to Wesley Bille, Frederic
Kleinermann, Abed Mushtaha, Bram Pellens and Wael Al Sarraj.

A lot of gratitude goes to my parents, Henri Plessers and Madeleine

x Acknowledgement

Aerts. They are the ones who have given me the opportunity to study and
who have always supported me in every decision I made. They taught me
to never give in, which turned out to be a valuable lesson during the last
couple of months :-).

Last but not least, thanks to my girlfriend Veerle Van Aken for her
enormous support and for enduring me for the last couple of months when I
was primarily concerned with writing my dissertation. She has always been
there for me, especially in times when I was at a complete loss.

Finally, I would like to thank all the people I unwittingly forgot to men-
tion here. Many people contributed in some way to this PhD and I thank
all of them.

Glossary

Base Change Definition A base change definition is a definition of a
change expressed in terms of the Change Definition Language.

Change Definition Set A change definition set is a collection of concep-
tual change definitions an ontology engineer or a maintainer of a de-
pending artifact is interested in.

Compatibility Requirement A compatibility requirement is a require-
ment that a version of an ontology should fulfill to be considered
backward compatible with its previous version for a certain depending
artifact.

Conceptual Change Definition A conceptual change definition defines
a change on a conceptual level by grouping a collection of base change
definitions.

Deduced Change A deduced change is a change that complements a re-
quested change of the ontology engineer in order to resolve a detected
inconsistency.

Detected Change A detected change is an occurrence of a conceptual
change definition that was not explicitly requested by an ontology
engineer nor deduced by the ontology evolution framework in order
to resolve inconsistencies, but has that been detected by the ontology
evolution framework.

Evolution Log An evolution log is a particular interpretation of the evo-
lution of an ontology in terms of occurrences of change definitions.
Different interpretations of the same ontology evolution may exist by
means of different evolution logs based on different change definitions.

Requested Change A requested change is a change, which is expressed
in terms of a conceptual change definition, that is explicitly requested
by an ontology engineer to be applied to an ontology.

Version Log A version log is a log that stores for each concept ever defined
in an ontology (this includes Classes, Properties and Individuals), the

xii Glossary

different versions it passes through during its life cycle: from its cre-
ation, over its modifications, until its eventual retirement.

Virtual Version Log A virtual version log is a version log that describes a
virtual evolution of an ontology i.e., a possible evolution that however
has not occurred (yet) in reality.

Contents

Abstract v

Samenvatting vii

Acknowledgement ix

Glossary xi

1 Introduction 1
1.1 Research Context . 1
1.2 Problem Statement . 3
1.3 Goal . 6
1.4 Approach . 7
1.5 Advantages . 9
1.6 Contributions . 9
1.7 Outline . 11

2 Background and Related Work 13
2.1 Ontology . 13
2.2 Ontology Languages . 15

2.2.1 Classification . 15
2.2.2 Semantic Web Languages 16

2.3 Description Logics . 20
2.3.1 Syntax and Semantics 20
2.3.2 Correspondence with OWL 20
2.3.3 Inferencing . 22

2.4 Related Domains . 25
2.4.1 Temporal Databases 26
2.4.2 Database Schema Evolution & Versioning 27
2.4.3 Ontology Evolution 28

2.5 Ontology Evolution Specific Aspects 33
2.5.1 Change Representation 34
2.5.2 Change Detection . 35
2.5.3 Consistency Checking & Inconsistency Resolving . . . 35

xiv CONTENTS

2.5.4 Distributed and Decentralized Environments 38
2.6 Summary . 38

3 Ontology Evolution Framework 41
3.1 Characteristics . 41
3.2 Ontology Evolution Framework Overview 44

3.2.1 Evolution on Request 45
3.2.2 Evolution in Response 52

3.3 Summary . 57

4 Foundations 59
4.1 Version Log . 59

4.1.1 General Approach . 59
4.1.2 Formal Model . 62
4.1.3 Example . 67

4.2 Temporal Logic . 68
4.2.1 Parameterized and Non-parameterized Tense Operators 69
4.2.2 Syntax and Semantics 71
4.2.3 Examples . 72

4.3 Change Definition Language 73
4.3.1 OWL Meta-Schema 75
4.3.2 Syntax . 78
4.3.3 Change Definition Set 84

4.4 Evolution Log . 85
4.5 Summary . 87

5 Change Definitions 89
5.1 Purpose . 90
5.2 Change Request . 91

5.2.1 Change Request Specification 91
5.2.2 Restrictions . 93
5.2.3 Evaluation . 94

5.3 Change Detection . 100
5.3.1 Evaluation . 101
5.3.2 Change Recovery . 105

5.4 Primitive Change Definitions 107
5.5 Complex Change Definitions 114

5.5.1 Modify-Changes . 114
5.5.2 Ambiguity of Changes 118
5.5.3 Property Restrictions 119
5.5.4 Sibling Classes . 120
5.5.5 Mutual Disjointness 120
5.5.6 Covering Axioms . 121
5.5.7 Closure Restriction . 122

CONTENTS xv

5.6 Meta-Change Definitions . 124
5.7 Summary . 126

6 Conducting Ontology Evolution 127
6.1 Consistency Checking . 128

6.1.1 Different Forms of Consistency 129
6.1.2 Logical Consistency 130
6.1.3 Axiom Transformations 133
6.1.4 Concept Dependencies 136
6.1.5 Interpretation of Concept Dependencies 139
6.1.6 Axiom Selection . 143
6.1.7 Completeness of Axiom Selections 146

6.2 Inconsistency Resolving . 147
6.3 Example . 154
6.4 Backward Compatibility . 155

6.4.1 Compatibility Requirements 156
6.4.2 Checking Backward Compatibility 159

6.5 Summary . 161

7 Evolution in a Decentralized Environment 163
7.1 Overview . 164
7.2 Revised Version Log . 167
7.3 Framework Effects . 171

7.3.1 Consistency & Backward Compatibility Checking . . . 171
7.3.2 Change Detection . 172
7.3.3 Inconsistency Resolving 172

7.4 Version Consistency . 174
7.5 Blocked Ontologies . 176
7.6 Summary . 183

8 Implementation 185
8.1 Version Log Generation . 185

8.1.1 Representation . 186
8.1.2 Architecture . 187

8.2 Change Detection . 188
8.2.1 Representation . 190
8.2.2 Architecture . 190

8.3 Consistency Checking . 191
8.4 Summary . 193

9 Conclusion 195
9.1 Summary . 195
9.2 Contributions . 198
9.3 Limitations . 200

xvi CONTENTS

9.4 Future Work . 201

A Syntax Change Definition Language 205

Bibliography 207

List of Figures

1.1 The approach allows different interpretations for the same
ontology evolution . 8

2.1 The Semantic Web layers . 17
2.2 Graphical representation of an RDF example 18
2.3 Architecture of a knowledge representation system based on

Description Logics . 22
2.4 Six-phase ontology evolution framework 31

3.1 Example usage of an ontology on the Web 42
3.2 Overview of the ontology evolution framework 44
3.3 Different dimensions of change 46
3.4 Example of change recovery 51
3.5 Example ontology illustrating a situation where two changes

may result in the same modification 53
3.6 Cost of evolution . 55
3.7 Understanding of changes and cost of evolution influence the

decision whether to update or not 56

4.1 Different forms of the snapshot approach 60
4.2 Schematized representation of a version log 61
4.3 Example of a parameterized and non-parameterized version

of the R tense operator . 70
4.4 Changes with different semantics 75
4.5 Main OWL concepts . 76
4.6 Properties of a Class . 76
4.7 Properties of a Property . 77
4.8 Properties of a Restriction . 78
4.9 Properties of an Individual 78
4.10 Evolution log creation . 86

5.1 A change request with deduced changes 93
5.2 Two examples illustrating the flexibility of the change detec-

tion process . 103

xviii LIST OF FIGURES

5.3 Uncertainty in change detection 104
5.4 Example 1 of a subclass change 115
5.5 Example 2 of a subclass change 116
5.6 Example 3 of a subclass change 117
5.7 Exhaustion constraint in ORM and cover axiom in OWL . . . 121

6.1 Overview of the consistency checking process 131
6.2 An Axiom Transformation Graph (ATG) for the given example135
6.3 Example tableau and associated CDTs 138
6.4 Example of a CDT in the TBox Consistency Task 141
6.5 Example of CDTs in the ABox Consistency Task 142
6.6 An example of logical consistency checking: tableau and as-

sociated CDT . 155
6.7 First example of a compatibility requirement 158
6.8 Second example of a compatibility requirement 158

7.1 Example of ontology extensions 165
7.2 Using and extending ontologies by means of an associated

version log . 167
7.3 Properties of a Dependency 169
7.4 Extension of a version log . 178
7.5 Example use of a virtual version log 180
7.6 Example of an ontology depending on a virtual version log . . 182
7.7 Example use of multiple virtual version logs 183

8.1 Properties of the ConceptEvolution and ConceptVersion Classes186
8.2 Concepts to represent a version of a Class 187
8.3 Architecture of the version log generator 188
8.4 Screenshot of the version log plug-in 189
8.5 Concepts of the change definition ontology 190
8.6 Concepts of the evolution ontology 191
8.7 Screenshot of the change detection plug-in 192

List of Tables

2.1 Syntax and semantics of concept descriptions 21
2.2 Syntax and semantics of axioms 21
2.3 Correspondence between OWL DL and SHOIN (D) syntax . 23

4.1 Overview of common tense operators 69

5.1 Classification of primitive changes for OWL 109
5.2 Classification of primitive changes for OWL (continued) . . . 110

xx LIST OF TABLES

Chapter 1

Introduction

Most people likely associate the term evolution immediately with the domain
of biology and the evolution theory of natural selection that was popularized
by Charles Darwin in his book The Origin of Species [14]. However, the
subject of evolution has also played an important role in a variety of other
domains. Evolution has been – and still is – the topic of extensive research
in domains such as economics, psychology, natural languages and computer
science. While the exact meaning of the term evolution varies from domain
to domain, it can in general be best circumscribed as a process in which
something changes into an improved form that better suits its environment’s
needs.

In the domain of computer science, the topic of evolution has been in-
vestigated in different settings such as software evolution, knowledge base
maintenance and database evolution. The introduction of the World Wide
Web, and particularly the Semantic Web [8] where ontologies are used to
make the semantics of information explicit, has brought the topic of evolu-
tion into a new perspective. The topic of this dissertation therefore concerns
the problem of evolving ontologies, a problem that affects the cornerstones
of the Semantic Web.

1.1 Research Context

The World Wide Web (also referred to as WWW or simply the Web) began
as a networked information project at CERN, initiated by Tim-Berners Lee
and Robert Cailliau. Although it was originally intended to be used to
exchange information between members of the physics community, it quickly
spread to other research disciplines and rapidly evolved into the success
story we know today. Although the Web started off with merely a handful
of users and Web pages, its usage has swiftly reached more than one billion

2 Introduction

users world wide1, and the number of Web sites has surpassed 80 million2.
Furthermore, the number of Web sites is still growing at a dazzling speed,
illustrated by the fact that the Web has doubled in size in the past three
years.

Notwithstanding the enormous success of the Web, its current form has
a number of severe shortcomings. One of these shortcomings is that most
information on the Web is represented in a form (mostly HTML) solely us-
able for human interpretation — i.e., the current Web can be considered to
be machine-readable, but unfortunately not machine-understandable. This
shortcoming is for example clearly illustrated by all major search engines
that are mainly restricted to syntax-based queries, as they are not able to
grasp the semantics of the information found on the Web. The Seman-
tic Web has been proposed as a solution to overcome this shortcoming by
making the semantics of Web content explicit.

The Semantic Web is defined as an additional layer on top of the current
Web. Tim Berners-Lee described the Semantic Web as an extension of the
current Web in which information is given well-defined meaning, better en-
abling computers and people to work in cooperation [8]. To give information a
well-defined meaning, the Semantic Web relies on the use of ontologies. The
term ontology, originating from the domain of philosophy, is in computer
science defined as a formal, explicit specification of a shared conceptualiza-
tion of a domain of interest [30]. In other words, ontologies form a formal
representation of concepts and relations between these concepts that can be
distinguished in a particular domain (e.g., medicine). Its explicit and formal
specification allows machines to reason about the information captured by
the ontologies. Therefore, the additional layer of ontologies on top of the
current Web transforms the Web into a machine-understandable Web.

As follows from the definition of an ontology, an ontology is a shared con-
ceptualization i.e., an ontology is intended to be used and extended by other
ontologies. Furthermore, several artifacts (e.g., Web sites, applications, . . .)
may depend on the same ontology. As a consequence, the Semantic Web
extends the Web with what can be considered to be a true web of ontologies,
where ontologies are interlinked and used by Web sites and Web applica-
tions. The distributed and decentralized characteristics of the Web also hold
for the Semantic Web. This means that ontologies can be managed indepen-
dently from each other and ontologies can be used and extended without the
permission or knowledge of the owner. Moreover, the owner of an ontology
may even be unaware of who uses or extends his ontology.

As is the case with everything in the world that surrounds us, ontologies
are not indifferent to changes. Several reasons for ontology changes have
been identified in literature by various authors [32] [51] [73] [85]. We list the

1See http://www.internetworldstats.com (figures of March 31, 2006)
2See http://www.netcraft.com (figures of April 2006)

1.2 Problem Statement 3

most important reasons below:

• When a particular domain changes, the ontologies that describe this
domain have to change accordingly, in order to reflect the changed real
world situation.

• While the domain itself may not change, the view on the domain
described by an ontology may evolve as consequence of a shift of focus
i.e., particular aspects of the domain may gain or lose importance over
time.

• The initial versions of an ontology may still contain design flaws, and
new design flaws may possibly get introduced as a consequence of
further changes to an ontology. A possible cause of ontology evolution
is therefore the correction of design flaws.

• Finally, the requirements of the users of an ontology may change (e.g.,
a request for new or modified functionality), demanding a change to
the ontology to support the changed requirements.

Because ontologies are intended to be used and extended by other ontolo-
gies, and because they are deployed on the Web, which is a highly decentral-
ized environment, the problem of ontology evolution is far from trivial. The
fact that ontologies depend on other ontologies means that the consequences
of changes don’t remain local to the ontology itself, but affect depending on-
tologies as well. Furthermore, the decentralized nature of the Web makes it
impossible to simply propagate changes to depending artifacts. A manual
and ad-hoc handling of an ontology evolution process is not feasible nor de-
sirable as it is a too laborious, time intensive and complex process [86]. A
structured approach is therefore essential to support the ontology engineer
in this evolution process. In this dissertation, we propose such an approach.

1.2 Problem Statement

At this moment, no generally accepted single definition of ontology evolution
exists in the research community. Because the term ‘ontology evolution’ is
often used with (slightly) different meanings, we first formulate a definition
of this term that will be used throughout this dissertation. This definition
reflects a similar viewpoint as stated by [23] and [83]. We define ontology
evolution as the process of adaptation of an ontology to the arisen changes
in a domain while maintaining both the consistency of the ontology itself
as well as the consistency of depending artifacts, where depending artifacts
are other ontologies, Web sites, Web applications, etc. depending on an
ontology.

The work presented in this dissertation does not claim to be a complete
solution to all the various aspects that are associated with the problem of

4 Introduction

ontology evolution. Nevertheless, this work makes a number of contributions
to the research field. In this dissertation, we propose an answer to the
following problems:

Problem 1: Comprehending ontology evolution An essential prereq-
uisite to cope with ontology evolution is that maintainers of depend-
ing artifacts need to be able to obtain a clear understanding of the
changes that have occurred within an ontology. This is an important
requirement because these maintainers are ultimately responsible for
keeping their depending artifacts consistent with a changing ontology.
To support this requirement, an ontology evolution approach must be
able to give a complete overview of the changes that have occurred.
As ontologies can become exceedingly complex and large-scale, it is
important that this overview of changes supports (1) different levels
of abstraction (i.e., fine-grained changes that represent a lot of detail
vs. coarse-grained changes that rather reveal a pattern of evolution),
(2) can be approached from different points of view (i.e., a view that
focuses on the actual changes vs. a view that rather focuses on the im-
plications of changes), and (3) even allows for different interpretations
of the same changes.

While the requirement as described above is valid for all systems con-
sidering evolution, this requirement becomes even more crucial when
we consider ontologies that are deployed on the Web. In a setting
as the Web, problems arise when maintainers of depending artifacts
have to rely on the overview of changes placed at their disposal by
the ontology engineer of an ontology they depend on. Consequently,
the quality of the overview of changes depends largely on the good-
will of the ontology engineer. Because ontology engineers – due to
the decentralized nature of the Web – are often unaware of the exis-
tence of depending artifacts, and the overview of changes is in the first
place of interest for maintainers of depending artifacts, a high quality
overview can not be taken for granted. This is especially true when
we take into account that in most existing approaches the creation of
such an overview is mostly a manual task. Even when the overview
of changes is of high quality, this does not guarantee that it suits the
needs of the depending artifacts as it eventually is just one particu-
lar view on the changes. Again – due to the decentralized nature of
the Web – the overview of changes cannot be adapted to the specific
requirements of depending artifacts as these are unknown.

Finally, just as a particular domain described by several ontology en-
gineers results in ontologies that most likely are different from each
other (because different ontology engineers may have different views
on the same domain), an overview of the evolution of an ontology may

1.2 Problem Statement 5

also lead to different interpretations of that same evolution. Different
interpretations of the same changes may trouble the understanding of
an ontology evolution for maintainers of depending artifacts. This is
certainly the case when a depending artifact depends on more than one
ontology which all use different interpretations for the same changes.
As a consequence, the understanding of the changes becomes trouble-
some as the meaning of the changes differs from ontology to ontology.
Note that it is impossible to create a standardized set of change defi-
nitions to resolve this problem for the following two reasons: (1) there
exists an infinite number of possible changes and (2) differences in
interpretation happen to be an intrinsic aspect of the Web.

Problem 2: Ontology consistency As ontologies are often used to rea-
son about and to infer implicit knowledge from, it is essential for an ap-
proach supporting ontology evolution to ensure that ontologies evolve
from one consistent state into another consistent state. The problem
is that the changes which an ontology engineer wants to apply to an
ontology may introduce inconsistencies. To maintain ontology consis-
tency, it doesn’t only suffice to verify whether an ontology remains
consistent after changes are applied. In addition, when an inconsis-
tency is detected, possible solutions should be proposed to the ontology
engineer to resolve the detected inconsistency. However, the problem
of inconsistency resolving is far from trivial, as it implies an approach
that understands why an ontology is inconsistent.

Problem 3: Decentralized authority The decentralized architecture of
the Web certainly has contributed a lot to its enormous success. Due
to the decentralization of authority, it has become possible to create
such a large and complex structure as the Web. Regarding ontologies,
this means that ontologies on the Web can be used and extended
without the permission of the owner. Moreover, an ontology engineer
doesn’t even have to be aware of possible depending artifacts that
depend on his ontology. Although the decentralized architecture of
the Web clearly has a number of advantages, it also imposes a number
of problems w.r.t. ontology evolution:

• an ontology engineer cannot force maintainers of depending ar-
tifacts to update to the latest version of an ontology because he
doesn’t have the necessary permissions and depending artifacts
may be unknown;

• maintainers of depending artifacts are in control of their own
depending artifacts and therefore may update at their own pace
(which includes the decision not to update at all);

• the other way round, maintainers of depending artifacts cannot

6 Introduction

prevent ontologies they depend on from changing because they
don’t have the necessary permissions to control the ontologies.

In the field of distributed databases, the problem of consistency main-
tenance between databases was solved by propagating the changes
applied to a database to all depending databases. Because ontology
engineers cannot force maintainers of depending artifacts to update,
a similar technique of change propagation cannot be used to keep de-
pending artifacts consistent with a changing ontology. Furthermore,
because maintainers of depending artifacts cannot prevent ontologies
they depend on from changing and because maintainers of depending
artifacts may decide to update to the latest version of an ontology at
their own pace, it is likely that multiple versions of an ontology need
to be supported. Finally, the refusal of a maintainer of a depending ar-
tifact to update may prevent other depending artifacts from updating
too. Consider as an example an ontology O3 that imports an ontology
O2 and O2 imports an ontology O1. When O1 changes but O2 doesn’t
update to the latest version of O1, ontology O3 is blocked as it cannot
be updated to the latest version of O1.

Problem 4: Depending artifact consistency As mentioned in problem
3, maintainers of depending artifacts are eventually responsible to de-
cide whether or not to update to the latest version of an ontology.
In order for these maintainers to make a well-considered decision, it
is important that they are aware of the consequences of updating for
their depending artifacts. When considering ontologies as depending
artifacts, the following questions do arise. Which inconsistencies does
an update introduce? Which are the concept definitions that need
to be changed to resolve an inconsistency? Is essential information
missing since the previous used version?

1.3 Goal

In this dissertation, we aim to develop an ontology evolution approach that:

• allows ontology engineers to request and apply changes for the ontolo-
gies they manage;

• ensures, when an ontology engineer decides to change an ontology, that
the ontology evolves from one consistent state into another consistent
state;

• guarantees that the depending artifacts of an ontology remain consis-
tent after changes have been applied;

1.4 Approach 7

• provides a detailed overview of the changes that occur, supporting
different levels of abstraction, different view points and different inter-
pretations.

As we deal in this dissertation with the evolution of ontologies on the
Web, we focus our approach on the OWL Web ontology language which has
been a recommendation of the W3C as the standard ontology language for
the Web since 2004. In particular, we focus on the DL variant of OWL due
to its characteristics of computational completeness and decidability.

1.4 Approach

In the ontology evolution framework presented in this dissertation, we rep-
resent the evolution of an ontology by means of a version log. A version log
stores for each concept ever defined in the ontology (this includes Classes,
Properties and Individuals), the different versions it passes through during
its life cycle: from its creation, over its modifications, until its eventual re-
tirement. Note that the version log doesn’t represent an interpretation of
the evolution in terms of changes (e.g., addClass, changeSubClassOf, ...),
but rather lists the state of each concept at the different moments in time.

When an ontology engineer intends to modify an ontology, he specifies a
change request in terms of changes that he wants to apply. Changes are in
our approach formally defined in terms of a temporal logic based language,
called the Change Definition Language. This Change Definition Language
allows us to define changes in terms of conditions that must hold before and
after the appliance of the change (respectively, pre- and post-conditions).
For this language, we have adopted a hybrid-logic approach that is midway
between modal-logic and predicate-logic approaches. The advantage is that,
besides expressing temporal relations, it is also possible to refer to explicit
moments in time.

As requested changes of an ontology engineer may turn the ontology into
an inconsistent state, the ontology evolution framework checks for ontology
consistency after each requested change and suggests possible solutions to
resolve inconsistencies, if needed. As we focus on OWL DL, we can use
existing OWL reasoners (e.g., Fact [37], Racer [62], Pellet [81], . . .) to
detect inconsistencies. However, a major drawback of current reasoners is
that they provide little or no information to resolve inconsistencies. We
therefore extended the tableau reasoning algorithm, used by most state-of-
the-art reasoners, in order to determine which concept definitions are causing
an inconsistency.

Once inconsistencies have been found, they are resolved by adding ad-
ditional changes, called deduced changes, to the change request. In our
ontology evolution framework, we provide the ontology engineers with a set
of rules they can rely on to add deduced changes to a change request. The

8 Introduction

Figure 1.1: The approach allows different interpretations for the same on-
tology evolution

set of rules ensures that correct deduced changes are added in order to re-
solve a detected inconsistency. This means that, after all inconsistencies are
resolved, the change request contains the necessary changes to transform an
ontology from one consistent state into another consistent state.

Furthermore, changes to an ontology may also cause inconsistencies in
the depending artifacts that depend on this changed ontology. To prevent
depending artifacts from becoming inconsistent, we redefine dependencies
between depending artifacts and ontologies to dependencies between de-
pending artifacts and ontologies at a given moment in time i.e., a depend-
ing artifact depends on a specific version of an ontology. When an ontology
changes, its depending artifacts remain consistent as they still dependent on
the old version, and its maintainers can update at their own pace, or decide
not to update to the new version.

To better understand the evolution of an ontology, our approach allows to
create an evolution log for an ontology. Such an evolution log is, in contrast
with a version log, a particular interpretation of the evolution of an ontology
in terms of change definitions. Remember that change definitions are defined
in terms of a temporal logic based language, which makes it possible to
automatically detect changes that have occurred by evaluating the change
definitions against a version log. In fact, the change definitions can be
seen as temporal queries. We use the term detected changes to refer to the
occurrence of change definitions that have been detected by the framework.
An evolution log eventually may contain occurrences of requested changes,
deduced changes and detected changes. The clear distinction between the
representation of an evolution (using a version log) and the interpretation of
an evolution (using an evolution log), makes it possible to look at an ontology
evolution at different levels of abstraction, from different view points, and
to associate different interpretations with the same evolution. Figure 1.1
illustrates the association of different interpretations to the same ontology

1.5 Advantages 9

evolution. Both maintainers of the depending artifacts can have an own
interpretation of the evolution of the ontology they depend on that differs
from the interpretation of the ontology engineer himself. The differences in
interpretation are represented by the different evolution logs.

1.5 Advantages

The approach outlined in the previous section provides several advantages
compared to the current situation:

• The approach of automatic change detection makes it possible to gen-
erate more semantically rich evolution logs without additional effort
from the ontology engineer then is generally achieved with manual
approaches.

• Due to the change detection mechanism, the quality of evolution logs
is in our approach far less dependent on the tools that are used to edit
an ontology. When the evolution log is only populated with requested
changes by the ontology engineer, the resulting evolution log depends
a great deal on the change operations supported by the tool. Some
tools may offer the ontology engineer a comprehensive set of complex
change operations, while with other tools this set is rather limited. The
result would be that the tool supporting a rich set of complex change
operations would create a rich evolution log, while the evolution log of
the tool supporting a limited set of complex change operations would
be rather poor. Our change detection mechanism is able to smoothen
out differences in tool support as it enables us to enrich an evolution
log with detected changes.

• The clear separation between the representation of an evolution (by
means of a version log) and the interpretation of this evolution in
terms of changes (by means of an evolution log), allows maintainers
of depending artifacts to have different interpretations on the same
evolution.

• Maintainers of depending artifacts can update to a new version of an
ontology they depend on at their own pace, without preventing other
depending artifacts from updating.

1.6 Contributions

With the new ontology evolution approach presented in this dissertation, we
have made the following contributions to the research community:

10 Introduction

• We present a formal language based on a temporal hybrid logic ap-
proach, called the Change Definition Language, that allows ontology
engineers to define both primitive and complex changes in a declara-
tive way. The Change Definition Language allows to unambiguously
define the semantics of changes.

• Making use of the formal definitions of changes, the proposed approach
of change detection makes it possible to automatically detect the oc-
currence of changes. This approach of change detection gives rise to a
semantically richer evolution log and allows to have different views on
and interpretations of the same evolution of an ontology.

• While existing OWL DL reasoners are able to identify ontology incon-
sistencies, they don’t reveal the cause of the detected inconsistency.
Therefore, we propose an extension to current OWL DL reasoners in
order to determine the exact cause of a detected inconsistency. The
proposed extension selects those axioms from the ontology that to-
gether form the cause of an inconsistency. Removing one of these
axioms causing the inconsistency guarantees to resolve the detected
inconsistency.

• As removing a complete axiom as a solution to resolve an inconsistency
seems in most cases as throwing away the baby with the bathwater, we
present a set of rules to weaken axioms instead. This set of rules can be
applied by an ontology engineer to the selection of axioms causing the
inconsistency gathered from the extended reasoner in order to resolve
contradictions.

• We propose an approach to verify whether a new version of an ontology
remains backward compatible with an older version for a particular
depending artifact. The approach is based on a set of compatibility
requirements that a maintainer of a depending artifact can specify,
and that are automatically checked by the proposed framework.

• We also present an approach to keep multiple, distributed ontologies
consistent after changes are applied to one of the ontologies. The
approach redefines dependencies between ontologies as dependencies
between version logs at a specific moment in time. Changes to an
ontology won’t affect the consistency of depending ontologies as they
depend on a specific version of the ontology. Past versions of an on-
tology can be reconstructed by making use of a version log.

• Because the refusal of maintainers of depending artifacts to update
may prevent other depending artifacts from updating as well, an ap-
proach is proposed based on the use of a virtual version log to cir-
cumvent this problem. A virtual version log allows a maintainer of a

1.7 Outline 11

depending artifact to simulate a new version of an ontology it depends
on without actually changing that ontology.

• Finally, we developed a set of prototype tools that form a proof-of-
concept of the main ideas of the proposed ontology evolution frame-
work. We developed two plug-ins for the Protégé ontology editor: one
to automatically generate a version log for the changes applied to an
ontology, and another to support the detection of changes. Further-
more, we have extended the FaCT++ reasoner in order to automati-
cally reveal the axioms of an ontology causing a detected consistency.

1.7 Outline

The remainder of this dissertation is structured as follows:
Chapter 2 describes relevant background and related work for this dis-

sertation. It gives an overview of ontologies and existing ontology languages.
It thereby focuses in particular on the Semantic Web languages. Further-
more, it provides a short introduction to Description Logics, as they form the
foundation of OWL DL, the ontology language of choice in this dissertation.
The syntax and semantics of SHOIN (D), the Description Logic variant
OWL DL is based upon, are described, an overview of the different reasoning
tasks is provided and the exact correspondence with OWL DL is discussed.
As related work, an overview of the state-of-the-art in related evolutionary
domains and other ontology evolution approaches is given. Furthermore, a
comparison is made between our approach and existing approaches.

Chapter 3 gives an informal overview of the ontology evolution frame-
work that we propose in this dissertation. Attention is paid to the specific
characteristics and design principles of the proposed approach. Furthermore,
the different phases that together form the framework are introduced.

Chapter 4 discusses the foundations of our ontology evolution frame-
work. A first foundation is the notion of a version log that is used to rep-
resent the evolution of an ontology. A second foundation is the Change
Definition Language that makes it possible to formally define changes. The
chapter also introduces the temporal logic upon which the Change Definition
Language is based. Finally, the evolution log that represents an interpre-
tation of the evolution of an ontology in terms of primitive and complex
changes is presented.

Chapter 5 discusses the evaluation of conceptual change definitions for
the purpose of both change requests and change detection. It also discusses
the recovery of unnecessary made changes. Furthermore, it illustrates how
conceptual change definitions can be defined by means of the Change Defi-
nition Language introduced in the previous chapter.

Chapter 6 focuses on maintaining ontology consistency after changes
are applied and verifying backward compatibility of an ontology w.r.t. a

12 Introduction

given depending artifact. The first part of the chapter presents a method
to determine which axioms of an ontology are causing an inconsistency.
Furthermore, it also presents a set of rules that ontology engineers can use
to resolve a detected inconsistency. The second part of the chapter deals
with verifying backward compatibility of an ontology. It introduces the
notion of compatibility requirements to express the conditions an ontology
should meet to be considered backward compatible w.r.t. a given depending
artifact.

Chapter 7 deals specifically with ontology evolution in a decentralized
environment such as the Web. We illustrate how consistency can be main-
tained between multiple ontologies that depend on each other, taking the
decentralized characteristic of the Web into account. The chapter also deals
with the problem of blocked ontologies caused by a refusal of depending
artifacts to update.

Chapter 8 gives an overview of the different prototype tools that were
developed as proof of concept of the main ideas presented in this dissertation.

Chapter 9 reflects on the results presented in this dissertation. A sum-
mary is provided, limitations and boundaries are stated and contributions
and achievements are outlined. Finally, possible extensions and future work
are discussed.

Chapter 2

Background and Related
Work

The previous chapter introduced this dissertation. We presented the re-
search context, discussed a number of problems we have identified and for-
mulated the goal of the dissertation. Furthermore, we briefly introduced the
approach that we take to achieve this goal, and discussed advantages and
contributions of this approach. Finally, we gave an outline of the remainder
of this dissertation.

In this chapter, we present necessary background knowledge and discuss
related work, both required to place this dissertation into a broader perspec-
tive. This chapter is structured as follows. In Section 2.1, we first give a
clear definition of the term ontology. In Section 2.2, we provide an overview
of the current state-of-the-art in ontology languages, more in particular Web
ontology languages. Section 2.3 shortly discusses description logics as they
form the foundation of OWL DL, the language of choice in this disserta-
tion. In Section 2.4, we discuss the related domains of temporal databases,
database evolution and ontology evolution itself. In Section 2.5, we focus on
specific aspects of the ontology evolution problem and make a comparison
with the work presented in this dissertation. Finally, Section 2.6 concludes
the chapter with a short summary.

2.1 Ontology

The term ontology comes from the Greek word ‘ŏvtoç’, which literally means
the study of being. In philosophy, the term is used to refer to the branch
of metaphysics occupied with the study of existence i.e., the study of what
entities and what types of entities exist. In the field of computer science, the
term ontology is used in the context of knowledge representation. An ontol-
ogy is defined as a formal, explicit specification of a shared conceptualization
of a domain of interest [30]. We further analyze this definition:

14 Background and Related Work

Shared conceptualization A conceptualization is an abstract, simplified
representation of the world in terms of objects, concepts, and other
entities that are assumed to exist and the relationships that hold
among them [27]. The term shared implies that the conceptualiza-
tion is shared among different stakeholders i.e., they all must agree on
a specific representation of the world.

Formal and explicit specification As it is the purpose of ontologies to
represent knowledge in a machine-readable and machine-interpretable
manner, the conceptualization should be specified formally and ex-
plicitly. The semantics of concepts and relationships between these
concepts should therefore be expressed in a formal language (e.g., de-
scription logics).

Domain of interest As it is impossible to conceptualize the whole uni-
verse of discourse (including imaginary worlds), ontologies represent
only a certain part or aspect of the world. In literature, one commonly
distinguishes between domain ontologies and upper ontologies (the lat-
ter is also often referred to as core ontologies or foundation ontologies).
A domain ontology conceptualizes a certain subject or domain (e.g.,
human social relations, medical science, jurisdiction, . . .), while an up-
per ontology specifies concepts and relations between these concepts
that are generally applicable across a broad range of domains (e.g.,
spatial and temporal relations).

Ontologies have a strong basis in artificial intelligence and knowledge
representation. Ontologies provide means for deductive reasoning and clas-
sification of knowledge, and allow systems to infer new knowledge from the
knowledge explicitly stored. Furthermore, they can be used to support the
sharing and communication of information between different systems. We
therefore witness a grow in the appliance of ontologies in content and doc-
ument management, information integration and knowledge management
systems.

Moreover, ontologies play a key role in the vision of the Semantic Web.
The Semantic Web is an extension of the current World Wide Web in which
information is given well-defined meaning, better enabling computers and
people to work in cooperation [8]. Although the Web was initially designed
to be an information space for both humans and machines, it turned out
that most information is only designed for human consumption. Ontologies
provide the facility to turn this information into machine-understandable
information. Several languages have been developed to realize the Semantic
Web.

Several ontology languages have been developed in the past (e.g., OIL
[20], SHOE [36], . . .). However, in this dissertation we focus primarily on the
Semantic Web languages and OWL in particular as it is the standard W3C

2.2 Ontology Languages 15

ontology language. A classification of different types of ontology languages
and an overview of the Semantic Web languages is part of the discussion in
the next section.

2.2 Ontology Languages

In the first subsection, we classify the different types of ontology languages,
similar to the classification made by [19], based on their formal language:
first-order predicate logic-based languages, frame-based languages and de-
scription logic-based languages. In the second subsection, we discuss the
languages for the Semantic Web (including OWL DL).

2.2.1 Classification

We distinguish three types of ontology languages: first-order predicate logic-
based languages, frame-based languages and description logic-based lan-
guages. We don’t intend to provide a complete overview of existing ontology
languages, but rather mention the representative languages of each of these
categories.

First-order predicate logic-based languages As the name already sug-
gests, this category of ontology languages has its foundation in first-
order predicate logic. Both Cycl [57] and KIF [25, 26] are examples of
first-order predicate logic-based languages. Cycl has been developed
within the Cyc project1. The goal of the project was to build an ontol-
ogy of fundamental human knowledge (called Cyc ontology). Cycl is
used as representation language for this Cyc ontology. The second on-
tology language, KIF (Knowledge Interchange Format), is a language
designed for use in the interchange of knowledge among disparate com-
puter systems (created by different programmers, at different times, in
different languages, . . .). Being a language for knowledge interchange,
KIF can also be used as a language for expressing and exchanging on-
tologies. An important feature of both languages is that they allow to
express knowledge about knowledge (i.e. meta-knowledge).

Frame-based languages Frame-based languages are based on frames or
classes as modeling primitives to represent a collection of instances.
Slots or attributes can be associated with classes to store either primi-
tive values, or to relate to other classes. Classes can in general be sub-
classed by making use of a special type of slot. Frame-based languages
have a long history in Artificial Intelligence, and have been success-
fully applied in software engineering in the object-oriented paradigm.
Examples of frame-based ontology languages are Ontolingua [18] and

1See htt://www.cyc.com

16 Background and Related Work

FrameLogic [50]. Ontolingua is an extension of KIF to a frame-based
language; FrameLogic is a language for specifying object-oriented data-
bases, frame systems, and logical programs [39]. A drawback of these
frame-based languages is that they are in general not formally defined
and the associated reasoning tools strongly depend on the implemen-
tation strategies.

Description logic-based languages Description Logics, or also known
as terminological logics, describe knowledge in terms of concepts and
roles. In the Description Logics research community, a lot of emphasis
has been put on reasoning algorithms and their complexity. Ontologies
based on Description Logics are therefore able to perform a number
of reasoning tasks (e.g., instance checking, concept satisfiability, . . .).
Several reasoners for description logics have been implemented. Both
CLASSIC [9] and LOOM [58] are examples of implemented Descrip-
tion Logics systems. Also OWL has its foundation in Description
Logics. We discuss in more detail the OWL language in Section 2.2.2
and Description Logics in Section 2.3.

2.2.2 Semantic Web Languages

To realize the Semantic Web, a number of languages have been proposed by
the W3C2. The Semantic Web consists of a number of layers shown in Figure
2.1 (taken from [45]). The layers of the lower part of the stack Unicode, URI,
XML + namespaces (NS) + XML schema, RDF + RDF Schema, and the
Ontology vocabulary layer (which consists of OWL) are largely in place.
OWL has been a W3C Recommendation since February 2004. Research on
the remaining top layers Logic, Proof and Trust haven’t yet resulted in W3C
Recommendations.

The Unicode layer ensures that all languages build on top make use of
international characters sets, while the URI layer provide means for iden-
tifying resources on the Semantic Web (i.e., any resource can be referred
to using a URI). All languages (including RDF(S) and OWL adopt XML
(eXtensible Markup Language)3 as syntax as they are built on top of the
XML + NS + XML Schema layer. XML allows users to add (a tree-) struc-
ture to their documents by using a self-defined set of tags. XML Schema4 is
used to define the allowed structure and vocabulary of an XML document.
Note that such an XML schema doesn’t define the semantics of the tags
introduced.

In the following two subsections, we discuss the languages RDF(S) and
OWL.

2See http://w3c.org
3See http://www.w3.org/XML/
4See http://www.w3.org/XML/Schema

2.2 Ontology Languages 17

Figure 2.1: The Semantic Web layers

RDF(S)

RDF5 stands for Resource Description Framework and allows users to add
structured metadata to the Web. The main modeling primitives of RDF
are Resources, Properties and Statements. A Resource can be anything one
can refer to by means of a URI, and Properties describe either relations
between Resources or characteristics of Resources (attributes). An RDF de-
scription consists of a number of Statements or triples of the form: subject
(a Resource), predicate (a Property) and object (a Resource or Literal (e.g.,
string, number, date, . . .)). Furthermore, RDF also introduces Containers
and Collections which provide a way to group Resources. Although both
Containers and Collections describe a group of Resources, their semantics
are somewhat different. The semantics of a Collection specify that the listed
Resources are all the members and the only members of a particular Col-
lection (i.e., no other members exist), while Containers don’t impose this
restriction. Three types of Containers exist: a Bag (an unordered Con-
tainer), a Sequence (an ordered Container) and an Alternative (represents
a list of alternative options). Noteworthy is that RDF allows the reification
of Statements i.e. treating Statements as if it were real data (intertwine the
meta-data and data level). This shows great resemblance with the meta-
knowledge feature in first-order predicate logic-based ontology languages.

An example of an RDF description is shown in Figure 2.2. It specifies
that the editor of the Web page with given URI has as full name ‘Dave
Becket’ and has a homepage with given URI, and that the title of the Web
page is ‘RDF/XML Syntax Specification (Revised)’. Note that, as is the case
in XML, RDF itself doesn’t allow to define the vocabulary (e.g., fullName,
editor, . . .) used in an RDF description. For this purpose, RDFS or RDF

5See http://www.w3.org/RDF/

18 Background and Related Work

Figure 2.2: Graphical representation of an RDF example

Schema was developed.
RDFS6 is a vocabulary description language for RDF as it allows to

define a domain-specific vocabulary. RDFS provides modeling primitives to
describe Classes and Properties. Classes correspond to the generic concept of
Type or Category, and are similar to classes in object-oriented programming
languages. RDFS also allows to define subclass relations between two classes.
To describe Properties, RDFS provides means to describe both the domain
and range of a property and to define property hierarchies (subproperty
statements). Furthermore, resources can be defined as being an instance of
a particular Class.

Note that the semantics that can be expressed by RDFS are rather lim-
ited. For example, no cardinality constraints can be expressed. In the
situation where one desires to express more complex semantics, ontologies
come into play. In the next subsection, we discuss the OWL Web Ontology
Language, which is based on RDF and RDFS.

OWL

The direct roots of OWL7 go back to the OIL language. OIL [20] unified
three important aspects provided by different communities: formal seman-
tics and efficient reasoning as provided by Description Logics, epistemo-
logical rich modeling primitives as provided by the Frame community, and
a standard proposal for syntactical exchange notations as provided by the
Web community (i.e., syntax based on XML and RDF(S)). As a result of
the cooperation between the DAML project and the OIL language group,
the DAML+OIL [38] language was proposed, which eventually led to the
W3C Recommendation language OWL.

OWL further extends RDF(S) to provide additional machine-processable
semantics for resources on the Web. It provides the following added capa-
bilities compared to RDF(S):

6See http://www.w3.org/TR/rdf-schema/
7See http://www.w3.org/2004/OWL/

2.2 Ontology Languages 19

• Cardinality constraints on Properties (e.g., a person has exactly one
name);

• Value constraints on Properties using all-values and some-values con-
structs (e.g., for a SoccerTeam, all values of the hasPlayer Property
must be an instance of SoccerPlayer);

• Transitive, symmetric and inverse Properties;

• Equivalence between Classes, Properties or Instances (e.g., the Classes
Aircraft and Plane are equivalent);

• Constructs to combine Classes (i.e., define Classes as union, intersec-
tion or complement of other Classes; define Classes to be disjoint with
other Classes);

• Constraints on domain and range of specific Class-Property combi-
nations (e.g., a Property hasPlayer has for a Class SoccerTeam 11
players, while it has only 5 values for a Class BasketballTeam).

OWL provides three increasingly expressive sublanguages (i.e., OWL
Lite, OWL DL and OWL Full), targeted at different types of users:

• OWL Lite supports those users primarily needing a classification hier-
archy and simple constraints (e.g., OWL Lite permits only cardinality
constraints of values 0 or 1).

• OWL DL supports users who want the maximum expressiveness
while retaining computational completeness and decidability. The ab-
breviation DL refers to its formal foundation on Description Logics.
The characteristics of computational completeness and decidability of
course also apply to OWL Lite as it is a subset of OWL DL. Note that
OWL DL (and OWL Lite) add a number of restrictions to the syn-
tax of RDF(S). Most importantly, individuals and classes are clearly
separated, just as individuals and concepts are also separated in De-
scription Logics.

• OWL Full is meant for users who want maximum expressiveness and
the syntactic freedom of RDF(S). The drawback is that no compu-
tational guarantees can be assured. Note that OWL Full allows for
example Classes to be simultaneously a collection of individuals and
an individual in its own right. This means that, in contrast to OWL
DL and OWL Lite, OWL Full facilitates meta-modeling as found in
RDFS (e.g., attaching property instantiations to Classes).

20 Background and Related Work

2.3 Description Logics

Description Logics (DLs) are a family of knowledge representation languages
that can be used to represent the knowledge of an application domain in a
structured and formally well-understood way [5]. DLs describe application
domains by means of concept descriptions i.e., expressions that are built
from atomic concepts and atomic roles using the concept and role construc-
tors provided by the particular DL. DLs differ from their predecessors in
that they are equipped with a formal, logic-based semantics. For a detailed
overview of DLs, we refer the interested reader to [4].

The DL variant of OWL conforms to the SHOIN (D) Description Logic,
while OWL Lite conforms to less expressive SHIF(D) variant [40]. As the
former variant includes the latter, we mainly concentrate on the former in
this dissertation. In Section 2.3.1, we briefly introduce syntax and semantics
of the SHOIN (D) variant, the correspondence with OWL DL is clarified in
Section 2.3.2. Finally, Section 2.3.3 discusses the common reasoning tasks
of DLs.

2.3.1 Syntax and Semantics

In this dissertation, we adopt the following convention: A is an atomic
concept, C is a complex concept, R is an abstract role and S is an ab-
stract simple role8, U is a concrete role, D is a datatype, o is a nominal
or individual, v is a data value and n is a non-negative integer. The se-
mantics of SHOIN (D) is given by an interpretation I = 〈∆I ,∆D, ·I , ·D〉
with a non-empty abstract domain ∆I , disjoint from the concrete domain
∆D. Furthermore, it consists of the functions ·I and ·D so that AI ⊆ ∆I ,
RI ⊆ ∆I ×∆I , UI ⊆ ∆I ×∆D, oI ∈ ∆I . The syntax and semantics of the
concept descriptions are given in Table 2.1.

Based on the aforementioned syntax, different types of axioms can be
formed: concept definition axioms C1 ≡ C2, concept inclusion axioms C1 v
C2, role definition axioms R1 ≡ R2, role inclusion axioms R1 v R2, tran-
sitivity axioms Trans(R), concept assertions C(a), role assertions R(a, b),
individual equalities o1 = o2 and individual inequalities o1 6= o2. The syntax
and the semantics of the different types of axioms are given in Table 2.2.

2.3.2 Correspondence with OWL

An ontology corresponds to the notion of a knowledge base in Description
Logics. A knowledge base compromises two components: the TBox and
the ABox. The TBox introduces the terminology, i.e., the vocabulary of an

8A role is simple if it is neither transitive nor has any transitive subroles. Note that
it is required to restrict number restrictions to simple roles in order to yield a decidable
logic [41].

2.3 Description Logics 21

Description Syntax Semantics
Conjunction C1 u C2 (C1 u C2)I = CI

1 ∩ CI
2

Disjunction C1 t C2 (C1 t C2)I = CI
1 ∪ CI

2

Negation ¬C (¬C)I = ∆I\CI

Exists restriction ∃R.C (∃R.C)I = {a ∈ ∆I |∃b.(a, b) ∈ RI

and y ∈ CI}
Value restriction ∀R.C (∀R.C)I = {a ∈ ∆I |∀b.(a, b) ∈ RI

→ b ∈ CI}
Atleast restriction ≥ nS (≥ nS)I = {a ∈ ∆I |#({b|

(a, b) ∈ SI}) ≥ n}
Atmost restriction ≤ nS (≤ nS)I = {a ∈ ∆I |#({b|

(a, b) ∈ SI}) ≤ n}
One of {o1, . . . , on} {o1, . . . , on}I = {oI1 , . . . , oIn}
Datatype exists ∃U.D (∃U.D)I = {a ∈ ∆I |∃b.(a, b) ∈ UI

and y ∈ DD}
Datatype value ∀U.D (∀U.D)I = {a ∈ ∆I |∀b.(a, b) ∈ UI

→ b ∈ DD}
Datatype atleast ≥ nU (≥ nU)I = {a ∈ ∆I |#({b|

(a, b) ∈ UI}) ≥ n}
Datatype atmost ≤ nU (≤ nU)I = {a ∈ ∆I |#({b|

(a, b) ∈ UI}) ≤ n}
Datatype one of {v1, . . . , vn} {v1, . . . , vn}I = {vI1 , . . . , vIn}
Inverse role R− (R−)I = {(b, a) ∈ ∆I ×∆I |

(a, b) ∈ RI}

Table 2.1: Syntax and semantics of concept descriptions

Description Syntax Semantics
Concept definition C1 v C2 CI

1 = CI
2

Concept inclusion C1 v C2 CI
1 ⊆ CI

2

Role definition R v S RI = SI

Role inclusion R v S RI ⊆ SI

Transitivity Trans(R) RI = (RI)+

Concept assertion C(a) aI ∈ CI

Role assertion R(a, b) (aI , bI) ∈ RI

Individual equality a = b aI = bI

Individual inequality a 6= b aI 6= bI

Table 2.2: Syntax and semantics of axioms

22 Background and Related Work

Figure 2.3: Architecture of a knowledge representation system based on
Description Logics

application domain, while the ABox contains assertions about individuals in
terms of this vocabulary. The descriptions of concepts, roles and individuals
allowed in a knowledge base depends on the particular description logic
used. For OWL DL ontologies, the descriptions must follow the syntax of
SHOIN (D) as discussed in the previous section. Furthermore, Description
Logic systems provide services to reason about the descriptions contained in
the knowledge base. We give an overview of the supported reasoning tasks
in the next subsection (see Section 2.3.3). Figure 2.3 (taken from [4]) shows
the architecture of a knowledge representation system based on Description
Logics.

In the remainder of this section, we give an overview of the correspon-
dence between the OWL DL syntax and the SHOIN (D) syntax (see Table
2.3). Note that the concept descriptions and axioms involving concrete roles
are not explicitly listed in the table as they don’t require a different syntax
then is used for abstract roles.

2.3.3 Inferencing

The purpose of a DL knowledge base goes beyond just storing concept defi-
nitions and assertions (see Figure 2.3). The formal semantics of Description
Logics make it possible to turn implicit knowledge into explicit knowledge
though inferencing. We first discuss the key reasoning tasks for a DL knowl-
edge base (focusing on both the TBox and the ABox), after which we end
this section explaining the difference between closed- and open-world as-
sumption, thereby highlighting its effect on the semantics of a DL knowledge
base.

2.3 Description Logics 23

OWL DL
intersectionOf C1 u . . . u C2

unionOf C1 t . . . t C2

complementOf ¬C
oneOf {o1, . . . , on}
allValuesFrom ∀R.C
someValuesFrom ∃R.C
hasValue ∃R.{o}
minCardinality ≤ nR
maxCardinality ≥ nR
cardinality (≤ nR) u (≥ nR)
subClassOf C1 v C2

equivalentClass C1 ≡ C2

disjointWith C1 v ¬C2

subPropertyOf R v S
equialentProperty R1 ≡ R2

domain ∃R.> v C
range > v ∀R.C
FunctionalProperty > v≤ nR
InverseFunctionalProperty > v≤ nR−

inverseOf R1 ≡ R−
2

TransitiveProperty Trans(R)
SymmetricProperty R ≡ R−

sameAs o1 = o2
differentFrom o1 6= o2

Table 2.3: Correspondence between OWL DL and SHOIN (D) syntax

24 Background and Related Work

Reasoning Tasks

Description Logics have been the result of a tradeoff between expressiveness
and computational complexity of reasoning. One of the goals of Description
Logics is to provide reasoning procedures that are sound and complete. In
this section, we briefly discuss the key reasoning tasks for both the TBox
and the ABox.

For a TBox T , the following reasoning tasks can be performed for con-
cepts of T : satisfiability, subsumption, equivalence and disjointness check-
ing:

• Satisfiability A concept C is satisfiable w.r.t. T if there exists a
model I of T such that CI 6= ∅.

• Subsumption A concept C1 is subsumed by a concept C2 w.r.t. T if
CI

1 ⊆ CI
2 for every model I of T .

• Equivalence Two concepts C1 and C2 are equivalent w.r.t. T if
CI

1 = CI
2 for every model I of T .

• Disjointness Two concepts C1 and C2 are disjoint w.r.t. T if CI
1 ∩

CI
2 = ∅ for every model I of T .

For an ABox A, the following reasoning tasks are generally considered,
i.e., ABox consistency checking and instance checking, although other rea-
soning tasks are possible, e.g., the retrieval problem (find all individuals a
that are instances of a particular concept) and the realization problem (find
the most specific concept an individual a is an instance of). We explain
both the ABox consistency checking and instance checking task below:

• ABox consistency An ABox A is consistent w.r.t. a TBox T if there
is an interpretation I that is a model of both A and T .

• Instance checking An individual a is an instance of a concept C
w.r.t. T if aI ∈ CI for every model I of T .

Note that all of the above mentioned reasoning tasks can be reduced to
one single inference problem: the ABox consistency task. For more details,
we refer the interested reader to [4].

Closed- and Open-world Assumptions

Although an analogy between DL knowledge bases and databases is often
drawn, i.e., where a database schema is comparable to a TBox and the in-
stance data of the database is comparable to an ABox, the semantics of
ABoxes and database instances are in general quite different. Instance data
in a database is assumed to be complete, and absence of information is

2.4 Related Domains 25

interpreted as negative information. The semantics of databases are there-
fore characterized as closed-world semantics. The information in ABoxes
is in general viewed as being incomplete, and absence of information only
indicates lack of knowledge. We therefore say that the semantics of DL
knowledge bases are open-world semantics.

Consider as example the following assertion: hasColleague (PETER,
SVEN). In the case that this assertion would be the only assertion in a
database, it would be interpreted as the fact that Peter only has one col-
league, Sven. In an ABox, this assertion means that Peter has a colleague
Sven, but we don’t know whether it is the only colleague or not (different
interpretations exist). This difference in semantics has also consequences
on whether a database or DL knowledge base is considered ‘consistent’.
Take for example the assertions hasColleague(PETER, SVEN) and (≥ 2
hasColleague)(PETER). We would consider a database storing these asser-
tions to be inconsistent as the second assertion states that Peter has at least
two colleagues, although only one colleague exists, Sven. On the other hand,
an ABox storing the very same assertions would be considered rightly con-
sistent as the set of assertions state that Peter has at least two colleagues,
one of these colleagues is Sven and the other colleague(s) are unknown.

2.4 Related Domains

When we consider research in the field of the Semantic Web on ontology
management – a sub domain which includes subjects as ontology creation,
ontology evolution and ontology evaluation – probably the most emphasis
has been put on the problem of ontology creation. Research in this area has
lead to a number of ontology engineering methodologies. Some of the most
well-known methodologies are DILIGENT [72], Dogma [47] and METHON-
TOLOGY [21]. While these approaches focus their attention on the overall
engineering process and the methodology behind it, the focus of this disser-
tation is on the specific problems of ontology evolution. We therefore focus
our related work on related domains concerning ontology evolution.

The problem of evolution has been a long term research topic in var-
ious domains and still continues to be an important research topic today.
Although evolution has been investigated in a variety of diverge research
domains (e.g., software evolution in the field of software engineering [56]),
we restrict ourselves to those domains most relevant for the topic of this
dissertation. We reckon the following domains as most relevant: tempo-
ral databases, database evolution and - of course - the domain of ontology
evolution itself.

This section is structured as follows. In Section 2.4.1, we discuss related
work in the field of temporal databases. In Section 2.4.2, we present related
work on database evolution and versioning. Finally, in Section 2.4.3, we

26 Background and Related Work

discuss related work in the domain of ontology evolution, focusing on the
different approaches proposed. Note that specific aspects concerning ontol-
ogy evolution that are of importance for this dissertation are discussed in
the subsequent section (see Section 2.5).

2.4.1 Temporal Databases

Although research on temporal databases is typically omitted from discus-
sions about the related work on ontology evolution, we deliberately include it
here as a number of the ideas we will present in this dissertation are founded
in the domain of temporal databases. Temporal databases provide a uni-
form and systematic way of dealing with historical data [13]. Conventional
databases are designed to capture only one single state i.e., the current state.
When new data become available through updates, the existing data values
are removed from the database as these databases only capture a snapshot of
reality. Although conventional databases serve some applications well, they
are insufficient for those applications in which past and/or future data are
also required. Temporal databases are databases that fully support the stor-
age and querying of information that varies over time. Temporal databases
typically allow a database designer to differentiate between temporal and
non-temporal attributes [67]. The temporal database maintains the state
history of temporal attributes using timestamps to specify the time during
which a temporal attribute’s value is valid.

Three temporal aspects are mostly discussed in literature when it comes
to the temporal extent of objects. Snodgrass and Ahn [82] defined the
following aspects:

• Valid time. A valid time of an object is the time when the object is
true in the modeled reality.

• Transaction time. A transaction time of an object is the time when
the object is part of the current state of the database.

• User-defined time. A user-defined time is a time attribute which
is not interpreted by the database management system. For example,
birth date does not refer to when an object became true in the modeled
reality nor does it record when an object became valid in a database.
It is an attribute of an entity that happens to be a date.

For the interested reader, a detailed survey about temporal databases
can be found in [67] and [29].

Besides research on temporal databases itself, a lot of effort has also
been put on researching conceptual models for temporal databases. Com-
pared to conceptual models for conventional databases (e.g., ER (Entity-
Relationship) models [12] and ORM (Object Role Modeling) [34]), concep-

2.4 Related Domains 27

tual models for temporal databases add design primitives to support tempo-
ral aspects. The majority of research done on conceptual models for tempo-
ral databases has focused on extensions to standard relational data models
(in particular ER models). Furthermore, research has also focused on object-
oriented approaches and event-based models. The authors of [29] present an
overview of the most important temporal extensions to ER. These extensions
to ER models allow database designers to express entities to be either tem-
porary entities (may change over time) or snapshot entities (don’t change
over time). For object-oriented approaches, we refer to MADS (Modeling
for Application Data with Spatio-temporal features) [68] as a representative
example. MADS supports both the time stamping of objects, attributes
and relationships, as well as the representation of temporal aspects between
objects (e.g., this object has created another object). Finally, event-based
models seek to define and record the events that change the state of the
system being modeled. Event-based models differ from other approaches
because it doesn’t seek to record past states of a system, but it seeks the
events that change the state. A representative example of an event-based
model is the TEERM (Temporal Event Entity Relationship Model) [16].

2.4.2 Database Schema Evolution & Versioning

The problem of database schema evolution & versioning have been studied
extensively in the past. This problem has been investigated primarily for
object-oriented databases and to a lesser extent for relational databases.
According to [17], the difference between (database) schema evolution &
versioning is defined as follows:

• Schema evolution: a database system supports schema evolution if
it facilitates the modification of the database schema without the loss
of existing data.

• Schema versioning: a database system supports schema versioning
if it facilitates the querying of all data through user-definable version
interfaces.

The authors of [24] argue that schema evolution can be considered a special
case of schema versioning where only the current schema version is retained.
A detailed survey on the various issues of schema evolution & versioning
can be found in [78]. As becomes clear by this survey, research in database
schema evolution & versioning has mainly focused on the problems of se-
mantics of change and change propagation. The former refers to the problem
of understanding changes and their effect on the database schema in order
to maintain schema consistency, the latter refers to the problem of propa-
gating the changes to the actual data in order to maintain consistency with
the modified schema. Although other issues were investigated (e.g., data

28 Background and Related Work

conversion, access rights, . . .), these topics are less relevant as related work
for this dissertation. We discuss the problems of semantics of change and
change propagation below.

Two different approaches have been proposed to solve the problem of
semantics of change. The first approach introduces invariants and rules.
Invariants define conditions that need to be met in order to consider a schema
consistent, rules are used to restore consistency when invariants are not met
after a change. This kind of approach is applied in systems as ORION [7]
and O2 [22]. The second approach is based on the introduction of axioms
formalizing the dynamic schema evolution. These axioms (with an inference
mechanism) ensure that a schema evolves into a consistent version, without
actually having to check for inconsistencies. E.g., the authors of [71] propose
an axiomatic model for dynamic schema evolution for object-based systems.
The model allows to infer all schema relations based on two input sets i.e.,
essential supertypes and essential properties. Although the second kind of
approach works for primitive changes, the use of complex changes no longer
guarantees schema consistency after a change [10].

Most solutions for the change propagation problem rely on conversion
functions to adapt the instance data to the changed database schema (e.g.,
[7] and [70]). In most cases, simple built-in conversion mechanisms can be
used. Sometimes, user-supplied conversion functions must be defined for
non-trivial object conversions.

Another approach followed by [3] is based on description logics for mod-
eling dynamic information, and covers the combination of temporal database
modeling and database schema evolution. They introduced a temporal con-
ceptual data model able to represent time varying data (similar to the tem-
poral conceptual models mentioned in the previous section). Furthermore,
they introduced an object-oriented conceptual data model enriched with
schema change operators, which are able to represent the explicit temporal
evolution of the schema while maintaining a consistent view on the data.
Both data models are encoded in Description Logics. The advantage of us-
ing a Description Logic to formalize a conceptual data model lies on the fact
that complete logical reasoning can be employed using an underlying DL
inference engine to infer implicit facts and to manifest any inconsistencies.

2.4.3 Ontology Evolution

In this section, we give a general overview of the state-of-the-art in the
domain of ontology evolution. We discuss the differences between ontology
evolution and database schema evolution, and focus on different existing
ontology evolution approaches. Note that we only present a general overview
of these approaches. We only go into more detail about specific aspects of
the ontology evolution problem that are relevant for this dissertation in the
following section (see Section 2.5).

2.4 Related Domains 29

Definition

In [83], the author introduced the following definition for the term ‘ontology
evolution’:

Definition (Ontology Evolution). Ontology Evolution is the timely adap-
tation of an ontology to the arisen changes and the consistent propagation
of these changes to dependent artifacts.

According to the autor, the ontology evolution process encompasses the
set of activities that ensures that the ontology continues to meet organi-
zational objectives and users’ needs in an efficient and effective way. The
author recognizes that changes in an ontology can cause inconsistencies in
other parts of the ontology, as well as in depending artifacts. However, the
author seems to define ontology evolution from the viewpoint of a centralized
environment as she relies on propagation of changes to maintain consistency.
In this dissertation, we argue that the mechanism of propagation of changes
no longer holds in a decentralized environment (see Chapter 7).

In [83], the author also makes a clear distinction between ontology modi-
fication, ontology evolution and ontology versioning, similar to the terminol-
ogy from the database community (see Section 2.4.2). Note however that
the interpretation of ontology evolution & versioning rather differs from the
interpretation given to database schema evolution & versioning. The differ-
ence between the three aforementioned terms is defined as follows:

• Ontology modification is accommodated when an ontology man-
agement system allows changes to the ontology that is in use, without
considering the consistency;

• Ontology evolution is accommodated when an ontology manage-
ment system facilitates the modification of an ontology by preserving
its consistency;

• Ontology versioning is accommodated when an ontology system
management allows handling of ontology changes by creating and man-
aging different versions of it.

The author of [51], on the other hand, argues that the traditional distinc-
tion between evolution and versioning is no longer applicable for ontologies.
Depending artifacts of an ontology cannot be forced to update to a new
version, so different depending artifacts are likely to depend on different
versions of the same ontology. This means that multiple versions of the
same ontology are bound to exist and must be supported. In this disser-
tation, we reconcile both views. Although we maintain a clear distinction
between ontology evolution & versioning in a similar fashion as defined by
[83], we recognize that past versions of an ontology must remain accessible
even when we consider ontology evolution. Similar to [24] in the database

30 Background and Related Work

community, also ontology evolution can be seen as a special case of ontol-
ogy versioning where only the latest version is retained. Note that in the
approach proposed in this dissertation, we explicitly focus on the problem
of ontology evolution.

In [64], the authors make a comparison between ontology evolution and
database schema evolution, where they identify a number of important dif-
ferences between both. A first difference is that ontologies are data too e.g.,
Classes can form the result of a query on an ontology. A second difference
is that ontologies are logical systems that themselves incorporate formal
semantics. Thirdly, ontologies are intended to be reused and extended by
other ontologies. A fourth difference is that ontologies are decentralized by
nature i.e., we can neither know who uses an ontology, how many users there
are, nor prevent or require users to use a particular ontology (version). A
fifth difference is that ontologies are in general much richer than a typical
database schema. Finally, in ontologies something can be both an instance
and a class at the same moment in time, whereas in databases a clear dis-
tinction is made between schema and data. Note that, when considering
OWL, this last difference only holds for OWL Full, as OWL Lite and OWL
DL also keep a clear distinction between classes and instances.

In the following two sections, we give an overview of the proposed ap-
proaches in literature on respectively ontology evolution and ontology ver-
sioning.

Ontology Evolution

The authors of [51] [52] [53] [54] propose a component-based approach sup-
porting ontology evolution for the OWL ontology language. This framework
consists of the following four main components: a meta-ontology of change
operations, complex change operations, transformation sets, and the speci-
fication of relations between different ontology versions. The meta-ontology
of changes defines a set of basic change operations that the different users
of this framework need to agree upon. A standard set of basic changes is
proposed for the OWL ontology language. Besides basic change operations,
the framework also proposes complex change operations. Complex change
operations provide a mechanism for grouping a number of basic change oper-
ations that together constitute a logical entity. Another important element
of the framework is the notion of a transformation set. A transformation set
is a set of change operations that specifies how an old version of an ontology
can be transformed into a new version. A transformation set may contain
both basic and complex change operations. A minimal transformation set
contains only change operations that are necessary and sufficient to specify a
transformation. The fourth component of the framework is the specification
of how two ontology versions are related. This specification can be seen as
a mapping ontology and consists of the following (optional) information:

2.4 Related Domains 31

Figure 2.4: Six-phase ontology evolution framework

• Descriptive meta-data: information like date of release, the author
of the changes, . . .

• Minimal transformation set: a complete specification of a change
that can be used to re-execute the change, to translate or re-interpret
data sets, and as a basis for deriving additional information about the
change.

• Conceptual relations: the relation between concepts across versions
(e.g., the new version of a Class is a subclass of the old version of that
Class).

• Complex changes: allow a higher-level description of changes giving
a clearer view on the evolution of an ontology.

• Change rationale: specifies the intention behind a change (e.g., a
fix of an error, an update to the real world situation, . . .).

The focus of attention of the framework is mainly on the problem of
identifying changes and providing semantic specifications for the changes
between different versions. The framework provides methods for finding
changes when only two versions of an ontology are available, and methods
for deriving additional change information. Note that these last methods
resemble the same goal as the change detection phase in our ontology evo-
lution framework, although the approach taken by both differs fairly as we
will discuss in Section 2.5.2. The framework itself doesn’t take into account
the problem of consistency maintenance after changes are applied.

Another ontology evolution approach is proposed by [60] [61] [83] [84]
[85]. The authors propose a six-phase ontology evolution framework for the
KAON ontology language [63] consisting of the following phases: change
capturing phase, change representation phase, semantics of change phase,
change propagation phase, change implementation phase, and change vali-
dation phase. Figure 2.4 gives an overview of the different phases of the
ontology evolution framework. The first phase, the change capturing phase,
captures changes either from explicit requirements or from the result of
change discovery methods. They distinguish structure-driven change dis-
covery (e.g., a concept without Properties is a candidate for deletion), data-
driven change discovery (e.g., a concept without instances may be deleted),
and usage-driven change discovery (e.g., concepts that are never queried

32 Background and Related Work

may be deleted). The second phase, the change representation phase, dis-
tinguishes between elementary and composite changes, similar to the previ-
ous approach. The purpose of the semantics of change phase is to resolve
possible inconsistencies introduced after a change. The task of the change
propagation phase of the ontology evolution process is to bring automati-
cally all dependent artifacts into a consistent state after an ontology update
has been performed. The role of the next phase of the ontology evolution
framework, the change implementation phase is (1) to inform an ontology
engineer about all consequences of a change request, (2) to apply all the
changes and (3) to keep track about performed changes. Finally, the change
validation phase, enables justification of performed changes and undoing
them at user’s request. It has as purpose to increase the usability of the
evolution process. Compared to the previously discussed ontology evolu-
tion framework, this framework concentrates more on ontology consistency
checking and inconsistency resolving, although the focus is on structural
consistency. The framework, however, doesn’t provide mechanisms for de-
tecting complex changes.

The authors of [31] [32] [33] have taken the previously discussed frame-
work as basis and extended it to support evolution for the OWL ontology
language, instead of solely supporting the KAON ontology language. Their
work has mainly focused on handling inconsistencies introduced by a change
to an ontology. Checking consistency and resolving inconsistencies for OWL
is quite different then for the KAON ontology language mainly due to the
difference between respectively the open-world vs. closed-word assumption
taken by both languages. They focus on different forms of consistency,
including structural consistency, logical consistency and user-defined con-
sistency. In the occurrence that an inconsistency cannot be resolved, they
propose an approach to reason with an inconsistent ontology. Another ex-
tension concerns the support for collaborative and usage-driven evolution of
ontologies. This extension targets personal ontologies i.e., ontologies that
are shared among different users, but that are customized and personalized
to a specific user. So, every user may have a slightly different version of
the original ontology. Their approach allows users to annotate concepts and
axioms of the their ontology with a rating (both positive and negative) indi-
cating the importance that a user attached to the concept or axiom. Based
on the ratings given by various users, recommendations of ontology changes
are suggested to other users.

A last ontology evolution approach that we discuss here is the approach
proposed by [23]. They present as a solution to the problem of ontology
evolution the incorporation of results and intuitions from the field of belief
change, which deals with the adaptation of knowledge stored in knowledge
bases to new information. The authors focus on the AGM theory, which is
the most influential approach in the field of belief change. They have investi-
gated, besides other Description Logic variants, whether OWL is compatible

2.5 Ontology Evolution Specific Aspects 33

with the AGM approach. The outcome of this study is that a few Description
Logic variants are indeed compatible with the AGM theory. Unfortunately,
the list of compatible DLs excludes a large number of Description Logic vari-
ants, among which OWL Lite, OWL DL, and OWL Full. As a consequence,
this outcome hinders the approach proposed as a complete solution for the
OWL ontology language.

Ontology Versioning

In [36], the authors discuss the problems associated with managing ontolo-
gies in a distributed environment as the Web. They proposed SHOE (Sim-
ple HTML Ontology Extensions), a small extension to HTML which allows
web page authors to annotate their web documents with machine-readable
knowledge. An important feature of SHOE is its support for multiple ver-
sions of ontologies. The paper discusses the problem of ontology versioning,
the effects of ontology revision on SHOE web pages, and methods for im-
plementing ontology integration using SHOEs extension and version mech-
anisms.

The authors of [44] propose an approach to reason on different versions of
the same ontology in order to verify compatibility for existing applications.
Similar to our approach, the proposed approach is based on a temporal logic.
Although their approach allows to reason on different versions, they don’t al-
low to specify compatibility requirements that can be used to automatically
check compatibility of an ontology version with a previous version. Fur-
thermore, the proposed approach requires that previous ontology versions
are explicitly retained, which is not a requirement of the approach proposed
in this dissertation. Also, the authors only consider the addition and dele-
tion of subsumption relations between different versions, so the detection of
more complex changes is not considered. Finally, they don’t propose a tem-
poral logic-based language to define changes that can be used by ontology
engineers both for requesting changes and detecting additional changes.

In the next section (Section 2.5), we go into more details concerning
specific aspects of the ontology evolution process that are relevant for this
dissertation.

2.5 Ontology Evolution Specific Aspects

In this section, we provide further details concerning specific aspects of the
ontology evolution process that other approaches have dealt with and that
are relevant for this dissertation. We consider the following aspects: change
representation, change detection, consistency checking & inconsistency re-
solving, and ontology evolution in a distributed and decentralized environ-
ment. For these different aspects, we make a comparison between related
approaches and our approach.

34 Background and Related Work

2.5.1 Change Representation

In [83], Stojanovic presents the use of an evolution log to represent changes
between two versions of an ontology. An evolution log tracks the history of
an ontology as an ordered sequence of ontology changes. An evolution log
is expressed in terms of an evolution ontology. The evolution ontology is
a common shared model of ontology changes. It distinguishes between ele-
mentary changes and composite changes. Composite changes are expressed
as a composition of elementary changes and other composite changes. The
author provides a number of example elementary and composite changes
for the KAON ontology language. An evolution log is then built up from
instantiations of the concepts defined in the evolution ontology.

The author of [51] represents changes between two versions of an ontology
as a kind of mapping between both versions. As already mentioned in the
previous section, this mapping consists of a variety of information: descrip-
tive meta-data, a minimal transformation set, conceptual relations, complex
changes and change rationale. Both the minimal transformation set and the
complex changes are expressed in terms of change operations. Similar to
[83], the author distinguishes between basic change operations and complex
change operations, the difference being that these change operations are
defined for OWL instead of the KAON ontology language. The author pro-
vides a complete set of basic change operations for OWL. Complex change
operations are expressed as a composition of other change operations. The
minimal transformation set in the mapping consists of only basic change
operations.

Our approach differs in this aspect from the aforementioned approaches
in the sense that we represent the evolution of an ontology by means of
a version log, and that we use this version log to automatically create an
evolution log. In contrast to an evolution log, a version log stores for each
concept ever defined in the ontology, the different versions it passes through
during its life cycle: from its creation, over its modifications, until its retire-
ment. We define changes in terms of a temporal language w.r.t. the version
log. Contrary to the aforementioned approaches, the different changes are
formally defined. The advantage of using both a version log and an evolu-
tion log is that different interpretations (in terms of changes) for the same
evolution can be specified. Just as different views may exist on the same
domain, so may there exist different views on the evolution of a domain.
Furthermore, when relying on an evolution log, it turns out to be more dif-
ficult to enrich the version log with additional complex changes (as we will
see in the next section).

2.5 Ontology Evolution Specific Aspects 35

2.5.2 Change Detection

The author of [51] proposes an approach to find complex change opera-
tions in order to enrich the mapping between two ontology versions. He
introduced a detection mechanism based on rules and heuristics to detect
complex change operations between two ontology versions (Vold and Vnew).
While their approach is applicable in specific cases, in general, the approach
has serious limitations:

• The approach requires that Vold is still available, because detection
rules rely on both Vold and Vnew. Unfortunately, when an ontology is
modified, the original version is often no longer available.

• Multiple changes to Vold may interfere, thereby possibly invalidating
defined change detection rules. This would mean that the rule, as
formulated, no longer applies.

The authors of [51] try to overcome these problems by introducing heuris-
tics to change the precise criteria of the rules to approximations. While
heuristics may provide the ontology engineer with some flexibility in the
rule definitions, it is clear that it doesn’t offer a bullet-proof solution as it
makes the detection process imprecise and unpredictable.

The change detection mechanism of our approach doesn’t rely on rules
and heuristics, instead it is based on the fact that changes are formally de-
fined in terms of a temporal logic-based language. Therefore, occurrences of
change definitions can be detected by evaluating change definitions as tem-
poral queries on a version log. As a version log describes the evolution of an
ontology, the result of the temporal queries provides information concerning
the kind of changes that have occurred.

2.5.3 Consistency Checking & Inconsistency Resolving

On the topic of dealing with consistency checking & inconsistency resolv-
ing in the context of evolving ontologies, only little research has been done.
In the ontology evolution framework proposed by [83], both the task of
consistency checking as well as inconsistency resolving are targeted for the
KAON ontology language. Consistency checking is based on a set of invari-
ants, while inconsistencies can be resolved by applying a set of rules. As
an inconsistency can, in general, be resolved in different ways, the author
proposes the notion of evolution strategies. An ontology engineer uses these
evolution strategies to indicate how different types of inconsistencies need
to be resolved. However, the focus of the ontology evolution framework
rests on structural consistency, while logical consistency is mainly left out
of the discussion. The focus in this dissertation is on maintaining logical
consistency.

36 Background and Related Work

The authors of [32] discusses three different forms of consistency: struc-
tural consistency, logical consistency and user-defined consistency9. To re-
solve structural inconsistencies, they present an approach based on rewrite
rules that allows to transform axioms into the desired variant of OWL (possi-
bly with a loss of semantics). To resolve logical inconsistencies, they present
two alternative approaches to localize an inconsistency for an OWL ontology
based on the notion of respectively a maximal consistent subontology and
a minimal inconsistent subontology. Inconsistencies are checked using the
well-known OWL reasoning features. A maximal consistent subontology is
the largest ontology that is still consistent. While this approach resolves an
inconsistency, it can hardly be called advanced as it solely relies on removing
axioms. The second approach, using a minimal inconsistent subontology, is
very similar to the concept of a MUPS (Minimal Unsatisfiability Preserving
Sub-TBox) introduced by [79]. Both the minimal inconsistent subontology
and the MUPS represent the smallest set of axioms forming an inconsis-
tent ontology, and reveals the axioms causing the detected inconsistency.
Although removing one axiom from the minimal inconsistent subontology
will resolve an unsatisfiable concept, it can not be guaranteed that this will
solve the true cause of the inconsistency (as we will discuss in Chapter 6).
Furthermore, the approach only treats axioms as a whole, while only specific
parts of an axiom may be the cause of an inconsistency.

The authors of [46] present an approach to check for unsatisfiability
in ORM conceptual schemes within the DOGMA approach [47] where the
ORM conceptual schemes are used as a representation language for ontolo-
gies. Their approach relies on the definition of a number of heuristics in
order to identify unsatisfiabilities in (a restricted form of ORM schemes). A
drawback of their approach is that, because the approach relies on a number
of heuristics, the unsatisfiability checking is by no means complete.

Other related work has been carried out in explaining inconsistencies
found in OWL ontologies. Interesting to mention is the work of [6]. They
present a Symptom Ontology that aims to serve as a common language for
identifying and describing semantic errors and warnings. Note that the aim
of the Symptom Ontology is not to identify the cause of the ontology nor to
offer possible solutions to resolve an inconsistency.

Related to the topic of explaining inconsistencies, is the research field
of ontology debugging. The aim of this research field is to provide the
ontology engineer with a more comprehensive explanation of the cause of the
inconsistency than is generally provided by ‘standard’ ontology reasoners,
and possibly suggest solutions to overcome the ontology inconsistency. In
general, two different types of approaches are distinguished in literature:
black-box vs. glass-box approaches. The former treats the OWL reasoner

9Although user-defined consistency can be seen as a form of structural consistency (see
Chapter 6).

2.5 Ontology Evolution Specific Aspects 37

as a ‘black-box’ and uses standard inference to locate the source of the
inconsistency, the latter modifies the internals of the reasoner to reveal the
cause of the problem.

The authors of [89] propose a black-box approach based on a number of
rules and heuristics to detect and explain inconsistencies in OWL ontolo-
gies. The rules and heuristics are used to detect a number of common error
patterns. The disadvantage of this approach is that, because it is heuris-
tic based, the cause of an unsatisfiability can not be determined in every
case. Another black-box approach is proposed by [48]. The authors propose
an approach to categorize the unsatisfiable classes in an ontology into two
types: root unsatisfiable classes and derived unsatisfiable classes. A root
unsatisfiable class is an unsatisfiable class in which a clash or contradiction
found in the class definition (axioms) does not depend on the unsatisfiability
of another class in the ontology. A derived unsatisfiable class, on the other
hand, is an unsatisfiable class in which a clash or contradiction found in a
class definition either directly (via explicit assertions) or indirectly (via in-
ferences) depends on the unsatisfiability of another class. The classification
of unsatisfiable classes into root and derived classes needs to help ontology
engineers in pinpointing the cause of the inconsistency. The advantage of
black-box techniques is that it doesn’t require a specialized reasoner and
doesn’t put an additional overhead on the reasoning process. A disadvan-
tage, however, is that black-box techniques don’t reveal the exact axioms
that are causing an inconsistency, but rather hints a direction to look at.
As a consequence of this disadvantage, we consider black-box approaches
less suited in the context of ontology evolution, as we aim to pinpoint the
exact cause of an inconsistency and offer possible solutions to the ontology
engineer to resolve inconsistencies.

As far as we are aware of, only one single glass-box approach has been
proposed. The authors of [69] present an approach that modifies the inter-
nals of an OWL reasoner to be able to trace the axioms that are causing an
inconsistency. The outcome of a reasoning process checking for unsatisfiable
classes is, besides of course a set of unsatisfiable classes, also a set of axioms
for each unsatisfiable class that form the cause the unsatisfiability. Remov-
ing one of the axioms of such a set resolves that particular unsatisfiable
class, and therefore can be seen as a MUPS.

The approach regarding consistency checking & inconsistency resolving
presented in this dissertation can be categorized as a glass-box approach,
and is therefore similar to the previously discussed approach. The difference
between the two approaches is that our approach brings the notion of root
and derived unsatisfiable classes from black-box approaches into a glass-box
approach. This allows us to further restrict the selection of axioms causing
an inconsistency (see Chapter 6). Furthermore, we offer a set of rules to
weaken the selected axioms causing an inconsistency in order to resolve the
ontology inconsistency.

38 Background and Related Work

2.5.4 Distributed and Decentralized Environments

Oliver [66] introduced the term ontology synchronization and proposed an
ontology synchronization approach called CONCORDIA. She defines syn-
chronization as the periodic process by which developers update the local
vocabulary to obtain the benefits of shared-vocabulary updates, while main-
taining local changes that serve local needs. In other words, synchronization
is the process of keeping a local version of an ontology up-to-date with a
global evolving version. The proposed approach is based around a log model
which is similar to an evolution log. The synchronization is performed by
processing the log model containing changes that are made in the shared
version during the time period between the last synchronization actions and
the current moment. For each of the changes in the log, a list of action
choices is defined. Klein [51] has adapted this approach to the OWL ontol-
ogy language and integrated it in its ontology evolution framework.

The ontology evolution framework of [83] also deals with distributed
ontology evolution management. They propose the use of replications. On-
tologies that use and extend other ontologies don’t directly depend on the
original ontology, but rather depend on a replica of the original ontology.
Whenever the original ontology changes, consistency is maintained as de-
pending ontologies depend on an unchanged replica. To update a depend-
ing ontology, the changes to the original ontology needs to be propagated to
the replica (similar to the synchronization process mentioned in the previ-
ous paragraph). They have adopted a pull-based approach for this purpose.
However, their proposed solution seems to approach the problem of ontology
evolution in a distributed environment from a centralized point of view. A
characteristic that does not hold for an environment as the WWW (or the
Semantic Web). Neither does their approach take into account that ontolo-
gies not willing to update can prevent other ontologies from updating.

In this dissertation, we take a different approach to the problem of on-
tology evolution in a distributed and decentralized environment. While nor-
mally an ontology just depends on another ontology, we suggest to let an
ontology depend on another ontology at a specific moment in time. An on-
tology at a certain moment in time can always be recreated by means of the
version log, even if it has changed in the meantime. Furthermore, we offer
a solution to bypass blocked ontologies caused by the refusal to update of
ontologies they depend on (see Chapter 7).

2.6 Summary

In this chapter, we gave an overview of relevant background and related work
for the topic of Web-based ontology evolution. We discussed a definition
of ontologies and provided an overview of existing Semantic Web ontology
languages. We focused in particular on OWL DL as it forms the language

2.6 Summary 39

of choice of this dissertation. Furthermore, the syntax and semantics of
SHOIN (D), the Description Logic variant OWL DL is based upon, were
described, an overview of the different reasoning tasks was provided and the
exact correspondence with OWL DL was discussed.

Moreover, we discussed the domains of temporal databases, database
evolution & versioning, and ontology evolution & versioning as related do-
mains. We especially focused on existing work concerning more specific
aspects of the problem of ontology evolution. We discussed the aspects of
change representation, change detection, consistency checking & inconsis-
tency resolving and evolution in a distributed and decentralized environ-
ment. We compared existing work on these aspects with the approach we
present in this dissertation.

40 Background and Related Work

Chapter 3

Ontology Evolution
Framework

In the previous chapter, we discussed background and related work for this
dissertation. We gave a definition of the term ontology that we will abide by
in this dissertation. We discussed a variety of ontology languages, thereby
focusing on the different Semantic Web languages. Dictated by the choice
of OWL DL as the ontology language in this dissertation, we furthermore
provided a short overview of Description Logics as it forms the foundation of
this ontology language. In addition, we gave an overview of existing research
in related domains as database evolution, maintenance of knowledge base
systems, and the domain of ontology evolution itself. Finally, we focused
on existing solutions to specific aspects of the ontology evolution problem
relevant for this dissertation.

In this chapter, we give a general overview of the ontology evolution
framework that we propose in this dissertation. Details of the framework
have been published in [73], [74] and [75]. We focus on the specific charac-
teristics of our framework, motivate the design decisions taken, and present
an overview of the different phases of our framework.

The structure of this chapter is as follows. First we describe the main
characteristics of the ontology evolution framework (see Section 3.1). In
the following section, we give an overview of the framework itself and the
purpose, structure and functioning of its different phases (see Section 3.2).
Finally, Section 3.3 provides a summery of the chapter.

3.1 Characteristics

In general, an ontology on the Web doesn’t exist in isolation. On the con-
trary, other ontologies, Web sites, applications, . . . may depend on this on-
tology for their own particular purpose. E.g., web pages that contain meta-

42 Ontology Evolution Framework

Figure 3.1: Example usage of an ontology on the Web

information about the creator of the page may depend on the Dublin Core1

ontology for this purpose. The other way around, the ontology itself may
again depend on other ontologies. We use the term depending artifact to
refer to an ontology, Web site, application, etc. that depends on a certain
ontology. Figure 3.1 shows a representative example of the use of an on-
tology Ont1 on the Web. The ontology Ont1 has a number of depending
artifacts, e.g., an ontology Ont2 that extends the concepts defined in Ont1,
an application that uses ontology Ont1 as internal model, another example
is a Web site where the content is annotated with instances of concepts of
Ont1. In its turn, Ont1 itself is built on top of another ontology Ont3.

As already mentioned in the introduction, the ontology evolution frame-
work should (1) allow ontology engineers to request changes for the ontolo-
gies they manage, (2) ensure, when an ontology engineer decides to change
an ontology, that the ontology evolves from one consistent state into another
consistent state, (3) guarantee that the depending artifacts remain consis-
tent with the evolved ontology, and (4) provide a detailed overview of the
evolution of an ontology supporting different levels of granularity, views and
interpretations.

The first requirement (requirement 1) means that the ontology evolution
framework functions as a mediator between an ontology engineer and the
ontology itself. The ontology engineer doesn’t apply changes directly to an
ontology itself, but rather formulates its request for changes to the ontology
evolution framework. It is the responsibility of this framework to correctly
handle the formulated changes requests.

1See http://www.dublincore.org

3.1 Characteristics 43

To satisfy the second requirement (requirement 2) the ontology evolution
framework should be able to verify whether changes requested by an ontol-
ogy engineer will maintain ontology consistency when applied. Changes to
one part of the ontology may possibly introduce contradictions with other
parts of the ontology. The framework therefore should check whether re-
quested changes will introduce inconsistencies. Inconsistencies are in general
resolved by changing other parts of the ontology to overcome the contradic-
tions i.e., the change requested by the ontology engineer leads to a number
of additional changes, called deduced changes. The framework should inform
the ontology engineer about the consequences of his requested change (the
possible inconsistencies it might introduce), and the possible solutions to
resolve the inconsistencies.

Ensuring that depending artifacts remain consistent with the changed
ontology (requirement 3) differs from consistency maintenance of a single
ontology because propagation of changes no longer holds due to a number
of reasons:

• A distinctive characteristic of the Web is its distributed and decentral-
ized nature. This means that an ontology engineer doesn’t necessarily
has sufficient permissions to apply changes to depending artifacts. As
a consequence, an approach of propagating changes to depending ar-
tifacts does no longer hold in this situation.

• Propagating changes to depending artifacts turns out to be even more
problematic as we are usually unaware of all the depending artifacts
of an ontology.

• Some depending artifacts may be in a format that makes them ex-
tremely hard or even impossible to change (e.g., applications in binary
format). As a consequence, the approach of change propagation fails.

• Propagating changes to depending artifacts may even be unwanted
because either the maintainer of a depending artifact doesn’t want
to update at that moment in time or doesn’t want to update at all.
Consider for example a Web site that uses ontology Ont1 as source
for the annotation of its content. It doesn’t necessarily mean that
whenever the ontology changes, the defined annotations or the content
of the Web site have to change accordingly. Once more, the approach
of change propagation fails, as it would forces users to update.

Taking these aforementioned reasons into account, the ontology evolu-
tion framework should offer alternative methods to guarantee consistency
between ontologies and their depending artifacts.

Important to mention is that the decision whether to update a depending
artifact or not rests with its maintainer. To be able to make a well-founded

44 Ontology Evolution Framework

Figure 3.2: Overview of the ontology evolution framework

decision, the maintainers of depending artifacts should have a good un-
derstanding of the changes that occurred to the ontology (reguirement 4).
Therefore, an important characteristic is that the framework should offer
these maintainers a complete overview of the occurred changes with sup-
port for different levels of granularity (i.e., fine-grained changes vs. more
high-level changes), different views, and different interpretations of changes
(see Section 3.2.1 for more details). Furthermore, the framework should
be able to determine whether the changed ontology is backward compatible
with its previous version for a particular depending artifact i.e., can the old
version of the ontology be replaced by the new version without breaking the
depending artifact. Finally, when the maintainer of a depending artifact
decides to update, the framework should inform him of the consequences
i.e., the changes to the depending artifacts required to maintain consistency
with the changed ontology.

3.2 Ontology Evolution Framework Overview

The ontology evolution framework consists of two parts corresponding to
two different tasks. The first task handles the evolution process of an on-
tology as consequence of a change request by an ontology engineer. We use
the term evolution on request to refer to this task. The second task handles
the evolution process of a depending artifact as consequence of changes to
an ontology it depends on. In this dissertation, we mainly focus on ontolo-
gies depending on other ontologies when considering depending artifacts.
We refer to this second task with the term evolution in response. Figure
3.2 shows an overview of the different phases for both tasks of the ontol-
ogy evolution process. The framework consists of the following phases: (1)
Change Request, (2) Consistency Maintenance, (3) Change Detection, (4)
Change Recovery, (5) Change Implementation, (6) Cost of Evolution, and
(7) Version Consistency.

A fundamental prerequisite of any ontology evolution approach is the

3.2 Ontology Evolution Framework Overview 45

ability to keep track of all the changes applied to the ontology. For this
purpose, existing approaches construct an evolution log2. Such an evolution
log lists all the changes ever applied to the ontology (e.g., addClass(C),
setTransitivity(P), . . .). We take a different approach. Our ontology
evolution framework is based on the notion of a version log. In contrast to
an evolution log, the version log stores for each concept ever defined in the
ontology, the different versions it passes through during its life cycle: from
its creation, over its modifications, until its retirement. In other words, the
version log keeps track of the state of all concepts at the different moments
in time. The use of a version log together with the formal definitions of the
different changes that can be applied to an ontology in terms of a temporal
logic based language, allows to detect occurrences of changes and makes
it possible to automatically construct an evolution log listing all applied
changes for a given ontology. Note that in our approach, maintainers of
depending artifacts can define their own set of change definitions suiting
their own particular needs, and are not restricted to the collection of change
definitions used by the ontology engineer of the ontology they depend on.
As a consequence, maintainers of depending artifacts can create their own
evolution log for an ontology they depend on that complements the evolution
log of the ontology itself. The version log, the temporal logic based language
and the evolution log are described in detail in Chapter 4.

In the following two subsections, we give an overview of the different
phases for both the evolution on request and the evolution in response task.
Section 3.2.1 discusses the phases of the evolution on request task, Section
3.2.2 discusses the phases of the evolution in response task.

3.2.1 Evolution on Request

In this section, we discuss the various phases of the ontology evolution frame-
work to fulfill the evolution on request task: (1) Change Request, (2) Con-
sistency Maintenance, (3) Change Detection, (4) Change Recovery, and (5)
Change Implementation. Before we give a detailed overview of the different
phases, we first summarize each phase’s goals below:

• Change Request: the Change Request phase allows ontology en-
gineers to express their request for change in terms of primitive and
complex changes.

• Consistency Maintenance: as the requested changes by the on-
tology engineer possibly turn the ontology into an inconsistent state,
the goal of the Consistency Maintenance phase is to check whether
consistency is maintained and to generate deduced changes to resolve
inconsistencies when needed.

2In literature, the term change log is sometimes also used instead.

46 Ontology Evolution Framework

Figure 3.3: Different dimensions of change

• Change Detection: the purpose of the Change Detection phase is to
detect (complex) changes from the version log that were not explicitly
listed in the change request, in order to provide a better understanding
of the evolution of an ontology.

• Change Recovery: when a sequence of changes is used instead of the
intended complex change, unnecessary deduced changes may be added
after each step in the sequence of changes causing an unintended loss
of information. The goal of the Change Recovery phase is to recover
the ontology from unnecessary deduced changes.

• Change Implementation: the purpose of the Change Implementa-
tion phase is to implement the requested and deduced changes into an
actual ontology.

Change Request

This phase lets ontology engineers express their request for change in terms
of predefined changes. E.g., to specify a request to add a subclass relation
between the Classes A and B the ontology engineer can use the change
addSubClassOf(A, B). The framework supports different types of changes.
They are defined along three dimensions (see Figure 3.3):

Basic vs. composite This dimension corresponds to differences in gran-
ularity. Basic changes are fine-grained changes that modify exactly
one element of the ontology, and which cannot be decomposed any
further into simpler changes (e.g., addClass(A) adds a new class with
ID A to the ontology). Composite changes are more coarse-grained
changes that modify more than one element of the ontology. Compos-
ite changes offer a higher level of abstraction and reflect better the in-
tention of the ontology engineer (e.g., deleteMutualDisjointness(C,

3.2 Ontology Evolution Framework Overview 47

D) removes the mutual disjointness that exists between the Classes C
and D).

Domain independent vs. domain dependent As the terminology sug-
gests, domain independent changes are changes independent of the do-
main described by the ontology. These domain independent changes
are expressed as modifications to the constructs of the ontology lan-
guage (e.g., addClass(A)). Domain dependent changes are changes de-
fined for a particular domain (e.g., addNewHivVariant(HIV1-Type-O)
adds a new variant of the HIV virus to a medical ontology). The ad-
vantage of domain dependent changes is that they don’t require an in-
depth-knowledge of the ontology language used, and closer represents
changes of the real world. A disadvantage is that domain dependent
changes are only applicable for one particular domain.

Changes vs. meta-changes The last dimension corresponds to the differ-
ence between respectively changes and meta-changes. Changes spec-
ify what has to change to the structure of the ontology, while meta-
changes rather specify implications of a change i.e. information about
a change. For example, a meta-change may specify that the constraints
on a Property are weakened when the domain of that property is re-
placed by a superclass of the original domain.

In the remainder of this dissertation, we use the term primitive changes
to refer to basic, domain independent changes. The set of primitive changes
is exhaustive as it is derived from the underlying ontology language. Further-
more, we use the term complex changes to refer to both domain dependent
(meta-)changes and composite (meta-)changes. The set of complex changes
is infinite as new complex changes can always be defined [54]. The complete
set of primitive changes and a number of examples of complex changes for
OWL DL, together with their formal definition are presented in Chapter 5.

To request a change to an ontology, an ontology engineer specifies a
change request in terms of pre-defined changes. The result is a set of re-
quested changes. A change will always result in some new concept versions
in the version log, representing the new state of the concepts changed. These
concept versions are marked as ‘pending’ and are called pending versions.
The status ’pending’ is needed because it is not yet checked whether the
new states maintains the consistency of the ontology. The changes are also
not yet implemented in the actual ontology. Note that meta-changes are
not useful for requesting changes as they specify implications of a change
instead of specifying what has to change. However, they play an impor-
tant role in understanding the evolution of an ontology, as will be shown in
Section 3.2.1.

48 Ontology Evolution Framework

Consistency Maintenance

As modifications to an ontology risk turning the ontology into in inconsistent
state, it should be verified whether the ontology remains consistent after the
changes are applied. When the applied changes result into an inconsistent
ontology, possible solutions should be suggested to the ontology engineer to
avoid the inconsistency. It is then the responsibility of the ontology engineer
to select a satisfactory solution. The consistency maintenance phase consists
of three tasks: consistency checking, inconsistency resolving, and backward
compatibility checking.

To check whether an ontology remains consistent after applying the re-
quested changes, the pending versions in the associated version log are first
transformed into an actual ontology copy. To check for ontology consistency,
we can use one of the existing reasoners (e.g., Racer [62], Fact [37], Pellet
[81], . . .). While such reasoners allow detecting inconsistencies, determining
why the ontology is inconsistent and how to resolve these inconsistencies is
far from trivial. The problem with current reasoners is that they provide
very little information about which concept definitions (or axioms in terms
of DL) of the ontology are causing the inconsistency. In this framework,
we introduce an approach that determines the axioms (or parts of axioms)
causing an inconsistency. We do this by extending the tableau algorithm
[4], on which most state-of-the-art reasoners are built, so that it explicitly
keeps track of the internal handling of the axioms by the algorithm.

An inconsistent ontology is the result of axioms that are too restrictive as
a whole, and thereby introduce contradictions. To resolve an inconsistency,
the framework offers a set of rules that can be used by the ontology engineer
to resolve the inconsistency detected. These rules are used by the ontology
engineer to eliminate contradictions by weakening one or more conflicting
axioms, and to guide the ontology engineer to a solution. The selection of
applicable rules in a particular situation is based on the selection of axioms
extracted from an adapted reasoner. Note that it is still the task of the
ontology engineer to select the axioms he wants to change and the rule he
wants to apply in the case that more than one rule is applicable. A rule
either calls another rule or adds a new change to the change request. We
call such a change a deduced change. Note that the process of consistency
maintenance is an iterative process as new deduced changes may possibly
introduce new inconsistencies. At worst, the consistency maintenance phase
results in a cyclic process where changes continuously undo each other. Such
cycles can be recognized using the version log and should be cut short by
the framework.

Besides detecting inconsistencies in the ontology and offering suggestions
to the ontology engineer to resolve these inconsistencies, it is equally impor-
tant that the consequences for the depending artifacts, managed by the same
ontology engineer, are made clear. Ontologies are built for a certain purpose

3.2 Ontology Evolution Framework Overview 49

and often serve as backbone for an application, Website or other depending
artifact. When both the ontology and the depending artifact are controlled
by the same individual or group, it makes sense to inform the ontology en-
gineer whether a changed ontology still fulfills the needs of the depending
artifacts. Therefore, it is important to know whether the changed ontology
is still backward compatible with its predecessor for a given depending arti-
fact i.e. can the old version of the ontology be replaced by the new version
without causing problems for the depending artifact.

In Section 6.4, we discuss how to specify compatibility requirements. A
new version of an ontology should fulfill these compatibility requirements
in order to be considered backward compatible with its previous version
for a given depending artifact. The framework is able to verify whether
an ontology fulfills these compatibility requirements. This information (i.e.
backward compatible or not) can be used to conduct the ontology evolution
process. As inconsistencies in an ontology can be resolved in more than
one way, indicating which of the solutions breaks or maintains backward
compatibility is of great benefit in making decisions.

As a result of this phase, the ontology evolves from one consistent state
to another. Possible inconsistencies introduced by the requested changes
(see previous section) are resolved by the ontology engineer by selecting the
appropriate corrective rules proposed by the ontology evolution framework.
The applied rules add a number of deduced changes to the change request.
When the ontology engineer agrees with the complete change request (in-
cluding both requested and deduced changes), all pending versions in the
version log are changed to confirmed versions, indicating that they are con-
firmed for implementation. Alternatively, the ontology engineer may reject
any proposed solution, and subsequently roll-back the requested changes
which caused the inconsistency in the first place. A detailed discussion of
the consistency maintenance process is presented in Chapter 6.

Change Detection

The purpose of the change detection phase for the evolution on request task
is to detect (complex) changes and meta-changes that occur as a consequence
of modifications to the ontology, but that were not explicitly specified in a
change request. While other approaches exclusively base their evolution
log on the changes specified in the change requests, we extend the evolution
log with changes detected by our ontology evolution framework. This means
the the evolution log in our approach is constructed from requested changes,
deduced changes and detected changes.

There are a number of reasons why we believe the detection of changes
should be an intrinsic part of ontology evolution framework for the evolution
on request task:

• Richer evolution log. The purpose of the change detection phase

50 Ontology Evolution Framework

is to result into a semantically richer evolution log then is achievable
when only changes listed in change requests are used to populate an
evolution log. A semantically richer evolution log must provide a bet-
ter understanding of the evolution of an ontology. Note that offering
complex changes to an ontology engineer certainly doesn’t guarantee
that they will be used at all times when appropriate. Due to the com-
plexity of the matter involved, it is not always trivial for an ontology
engineer to select the intended complex change he wants to apply.
Instead, he may rely on primitive changes to achieve the desired re-
sult step by step, evaluating the progress after each step. In the end,
he might unwittingly have applied a complex change. In existing ap-
proaches, the (un-)intended complex change will not get listed in the
evolution log. The change detection phase overcomes this flaw.

• Reduce importance of tool support. Related to the previous
item, the change detection phase reduces the importance of tool sup-
port. When the change log is only populated with changes specified
in change requests, the resulting change log depends very much on the
tool used to author the ontology. Some tools may offer the ontology
engineer a comprehensive set of complex changes, while with other
tools this set is rather limited. The change detection mechanism is
able to smoothen out differences in tool support.

• Reduce loss of information. As mentioned in the first item, an
ontology engineer sometimes uses a sequence of changes, although a
complex change that corresponds to the actual intended change is de-
fined. The drawback of using a sequence of changes instead of the
intended complex change, is that it possibly goes together with un-
necessary information loss. Information loss can occur because the
framework will check for consistency after each step in the sequence
of changes, possibly adding deduced changes to resolve the detected
inconsistencies. When considering the sequence of changes as a whole,
some of the deduced changes may turn out to be superfluous.

As will be shown in Section 4.3, we define changes in terms of a Change
Definition Language, which is a temporal logic based language. Change
detection is consequently an evaluation of change definitions defined in the
Change Definition Language as temporal queries on a version log. The
details concerning change detection are discussed in Section 5.3. The output
of this phase is an elaborated evolution log containing requested changes,
deduced changes as well as detected changes by the framework.

Change Recovery

As already mentioned in the previous section, the use of a sequence of
changes instead of the intended complex change may by a cause for un-

3.2 Ontology Evolution Framework Overview 51

Figure 3.4: Example of change recovery

necessary loss of information. Consider as illustration the example shown
in Figure 3.4. The ontology engineer wants to modify the subclass property
for A from B to C. Although the change could for example be realized using
a complex change changeSubClassOf(A, B, C), the ontology engineer de-
cides to use a sequence of changes instead. In step 1, the ontology engineer
requests to add a new subClassOf Property between Class A and Class C
using addSubClassOf(A, C) as requested change. Applying the requested
change to the ontology would bring the ontology into an inconsistent state
as the disjointness between B and C no longer applies. A possible solution
to resolve the inconsistency is to delete the disjointness between B and C,
i.e., the deduced change deleteDisjointWith(B, C) is added to the change
request. In step 2, the ontology engineer deletes the subClassOf Property
between A and B by requesting the deleteSubClassOf(A, B) change. As
described in Section 3.2.1, the framework is able to detect complex changes.
This detection mechanism will reveal that the sequence of changes corre-
sponds to the complex change changeSubClassOf(A, B, C). The question
arises if the deduced change, that was added after the intermediary change
to avoid ontology inconsistency, is still necessary when considering the se-
quence as a whole. In other words, the framework should offer the possibility
to recover from unnecessary applied deduced changes. In our example, the
framework would suggest to restore the disjointness between the Classes B
and C.

To recover from unnecessary deduced changes, the framework looks up
those versions in the version log that are the result of deduced changes that
were added after the intermediary change requests of the detected sequence.
It undoes these versions in the version log and verifies if the ontology remains

52 Ontology Evolution Framework

consistent without these versions. If the ontology remains consistent, the
framework suggests the ontology engineer to remove these versions perma-
nently, otherwise, these versions are restored and the deduced changes are
not recovered. Note that it is the decision of the ontology engineer whether
to recover changes or not.

Change Implementation

Until now, the requested changes and possible deduced changes, have been
solely applied to a local copy of the ontology. It is the purpose of this phase
to implement these changes to the public version of the ontology. This is
straightforward as it only consists of replacing the original, public ontology
with the evolved, local copy of the ontology. In contrast with ontology
versioning where the different versions of an ontology coexists next to each
other (each of them with its own namespace), we each time overwrite the
previous public version with the latest version. Previous versions remain
accessible through the version log, as will be explained in Section 3.2.2.

Note that this phase does not necessarily need to be performed at the end
of each update cycle of the ontology. In general, changes to the ontology are
not immediately made publicly available. Ontology engineers first further
develop a local copy of an ontology (by means of the previous phases), before
they decide to release a new version of an ontology to the public.

3.2.2 Evolution in Response

In this section, we discuss the various phases of the ontology evolution frame-
work to fulfill the evolution in response task: (1) Change Detection, (2) Cost
of Evolution, and (3) Version Consistency. Before we give a detailed overview
of the different phases, we first summarize each phase’s goals below:

• Change Detection: the change detection phase for the evolution in
response task allows maintainers of depending artifacts to create an
individual interpretation of the changes occurred using an own set of
(complex) change definitions independent of the ontology they rely on.

• Cost of Evolution: an important factor that helps maintainers of
depending artifacts to decide whether or not to update a depending
artifact to a new version of an ontology it depends on, is the cost
to update. The purpose of this phase is to reveal the inconsistencies
that an update would introduce and to indicate the latest backward
compatible version.

• Version Consistency: the purpose of the Version Consistency phase
is to keep a depending artifact consistent with a changed ontology it
depends on, regardless whether or not the maintainer of the depending
artifact decides to update.

3.2 Ontology Evolution Framework Overview 53

Figure 3.5: Example ontology illustrating a situation where two changes
may result in the same modification

Change Detection

The evolution process for the evolution in response task starts with the
change detection phase. It allows maintainers of depending artifacts to gain
a better understanding of the evolution of the ontology they depend on.
For this purpose, these maintainers don’t have to rely on the evolution log
associated with the ontology under consideration, but can define, if wanted,
their own set of complex changes. The outcome of this change detection
phase, is an evolution log at the side of a maintainer of a depending artifact,
describing the changes of an ontology they depend on. This evolution log
may differ from the evolution log created for the evolution on request task,
as maintainers of depending artifacts may choose to use different change
definitions. The evolution log published together with the ontology and
the evolution log resulting from this phase offer maintainers of depending
artifacts a detailed overview of the ontology evolution. Based on this infor-
mation, maintainers of depending artifacts should decide whether they still
agree with the changed ontology and whether they find the changes to the
ontology sufficient to consider an update to the latest version of the changed
ontology they depend on.

The reasons to include a change detection phase for the evolution in
response task are as follows:

• Different changes may give the same result. Different com-
plex changes may in practice result in the same ontology modifica-
tion. Consider as example the changes deleteSubClassOf(C, R) and
removeRestriction(C, R). The former simply deletes the subClassOf
Property between C and R, the latter removes the restriction R from
the Class C. Note that the second change is more fine-grained defined
change in comparison to the first change as it requires R to be a Re-
striction and not just a Class. Applying both changes to the situation

54 Ontology Evolution Framework

shown in Figure 3.5 would result in the same modification. Assume
that the ontology engineer uses deleteSubClassOf(C, R) to requests
his change. This would mean that, without a change detection phase
for the evolution in response task, it would be more troublesome for
maintainers of depending artifacts to reveal whether or not a restric-
tion was removed.

• Meta-changes. Meta-changes play a valuable role in the understand-
ing of an ontology evolution as they define the implications of a change.
As already mentioned, meta-changes are not suited to specify a re-
quest for change as they don’t define what has to change. Moreover,
ontology engineers don’t want to be burden with the task of manually
adding meta-changes to the evolution log. The change detection phase
makes it possible to automatically detect meta-changes, thereby im-
proving the understanding of an ontology evolution for maintainers of
depending artifacts.

• Infinite number of complex changes. The number of complex
changes that can be defined is infinite. Nevertheless, ontology engi-
neers only use a finite number of these complex change definitions. An
approach that only populates the evolution log with changes listed in
change requests, obliges maintainers of depending artifacts to restrict
themselves to the same set of complex change definitions as used by
the ontology engineer of the ontology they depend on. Nevertheless,
other complex change definitions may be more appropriate for them to
understand the evolution of the ontology. As a consequence, ontology
engineers and maintainers of depending artifacts are able to define and
use different sets of complex change definitions.

• Difference in interpretation. As discussed in the definition of an
ontology (see Section 2.1), an ontology is a ‘shared conceptualization’,
meaning that the different stakeholders agree on its representation of
the world. This doesn’t imply that the different stakeholders also have
to agree on the interpretations of the ontology changes. Ontology en-
gineer and maintainers of depending artifacts may adhere to different
interpretations for the same ontology modification.

Note that the change detection process itself is not different for the evo-
lution on request task then it is for the evolution in response task. The point
in having two change detection phases is that it allows ontology engineers
and maintainers of depending artifacts to use a different set of change defini-
tions and to have different interpretations for the same modifications. This
last one turns out to be very useful when considering depending artifacts
depending on multiple ontologies. Consider as example a depending artifact
D that depends on two ontologies O1 and O2. When we assume that the

3.2 Ontology Evolution Framework Overview 55

Figure 3.6: Cost of evolution

ontology engineers of both ontologies have different interpretations for the
same ontology modifications, it would become very difficult for maintainers
of depending artifacts, without the change detection phase, to understand
the evolution of both ontologies.

Cost of Evolution

As is shown in Figure 3.1, depending artifacts exist in a variety of forms:
other ontologies, annotations of Web sites, applications, . . . As the topic
of this dissertation is ‘ontology evolution’, we mainly focus on ontologies
depending on other ontologies when considering depending artifacts.

Besides understanding the ontology changes that have occurred, another
key element in the decision whether to update a depending artifact or not
is the cost of updating. Figure 3.6 schematizes the cost of evolution phase.
In this phase, the framework checks to which (intermediate) version3 the
ontology remains backward compatible for the given depending artifact. In
other words, to which (intermediate) version can one update without any
cost i.e. without requiring changes to the depending artifact. Another task
of the framework is to determine what the consequences are for the depend-
ing artifact when updating to a version that is not backward compatible
for the depending artifact i.e. which parts of the depending artifact need to
change during the update. Both tasks boil down to the consistency checking
and backward compatibility checking task as described in Section 3.2.1.

The outcome of both tasks will probably influence the decision whether
or not to update to a great extent. If there exists an (intermediate) ver-
sion of the ontology that is backward compatible and comprehends all the
changes a maintainer of a depending artifact wishes for, this maintainer may
decide to update the depending artifact only to the last backward compati-
ble (intermediate) version at no cost. In other situations, the cost to update
may be considered too high so that the maintainer may abandon the plans
to update altogether.

3We use the term ‘intermediate version’ to refer to one of the versions in the version
log that together have lead to a publicly available version (e.g., Ont′1 in Figure 3.6), but
that never has been published as a public version on its own. An intermediate version is
rather a version in-between towards a public version.

56 Ontology Evolution Framework

Figure 3.7: Understanding of changes and cost of evolution influence the
decision whether to update or not

Version Consistency

As mentioned earlier, several reasons may withhold maintainers of depending
artifacts from updating to the latest version: the maintainer doesn’t agree
with the changes applied (i.e., a shared conceptualization is no longer possi-
ble), the changes applied don’t offer any additional value for the maintainer,
all interesting changes are available in a backward compatible intermediate
version (i.e., the need to update completely is absent), the cost of updating
completely is considered too high, organizational causes (e.g., updates are
only planned every six months), etc.

Figure 3.7 illustrates the input that the framework provides for the de-
cision whether to update completely, partially or not at all. The change
detection phase allows maintainers to gain understanding of the changes
that have occurred, while the cost of evolution phase informs the maintainer
of which (intermediate) version is still backward compatible (i.e., updating
to this version can be done at no cost) and which parts of the depending
artifact are candidate to changes when updating completely.

As maintainers of depending artifacts are not obliged to update com-
pletely, the framework should support the retrieval of past versions of the
ontology. As the version log stores all past states of the different ontology
concepts ever defined in a particular ontology, any past version (including
intermediate versions) can be reconstructed. In the case of updating to the
latest version (i.e., a complete update), we only consider ontologies as de-
pending artifacts in this dissertation, excluding other depending artifacts
(e.g., applications). To update a depending ontology so that it remains con-
sistent with the latest version of the ontology it depends on, a new iteration
of the ontology evolution framework for the depending ontology is initiated.

3.3 Summary 57

The change request will be populated by deduced changes necessary to re-
store consistency with the ontology it depends on (see Section 3.2.1).

3.3 Summary

In this chapter, we informally introduced the ontology evolution framework
that we propose in this dissertation. The ontology evolution framework al-
lows ontology engineers to request changes for the ontologies they manage,
guarantees that an ontology always evolves from one consistent state into
another consistent state while maintaining the consistency of depending ar-
tifacts with the evolved ontology, and provides a detailed overview of the
evolution of an ontology supporting different levels of granularity, views and
interpretations.

The proposed ontology evolution framework consists of two major parts
corresponding to two different tasks: the evolution on request task and the
evolution in response task. The former handles the evolution process of
an ontology as consequence of a change request by an ontology engineer,
while the latter handles the evolution process of a depending artifact as
consequence of changes to an ontology it depends on. Each task consists of
a number of phases, each phase with its own particular objective.

The evolution of an ontology is in our approach represented by means of a
version log. A version log stores for each concept ever defined in the ontology,
the different versions it passes through during its life cycle. Note that the
version log doesn’t represent the evolution in terms of changes, but rather
keeps track of the different states of each concept over time. Whenever an
ontology engineer wants to modify an ontology, he specifies a change request
in terms of changes that he wants to apply (i.e., requested changes). In our
approach, changes are formally defined in terms of a temporal logic based
language, called the Change Definition Language. To avoid that the changes
requested by an ontology engineer turn the ontology into an inconsistent
state, the framework may add extra changes, called deduced changes, to the
change request in order to restore consistency.

To allow for a better understanding of the evolution of an ontology, the
framework is able to create an evolution log. Such an evolution log is, in
contrast with a version log, a particular interpretation of the evolution of an
ontology in terms of change definitions. The framework is able to automati-
cally detect changes that satisfy the change definitions by evaluating change
definitions as temporal queries on a version log. We use the term detected
changes to refer to the occurrence of changes that have been detected by the
framework. Due to the clear separation between the representation of an
evolution (by means of a version log) and the interpretation of an evolution
(by means of an evolution log), it becomes possible to associate different
interpretations (i.e. evolution logs) with the same evolution.

58 Ontology Evolution Framework

Chapter 4

Foundations

In the previous chapter, we gave an informal overview of the ontology evo-
lution framework that forms the subject of this dissertation. The overview
merely gave a general overview of the different phases of the framework and
the role they fulfill, without going into much detail for each phase. In this
chapter, we discuss the foundations on which the ontology evolution frame-
work and its individual phases are based. In Section 4.1, we discuss the
version log that keeps track of the different versions that the concepts of an
ontology pass through during their lifetime. In Section 4.2, we introduce
a temporal logic as a temporal extension of the SHOIN (D) description
logic. This temporal logic forms the basis for our Change Definition Lan-
guage as we will discuss in Section 4.3. The Change Definition Language
allows ontology engineers to formally define the changes they are interested
in. In Section 4.4, we give an overview of the evolution log. We conclude
this chapter with a short summary in Section 4.5.

4.1 Version Log

Our ontology evolution approach associates with each ontology it manages a
version log. The purpose of such a version log is to keep track of the different
versions an ontology concept passes through during its lifetime: starting
from the creation of the concept, over its modifications until its eventual
retirement. In this section, we first discuss the general approach we took
regarding the version log (see Section 4.1.1), followed by the specification of
a formal model of the version log (see Section 4.1.2).

4.1.1 General Approach

To describe the evolution of an ontology, several approaches can be taken.
One possible approach is to describe the evolution of an ontology directly
in terms of a sequence of changes that were applied to the ontology. This

60 Foundations

Figure 4.1: Different forms of the snapshot approach

approach is followed by most current ontology evolution approaches. We
take a different approach as we describe an ontology evolution in terms of
versions of ontology concepts, rather then storing a sequence of changes.
In other words, the evolution of an ontology is captured by preserving its
history. This approach resembles the approach generally taken by temporal
databases [67]. However, in the case of temporal databases only the history
of the instance data is stored, while the database schema is assumed to
remain static. As motivated in Section 3.2.1 and 3.2.2, our approach has a
number of advantages compared to the first one.

Preserving the history of an ontology can be achieved in different man-
ners. First of all, a timestamp approach or snapshot approach can be taken.
Although both approaches are equally expressive, their manner of represen-
tation differs. The former consists of labeling the ontology elements subject
to change with a timestamp. The latter is based on taking snapshots to cap-
ture the different states of an ontology over time. The history of an ontology
is then described as a sequence of snapshots. Snapshots can be taken either
of the ontology as a whole, where each snapshot contains all facts valid at
a given moment in time, or rather of single concept definitions, in which
case a sequence of snapshots describes the evolution of a single ontology
concept. Figure 4.1 illustrates the difference between the two forms of the
snapshot approach. The first form is considered highly inefficient as each
snapshot stores the complete ontology. Moreover, capturing the evolution
of the individual concepts is required if one wants to pose sensible queries
to the version log. This is not feasible in the first form as it doesn’t capture
relations between successive versions of ontology concepts. For the version
log, we therefore have adopted a snapshot approach that keeps track of the
evolution of each individual ontology concept, instead of the evolution of
the ontology as a whole.

In temporal databases, two dimensions of time are in general considered:

4.1 Version Log 61

Figure 4.2: Schematized representation of a version log

transaction time and valid time [82]. Transaction time represents the time
when data is actually stored in the database, while valid time represents the
time when data is valid in the modeled world. The same two dimensions can
also be applied to ontologies. With regard to the version log, transaction
time would reflect the time when a new version of a concept is created, while
valid time would represent the moment in time when the concept is valid
in the described domain. We only keep track of the transaction time in the
version log as we are merely interested in the moment in time when changes
are applied to the ontology.

Furthermore, the representation of the timeline can be based on time
points as well as time intervals [1]. As we record in the version log the
moments in time an ontology concept changes, we adopt the point-based
approach. We consider time as a discrete and linearly ordered timeline (as is
also done in virtually all temporal databases). The timeline is furthermore
single-level, meaning that no different granularities exist to refer to time
points.

Figure 4.2 shows a schematized representation of the version log. A ver-
sion log is associated with one particular ontology. For each concept (Class,
Property, or Individual) defined in the associated ontology, a sequence of
snapshots (or versions) of this concept is kept describing its history (see V1,
. . . , Vn). A version of a concept contains the definition of that particular
concept at a given moment in time. Each version is linked to a time point
of the version log timeline T (see t1, . . . , tn), and represents the transaction
time. The transaction time of a concept version indicates the start of a
version. We also explicitly store the end point of a version. Furthermore,
each version has a state tag (pending, confirmed, implemented) indicating
the state of the version. Although the states were already mentioned in
Section 3.2), we briefly summarize the meaning of the three different states
below:

• Pending: a version is tagged as ‘pending’ to indicate that the ver-
sion is the result of a change request that hasn’t yet been checked on
consistency nor has it been implemented;

62 Foundations

• Confirmed: a version is tagged as ‘confirmed’ if the version has passed
the consistency check and is confirmed for implementation (but hasn’t
been implemented yet in the public version of the ontology);

• Implemented: a version is tagged as ’implemented’ if the version has
been implemented in the public version of the ontology;

The relation between requested changes (i.e., changes that were explicitly
requested by an ontology engineer) and deduced changes (i.e., changes that
were added as a result of the consistency checking process) in the change
request is also reflected in the version log. A version that is the result of a
requested change r may contain references to other versions that were the
result of the deduced changes of r in the change request. We call these
versions deduced versions.

Furthermore, every version also keeps track of the ID of the concept at
that specific moment in time. The ID conforms to the rdf:ID attribute
used in OWL. For OWL concepts without an rdf:ID attribute, the ID in
the version log is left blank. In the next subsection, we present a formal
model for the version log.

4.1.2 Formal Model

In this section, we present a formal model for the version log. Instead of
using the native OWL syntax (i.e., the RDF/XML syntax), we rely on the
syntax of the SHOIN (D) description logic variant to represent concept
definitions. This means that the definition of an ontology concept consists
of a set of DL axioms.

We first define the set of all concept names (and more specifically all
Class names, Property names and Individual names) that are used in con-
cept definitions during the complete lifetime of the associated ontology of a
version log.

Definition 4.1 (Concept Names). Assume the set S to be the set of all
possible strings. The finite set of all Class names used CN is defined as
CN ⊆ S, the finite set of all Property names used PN as PN ⊆ S, and the
finite set of all Individual names used IN as IN ⊆ S. The set of all concept
names N is then defined as N = CN ∪ PN ∪ IN.

As already explained, for a version log, we consider time to be a discrete,
linearly ordered timeline. We define the timeline of a version log as follows:

Definition 4.2 (Timeline). A discrete, linearly ordered timeline T of a
version log is defined as the finite set T ⊆ IN, where IN is the set of natural
numbers. The time point ‘now’ ∈ T, also referred to as current time, is
defined so that ∀t ∈ T.(t ≤ now).

4.1 Version Log 63

The version log keeps track of the history of each Class, Property or In-
dividual that is defined in the associated ontology by storing their successive
versions. A version of a concept contains the definition of that concept that
holds at a given moment in time. In DL, the definition of a concept is formed
by a set of axioms. Before introducing the notion of a concept version, we
first define when we consider an axiom φ as part of the definition of a given
concept name. We distinguish between Class, Property and Individual defi-
nitions. In order to classify axioms as Class, Property or Individual axioms,
we require axioms to be in normal form. We therefore first define when we
consider an axiom to be in normal form. These normalization and simpli-
fication functions are an adaptation of the normalization and simplification
functions presented in [4].

Definition 4.3 (Concept Normalization and Simplification).

Norm(A) = A (4.1)

Norm(¬A) =

⊥ if A = >
> if A = ⊥
¬A otherwise

(4.2)

Norm(¬¬C) = Norm(C) (4.3)
Norm(C1 u . . . u Cn) = Norm(C1) u . . . uNorm(Cn) (4.4)

Norm(¬(C1 u . . . u Cn)) = Norm(¬C1) t . . . tNorm(¬Cn) (4.5)
Norm(C1 t . . . t Cn) = Norm(C1) t . . . tNorm(Cn)) (4.6)

Norm(¬(C1 t . . . t Cn)) = Norm(¬C1) u . . . uNorm(¬Cn)) (4.7)
Norm(∀R.C) = Simp(∀R.Norm(C)) (4.8)

Norm(¬∀R.C) = ∃R.Norm(¬C) (4.9)
Norm(∃R.C) = ∃R.Norm(C) (4.10)

Norm(¬∃R.C) = Simp(∀R.Norm(¬C)) (4.11)
Norm(¬(≤ nR)) = (≥ (n+ 1) R) (4.12)
Norm(¬(≥ nR)) = (≤ (n− 1) R) (4.13)

Simp(∀R.C) =

∀R.C1 u . . . u ∀R.Cn

if C = C1 u . . . u Cn

∀R.C
otherwise

(4.14)

Besides the normalization and simplification functions introduced above,
we will also use the following equivalence to split an axiom into two ore more
separated axioms:

Definition 4.4 (Axiom Normalization).

C v D1 u . . . uDn ⇐⇒ C v D1 and . . . and C v Dn (4.15)

64 Foundations

Now that we have defined the normalization form, we are able to define
when we consider an axiom as part of the definition of a given concept name.
We start with defining a Class definition. We define an axiom φ to be part
of the definition of a Class, if the following definition holds:

Definition 4.5 (Class Definition). An axiom φ is defined to be part of a
Class definition for a Class with name σ ∈ CN, notation ClassDefinition(φ,
σ), iff φ is in normal form and φ is of one of the following forms:

• σ v C (σ is a subclass of C);

• σ ≡ C (σ is equivalent to C) or C ≡ σ (C is equivalent to σ);

• σ v ¬C (σ is disjoint with C);

An axiom φ is part of the definition of a Property, if the following defi-
nition holds:

Definition 4.6 (Property Definition). An axiom φ is defined to be part of
a Property definition for a Property with name σ ∈ PN, notation Property-
Definition(φ, σ), iff φ is in normal form and φ is of one of the following
forms:

• σ v R (σ is a subproperty of R);

• σ ≡ R (σ is equivalent to R);

• ∃σ.> v C (C is the domain of σ);

• > v ∀σ.C (C is the range of σ);

• > v (≤ 1 σ) (σ is a functional Property);

• > v (≤ 1 σ−) (σ is an inverse functional Property);

• σ ≡ R− (σ is an inverse Property of R);

• Trans(σ) (σ is a transitive Property);

• σ ≡ σ− (σ is a symmetric Property).

An axiom φ is part of the definition of an Individual, if the following
definition holds:

Definition 4.7 (Individual Definition). An axiom φ is defined to be part
of an Individual definition for an Individual with name σ ∈ IN, notation
IndividualDefinition(φ, σ), iff φ is in normal form and φ is of one of the
following forms:

4.1 Version Log 65

• C(σ) (Individual σ is an instantiation of a Class C);

• R(σ, o) (Individual σ is the subject of a Property instantiation of a
Property R with object o);

• σ = o (Individual σ is the same as Individual o);

• σ 6= o (Individual σ is different from Individual o).

Now that we have defined when an axiom is part of the definition of a
Class, Property and Individual, we are able to formulate the definition of a
Concept:

Definition 4.8 (Concept Definition). A concept definition for a Concept
with name σ ∈ N is defined as a set A where A = {φ | ClassDefinition(φ,
σ) ∨ PropertyDefinition(φ, σ) ∨ IndividualDe-finition(φ, σ) }. If A is the
concept definition of a concept with name σ, we note ConceptDefinition(A,
σ).

As mentioned before, the version of a concept contains all the axioms
that together form the definition of that particular concept at that particular
moment in time. This moment in time indicates the transaction time (i.e.,
the start time) of the version. Besides the start time, we also keep track of
the end time of the version. When a particular version hasn’t ended yet, the
end time is set equal to the now time point. Both the start and end time are
elements from the version log timeline. Each concept version contains the
concept name (might be the empty string), the set of axioms that together
form its definition, and a set of deduced concept versions. Furthermore, a
concept version contains the status of the version (pending, confirmed, or
implemented). Its definition is given as follows:

Definition 4.9 (Concept Version). A concept version υ for a given con-
cept name σ ∈ N is a tuple 〈σ,A,D, s, ts, te〉 where σ is the concept name, A
is the set of axioms that together form the definition of σ i.e., ConceptDefi-
nition(A, σ), D =

⋃
υi is a set of deduced concept versions, s ∈ {‘pending’,

‘confirmed’, ‘implemented’ } is the status of the version, and ts, te ∈ T are
respectively the start- and end time of the version. The start- and end time
denote a closed interval [ts, te].

The transaction time of concept versions introduces a total ordering
between concept versions. We therefore introduce the precedence relation
≺υ for concept versions. The precedence relation expresses that one concept
started before a second concept version started.

Definition 4.10 (Ordering of Concept Versions). We say that υ1 ≺υ υ2

iff ts ≤ t′s where υ1 = 〈σ,A,D, s, ts, te〉 and υ2 = 〈σ,A′,D′, s′, t′s, t
′
e〉. The

order relation ≺σ is a antisymmetric, transitive, and total relation.

66 Foundations

We can now define the complete history of an ontology concept as a
sequence of concept versions for this concept. For this purpose, we introduce
the notion of a concept evolution:

Definition 4.11 (Concept Evolution). A concept evolution Eσ for a
Concept with name σ ∈ N is a finite set of concept versions so that ∀υ ∈
Eσ.(υ = 〈σ,A,D, s, ts, te〉).

Before we formulate the definition of a version log, we first define a num-
ber of auxiliary definitions. The first definition states under which condition
we consider a concept version υ to be the version for a given concept with
name σ and given time point t.

Definition 4.12. A concept version υ is the version for a given Concept
with name σ ∈ N and given time point t ∈ T, notation version(υ, σ, t), iff
υ = 〈σ,A,D, s, ts, te〉 and ts ≤ t ≤ te holds.

Based on the previous definition, we are able to define when we consider
a concept version to be the previous version for a given concept and given
time point. Furthermore, we also define when we consider a concept version
to be the first version for a given concept name. Both definitions will be
used in the interpretation of the temporal logic we define in Section 4.2.

Definition 4.13 (Previous Concept Version). A concept version υ is
defined as the previous concept version for a given Concept with name σ
w.r.t. a given time point t ∈ T, notation PreviousConceptV ersion(υ, σ, t),
iff ∃υi ∈ Eσ.(version(υi, σ, t)∧(υ ≺υ υi)∧¬∃υj ∈ Eσ.(υ ≺υ υj∧υj ≺υ υi))).

Definition 4.14 (First Concept Version). A concept version υ is defined
as the first concept version for a given Concept with name σ ∈ N, notation
FirstConceptVersion(υ, σ), iff ¬∃υi ∈ Eσ.(υi ≺υ υ).

This leaves us with the definition of a version log. A version log simply
contains a set of concept evolutions. For each concept ever created in the
associated ontology, a concept evolution for this concept must exist in the
version log. A version log is therefore defined as follows:

Definition 4.15 (Version Log). We define a version log Ω as the tuple
〈O,V〉 where O is the associated ontology, so that

O = {〈σ,A〉 | σ ∈ N ∧ ConceptDefinition(A, σ)}

and V is the set of concept evolutions, so that

V =
⋃

∀σ∈N

Eσ

We conclude this section with a last constraint. In a version log, for all
time points of its timeline, there must exist a concept version that starts at
that time point.

∀t ≤ now,∃υ.(υ = 〈σ,A,D, s, ts, te〉 ∧ t = ts)

4.1 Version Log 67

4.1.3 Example

In this section, we illustrate the use of the version log by example. We take
as example the ontology introduced in Figure 3.4 in Section 3.2.1 on Page
50. The ontology O before the appliance of the first change corresponds to
the following set of axioms in SHOIN (D) syntax:

O = {〈A,A v B〉 , 〈B,B v ¬C〉}

When we assume that the set of axioms as listed above is the initial state
of the ontology, the associated version log looks as follows:

Ω = 〈O, {EA ∪EB ∪EC}〉

EA = {υA,0 = 〈‘A’, {A v B}, {}, ‘implemented’, 0, now〉}
EB = {υB,0 = 〈‘B’, {B v ¬C}, {}, ‘implemented’, 0, now〉}
EC = {υC,0 = 〈‘C’, {}, {}, ‘implemented’, 0, now〉}

The version log Ω contains a reference to the associated ontology O and a
set of concept evolutions i.e., one concept evolution for every concept in the
associated ontology. Every concept evolution contains exactly one concept
version i.e., the initial version of the concept. Every concept version stores
the axioms that form the definition of that particular concept. Note that
every concept versions starts at time point 0, and has the end time point
set equal to now (where now = 0).

As already mentioned, when the ontology engineer formulates a change
request to add a subclass property between Class A and Class C, applying
this single change would turn the ontology into an inconsistent state. One
possible solution to avoid the ontology from becoming inconsistent is to
remove the disjointness between B and C (B v ¬C) from the ontology.
This solution leads to the addition of a new deduced change to the change
request to remove the disjointness. After both changes are applied to the
ontology, the version log looks as follows:

Ω = 〈O, {EA ∪EB ∪EC}〉

EA = {υA,0 = 〈‘A’, {A v B}, {}, ‘implemented’, 0, 0〉 ,
υA,1 = 〈‘A’, {A v B,A v C}, {υB,1}, ‘implemented’, 1, now〉}

EB = {υB,0 = 〈‘B’, {B v ¬C}, {}, ‘implemented’, 0, 0〉 ,
υB,1 = 〈‘B’, {}, {}, ‘implemented’, 1, now〉}

EC = {υC,0 = 〈‘C’, {}, {}, ‘implemented’, 0, now〉}

The changes listed in the change request are applied one after each other,
and result in each into a new concept version. The now element is augmented
after each requested change. The version log still contains the same evolution
concepts as no new concept were added to the ontology. The end time points

68 Foundations

of the evolution concepts EA and EB are closed, and new concept versions
(υA,1 and υB,1) are added to their respective evolution concepts to represent
the present situation. Note that the concept version υA,1 keeps a reference
to υB,1 as deduced concept version i.e., it represents that the creation of
concept version υB,1 is caused by the creation of concept version υA,1 in
order to maintain consistency. Furthermore, note that the deduced concept
version has the same start time as the concept version that caused the
creation of the deduced concept version.

4.2 Temporal Logic

As the version log represents the history of an ontology and its concepts
over time, it allows to define changes in terms of differences over time in
the version log. In Section 4.3, we define a Change Definition Language
that allows us to define changes w.r.t. the version log. In this section, we
introduce the syntax and semantics of the temporal logic underpinning this
Change Definition Language.

The term Temporal Logic has been broadly used to cover approaches to
the representation of temporal information within a logical framework. Tem-
poral logics differ from atemporal logics in the sense that statements have a
truth-value that can vary over time. In general, two approaches to Temporal
Logics are taken in literature: predicate-logic and modal-logic approaches.
In the predicate-logic approach, the temporal dimension is captured by aug-
menting each proposition or predicate with an extra variable to be filled by
an expression of time. Modal-logic approaches introduce modal-operators to
gain the ability to model properties like belief, time-dependence, obligation,
and so on. When applied to the temporal domain, modal-logic approaches
introduce so called tense operators as modal-operators.

The logical language of tense logic contains, besides the usual logical
operators, four basic tense operators P (‘some time in the past’), F (‘some
time in the future’), H (‘always in the past’), and G (‘always in the future’)
where P and F are known as weak tense operators, and H and G are known
as strong tense operators [76]. A number of common extensions to these
basic tense operators were introduced including the binary S (’since’) and U
(’until’) operator by [49]. Another common extension for discrete timelines
is the next and previous time operator (respectively N and R) to refer to
respectively the immediately succeeding and preceding moment in time. In
addition to the tense operators previously mentioned, we also introduce the
tense operator A (‘after’) as a weak version of the S tense operator. Table
4.1 gives an overview of the informal semantics of these operators.

In this dissertation, we take as foundation for the Change Definition
Language a hybrid-logic approach [2]. As the term already suggests, hybrid-
logic approaches are midway between the modal-logic and the predicate-

4.2 Temporal Logic 69

Operator Informal semantics
Pφ It has at some time in the past been

the case that φ was true
Fφ It will at some time in the future be the case that φ is true
Hφ It has always been the case that φ was true
Gφ It will always be the case that φ is true

φ1 S φ2 φ1 has always been true since the time when φ2 was true
φ1 U φ2 φ1 will always be true until a time when φ2 is true
Nφ It will at the immediately succeeding time step be

the case that φ is true
Rφ It has at the immediately preceding time step been

the case that φ was true
φ1 A φ2 φ1 has at some time been true since the time when φ2

was true

Table 4.1: Overview of common tense operators

logic approaches. Hybrid-logic approaches supplement modal-logics with
the ability to refer explicitly to specific states in formulas. This is achieved
by formulas called nominals, which are true in exactly one state. In general,
the @-operator is used to refer to a specific state. In the context of time, the
@-operator is used to refer to specific time points, and is informally defined
as follows:

φ@t is true iff φ is true on time point t

In the context of ontology evolution, we are interested in how we can
formally define changes based on a temporal logic. These change definitions
are formulated as an expression merely involving current and past versions
of an ontology; future versions are not considered. We therefore restrict
ourselves to those tense operators considering past times (P, H, S, A, and
R) in combination with the @-operator. As the tense operators considering
future times are not useful for our purpose, we omit them from further
discussion.

4.2.1 Parameterized and Non-parameterized Tense Opera-
tors

The version log offers two different views on the evolution of an ontology:
a first one on the level of an ontology itself, a second one on the level of a
single ontology concept. The former considers the complete set of concept
versions listed in the version log and describes the complete history of the
ontology, while the latter merely considers the concept versions that are part
of a certain concept evolution and therefore only describes the evolution of

70 Foundations

Figure 4.3: Example of a parameterized and non-parameterized version of
the R tense operator

that particular concept. With respect to the timeline T, the first view
considers the complete timeline as it takes all concept versions into account.
The second view only considers a part of the timeline i.e., from the moment
of creation of a concept until either the current time or the moment of its
deletion (depending on the situation).

To reflect both views in our temporal logic, we extend the set of tense
operators. We therefore introduce a parameterized version of the tense op-
erators H, P and R. The original, non-parameterized version of the tense
operators correspond to the view that takes all concept versions of the ontol-
ogy into consideration, while the parameterized version, where the parame-
ter refers to a concept name, only considers the concept versions associated
with that particular concept. Figure 4.3 visualizes the difference between
parameterized and non-parameterized tense operators (using the R tense
operator as example). The element now is in the example equal to t9. Note
that the non-parameterized version of R refers to time point t8, while the
parameterized versions R(A) and R(B) respectively refer to time point t4
and t5.

To further clarify the difference between non-parameterized and param-
eterized tense operators, we give a small example expression illustrating the
use and difference between the two. The exact syntax and semantics of the
logic used in the example will be defined in the following subsection.

• 〈R〉 (C v D)
“In the previous version of the ontology, C was a subclass of D”

• 〈R(C)〉 (C v D)
“In the previous version of the concept C, C was a subclass of D”

4.2 Temporal Logic 71

4.2.2 Syntax and Semantics

In this section, we more precisely define the syntax and semantics of the
modal extensions H, P, S, A, and R that we introduced before. We define
the temporal logic, referred to as SHOIN (D)T , as a temporal extension of
SHOIN (D). The syntax is defined as follows:

Definition 4.16 (Syntax). Assume σ ∈ N to be a concept name. If φ and
ψ are axioms, then so are 〈H〉φ and 〈H(σ)〉φ, 〈P〉φ and 〈P(σ)〉φ, 〈R〉φ
and 〈R(σ)〉φ, φ 〈S〉ψ, φ 〈A〉ψ, and 〈@ t〉φ (the tense operators); ¬φ, φ∧ψ,
φ ∨ ψ, and φ→ ψ (the common logic operators).

Note that we only allow axioms to be modalized with the introduced
tense operators, and prohibit the use of tense operators in concept defini-
tions. The use of tense operators in concept definitions would make it possi-
ble to express temporal information within a domain (e.g., TopManager v
Manager u 〈P 〉 ∃manages.TopProject expresses that a top manager is a
manager and has managed at least one top project in the past). As we are
not interested to express temporal information within a domain, but rather
temporal relations between axioms, we restrict ourselves to the modalization
of axioms solely.

To shorten the definition of the semantics of SHOIN (D)T , we introduce
the following definitions. We define the disjunction φ∨ψ and the implication
φ→ ψ in terms of respectively the negation ¬φ and the conjunction φ ∧ ψ.

φ ∨ ψ = ¬(¬φ ∧ ¬ψ) (4.16)
φ→ ψ = ψ ∨ ¬φ (4.17)

The @-operator 〈@ t〉, used to refer to an explicit moment in time, can
be defined recursively in terms of the 〈R〉 tense-operator as follows:

〈@ t〉φ = φ if t = now
〈@ t〉φ = 〈@ t+ 1〉 (〈R〉φ) if t < now

Before defining the semantics of SHOIN (D)T , we first introduce a num-
ber of auxiliary definitions. We define how we can derive a snapshot view
from the version log given a point in time. A snapshot view S(t) is the set
of all axioms φ kept in a version log that hold at a given moment in time
t ∈ T.

Definition 4.17 (Snapshot). For a given time point t ∈ T, a snapshot of
a version log at moment t, notation S(t), is defined as follows

S(t) =
⋃
∀υ

{φ ∈ A | υ = 〈σ,A,D, s, ts, te〉 ∧ ts ≤ t ≤ te}

72 Foundations

To be able to define the semantics of the parameterized tense operators
〈R(σ)〉 and 〈H(σ)〉, we define two views on the timeline T. The first view,
called Tp

σ,t, contains the time points of the directly preceding concept version
for a given concept name σ w.r.t. a given time point t. The second view,
called Ta

σ,t, contains the time points of all preceding concept versions for a
given concept name σ w.r.t. a given time point t.

Definition 4.18 (Timeline Tp
σ,t). The set Tp

σ,t ⊆ T is defined as the
timeline spanning the previous concept version for a given concept name
σ ∈ N w.r.t. a given time point t ∈ T, so that

Tp
σ,t = {t′ ∈ T | PreviousConceptV ersion(υ, σ, t) ∧ ts ≤ t′ ≤ te}

Definition 4.19 (Timeline Ta
σ,t). The set Ta

σ,t ⊆ T is defined as the
timeline spanning all preceding concept versions for a given concept name
σ ∈ N w.r.t. a given time point t ∈ T, so that

Ta
σ,t = {t′ ∈ T | ∃υ = 〈σ,A,D, s, ts, te〉 ,∃υ′ = 〈σ,A′,D′, s′, t′s, t

′
e〉 .(

FirstConceptV ersion(υ, σ) ∧ PreviousConceptV ersion(υ′, σ, t) ∧
ts ≤ t′ ≤ t′e)}

We define the semantics of the temporal extensions to SHOIN (D) by
the following definition:

Definition 4.20 (Semantics). Given an axiom φ, an interpretation I and
a time point t ∈ T, we extend the entailment relation I, t � φ (φ holds in I
at moment t) as follows:

I, t � φ iff S(t) � φ, where φ ∈ SHOIN (D)
I, t � φ ∧ ψ iff I, t � φ and I, t � ψ
I, t � ¬φ iff I, t 2 φ
I, t � 〈R〉φ iff ∃t′ ∈ T.(t′ = t− 1 ∧ I, t′ � φ)
I, t � 〈H〉φ iff ∀t′ ∈ T.(t′ < t ∧ I, t′ � φ)
I, t � 〈P〉φ iff ∃t′ ∈ T.(t′ < t ∧ I, t′ � φ)
I, t � 〈R(σ)〉φ iff ∃t′ ∈ Tp

σ,t.(I, t′ � φ)
I, t � 〈H(σ)〉φ iff ∀t′ ∈ Ta

σ,t.(I, t′ � φ)
I, t � 〈P(σ)〉φ iff ∃t′ ∈ Ta

σ,t.(I, t′ � φ)
I, t � φ 〈S〉ψ iff ∃t′ ∈ T.(t′ < t ∧ I, t′ � ψ ∧ ∀t′′ ∈ T.(t′ < t′′ < t ∧

I, t′′ � φ))
I, t � φ 〈A〉ψ iff ∃t′ ∈ T.(t′ < t ∧ I, t′ � ψ ∧ ∃t′′ ∈ T.(t′ < t′′ < t ∧

I, t′′ � φ))

4.2.3 Examples

In this section, we illustrate the possibilities of the temporal logic proposed
in the previous section by means of a few examples. This temporal logic

4.3 Change Definition Language 73

makes it possible to express temporal relations between axioms, and serves
as foundation for the Change Definition Language we will introduce in the
next section. Consider the following examples:

• “Over the course of history of an ontology, the Property name has
always been a functional property and still is a functional property.”

〈H〉> v (≤ 1 name) ∧ > v (≤ 1 name)

• “During the existence of the Property name, it has always been a
functional property and still is a functional property.”

〈H(name)〉> v (≤ 1 name) ∧ > v (≤ 1 name)

• “If in the previous version of an ontology, the Class Company was the
range of the Property worksFor, then Company must still be the range
of worksFor.”

〈R〉> v ∀worksFor.Company → > v ∀worksFor.Company

• “The Class Employee has never been a subclass of the Class Person
in the past, but it has become now.”

¬ 〈P〉Employee v Person ∧ Employee v Person

4.3 Change Definition Language

In this section, we describe in detail the Change Definition Language. The
purpose of this Change Definition Language is to allow the specification of
change definitions i.e., to state the conditions a modification to an ontol-
ogy should satisfy to be considered as an occurrence of a particular change
definition.

The Change Definition Language makes it possible to define changes in a
declarative fashion. Compared to other ontology evolution approaches, this
Change Definition Language offers a number of advantages:

• Extensibility of change definitions. In current approaches, the
set of changes offered by the approach are an integral part of the tool
supporting the approach. The semantics of the changes are entangled
in the source code, making it difficult to add, change or remove changes
from this set as it requires an update of the software. In a commercial
setting, this may even become impossible. In our approach, the set
of changes are easier to modify as it only consists of adding, changing
or removing change definitions, and doesn’t require an update to the
supporting tool.

74 Foundations

• Intuitive definitions. We believe that change definitions are eas-
ier to specify in a declarative fashion than is the case with functional
definitions. The Change Definition Language only requires ontology
engineers to specify the situation before and after the change, instead
of specifying what has to change. The latter requires a deep under-
standing of the API of the supporting tool, while the former only
requires an understanding of the OWL ontology language (which is
assumed to be already known by the ontology engineer) and of the
Change Definition Language.

• Overwrite change definitions. In current approaches, maintainers
of depending artifacts must rely on the changes (and their semantics)
associated with a depending ontology, as these cannot be overwritten.
This may result in awkward situations as is illustrated in Figure 4.4.
An ontology O3 depends on two ontologies O1 and O2. Assume that
the evolution log of both ontology O1 and O2 lists a change C, but with
different semantics. This situation makes it extremely confusing for
the ontology engineer of ontology O3 to understand the changes that
have occurred to ontologies O1 and O2, as the semantics of the changes
listed in the evolution logs may differ. In our approach, maintainers
of depending artifacts can easily define their own change definitions,
thereby overwriting the change definitions of depending ontologies.

• Meta-changes. The functional approach in defining changes taken
by current approaches is not suited for defining meta-changes as meta-
changes don’t specify what has to change. In our approach, the same
formalism (i.e., the Change Definition Language) can be used for the
definition of both changes and meta-changes.

• Domain dependent changes. Domain dependent changes are de-
fined in terms of a particular domain, and cannot be used directly
for other domains. Other ontology evolution approaches don’t sup-
port domain dependent changes. Moreover, the difficulty to extend
the changes supported by current tools, makes supporting domain de-
pendent changes even more unfeasible.

In the remainder of this section, we first introduce a meta-schema for
OWL in Section 4.3.1. The reason to introduce this meta-schema is that
the identifiers that can be used in the body of a change definition must
be Classes and Properties defined in this meta-schema. The meta-schema
itself is expressed in OWL. In Section 4.3.2, we discuss step by step the
syntax of the Change Definition Language by means of its EBNF (Extended
Backus-Naur Form) description. Although EBNF is not more powerful than
standard BNF, its additional operators greatly improve the readability of
the syntax. The full EBNF specification of the Change Definition Language

4.3 Change Definition Language 75

Figure 4.4: Changes with different semantics

can be found in Appendix 1. Instead of using the extended Description
Logic syntax for the Change Definition Language, as introduced in Section
4.2.2, we adopt a more readable and computer-processable syntax instead.

We conclude this section with an overview of change definition sets (see
Section 4.3.3). In its simplest form, a change definition set is a collection
of change definitions. Ontology engineers and maintainers of depending
artifacts can each define their own change definition set if desirable.

4.3.1 OWL Meta-Schema

In this Section, we describe a meta-schema of OWL. The Classes and Prop-
erties defined in this meta-schema form the vocabulary of the statements in
the Change Definition Language that we introduce in the next section. As
we focus on OWL DL in this dissertation, the meta-schema is restricted to
OWL DL (thereby including OWL Lite) features only. The names of the
Classes and Properties are kept as close as possible to the original OWL
names. The meta-schema is expressed in OWL. In this section, we give a
simplified overview of the most important aspects of the meta-schema. Inter-
ested readers are referred to http://wise.vub.ac.be/ontologies/OWLme-
ta.owl for the complete version of the OWL meta-schema.

Figure 4.5 shows the hierarchy of main Classes of the OWL meta-schema.
The top Class is Concept with subclasses Class, Property and Individual. All
Concepts have at most one ID (hasID). Two disjoint subclasses of Property
exist i.e., ObjectProperty and DatatypeProperty. Note that Restriction is a
subclass of Class.

Figure 4.6 depicts all possible properties of a Class. A Class can be
defined as either a subclass (subClassOf) of another Class or equivalent
(equivalentClass) to another Class. Furthermore, a Class can be disjoint
with (disjointWith) other Classes, or can be the complement of (comple-
mentOf) exact one other Class. Finally, Classes can also be described in
terms of a list of Classes using the unionOf and intersectionOf Properties,
and as an enumeration of Individuals using the oneOf Property.

The different Properties of the Property Class are shown in Figure 4.7.

76 Foundations

Figure 4.5: Main OWL concepts

Figure 4.6: Properties of a Class

4.3 Change Definition Language 77

OWL allows to specify the domain and range of a Property. The domain
of a Property is restricted to a Class, the range of a Property is restricted
to either a Class or a Datatype where the Datatype represents an XML
datatype (e.g., string, integer, boolean, . . .). A Property can be defined
as being a subproperty of another Property (subPropertyOf), or as being
equal to another Property (equivalentProperty). Furthermore, a Property
can be specified as being functional (isFunctional). Also ObjectProperties
can be specified as being transitive (isTransitive), symmetric (isSymetric)
and inverse functional (isInverseFunctional). Finally, an ObjectProperty can
be the inverse (inverseOf) of another ObjectProperty.

Figure 4.7: Properties of a Property

Figure 4.8 shows the different Properties of the Restriction Class. A
Restriction is linked to exactly one Property using the onProperty Property.
Two different restrictions can be distinguished: value restrictions and cardi-
nality restrictions. For value restrictions, it can be specified that either all
values or some values of the linked Property must be instances from a certain
Class or Datavalue using respectively the allValuesFrom and someValues-
From Properties. Value restrictions can also restrict a Property to a number
of specific values using the hasValue Property. The range of this hasValue
Property is either an Individual or a Datarange. For a cardinality restric-
tion, either a minimum cardinality (minCardinality), a maximum cardinality
(maxCardinality), or a specific cardinality (cardinality) can be specified for
a given Property.

We conclude this section with an overview of the Properties of an Individ-
ual. Figure 4.9 shows the Properties of the Individual Class. An Individual

78 Foundations

Figure 4.8: Properties of a Restriction

can be specified as an instance of multiple Classes using the instanceOf
Property. Furthermore, it can have a number of property values (withProp-
ertyValue). The range of withPropertyValue is the PropertyValue Class. A
PropertyValue is linked to a Property and has as object an Individual or a
DataValue. Finally, an Individual can be specified as being different from or
as being the same as another Individual using respectively the differentFrom
and sameAs Properties.

Figure 4.9: Properties of an Individual

4.3.2 Syntax

In this section, we describe the syntax of the Change Definition Language in
detail by means of its EBNF description. To define its semantics, we link the
Change Definition Language to the temporal logic SHOIN (D)T introduced
in the previous section. A change definition is a particular interpretation
of an ontology modification i.e. the definition of a change formally specifies
the modifications that should correspond with this change. These change

4.3 Change Definition Language 79

definitions are used in two ways in our approach. Firstly, ontology engineers
specify their request for change in terms of change definitions. The definition
of the change specifies how the ontology has to change (see section 5.2).
Secondly, the change definitions also allow detecting other changes i.e., the
modifications may satisfy other change definitions then the one used in the
change requests). This is possible by evaluating change definitions against
the version log (see Section 5.3).

Change Definition A change definition is composed of a header followed
by a body. The header consists of both a name (i.e., the identifier) that
identifies the definition and an arbitrary number of parameters (i.e. the
parameter list). The parameters of the parameter list are separated from
each other by means of a comma and always start with a question mark.

Furthermore, the parameters in the header can optionally be annotated
to reflect the role of the parameters in the change definition. These anno-
tations are both used to clarify the role that the parameters play in the
change definition, and play a role in the change detection and change recov-
ery phases (as we will discuss in Section 5.3). We distinguish the following
three types of roles:

• Subject. This type of role indicates that the associated parameter
represents the ontology concept that is the subject of the change i.e.,
the ontology concept that is changed.

• Old. This type of role indicates that the associated parameter repre-
sents the old object of the Property that has changed in the subject.

• New. This type of role indicates that the associated parameter repre-
sents the new object of the Property that has changed in the subject.

Consider as example the header shown below. The parameter annota-
tions help to understand the role that these parameters play in the definition:
the subclass property of subject ?x changes from ?y (the old object) to ?z
(the new object).

changeSubClassOf([subject]?x, [old]?y, [new]?z)

The EBNF description of a change definition is given below:

changeDefinition ::= identifier
‘(’ (parameterListH)? ‘)’ body ‘;’

parameterListH ::= parameterH (‘,’ parameterH)*
parameterH ::= (‘[’ role ‘]’)? ‘?’ IDENT
role ::= (‘subject’ | ‘old’ | ‘new’)

80 Foundations

Change Definition Body The body of a change definition consists of
a condition type (i.e., either ‘:=’ or ‘:<’) followed by a condition. The
condition is an expression, which will be discussed in the next paragraph.
The meaning of the condition type can be best compared with the notion of
necessary conditions and necessary & sufficient conditions as found in logics.
The difference between the two condition types is explained as follows:

• Necessary condition (‘:<’). This condition type indicates that
the condition of the change definition is only a necessary condition.
This has as consequence that each change that is an occurrence of
such a change definition must conform to the condition of the change
definition, but this does not mean that each change that conforms to
the condition of the change definition is automatically an occurrence
of that change definition. In this case, it is the responsibility of the
user to decide whether or not it concerns an occurrence of the detected
change.

• Necessary & sufficient condition (‘:=’). This condition type
indicates that the condition of the change definition is both a necessary
and sufficient condition. This has as consequence that each change
that is an occurrence of such a change definition must conform to the
condition of the change definition, and that each change that conforms
to the condition of the change definition is by definition an occurrence
of that change definition.

The two condition types play an important role in the change detection
phase of our approach. Occurrences of change definitions are detected by
querying the version log using the change definitions. When a change to the
ontology conforms to the condition of a change definition with the neces-
sary & sufficient condition type, this change is automatically added to the
evolution log as an occurrence of the change definition without any human
intervention. On the other hand, when a change to the ontology conforms
to the condition of a change definition with the necessary condition type,
this change cannot be added automatically to the evolution log. Instead,
a warning is send to the ontology engineer to inform him of a possible oc-
currence of a change definition. It is his duty to decide whether or not the
change is an occurrence of the detected change definition.

Consider the following example as illustration of the usefulness of the
necessary condition type. A company maintains an ontology describing
properties of their employees and the projects they are assigned to. When
an employee is removed from the ontology, it either means that the employee
has resigned or was fired by the company (assuming no alternatives exist).
From the information stored in the ontology, it is impossible to decide au-
tomatically the cause of the removal. However, the company would like to
keep track of the cause of the change in an evolution log. The ontology

4.3 Change Definition Language 81

engineer therefore defines change definitions for both cases as follows (the
exact syntax of the condition will be explained further on in this section):

employeeResigned(?x) :<
<PREVIOUS>(instanceOf(?x, Employee)) AND
(NOT instanceOf(?x, Employee));

employeeFired(?x) :<
<PREVIOUS>(instanceOf(?x, Employee)) AND
(NOT instanceOf(?x, Employee));

The conditions of both change definitions are the same. It specifies that
?x was in the previous version of the ontology still an employee, but this is
no longer the case. When a change to the ontology conforms the condition,
both change definitions are suggested to the ontology engineer as a possible
candidate. It is the responsibility of the ontology engineer to select the
correct one.

The EBNF description of the change definition body is as follows:

body ::= (‘:=’ | ‘:<’) condition
condition ::= expression

Expression The condition of a change definition consists of an expression.
Expressions can be formed using the well-known logical operators ¬, ∧ and
∨, respectively NOT, AND and OR in the syntax of the Change Definition Lan-
guage. The standard precedence rules apply for the logical operators i.e.,
first NOT, then AND, followed by OR. Parentheses can be used to change the
standard preceding rules (see parenExpression). Compared to the tempo-
ral logic introduced in the previous section, the NOT operator corresponds
to ¬φ, the AND operator corresponds to φ ∧ ψ, and the OR operator corre-
sponds to φ∨ψ. The building blocks of expressions are statements, temporal
expressions and native functions.

expression ::= term
term ::= factor (‘OR’ factor)*
factor ::= secondary (‘AND’ secondary)*
secondary ::= (primary | ‘NOT’ primary)
primary ::= (statement |

parenExpression |
tempExp |
nativeFunction)

parenExpression ::= ‘(’ expression ‘)’

Statement A statement consists of an identifier and one or two argu-
ments. The first argument is called the subject of the statement, the second

82 Foundations

argument is called the object. The identifier is either a Class or a Prop-
erty defined in the OWL meta-schema (see Section 4.3.1). The subject is
a parameter or an identifier, while the object can also be a value (i.e., to
be able to express datatype Properties). Consider as example the following
statements:

• Class(?x) states that ?x is a Class;

• subClassOf(?x, Person) states that ?x is a subclass of the Class
Person;

• isTransitive(?x, "true") states that ?x is a transitive Property.

An optional asterix symbol (‘*’) following the identifier of the statement
indicates whether the transitive characteristic of a Property (when present)
should be taken into account. Omitting the asterix symbol restricts the
statement to only direct properties. So P(?x, ?y) without the asterix sym-
bol can be expressed as ∀x,∀y.(P (x, y)∧¬∃z.(P (x, z)∧P (z, y)∧z 6= x∧z 6=
y)).

The EBNF description of the statement syntax is given below:

statement ::= identifier (‘*’)? ‘(’ subject
(‘,’ object)? ‘)’

subject ::= (parameter | identifier)
object ::= (parameter | identifier | value)
parameter ::= ‘?’ IDENT
identifier ::= IDENT
value ::= ‘"’ IDENT ‘"’

IDENT ::= (‘a’..‘z’ | ‘A’..‘Z’)
(‘a’..‘z’ | ‘A’..‘Z’ | ‘_’ |
‘0’..‘9’)*

Temporal Expression Temporal expressions are used to formulate ex-
pressions that held in the past. A temporal expression is either a unary
temporal expression or a binary temporal expression. The former consists
of a unary tense operator or a time reference followed by an expression, the
latter consists of a binary tense operator followed by two comma-separated
expressions. The unary tense operators available are ALWAYS, SOMETIME and
PREVIOUS, respectively corresponding to the tense operators H, P and R in
the temporal logic. Note that the unary tense operators can be augmented
with a parameter to reflect the parameterized version of the tense operators.
Also two binary tense operator exists, SINCE and AFTER, which corresponds
to respectively the S and A tense operators in the temporal logic. Finally
the time reference, T, allows to refer explicitly to a moment in time and

4.3 Change Definition Language 83

corresponds to the @-operator in the temporal logic. The EBNF notation
is specified as follows:

tempExp ::= (unaryTempExp | binaryTempExp)
unaryTempExp ::= ‘<’ (unaryTenseOp | timeRef) ‘>’

parenExpression
binaryTempExp ::= ‘<’ binaryTenseOp ‘>’

‘(’ expression ‘,’ expression ‘)’
unaryTenseOp ::= (‘ALWAYS’ |

‘SOMETIME’ |
‘PREVIOUS’)
(‘(’ parameter |

identifier ‘)’)?
binaryTenseOp ::= ‘SINCE’ | ‘AFTER’
timeRef ::= ‘T’ ‘(’ INTEGER ‘)’

INTEGER ::= (‘0’..‘9’)+

The syntax for temporal expressions explained above, allows us to define
the following examples:

• <ALWAYS>(Class(?x)) states that ?x has always been a Class during
the entire lifetime of the ontology;

• <ALWAYS(?x)>(Class(?x)) however states that ?x has always been a
Class during the whole lifetime of ?x;

• <SINCE>(domain(?x, Student), subClassOf(Student, Person))
states that Student has always been the domain of ?x since Student
was a subclass of Person;

• <AFTER>(domain(?x, Student), subClassOf(Student, Person))
states that Student has been the domain of ?x at some time after
Student was a subclass of Person;

• <T(28)>(Class(?x)) states that ?x was a Class at time point 28.

Native functions The Change Definition Language also supports a few
native functions to compare two ontology concept or values. The native
function equal expresses equality between concepts or values. Concepts are
considered equal if their concept names are identical; values are considered
equal if the values are identical. The native functions lt and gt are only
applicable for integer, float, string, date and dateTime datatypes. The func-
tion lt expresses that the first argument is less then the second argument,
the function gt expresses that the first argument is greater then the second
argument.

The EBNF description of the native functions is specified as follows:

84 Foundations

nativeFunction ::= nativeID ‘(’
nativeArg ‘,’
nativeArg ‘)’

nativeArg ::= (parameter | identifier | value)
nativeID ::= ‘equal’ | ‘lt’ | ‘gt’

4.3.3 Change Definition Set

We described in the previous section the Change Definition Language that
allows ontology engineers and maintainers of depending artifacts to formally
specify definitions of changes. As mentioned before, ontology engineers and
maintainers of depending artifacts must be able to express their own set of
ontology changes they are interested in. They do this by creating their own
change definition set. A change definition set is a collection of conceptual
change definitions. Conceptual change definitions are defined in terms of
one or more base change definitions, which are definitions expressed in the
Change Definition Language that we introduced in the previous section. To
sum up, a change definition set is the set of conceptual change definitions
that an ontology engineer is interested in. A conceptual change definition is
defined in terms of base change definitions that are expressed in the Change
Definition Language. An actual change to the ontology is an occurrence of a
particular conceptual change definition when at least one of its base change
definitions are satisfied. We first formulate the definition of a conceptual
change definition, before we define a change definition set.

To be able to define a conceptual change definition, we assume χ to be
a change definition set. Furthermore, we call ∆χ the set of all conceptual
change definitions in a given change definition set χ. We then define a
conceptual change definition as follows:

Definition 4.21 (Conceptual Change Definition). Assume L to be the
set of all possible base change definitions. We then define a conceptual
change definition δ as a tuple so that δ = 〈Rδ,Cδ,H,D〉 where Rδ ⊆ L
is a finite set of base change definitions to be used in the change request
and implementation context, Cδ is a finite set of base change definitions to
be used in the change detection context, H is the set of supertypes of this
conceptual change definition so that H ⊆ ∆χ \ {δ}, and D is a finite set
listing all disjoint conceptual change definitions so that D ⊆ ∆χ \ (H∪{δ}).

A conceptual change definition is defined in terms of one or more base
change definitions. As a conceptual change definition is used in different con-
texts (to request and implement changes, and to detect changes), different
base change definitions can be provided for these different contexts. A base
change definition assigned to one context will only be used for that particu-
lar context (e.g., only for detecting changes). A single base change definition
can be assigned to both contexts meaning that the definition will be used

4.4 Evolution Log 85

in both contexts. Consider as an example the change where an employee
changes jobs. The company of the employee describes the current situation
of the company by means of an ontology. An employee changes jobs either
when he holds a new function within the company or when he trades-in his
old company for a new one. To express this change, we could create an con-
ceptual change definition changedJobs in terms of the following two base
change definitions:

newFunction(?x) :=
<PREVIOUS(?x)>(Individual(?x) AND
withPropertyValue(?x, ?y) AND
ofProperty(?y, function) AND object(?y, ?z)) AND

Individual(?x) AND withPropertyValue(?x, ?u) AND
ofProperty(?u, function) AND object(?u, ?v) AND

(NOT equal(?z, ?v));

leftCompany(?x) := <PREVIOUS(?x)>(Employee(?x)) AND
(NOT Employee(?x));

Note that conceptual change definitions can be defined as a subtype of
other conceptual change definitions i.e., if a modification of an ontology is an
occurrence of a conceptual change definition, then it is also an occurrence of
its super types. Finally, conceptual change definitions can be defined to be
disjoint with other conceptual change definitions i.e., if a modification of an
ontology is an occurrence of an ontology change, it cannot be an occurrence
of its disjoint conceptual change definitions.

Now that we have defined a conceptual change definition, this leaves us
with the definition of a change definition set. A change definition set is
composed of a set of conceptual change definitions. Furthermore, a change
definition set allows to import other change definition sets (e.g., the change
definition set of a depending artifact may reuse the change definition set of
an ontology it depends on). The definition is specified as follows:

Definition 4.22 (Change Definition Set). A change definition set χ is
a two-tuple so that χ = 〈S,M〉 where S = {δ1, . . . , δn} is the set of ontology
changes, and M = {χ1, . . . , χm} is the set of imported change definition
sets.

4.4 Evolution Log

In this section, we describe in more detail the evolution log. The purpose
of an evolution log is to give an overview of the evolution of an ontology by
listing all changes that have occurred. It serves maintainers of depending
artifacts in understanding the changes occurred, and is therefore a great

86 Foundations

Figure 4.10: Evolution log creation

benefit in the decision whether to update or not. Note the difference between
the version log and the evolution log: the former lists the different versions
of the ontology concepts, the latter lists the interpretations of these versions
in terms of conceptual change definitions.

In current approaches, the evolution log is the result of the changes
listed in the change request. As already discussed thoroughly in 3.2.1, this
approach has a number of serious drawbacks. In our approach, we there-
fore extend the evolution log with, besides requested and deduced changes,
occurrences of conceptual change definitions detected during the change de-
tection phase. Moreover, different users can create their own evolution log
by specifying their own change definition set. Figure 4.10 summarizes it
graphically.

An evolution log is populated with change occurrences. A change oc-
currence is an instantiation of a conceptual change definition. A change
occurrence keeps a reference to the conceptual change definition it is an
occurrence of. Remember that the conceptual change definitions itself are
defined in a change definition set. A change occurrence also keeps track of
the header of the base change definition it satisfies and parameter bindings
by means of key-value pairs 〈p, v〉 where p is a parameter denoted in the
header of the base change definitions associated with the conceptual change
definition and v is the value bound to the parameter. Unbound parameters
are not listed in a change occurrence. Note that, as we will see in Section
3.2.1, more than one set of parameter bindings may exist for a change oc-
currence as a consequence of undecidability. Furthermore, it also contains a

4.5 Summary 87

time point t representing the moment in time of the change occurrence.
For a given conceptual change definition, we define the change occur-

rences of that conceptual change definition as follows:

Definition 4.23 (Change Occurrences). The change occurrences of a
given conceptual change definition δ ∈ ∆χ (where δ = 〈Rδ,Cδ,H,D〉) is
defined as a set oδ = {〈t,G〉} so that t ∈ T is the moment in time of the
occurrence and G = {〈d,B〉} where d ∈ Rδ ∪Cδ and B = {〈p, v〉} is a set
of parameter bindings.

We conclude this section with the definition of an evolution log, defined
as a set of change occurrences:

Definition 4.24 (Evolution Log). For a change definition set χ, an evo-
lution log EL is a set of change occurrences, so that

EL =
⋃

∀δ∈∆χ

oδ

4.5 Summary

In this chapter, we discussed the foundations of our ontology evolution
framework i.e., the version log, the temporal logic SHOIN (D)T that forms
the basis of the Change Definition Language, and the evolution log.

We first introduced the notion of a version log. The general approach
taken was discussed and a formal model of the version log was presented.
The formal model defined when we consider an axiom to be a definition
of respectively a Class, Property or Individual. Furthermore, it introduced
the notion of a concept version, which describes a version of its concept by
listing the axioms that form the definition of a concept at a given moment
in time, and a concept evolution that describes the evolution of a particular
concept by keeping track of its different concept versions. Finally, a version
log is defined as a collection of concept evolutions.

Next, we presented the SHOIN (D)T temporal logic, which is a hybrid-
logic approach. The logic introduces a number of tense operators to express
temporal relations of the past tense and an @-operator to refer to spe-
cific moments in time. To consider different views on the evolution of an
ontology, the temporal logic distinguishes between parameterized and non-
parameterized tense operators. The former considers only the evolution of
a particular concept, while the latter considers the evolution of the com-
plete ontology. Furthermore, the syntax and semantics of SHOIN (D)T are
defined.

Based on this temporal logic, we defined the Change Definition Lan-
guage. We discussed the syntax of the Change Definition Language by
means of its EBNF description. Furthermore, we introduced the notion of

88 Foundations

a change definition set as a collection of conceptual change definitions. A
conceptual change definition is defined as a set of base change definitions.
Base change definitions are expressed in terms of the Change Definition
Language.

Finally, we introduced the notion of an evolution log that keeps track of
occurrences of change definitions at given moments in time.

Chapter 5

Change Definitions

In the previous chapter, we introduced the foundations of our ontology evo-
lution approach which form the basis of the different phases of the approach.
These foundations include the version log used to describe the history of an
ontology and of its individual concepts, a hybrid-logic temporal extension
to the SHOIN (D) Description Logic to express temporal relations between
axioms, a Change Definition Language to formally define the semantics of
changes based on the previously mentioned temporal logic, and the evolu-
tion log that serves as an interpretation of an ontology evolution in terms
of ontology changes defined by means of the Change Definition Language.

Now that the foundations of the approach are in place, the focus of this
chapter in on the specification of change definitions in terms of the Change
Definition Language. In our approach, the change definitions are used for
two different purposes: either to request and apply changes to an ontology or
to detect changes that have occurred but that were not explicitly requested.
In Section 5.1, we go into more detail on both purposes. Because we use
the Change Definition Language for different purposes, we evaluate change
definitions differently depending on the purpose concerned. In Section 5.2,
we discuss how change definitions can be used to specify a change request
and how such a change request is evaluated. In Section 5.3, we discuss how
change definitions are evaluated to detect changes that have occurred.

In the second part of this chapter, we explain in detail how the Change
Definition Language is used to define changes and meta-changes, thereby
highlighting a number of difficulties that should be taken into account. In
Section 5.4, we present a complete and minimal set of primitive change def-
initions for OWL. In Section 5.5, we introduce a number of representative
complex change definitions. Note that it is impossible to provide a com-
plete set of complex change definitions, as there exists an infinite number
of possible complex changes. In Section 5.6, we do the same for complex
meta-changes. We conclude this chapter with a summary in Section 5.7.

90 Change Definitions

5.1 Purpose

As already mentioned in the introduction of this chapter, conceptual change
definitions serve two purposes in our approach. Firstly, they are used by
ontology engineers to request and implement changes. Secondly, they are
used by the ontology evolution framework to detect occurrences of concep-
tual change definitions. To reflect both purposes of a conceptual change
definition, we have defined a conceptual change definition δ as a tuple of
the form 〈Rδ,Cδ,H,D〉 (as shown in Section 4.3.3 in the previous chapter).
Important for the discussion in this chapter are the sets Rδ and Cδ that
contain base change definitions respectively to be used for change request or
to be used for change detection. Note that a single base change definition
may be an element of Rδ ∩ Cδ, although this is not always possible as we
will illustrate in Section 5.4 and Section 5.5.

The Change Definition Language, introduced in Section 4.3, can be seen
as both a manipulation and a query language depending on the purpose of
the definition. Base change definitions that are used for change requests
result in the manipulation of a version log (and subsequently the ontology),
while base change definitions that are used for change detection result in a
querying of a version log. While most languages that offer the manipula-
tion and querying of data possess different constructs for both purposes, we
don’t offer dedicated language constructs in our Change Definition Language
for both purposes1, but rather evaluate base change definitions differently
depending on its purpose.

Before we discuss the use and evaluation of conceptual change definitions
for the purpose of change requests in Section 5.2 and for the purpose of
change detection in Section 5.3, we first introduce an example of a conceptual
change definition that will be used throughout both these sections. We take
as example the addSubClassOf conceptual change definition that represents
the addition of a SubClassOf Property between two Classes. The conceptual
change definition consists of a single base change definition d ∈ Rδ ∩ Cδ.
We define the base change definition d as follows:

addSubClassOf(?s, ?o) :=
NOT <PREVIOUS>(subClassOf(?s, ?o)) AND
subClassOf(?s, ?o);

The base change definition is rather straightforward as it states that a
certain ?s was previously not a subclass of ?o, but that it is a subclass of
?o at present.

1Although some limitations exist on the language constructs allowed for both purposes.
See Section 5.2.2 for more information.

5.2 Change Request 91

5.2 Change Request

As already mentioned in Section 3.2.1, ontology engineers can express their
request for changes by means of a change request. In this section, we ex-
plain the structure of such a change request (see Section 5.2.1), present the
criteria the base change definitions of an ontology change should meet to be
applicable in a change request (see Section 5.2.2), and discuss the evaluation
of a change request (see Section 5.2.3).

5.2.1 Change Request Specification

An ontology engineer can request changes to an ontology by specifying a
change request. A change request is an ordered set where each element
of the set is specified in terms of a conceptual change definition that the
ontology engineer desires to apply with concrete values for parameters of
the base change definition(s) included in the conceptual change definition.
More specifically, we define a change request as follows:

Definition 5.1. Assume χ to be a change definition set. A change request
is defined as an ordered set R = {〈δ,G〉} where δ ∈ ∆χ is the concep-
tual change definition one requests and G = {〈p, v〉} is a set of parameter
bindings.

Consider as example an ontology engineer who wants to add a subClas-
sOf Property between a Class Student and a Class Person. He formulates
a change request R making use of a conceptual change definition addSub-
ClassOf (see Section 5.1 for a definition of this change):

R = {〈addSubClassOf, {〈?s, Student〉 , 〈?o, Person〉}〉}

When specifying a change request, an ontology engineer is not obliged
to provide values for all parameters in the header of the base change def-
inition(s) of the used ontology change2. When a parameter is not bound
to a value, a default value is created when applying the conceptual ontol-
ogy change. When it concerns a Class (including a Restriction), Property
or Individual, this results respectively in an anonymous Class, Property or
Individual. When it concerns a datatype, this results in the default value
for that respective datatype (e.g., the default value for the ‘string’-datatype
is the empty string).

Consider as an example of unbound variables an ontology engineer who
wants to add an ‘allValuesFrom’-restriction on a Property worksFor with
Company as value. He specifies the following change request R making use
of a conceptual change definition addAllValuesFromRestriction (see Section
5.4 for a definition of this change):

R = {〈addAllV aluesFromRestriction, {〈?p, worksFor〉 , 〈?o, Company〉}〉}
2Although this feature should be handled with care as we will see in Section 5.2.3

92 Change Definitions

Note that, as the header of the base change definition of the concep-
tual change definition is addAllValuesFromRestriction(?r, ?p, ?o), no
value is provided for the ?r parameter in the change request. Evaluating the
change request will result in the creation of an anonymous Restriction on
the Property worksFor with all values set to Company. The new anonymous
Restriction will be bound to the ?r parameter.

When the ontology engineer wants to change an ontology so that all
values of a Property worksFor are instances of Company for a Class Person,
he may use the following change request R making use of the conceptual
changes definitions addAllValuesFromRestriction and addSubClassOf :

R = {
〈addAllV aluesFromRestriction, {〈?p, worksFor〉 , 〈?o, Company〉}〉 ,
〈addSubClassOf, {〈?s, Person〉 , 〈?o, ?r〉}〉

}

The change requests consists of two elements. The first element requests
to add an anonymous Restriction to the ontology, the second element re-
quests to add a subclass Property between the Class Person and the newly
created anonymous Restriction (as the value bound to ?r is used as value
for the second parameter ?o).

Recall that a change request by an ontology engineer may turn the on-
tology into an inconsistent state. To avoid an ontology from becoming in-
consistent, deduced changes are added by the approach to a change request
to ensure that when the change request is eventually evaluated, the on-
tology evolves from one consistent version into another consistent version.
After each change requested in a change request, our framework verifies
if the ontology would remain consistent when the requested change is ap-
plied. If consistency is no longer maintained, our framework adds deduced
changes to the change request for that particular requested change. The
approach we take to determine the deduced changes required to maintain
consistency is explained in detail in Chapter 6. To associate a set of de-
duced changes with a requested change in a change request, we define the
set deducedChanges(R, ui) as follows:

Definition 5.2 (Deduced Changes). Assume R to be a change request
and ui ∈ R a requested change. deducedChanges(R, ui) = Rd where Rd is
a change request filled with deduced changes for a requested change ui of a
change request R.

Note that the set of deduced changes associated with a requested change
is in fact again a change request itself. As a consequence, a deduced change
can again be associated with a set of deduced changes. Figure 5.1 graphically
represents a change request augmented with sets of deduced changes. The
change request contains a number of requested changes (u1, . . . , un) and a

5.2 Change Request 93

Figure 5.1: A change request with deduced changes

set of deduced changes (u1,1, u1,2) for the requested change u1. In its turn,
another set of deduced changes is associated with the deduced change u1,2.

5.2.2 Restrictions

For a conceptual change definition δ to be applicable in a change request, its
base change definitions d ∈ Rδ should meet a number of prerequisites that
we will discuss in this section. When evaluating the changes of a change
request, we want the outcome to be predictable and consistent. In order to
achieve this, we need to restrict the use of the Change Definition Language
when defining change definitions for the purpose of change requests to avoid
non-determinism.

In general, a base change definition expresses a change in terms of dif-
ferences between the current version of ontology concepts (by using non-
temporal expressions) and preceding versions of ontology concepts (by us-
ing temporal expressions). When defining change definitions for change
requests, the temporal expressions express the situation before the change
and can be seen as preconditions of the change, while the non-temporal
expressions express the situation after the change and can be seen as post-
conditions of the change. In other words, the body of a change definition
consists of the following form:

precondition AND postcondition

A first restriction concerns the use of tense operators in the precondition
of a base change definition. Base change definitions used for requesting
changes take as precondition only the version of the ontology right before
the change into account. E.g., when adding a new Class Person to an
ontology, the precondition is that right before this change no Class Person
exists. We therefore restrict the temporal expressions of the precondition to
use solely the <PREVIOUS> operator as tense operator.

The postcondition of a base change definition on the other hand ex-
presses the end result of a change i.e., how the new version of the ontology
should look like. Important is that the postcondition must be deterministic.

94 Change Definitions

To assure determinism, the following restrictions of the Change Definition
Language apply to the postcondition3:

• Prohibit OR-expressions: OR expressions typically lead to nondeter-
minism as either one of the operands can be chosen to result into a
valid end result.

• Prohibit transitive properties: the use of transitive properties by
means of the asterix-symbol (‘*’) is prohibited as it leads to nonde-
terminism. E.g., there exists multiple ways to change an ontology so
that the expression subClassOf*(Student, Person) is satisfied (un-
less these two Classes are the only two Classes defined).

• Prohibit abstract concepts: there exists a number of abstract con-
cepts in the OWL meta-schema we defined in Section 4.3.1 i.e., con-
cepts that can only have indirect instances through their children.
An example of such an abstract concept is the Property concept as
properties are always either object properties or datatype properties
(never just a Property). The use of abstract concepts is prohibited in
postconditions.

• Prohibit native functions: no native functions (i.e., equal, lt,
and gt) can be used in preconditions. These native functions are
only used to express a comparison between concepts or values, but
never can result into effective changes to an ontology when used in the
postcondition.

5.2.3 Evaluation

The evaluation of a change request results into one or more new concept
versions in the version log representing the new state of the ontology after
changes. Recall from Section 3.2 that a change request evaluation doesn’t
directly result in a modified ontology, but only updates the associated ver-
sion log. The requested changes are only applied to the actual ontology on
execution of the change implementation phase. In this section, we discuss
both the change request evaluation as well as the implementation of the
changes in the actual ontology.

Change Request Evaluation

As defined in Section 5.2.1, a change request specified by an ontology en-
gineer consists of a list of requested changes. To ensure consistency main-
tenance, the framework possibly associates deduced changes to requested

3For these restrictions, we assume the postcondition to be in Negation Normal Form
(NNF)

5.2 Change Request 95

changes of the change request. To evaluate a change request, all its re-
quested changes are evaluated. Note that a requested change is evaluated
first before evaluating the associated set of deduced changes. The evaluation
of a set of deduced changes is identical to the evaluation of a normal change
request. Note that when evaluating a change request, a requested change
and all its deduced changes are evaluated in its entirety before evaluating
the next requested change of the change request.

Algorithm 1 Change request evaluation
evaluateChangeRequest(R, G):

for all u in R do
δ = conceptualChangeDefinition(u)
setParameterBindings(u, G)

for all d ∈ Rδ in δ do
if res = evaluatePrecondition(d, G) then

evaluatePostcondition(d, G)
continue

end if
end for all

if res then
dc = deducedChanges(R, u)
evaluateChangeRequest(dc, G)

else
undoChanges

end if
end for all

The pseudo-code to evaluate a change request is shown in Algorithm 1.
The algorithm iterates over all requested changes of a change request R. For
each requested change u, it retrieves its conceptual change definition δ and
sets its parameter bindings. For each base change definition d that may be
used in a change request, it is verified whether the precondition of the base
change definition holds. If the precondition holds, the postcondition of the
base change definition is evaluated and remaining base change definitions
are skipped. If the precondition fails, the next base change definition (if
any) is tried. Note that ontology engineers may not rely on the evaluation
order of the algorithm, but rather should ensure that the preconditions of
the different base change definitions are exclusive. When the evaluation
of the requested change succeeds, associated deduced changes are retrieved
and evaluated. However, when the requested change was not successfully
evaluated (because no precondition of any of the base change definitions

96 Change Definitions

was satisfied), the complete change request is canceled and all new concept
versions resulted from the change request are undone. After a change request
is successfully evaluated, the requested and deduced changes are added to
the evolution log as occurrences of change (see Section 4.4). In the following
paragraphs, we provide more details concerning the evaluation of pre- and
postconditions.

Preconditions The evaluation of a precondition boils down to the execu-
tion of the temporal query that the precondition represents on the version
log. Before executing the temporal query, the current time point (i.e., now)
is raised by one to assure that the precondition verifies the state of the on-
tology just before the change. The result of the query is a set of a set of
parameter bindings where the parameters are bound to the concepts satisfy-
ing the precondition. A precondition holds if the query execution produces
a non-empty result. Otherwise, we say that the precondition doesn’t hold
or fails. Consider as example the following change request:

R = {〈addSubClassOf, {〈?s, Student〉 , 〈?o, Person〉}〉}

When we look at the base change definition of the addSubClassOf con-
ceptual change definition (as given in Section 5.1), the precondition with
bound variables is:

NOT <PREVIOUS>(subClassOf(Student, Person))

The evaluation of this precondition returns as answer either the result
{{〈?s, Student〉 , 〈?o, Person〉}} if Student is not a subclass of Person, or an
empty result if Student is already a subclass of Person. Note that these are
the only two possible results as both variables were already bound. Multiple
results can only be obtained when at least one unbound variable exists in
the precondition. Consider as example the following change request where
the ?o variable is unbound:

R = {〈addSubClassOf, {〈?s, Student〉}〉}

In this example, the precondition with bound variables is:

NOT <PREVIOUS>(subClassOf(Student, ?o))

The evaluation of the precondition would return as result all possible
values for ?o i.e., all Classes that don’t have as a direct subclass the Class
Student.

5.2 Change Request 97

Postconditions A postcondition is evaluated for each element of the re-
sult set of the precondition evaluation. As a consequence of the restrictions
imposed on the Change Definition Language (see Section 5.2.2), a postcon-
dition (transformed into NNF) must be of the following form:

expression AND ... AND expression

An expression of a postcondition is of the form Class(?x), NOT Class
(?x), Property(?x, ?y) or NOT Property(?x, ?y) where Class and Prop-
erty are respectively Classes and Properties of the OWL meta-schema. The
order in which the expressions are evaluated is as follows: (1) Class(?x)
expressions, (2) Property(?x, ?y) expressions, (3) NOT Property(?x, ?y)
expressions, and (4) NOT Class(?x) expressions. Note that for each con-
cept bound to a variable that serves as subject of an expression4, only one
new version can be added to the version log during the evaluation of a base
change definition.

Before we discuss the rules to evaluate the different types of expressions,
we introduce two definitions that aid us in specifying the evaluation rules.
We first define when we consider a concept version to be the current concept
version for a given concept name. Subsequently, we define when we consider
a concept version to be closed i.e., a concept version is closed if the end time
point is not equal to the current time.

Definition 5.3 (Current Concept Version). A concept version υ is de-
fined to be the current concept version for a given Concept with name σ ∈ N,
notation currentConceptVersion(υ, σ), iff υ = 〈σ,A,D, s, ts, te〉∧ te = now.

The definition of a closed concept version is defined as follows:

Definition 5.4 (Closed Concept Version). A concept version υ is de-
fined to be a closed concept version, notation closedConceptVersion(υ), iff
υ = 〈σ,A,D, s, ts, te〉 ∧ te < now.

The rules to evaluate each expression are given as follows:

• Class(?x): the outcome of this expression is different depending on
whether ?x is bound to a value or not. When ?x is bound, a new
concept of type Class is added to the version log with in its initial
concept version the ID set equal to the value of ?x. On the other
hand, when ?x is not bound to a value, a new anonymous concept of
type Class is added to the version log.

If ?x is bound, assume σ ∈ N to be the the value of ?x. If ?x is
unbound, assume σ to be the empty string. The evaluation of the

4?x is noted as subject of an expression when ?x is used as first parameter in the
expression.

98 Change Definitions

expression results into a new concept evolution Eσ containing an initial
concept version υ so that

υ = 〈σ, {}, {}, ‘pending’, now, now〉

In the case that we are evaluating deduced changes, the newly created
version υ is a deduced version of a version υp = 〈ρ,A,D, s, ts, te〉. To
reflect this in the version log, we state D ∪ {υ}.

Consider as an example the following expressions. The expression
Class(Person) (where ?x is bound to Person) results into the cre-
ation of a new Class with ID equal to ‘Person’, while the expression
Class(?x) (with unbound variable ?x) results into the creation of an
anonymous Class.

• NOT Class(?x): the outcome of this expression is the deletion of the
given concept. Therefore, this type of expression requires ?x to be
bound to a value. The latest concept version of the evolution concept
of type Class with ID equal to the value of ?x is closed i.e., the end
time point is set to the current time.

Assume σ ∈ N to be the value of ?x. If there exists a concept ver-
sion υc of σ so that currentV ersion(υc, σ), we close this version by
setting the end time point of the version equal to now − 1 so that
closedConceptV ersion(υc) holds.

Consider the following example. The expression NOT Class(Person)
(where ?x is bound to Person) sets the end time point of the latest
concept version of the evolution concept of Person to now − 1.

• Property(?x, ?y): the outcome of this expression is the creation of
a property of type Property between the values of ?x and ?y. It is
therefore required that both ?x and ?y are bound to a variable. If
no new concept version of the concept bound to ?x has been added to
the version log in the evaluation of this conceptual change definition, a
new concept version of the concept bound to ?x, which is a copy of the
previous concept version, is added and this previous concept version
is closed. Subsequently, a property of type Property with as object
the value of ?y is added to the latest concept version of the concept
bound to ?x.

Assume σ ∈ N to be the value of ?x and a concept version υc =
〈σ,A,D, s, ts, te〉 so that currentV ersion(υc, σ). When no new con-
cept version of σ has been created in the evaluation of the current
conceptual change definition, we close the current version by setting
the end time point equal to now−1 so that closedConceptV ersion(υc)

5.2 Change Request 99

holds. Assuming that an axiom φ correctly represents the property to
be added, a new version υ is added to Eσ so that

υ = 〈σ,A,D, ‘pending’, now, now〉 ∧A � φ

When a new concept version of σ has already been created in the eval-
uation of the current conceptual change definition, the set of axioms
of the current version υc is adapted so that A � φ.

Consider as example the following expression. The expression domain-
(name, Person) adds to the latest concept version of the evolution
concept of Property name the OWL property domain with as object
Person.

• NOT Property(?x, ?y): the outcome of this expression is the deletion
of a property of type Property between the values of ?x and ?y. It is
therefore required that both ?x and ?y are bound to a value. If no
new concept version of the concept bounded to ?x has been added to
the version log in the evaluation of this conceptual change definition, a
new concept version of the concept bound to ?x, which is a copy of the
previous concept version, is added and this previous concept version
is closed. Subsequently, a property of type Property with as object
the value bound to ?y is deleted from the latest concept version of the
concept bound to ?x.

Assume σ ∈ N to be the value of ?x and a concept version υc =
〈σ,A,D, s, ts, te〉 so that currentV ersion(υc, σ). When no new con-
cept version of σ have been created in the evaluation of the current
conceptual change definition, we close the current version by setting
the end time point equal to now−1 so that closedConceptV ersion(υc)
holds. Assuming that an axiom φ correctly represents the property to
be deleted, a new version υ is added to Eσ so that

υ = 〈σ,A,D, ‘pending’, now, now〉 ∧A 2 φ

When a new concept version of σ has already been created in the eval-
uation of the current conceptual change definition, the set of axioms
of the current version υc is adapted so that A 2 φ.

Consider as example the following expression. The expression NOT
domain(name, Person) removes from the latest concept version of
the evolution concept of Property name the OWL property domain
with as object Person.

Note that requesting an ontology change with one or more unbound
parameters is a powerful feature as it allows to apply a change to all ontology
concepts that satisfy the precondition of the base change definitions of the

100 Change Definitions

conceptual change definition. Assume we want to add a Class Object as
parent of all Classes of our ontology. Instead of requesting a change for each
Class, we can achieve the same result with only one requested change. To
do so, one can specify a change request R consisting of one single requested
change with an unbound variable ?s that looks as follows:

R = {〈addSubClassOf, {〈?o,Object〉}〉}

The change request results to the creation of a subClassOf Property
between all concepts that were previously not a subclass of the Class Object.
This feature should be handled with care as the following example illustrates.
The following change request results in the creation of subClassOf Properties
between all Classes of the ontology, meaning that all Classes are set to be
equal:

R = {〈addSubClassOf, {}〉}

Change Request Implementation

After a change request is evaluated, the requested changes are implemented
in the actual ontology when performing the change implementation phase.
Implementing the requested change in the actual ontology is straightforward
as it only consists of replacing the old ontology with a latest snapshot of
the version log. So, the latest version of the ontology O is created as follows
(recall from Section 4.2.2 that S(t) returns a snapshot of an ontology at the
given time point t):

O = S(now)

5.3 Change Detection

The evaluation of change requests, as described in the previous section, re-
sults into updates of the version log and eventually into the ontology itself
when performing the change implementation phase. Furthermore, the re-
quested and deduced changes of a change request are added to the evolution
log. The purpose of this evolution log is to describe the evolution of an on-
tology in terms of occurrences of conceptual change definitions. The change
detection phase of our framework has as task to further improve the under-
standability of the evolution of an ontology. The change detection phase
therefore enriches the evolution log by detecting additional occurrences of
conceptual change definitions not specified in a change request. To be able
to detect occurrences of conceptual change definitions, conceptual change
definitions are evaluated as temporal queries on the version log. In Sec-
tion 5.3.1, we discuss the evaluation of conceptual change definitions for the
purpose of change detection. As a side effect of the change detection mech-
anism, we are able to recover from a number of changes that, in retrospect,

5.3 Change Detection 101

turn out to be needlessly applied changes, but were caused by the use of a
sequence of changes instead of an equivalent complex change. The recov-
ery of changes is handled by the change recovery phase and is discussed in
Section 5.3.2.

5.3.1 Evaluation

As already mentioned, conceptual change definitions are evaluated as tem-
poral queries on a version log in order to detect occurrences of conceptual
change definitions. An evolution log can be enriched (or completely con-
structed in the absence of manually requested changes) with detected oc-
currences of conceptual change definitions. The evaluation of conceptual
change definitions for the purpose of change detection is schematically de-
scribed by Algorithm 2.

Algorithm 2 Change detection
changeDetection(χ):

while t++ ≤ now do
for all δ in ∆χ do

for all d ∈ Dδ in δ do
result = queryVersionLog(d, t)
for all row in result do

addToEvolutionLog(row, δ, t)
end for all
if result not empty then

continue
end if

end for all
end for all

end while

The change detection algorithm iterates over all time points (indicated
with the variable t in the algorithm) that were added to the version log
since the last time the algorithm ran. The first time the change detection
algorithm is executed, the variable t is set to 0. For a given change defi-
nition set χ, we iterate over all its conceptual change definitions (including
imported ones) δ ∈ ∆χ. For each base change definition d ∈ Dδ that is listed
to be applicable for change detection in a conceptual change definition δ,
we query the version log at the given moment in time t. For each row in
the result of the query execution, we add an occurrence of the conceptual
change definition δ with the parameters bindings contained in the row and
the given moment in time t. As soon as the query execution of one base
change definition of a conceptual change definition δ returns a non-empty

102 Change Definitions

result, we omit the querying of the remaining base change definitions of δ.
Note that the occurrence of a conceptual change definition is only added
to the evolution log if the same occurrence doesn’t already exists in the
evolution log (when the change was specified in a change request).

In the remainder of this section, we focus both on the flexibility of the
change detection approach proposed as well as on the problem of undecid-
ability of the change detection approach that may occur in certain situations.

Flexibility

Notice that the change detection process should be particularly flexible as
a single change can in most cases be realized in different ways (unless it
is a primitive change). Therefore, the change detection process should not
depend on the steps taken to achieve a particular change neither on the order
of these steps. It is the responsibility of the change definitions to specify the
flexibility allowed. Figure 5.2 illustrates this with two situations for which
both the occurrence of the rangeWeakened conceptual change definition will
be detected. We give a simplified version5 of the base change definition of
rangeWeakened as below:

rangeWeakened(?p) :=
// the range of ?p in the past was ?o
<SOMETIME(?p)>(range(?p, ?o)) AND
// but changed to ?s
(NOT range(?p, ?o)) AND range(?p, ?s) AND
// and ?o is currently a subclass of ?s
subClassOf*(?o, ?s)

In the first situation (A) shown in Figure 5.2, the range of Property p
is changed from Class B to Class A being a superclass of B. This change
confirms to the change definition of rangeWeakened given above. In the
second situation (B), the range of Property p is changed from Class B to
Class A going from step 1 to step 2. This change doesn’t conform to the
change definition of rangeWeakened as the subClassOf condition is not met.
However, going from step 2 to step 3, the subclass relation between B and
A is added, resulting as yet in the detection of the rangeWeakened change
as all conditions of the base change definition are now met.

Some ontology engineers may feel that the definition of rangeWeak-
ened as given above is too flexible and the second situation of our example
shouldn’t be considered as an occurrence of the rangeWeakened conceptual
change definition because the subClassOf Property was only added after
the range of Property p had already been changed. These ontology engi-
neers can easily overwrite the rangeWeakened conceptual change definition

5We introduce the complete version of the rangeWeakened base change definition in
Section 5.6.

5.3 Change Detection 103

Figure 5.2: Two examples illustrating the flexibility of the change detection
process

to require that a subClassOf Property must exist before and after the range
changes. The base change definition then looks as follows where an addi-
tional condition is added to verify that the subClassOf Property already
existed before:

rangeWeakened(?p) :=
// the range of ?p in the past was ?o
<SOMETIME(?p)>(range(?p, ?o) AND
// ?o is already a subclass of ?s

subClassOf*(?o, ?s)) AND
// but changed to ?s
(NOT range(?p, ?o)) AND range(?p, ?s) AND
// and ?o is currently a subclass of ?s
subClassOf*(?o, ?s)

Undecidability

When detecting changes, undecidability may arise in the sense that at a
given moment in time it cannot be determined which conceptual change
definition from a number of possibilities did actually occur. The example
shown in Figure 5.3 clarifies this statement. In the first step, a Class A is
defined as the subclass of both a Class B and a Class C. In the following two
successive steps, first the subClassOf Property between A and B is deleted,
followed by the deletion of the subClassOf Property between A and C.
From step 3 to step 4, a new subClassOf Property is added between A and
D. At this moment in time, the change detection process may detect that

104 Change Definitions

Figure 5.3: Uncertainty in change detection

for a Class A the subClassOf Property has changed from B to D, and the
subClassOf Property has changed from C to D.

The problem we encounter is that in the situation as presented in Figure
5.3, it is impossible that the subClassOf Property has changed both from
B to D and from C to D at the same moment in time. The only situation
in which this can occur is when we are dealing with transitive changes,
which is not the case in our example. When something changes from x to
y and afterwards from y to z, we call the change from x to z a transitive
change. Expressed in terms of the subClassOf Property, when for a Class
A a subClassOf Property changes first from B to C and subsequently from
C to D, we say that the change of the subClassOf Property from B to
D is a transitive change. In this case, the change detection approach may
detect after the last change two occurrences of a change to the subClassOf
Property at the same time: one being the change from C to D, the other
being the transitive change from B to D. In Section 5.5, we explain how
an occurrence of a conceptual change definition can be determined to be a
transitive change and the detection of transitive changes can be avoided.

Undecidability can only arise for conceptual change definitions that mod-
ify for a subject a certain Property from an old value to a new value. We
make use of the parameter annotations [subject], [old] and [new] in the
header of the base change definitions to determine whether undecidability
has arisen or not. We are dealing with undecidability when two or more
occurrences are detected of the same conceptual change definition, with the
same subject, with either the same old or new value and at the same mo-
ment in time. Furthermore, none of these occurrences is a transitive change.
When undecidability is determined, we don’t add an occurrence of the con-
ceptual change definition to the evolution log for each detected occurrence

5.3 Change Detection 105

as we would normally do. Instead we add only one single occurrence of the
conceptual change definition for all the detected occurrences involved in the
undecidability, but add all the possible parameter bindings to reflect the
undecidability in the evolution log. For our example, this means we would
add the occurrence of the changeSubClassOf conceptual change definition
as shown below to the evolution log. All possible parameter bindings are
listed in one set indicating that all of them are correct parameter bindings,
although only one of them reflects the real situation. The change occurrence
is shown below (note that the time point 23 is randomly chosen):

〈changeSubClassOf,
{{〈?s,A〉 , 〈?o1, B〉 , 〈?o2, D〉}, {〈?s,A〉 , 〈?o1, C〉 , 〈?o2, D〉}},
23〉

5.3.2 Change Recovery

As discussed in Section 3.2.1, a drawback of using a sequence of changes
instead of a dedicated complex change, is possibly an unnecessary loss of
data. In our ontology evolution framework, consistency is checked after each
step, possibly adding deduced changes to overcome inconsistencies. So when
performing a change using a sequence of changes, several deduced changes
may have been added that – when considering the sequence of changes as a
single complex change – may turn out to be superfluous. However, because
our approach allows detecting when a sequence of changes corresponds to a
single complex change (see the Change Detection algorithm presented in the
previous section), it becomes possible to find unnecessarily deduced changes.
In this subsection, we explain our change recovery approach to recover from
unnecessary made changes when a complex ‘modify’-change is detected.

As explained in Section 5.2.3, deduced changes associated with a re-
quested change in a change request result into deduced concept versions in
the version log. In a version log, a deduced concept version υ is always spec-
ified as part of a concept version υC,n that is part of an evolution concept
EC . This means that the cause of the creation of a deduced concept version
is the transition from the version υC,n−1 to the concept version υC,n of EC

where υC,n−1 is the directly preceding concept version of υC,n. We express
this as cause(υ, υC,n−1, υC,n). Consider as an example the version log intro-
duced in Section 4.1.3 on Page 67. To enhance readability, we repeat the

106 Change Definitions

version log below:

Ω = 〈O, {EA,EB,EC}〉

EA = {υA,0 = 〈‘A’, {A v B}, {}, ‘implemented’, 0, 0〉 ,
υA,1 = 〈‘A’, {A v B,A v C}, {υB,1}, ‘implemented’, 1, now〉}

EB = {υB,0 = 〈‘B’, {B v ¬C}, {}, ‘implemented’, 0, 0〉 ,
υB,1 = 〈‘B’, {}, {}, ‘implemented’, 1, now〉}

EC = {υC,0 = 〈‘C’, {}, {}, ‘implemented’, 0, now〉}

In this example, the concept version υB,1 is a deduced concept version of
υA,1. As a consequence, the cause of creation of υB,1 is the transition from
υA,0 to υA,1. We therefore say: cause(υB,1, υA,0, υA,1). When we would
now delete the subClassOf Property between A and B, an occurrence of
changeSubClassOf will be detected for A where a subClassOf Property is
changed from B to C6. After this change, the version log looks as follows:

Ω = 〈O, {EA,EB,EC}〉

EA = {υA,0 = 〈‘A’, {A v B}, {}, ‘implemented’, 0, 0〉 ,
υA,1 = 〈‘A’, {A v B,A v C}, {υB,1}, ‘implemented’, 1, 1〉 ,
υA,2 = 〈‘A’, {A v C}, {}, ‘implemented’, 2, now〉}

EB = {υB,0 = 〈‘B’, {B v ¬C}, {}, ‘implemented’, 0, 0〉 ,
υB,1 = 〈‘B’, {}, {}, ‘implemented’, 1, now〉}

EC = {υC,0 = 〈‘C’, {}, {}, ‘implemented’, 0, now〉}

As the transition from υA,0 to υA,2 is detected to be a complex change
changeSubClassOf , this means that deduced versions caused by one or
more concept versions of A between υA,0 and υA,2 were possibly added need-
lessly. In our example, it is indeed the case that the disjointness between B
and C was deleted needlessly.

To be able to recover from unnecessarily made changes, we first need to
determine the deduced concept versions that may be considered for change
recovery. To do so, we have to extend the change detection process. Instead
of just determining the different ontology concepts that satisfy a particular
change definition, we also need to keep track of which versions of these
ontology concepts satisfied the change definition. E.g., the ontology change
changeSubClassOf was detected for the parameters ?s = A, ?o1 = B and
?o2 = C. The versions involved to satisfy the change definition were the
following: for A these were υA,0 and υA,2, for B only υB,0, and for C also
only υC,0. To select the deduced concept versions that possibly may be

6Note that the order of changes has no influence on the change detection process. The
same complex change will be detected whether we first add subClassOf(A, C) and then
delete subClassOf(A, B), or first delete subClassOf(A, B) and then add subClassOf(A,

C).

5.4 Primitive Change Definitions 107

recovered from, we are only interested in these deduced concept versions that
were caused by concept versions of the ontology concept that have changed.
We use the [subject] parameter annotations in the header of base change
definitions to determine the subject of a change. In our example, the Class
A is the subject.

For the selected subject, we need to verify if there exists deduced concept
versions caused by one of the intermediate concept versions that together
form the complex change. The current concept version of A (in our exam-
ple υA,2) may be omitted as it is the end result of the detected complex
change. So for our example, we need to check if there exists a υ so that
cause(υ, υA,0, υA,1) is true. The only concept version satisfying this condi-
tion is υB,1.

In the next step, we undo all selected deduced concept versions. Undoing
concept versions is straightforward as we can easily return to the previous
version using the version log. After the deduced concept versions have been
undone, we check if the ontology without these versions remains consistent.
Consistency checking is done as described in the consistency maintenance
phase (see Section 3.2.1). In our example, this means that we undo the con-
cept version υB,1 so that υB,0 becomes once more the current concept version
for B. When the ontology remains consistent, we successfully recovered from
unnecessary made changes. When the ontology becomes inconsistent, the
change is impossible to recover and the removed deduced concept version is
put back in place.

Important to note is that the permission of the ontology engineer is
always required in order to effectively recover a change. The ontology evo-
lution framework merely suggests changes that it can recover to the ontology
engineer, but it remains the decision of the ontology engineer whether or not
to recover them.

In the remaining sections of this chapter, we present a number of ex-
amples of conceptual change definitions. In Section 5.4 and Section 5.5
we discuss respectively primitive and complex change definitions, while in
Section 5.6 we discuss complex meta-changes.

5.4 Primitive Change Definitions

In [51], Klein already presented a classification of primitive changes for the
OWL ontology language7. We take the same classification as a starting
point, but some differences exist. E.g., Klein considers ‘modify’-changes,
which specify that an old value is replaced by a new value, as part of the
set of primitive changes. However, all ‘modify’-changes can be expressed
as a combination of ‘delete’- and ’add’-changes, and should therefore not
be considered as primitive changes. Klein also identifies different changes

7However, no formal definitions for these primitive changes were given.

108 Change Definitions

for adding property restrictions to a Class and adding subclass/equivalence
relations. However, from a DL point of view, adding property restrictions
is realized by adding either a subclass relation (in the case of necessary
conditions) or an equivalence relation (in the case of necessary & sufficient
conditions) between a Class and a Restriction. As we desire to offer a
complete, but minimal8 set of primitive changes, we omit the additional
changes for adding property restrictions to a Class from the set of primitive
changes.

Table 5.1 and Table 5.2 give an overview of our set of primitive changes
for OWL. The changes listed form a complete set of primitive changes for
OWL DL; the primitive changes for OWL Lite are a subset of this. The
first column of the tables shows the header of the base change definition
and the second column indicates whether it regards a change for both the
Lite and DL variant of OWL (‘Lite+DL’), or only the DL variant of OWL
(‘DL’). ‘Add’- and ‘delete’-changes are provided for all the different OWL
constructs.

We will not provide formal definitions for all primitive changes listed
in Table 5.1 and Table 5.2, as the majority of definitions are very similar.
Instead, we provide a number of definitions for representative changes and
mention the other primitive changes that are defined in a similar way. For
the first definition, we give the complete conceptual change definition; while
for the other changes we restrict ourselves to the base change definition. For
each change, we also give a short informal description. Notice that the body
of the base change definitions of all primitive changes is a conjunction of a
temporal and non-temporal expression.

The first definition we discuss is the addClass conceptual change defini-
tion which corresponds to the addition of a new named Class to the ontology.
This conceptual change definition and its base change definition are defined
as follows:

addClass = 〈{d} , {d} , {}, {. . .}〉

addClass(?c) := NOT <PREVIOUS>(Class(?c)) AND Class(?c);

The base change definition d is used for both the purpose of change
requests and change detection as d ∈ Rδ ∩ Cδ. It specifies that a certain
?c is currently a Class but was in the previous version not a Class. Note
that this definition does not suffice to be used to request the addition of an
anonymous Class. The precondition of this definition verifies if ?c is not yet
a Class in order to prevent an ontology from having multiple Classes with
the same ID. However, there may exist multiple anonymous Classes i.e.,
Classes with no ID set, within a single ontology. We therefore introduce the
following conceptual change definition to request the addition of anonymous
Classes:

8Minimal in the sense that removing one of the primitive changes makes it no longer
possible to perform all possible changes.

5.4 Primitive Change Definitions 109

Header OWL Variant
Class
addClass(?c) Lite+DL
addAnonymousClass(?c) Lite+DLL
deleteClass(?c) Lite+DL
addSubClassOf(?s, ?o) Lite+DL
deleteSubClassOf(?s, ?o) Lite+DL
addEquivalentClass(?s, ?o) Lite+DL
deleteEquivalentClass(?s, ?o) Lite+DL
addDisjointWith(?s, ?o) DL
deleteDisjointWith(?s, ?o) DL
addToOneOf(?s, ?o) DL
deleteOneOf(?s) DL
addToIntersectionOf(?s, ?o) Lite-DL
deleteIntersectionOf(?s) Lite-DL
addToUnionOf(?s, ?o) DL
deleteUnionOf(?s) DL
addComplementOf(?s, ?o) DL
deleteComplementOf(?s, ?o) DL
Restriction
addAllValuesFromRestriction(?r, ?p, ?o) Lite+DL
deleteAllValuesFromRestriction(?r) Lite+DL
addSomeValuesFromRestriction(?r, ?p, ?o) Lite+DL
deleteSomevaluesFromRestriction(?r) Lite+DL
addHasValueRestriction(?r, ?p, ?o) DL
deleteHasValueRestriction(?r) DL
addMaxCardinalityRestriction(?r, ?p, ?v) Lite+DL
deleteMaxCardinalityRestriction(?r) Lite+DL
addMinCardinalityRestriction(?r, ?p, ?v) Lite+DL
deleteMinCardinalityRestriction(?r) Lite+DL
addCardinalityRestriction(?r, ?p, ?v) Lite+DL
deleteCardinalityRestriction(?r) Lite+DL
Resource
addLabel(?s, ?v) Lite+DL
deleteLabel(?s, ?v) Lite+DL
addComment(?s, ?v) Lite+DL
deleteComment(?s, ?v) Lite+DL

Table 5.1: Classification of primitive changes for OWL

110 Change Definitions

Header OWL Variant
Property
addObjectProperty(?p) Lite+DL
deleteObjectProperty(?p) Lite+DL
addDatatypeProperty(?p) Lite+DL
deleteDatatypeProperty(?p) Lite+DL
addSubPropertyOf(?s, ?o) Lite+DL
deleteSubPropertyOf(?s, ?o) Lite+DL
addDomain(?s, ?o) Lite+DL
deleteDomain(?s, ?o) Lite+DL
addRange(?s, ?o) Lite+DL
deleteRange(?s, ?o) Lite+DL
addEquivalentProperty(?s, ?o) Lite+DL
deleteEquivalentProperty(?s, ?o) Lite+DL
addInverseOf(?s, ?o) Lite+DL
deleteInverseOf(?s, ?o) Lite+DL
addFunctional(?p) Lite+DL
deleteFunctional(?p) Lite+DL
addInverseFunctional(?p) Lite+DL
deleteInverseFunctional(?p) Lite+DL
addTransitive(?p) Lite+DL
deleteTransitive(?p) Lite+DL
addSymmetric(?p) Lite+DL
deleteSymmetric(?p) Lite+DL
Individual
addIndividual(?i) Lite+DL
deleteIndividual(?i) Lite+DL
addInstanceOf(?i, ?c) Lite+DL
deleteInstanceOf(?i, ?c) Lite+DL
addPropertyValue(?p, ?s, ?o) Lite+DL
deletePropertyValue(?p, ?s, ?o) Lite+DL
addSameAs(?s, ?o) Lite+DL
deleteSameAs(?s, ?o) Lite+DL
addDifferentFrom(?s, ?o) Lite+DL
deleteDifferentFrom(?s, ?o) Lite+DL
addToAllDifferent(?s, ?o) Lite+DL
deleteAllDifferent(?i) Lite+DL

Table 5.2: Classification of primitive changes for OWL (continued)

5.4 Primitive Change Definitions 111

• Name: addAnonymousClass
Description: Represents the change where a new anonymous Class is
added the ontology. This definition differs from the addClass definition
as there cannot exist more than one named Class with the same ID
at the same moment in time within the same ontology, although there
can exist numerous anonymous Classes at the same time. Therefore,
we do not take the previous version of the ontology into consideration.
Note that this change definition is therefore also not suitable to detect
the addition of anonymous Classes. However, the change definition of
addClass suffices to detect the addition of both named and anonymous
Classes.
Definition:

addAnonymousClass(?c) := Class(?c)
Similarly defined changes: none

The change definitions of the remaining representative primitive changes
are enumerated below:

• Name: deleteClass(?c)
Description: Represents the change where an existing Class is deleted
from the ontology.
Definition:

deleteClass(?c) := <PREVIOUS>(Class(?c)) AND
NOT Class(?c);

Similarly defined changes: deleteAllValuesFromRestriction,
deleteSomeValuesFromRestriction, deleteHasValueRestriction,
deleteMaxCardinalityRestriction, deleteMinCardinalityRestriction,
deleteCardinalityRestriction, deleteObjectProperty,
deleteDatatypeProperty, deleteIndividual

• Name: addSubClassOf(?s, ?o)
Description: Represents the change where a new subclass relation is
added between two Classes or between a Class and a Restriction.
Definition:

addSubClassOf(?s, ?o) :=
NOT <PREVIOUS>(subClassOf(?s, ?o)) AND
subClassOf(?s, ?o);

Similarly defined changes: addEquivalentClass,
addDisjointWith, addLabel, addComment, addSubProperty,
addDomain, addRange, addEquivalentProperty, addInverseOf,
addInstanceOf, addSameAs, addDifferentFrom, addComplementOf

• Name: deleteSubClassOf(?s, ?o)
Description: Represents the change where an existing subclass re-
lation between two Classes or between a Class and a Restriction is

112 Change Definitions

deleted.
Definition:

deleteSubClassOf(?s, ?o) :=
<PREVIOUS>(subClassOf(?s, ?o)) AND
NOT subClassOf(?s, ?o);

Similarly defined changes: deleteEquivalentClass,
deleteDisjointWith, deleteLabel, deleteComment, deleteSubProperty,
deleteDomain, deleteRange, deleteEquivalentProperty,
deleteInverseOf, deleteInstanceOf, deleteSameAs,
deleteDifferentFrom, deleteComplementOf

• Name: addToUnionOf(?s, ?o)
Description: Represents the change where a Class ?o is added to the
‘unionOf’ statement of a Class ?s. Note that the range of a ‘unionOf’
Property is a list of Class descriptions (?l).
Definition:

addToUnionOf(?s, ?o) :=
NOT <PREVIOUS>(unionOf(?s, ?l) AND
member(?l, ?o)) AND
unionOf(?s, ?l) AND member(?l, ?o);

Similarly defined changes: addToOneOf, addToAllDifferentFrom

• Name: deleteUnionOf(?s, ?o)
Description: Represents the change where a ‘unionOf’ relation is
deleted from a Class. Note that no primitive change exists to remove
a member from the ‘unionOf’ list, as this change can be realized by first
removing the ‘unionOf’ relation followed by re-adding all its members
except the one we desire to delete.
Definition:

deleteUnionOf(?c) := <PREVIOUS>(unionOf(?c, ?l)
NOT unionOf(?c, ?l);

Similarly defined changes: deleteOneOf, deleteAllDifferentFrom

• Name: addAllValuesFromRestriction(?r, ?p, ?o)
Description: Represents the change where an ‘AllValuesFrom’ re-
striction ?r is added to the ontology for a given Property ?p with as
object a Class description or data range ?o. This primitive change
has a similar problem as we encountered with adding named and
anonymous Classes. Restrictions are in general added to an ontol-
ogy as being anonymous (without ID). This means that at the same
moment in time, within the same ontology, numerous (anonymous)
Restrictions may exist. For the same reason as with addClass and
addAnonymousClass, we define two change definitions for the add−
allV aluesFromRestriction. The first one is aimed to be used in
change requests, the second one is used in the change detection phase.

5.4 Primitive Change Definitions 113

Definition: (change request)
addAllValuesFromRestriction(?r, ?p, ?o) :=

Restriction(?r) AND onProperty(?r, ?p) AND
allValuesFrom(?r, ?o);

Definition: (change detection)
addAllValuesFromRestriction(?r, ?p, ?o) :=

NOT <PREVIOUS>(Restriction(?r) AND
onProperty(?r, ?p) AND
allValuesFrom(?r, ?o)) AND
Restriction(?r) AND onProperty(?r, ?p) AND
allValuesFrom(?r, ?o);

Similarly defined changes: addSomeValuesFromRestriction, ad-
dHasValueRestriction, addMaxCardinalityRestriction, addMinCardi-
nalityRestriction, addCardinalityRestriction

• Name: addTransitive(?p)
Description: Represents the change where the transitive characteris-
tic is added to a Property ?p.
Definition:

addTransitive(?p) :=
<PREVIOUS>(isTransitive(?p, "false")) AND
isTransitive(?p, "true");

Similarly defined changes: addFunctional, addInverseFunctional,
addSymmetric

• Name: deleteTransitive(?p)
Description: Represents the change where the transitive characteris-
tic is removed from a Property ?p.
Definition:

deleteTransitive(?p) :=
<PREVIOUS>(isTransitive(?p, "true")) AND
TransitiveProperty(?p, "false");

Similarly defined changes: deleteFunctional, deleteInverseFunc-
tional, deleteSymmetric

• Name: addPropertyValue(?p, ?s, ?o)
Description: Represents the change where a property value of a Prop-
erty ?p is added with subject ?s and object ?o.
Definition:

addPropertyValue(?p, ?s, ?o) :=
NOT <PREVIOUS>(PropertyValue(?v) AND
withPropertyValue(?s, ?v) AND
ofProperty(?v, ?p) AND
object(?v, ?o)) AND

PropertyValue(?v) AND

114 Change Definitions

withPropertyValue(?s, ?v) AND
ofProperty(?v, ?p) AND
object(?v, ?o);

Similarly defined changes: deletePropertyValue

5.5 Complex Change Definitions

The changes we defined in the previous section are called primitive changes
as they cannot be realized in terms of other changes. The set of primitive
changes consists basically of both ‘add’- and ‘delete’-changes for the different
OWL constructs. Although any ontology modification can be expressed
in terms of these primitive changes, restricting the set of changes to only
primitive changes would ensue a number of problems:

• Loss of Semantics: although a complex change can be realized with
a sequence of primitive changes, the semantics of the overall change is
lost when opting for primitive changes instead of a complex change.
E.g., the complex change addSiblingClass(B, A) that adds a new
Class B as sibling of A can as well be expressed as a sequence of the
primitive changes addClass(B) and addSubClassOf(B, C) (assuming
A is a direct subclass of C). Nevertheless, it is impossible to deduct
from the sequence of changes that a sibling Class was added!

• Loss of Data: Using a sequence of primitive changes instead of a
dedicated complex change may lead to data loss. The ontology is kept
consistent after each change in the sequence of changes resulting in the
possible appliance of deduced changes. After the complete sequence of
changes have been applied, some of these deduced changes may turn
out to be superfluous as shown in Section 5.3.2.

As the set of complex changes is non-exhaustive, we present the defini-
tions of a number of representative examples of complex change definitions.
Furthermore, we will also illustrate that for a number of complex change
definitions it is no longer possible to define a single base change definition
that is adequate for both the purpose of change requests and change de-
tection. We also want to stress that there doesn’t exist one true definition
of a complex change and the definitions given in this section are only one
possible interpretation.

5.5.1 Modify-Changes

As discussed in Section 5.4, primitive change definitions only consists of
‘add’- and ‘delete’-changes. Although a modification can be expressed as
the combination of a ‘delete’-change followed by an ‘add’-change, it is in-
teresting to offer the ontology engineer ‘modify’-changes for the different

5.5 Complex Change Definitions 115

Figure 5.4: Example 1 of a subclass change

OWL constructs. As an example, we consider the conceptual change defi-
nition changeSubClassOf that represents the change where the object of a
subclass property is replaced. We define the base change definition of this
conceptual change definition as follows:

changeSubClassOf([subject]?s, [old]?o1, [new]?o2) :=
<PREVIOUS>(subClassOf(?s, ?o1) AND
(NOT subClassOf(?s, ?o2))) AND

subClassOf(?s, ?o2) AND (NOT subClassOf(?s, ?o1));

The base change definition expresses that in the previous version of the
ontology, the subject is a subclass of one object but not of another object,
and in the current version it is the other way round. Note that the pa-
rameters in the header are annotated with respectively ‘subject’, ‘old’ and
‘new’. The conceptual change definition is defined as changeSubClassOf =
〈{d} , {d}, {}, {}〉 where d is the base change definition previously given.

The base change definition as it is defined above doesn’t leave room for
much flexibility when used for the purpose of change detection. Consider
as an example the situation depicted in Figure 5.4. The object of subclass
Property of a Class A is changed from Class B to Class C in two steps:
in the first step (from 1 to 2), the subclass Property between A and B is
removed, and in the second step (from 2 to 3), a new subclass Property is
added between A and C. Although the two steps combined correspond to
a subclass change, it doesn’t correspond to the definition given above. The
reason is that the definition is too restrictive as it only takes the previous
version of the ontology into account.

To overcome this problem we replace the base change definition d ∈ Cδ

of the changeSubClassOf conceptual change definition with a base change
definition that also takes earlier versions of the ontology into account. The
new base change definition looks as follows:

changeSubClassOf([subject]?s, [old]?o1, [new]?o2) :=
<SOMETIME(?s)>(subClassOf(?s, ?o1) AND
(NOT subClassOf(?s, ?o2))) AND

subClassOf(?s, ?o2) AND (NOT subClassOf(?s, ?o1));

116 Change Definitions

Figure 5.5: Example 2 of a subclass change

The base change definition is defined as a conjunction of a temporal
and non-temporal expression where the SOMETIME tense operator is used
instead of opting for the PREVIOUS tense operator. The overall change shown
in Figure 5.4 now satisfies the above change definition. However, simply
replacing the PREVIOUS tense operator with the SOMETIME tense operator
causes a number of problems. A first problem is illustrated in Figure 5.5.
From step 1 to 2, the object of the subclass Property of Class A is changed
from B to C; from step 2 to step 3, another change has occurred for A.
According to the definition given above, the object of the subclass Property
of A has changed from B to C going from step 1 to step 3. Although this is
the case, the actual change has occurred already in the previous step. The
reason why the change from step 1 to step 3 satisfies the definition is that
the definition doesn’t take into account the situation in which the subclass
already has been changed in the previous version of A. We can solve this
by adapting the definition as follows:

changeSubClassOf([subject]?s, [old]?o1, [new]?o2) :=
<SOMETIME(?s)>(subClassOf(?s, ?o1) AND
(NOT subClassOf(?s, ?o2))) AND

subClassOf(?s, ?o2) AND (NOT subClassOf(?s, ?o1)) AND
// check that the postcondition was not already
// satisfied in the previous version of ?s
NOT <PREVIOUS(?s)>(subClassOf(?s, ?o2) AND
(NOT subClassOf(?s, ?o1)));

The second problem is illustrated as follows. When the object of a sub-
class Property of a Class A changes first from B to C, this step corresponds
to the change definition given above. When afterwards the object of a sub-
class Property changes from C to D, not only this step corresponds to the
above change definition, but also the overall step from B to D (via C) cor-
responds to this definition. We call this a transitive change. Figure 5.6
visualizes the example. While transitive changes may be appropriate for
certain tasks as transitive changes represent the evolution of an ontology
concept over a larger period of time, they may not always be desirable. The

5.5 Complex Change Definitions 117

Figure 5.6: Example 3 of a subclass change

change definition can be adapted as follows so that transitive changes are
no longer taken into account:

changeSubClassOf([subject]?s, [old]?o1, [new]?o2) :=
<SOMETIME(?s)>(subClassOf(?s, ?o1) AND
(NOT subClassOf(?s, ?o2))) AND

subClassOf(?s, ?o2) AND (NOT subClassOf(?s, ?o1))
AND (NOT eq(?o1, ?o2)) AND

// check that the postcondition was not already
// satisfied in the previous version of ?s
NOT <PREVIOUS(?s)>(subClassOf(?s, ?o2) AND
(NOT subClassOf(?s, ?o1))) AND

// remove transitive changes from the result
// transitive change = ?o1 -> ?x + ?x -> ?o2
NOT (
// *** 1. change from ?o1 -> ?x ***
// situation before change...
<SOMETIME(?s)>(subClassOf(?s, ?o1) AND
(NOT subClassOf(?s, ?x)) AND

// ...situation after change
<AFTER>(
subClassOf(?s, ?o1) AND

(NOT subClassOf(?s, ?x))),
(NOT subClassOf(?s, ?o1)) AND

subClassOf(?s, ?x)

118 Change Definitions

) AND

// *** 2. change from ?x -> ?o2 ***
// situation before change...
<SOMETIME(?s)>(subClassOf(?s, ?x) AND
(NOT subClassOf(?s, ?o2)) AND

// ...situation after change
(NOT subClassOf(?s, ?x)) AND subClassOf(?s, ?o2))

);

The additional expressions that were added to the base change definition,
assure that transitive changes are no longer taken into account. The defini-
tion verifies, when for a certain Class an object of the subClassOf Property
changes from e.g. B to D, there hasn’t been a Class X as object of the
subClassOf Property for that Class somewhere after the first change.

Similar ‘modify’-changes can be defined for the other remaining OWL
constructs.

5.5.2 Ambiguity of Changes

Consider the example where we want to change the ID of a Class. We can
realize this by applying the following primitive changes: we first delete the
Class and its properties from the ontology, followed by the addition of a
new Class with the same properties but with a different ID than the deleted
one. As deleting and adding a Class isn’t a very convenient way to rename
resources, we introduce the complex change changeID. The base change
definition is as follows:

changeID([subject]?s, [new]?v) :=
NOT <PREVIOUS>(hasID(?s, ?v)) AND hasID(?s, ?v);

No change definition can be given to detect such a change, as it is im-
possible to decide whether the deleted and added Class is indeed the same
(i.e., it concerns indeed a changed ID) or the deleted and added Class are
unrelated.

The same argumentation also holds for the complex changes changeTo-
ObjectProperty and changeToDatatypeProperty. These changes represent
the change where a datatype Property, respectively object Property, is
transformed into an object Property, respectively datatype Property. Both
changes can be realized in terms of primitive changes by first deleting the
Property and then adding a new Property of the correct type (either a
datatype or an object Property) with the same ID. Although the deleted
and newly added Property have the same ID, nothing can guarantee that
they represent the same real-world concept as IDs may be reused over time.
We present the base change definition of changeToObjectProperty below.

5.5 Complex Change Definitions 119

The changeToDatatypeProperty base change definition can be defined in a
similar way.

changeToObjectProperty([subject]?p) :=
<PREVIOUS>(DatatypeProperty(?p)) AND
ObjectProperty(?p);

5.5.3 Property Restrictions

The set of primitive changes contains changes to add restrictions of different
kinds (both value and cardinality restrictions) to the ontology. The result
of applying such a change is the creation of a single restriction. As restric-
tions are only meaningful when defined as either a necessary or necessary &
sufficient condition of a Class, we may add convenient complex changes for
this purpose. For each type of restriction, we would define two conceptual
change definitions: one to add the restriction as a necessary and one to add
the restriction as necessary & sufficient condition to a Class. As an example,
we give the base change definitions of the addNCardRestriction conceptual
change definition (i.e., add a cardinality restriction as a necessary condition
to a Class) and the addNSCardRestriction change (i.e., add a cardinality re-
striction as a necessary & sufficient condition to a Class). The base change
definitions of both are given below:

addNCardRestriction([subject]?c, [new]?r, ?p, ?v) :=
NOT <PREVIOUS(?c)>(subClassOf(?c, ?r)

AND Restriction(?r) AND
onProperty(?r, ?p) AND cardinality(?r, ?v)) AND

subClassOf(?c, ?r) AND Restriction(?r) AND
onProperty(?r, ?p) AND cardinality(?r, ?v);

addNSCardRestriction([subject]?c, [new]?r, ?p, ?v) :=
NOT <PREVIOUS(?c)>(equivalentClassOf(?c, ?r)

AND Restriction(?r) AND
onProperty(?r, ?p) AND cardinality(?r, ?v)) AND

equivalentClass(?c, ?r) AND Restriction(?r) AND
onProperty(?r, ?p) AND cardinality(?r, ?o);

The necessary conditions are realized by adding a subClassOf Property
between the Class and the relevant restriction, to express necessary & suf-
ficient conditions, an equivalentClass Property is used instead. Note that
both base change definitions also suffices for change detection as the ad-
dition of a subClassOf or equivalentClass Property can only occur in one
step. We therefore only have to take the previous version of the Class
(<PREVIOUS(?c)>) into account.

120 Change Definitions

The definition of the conceptual change definition addNcardRestriction
is defined as addNcardRestriction = 〈{d} , {d}, {}, {}〉 where d is the base
change definition shown above. The definition of the conceptual change
definition addNScardRestriction is analogous.

5.5.4 Sibling Classes

The following conceptual change definition, addSiblingClass, represents the
change that adds a Class as the sibling of another Class. Note that it doesn’t
matter whether the superclass of the sibling Class is a Class or a Restriction.
As with the previous conceptual change definition, the base change definition
given below suffices for both the purpose of change requests and change
detection.

addSiblingClass([subject]?c, ?s) :=
NOT <PREVIOUS>(subClassOf(?c, ?x)) AND
<PREVIOUS>(subClassOf(?s, ?x)) AND
subClassOf(?c, ?x);

5.5.5 Mutual Disjointness

Classes are often defined as being mutually disjoint, meaning that both
Classes can have no individuals in common. As the disjointness of Classes
is often a possible cause of ontology inconsistencies, it may be interesting
to offer the ontology engineer a conceptual change definition to delete the
mutual disjointness between two Classes. The conceptual change definition
deleteMutualDisjointness represents such a change. The base change defini-
tion to be used in change requests is defined as follows:

deleteMutualDisjointness([subject]?c, [subject]?d) :=
<PREVIOUS>(disjointWith(?c, ?d) AND

disjointWith(?d, ?c)) AND
(NOT disjointWith(?c, ?d)) AND

(NOT disjointWith(?d, ?c));

However, the base change definition shown above doesn’t suffice for the
purpose of change detection as the change can be realized over a number of
steps. We therefore define an additional base change definition as follows:

deleteMutualDisjointness([subject]?c, [subject]?d) :=
<SOMETIME>(disjointWith(?c, ?d) AND

disjointWith(?d, ?c)) AND
NOT (disjointWith(?c, ?d)) OR

disjointWith(?d, ?c)) AND
<PREVIOUS>(disjointWith(?c, ?d) OR

disjointWith(?d, ?c));

5.5 Complex Change Definitions 121

Figure 5.7: Exhaustion constraint in ORM and cover axiom in OWL

Note that, in comparison with the changeSubClassOf conceptual change
definition, we don’t have to take precautions for transitive changes as they
cannot occur with a ‘delete’-change.

5.5.6 Covering Axioms

In several modeling languages, it is possible to express that when an individ-
ual is an instance of a class, it also must be an instance of at least one of the
class’ children. E.g., the ORM (Object Role Modeling) language [35] has
the notion of an exhaustion constraint in the form of an �-symbol between
two subtype relations. The same constraint can be expressed in OWL by
defining the parent Class as the union of its children. In OWL terminology,
one refers to the union of children as a covering axiom, instead of speaking
of an exhaustion constraint. Figure 5.7 shows the ORM and OWL version
side by side. In this context, we define a conceptual change definition addEx-
haustiveChildren. This conceptual change definition represents the change
where two Classes are added as subclass of a parent Class that on its turn is
defined as a cover axiom of the two subclasses. The base change definition
shown below suffices for both the purpose of change requests and change
detection.

addExhaustiveChildren([subject]?c1, [subject]?c2, ?p) :=
NOT <PREVIOUS(?c1)>(subClassOf(?c1, ?p)) AND
NOT <PREVIOUS(?c2)>(subClassOf(?c2, ?p)) AND
NOT <PREVIOUS(?p)>(equivalentClass(?p, ?x) AND
unionOf(?x, ?l) AND member(?l, ?c1) AND
member(?l, ?c2)) AND

subClassOf(?c1, ?p) AND subClassOf(?c2, ?p) AND
equivalentClass(?p, ?x) AND unionOf(?x, ?l) AND
member(?l, ?c1) AND member(?l, ?c2);

122 Change Definitions

5.5.7 Closure Restriction

As discussed in [77], one of the most frequent mistakes in OWL ontologies
is the failure to capture the open world assumption implicit in all OWL
expressions. The authors take as example a Class MargheritaPizza. The
definition of the Class states that a margherita pizza has some tomato and
some mozzarella as topping. This is expressed in DL as follows:

MargheritaP izza ≡ ∃hasTopping.Tomato u ∃hasTopping.Mozzarella

This definition is incomplete as it allows a margherita pizza to have other
toppings then tomato and mozzarella (as long as it has at least one tomato
and one mozerella as topping), although a real-world margherita pizza only
has tomato and mozzarella as topping and nothing else. The definition
can be completed by adding ∀hasTopping.(Tomato tMozzarella) to the
definition so that it becomes:

MargheritaP izza ≡ ∃hasTopping.Tomato u
∃hasTopping.Mozzarella u ∀hasTopping.(Tomato tMozzarella)

The added part to the definition is known as a closure axiom because it
closes off the possibility of further additions for a given property.

As a possible complex change, we define a conceptual change defini-
tion representing the addition of a closure restriction to a Class. A clo-
sure restriction consists of a ‘someValuesFrom’-restriction together with an
‘allValuesFrom’-restriction that plays the role of closure axiom. It is im-
possible to define the conceptual change definition with one base change
definition because different cases exist. We explain this by means of a small
example. When we want to add a first closure restriction to a Class C as
a necessary condition, we can add the following two axioms to the ontol-
ogy: {C v ∃R.A,C v ∀R.A}. When we want to add for the second time
a closure restriction to the same Class, we cannot again add two axioms
to the ontology as we did previously. The collection of axioms would be:
{C v ∃R.A,C v ∀R.A,C v ∃R.B,C v ∀R.B}, requiring that all fillers of R
must be instances of both A and B. This is clearly not the intention. The
correct operation is to add a ‘someValuesFrom’-restriction and adapt the
‘allValuesFrom’-restriction so that the collection of axioms looks as follows:
{C v ∃R.A,C v ∃R.B,C v ∀R.(A tB)}

To handle the different cases correctly, we define three base change def-
initions. The following three cases exist:

1. No ‘allValuesFrom’-restriction on the relevant Property exists. The
solution is to add a first ‘allValuesFrom’-restriction with given value.

2. An ‘allValuesFrom’-restriction on the relevant Property exists where
the value of the restriction is not a ‘unionOf’-construct. The solution
is to replace the current value with a ‘unionOf’-construct containing
the current and given value.

5.5 Complex Change Definitions 123

3. An ‘allValuesFrom’-restriction on the relevant Property exists where
the value of the restriction is a ‘unionOf’-construct. The solution is
to extend the ‘unionOf’-construct so that it includes the given value.

The preconditions of the base change definitions is used to differentiate
between the different cases (see Section 5.2.3 for more details). We show
the base change definitions for adding closure restriction as a necessary con-
dition. The change definitions shown below follow the order given by the
enumeration list above.

addNClosureRestriction([subject]?c, ?p, ?o) :=
NOT <PREVIOUS(?c)(subClassOf(?c, ?r1) AND
Restriction(?r1) AND onProperty(?r1, ?p) AND
someValuesFrom(?r1, ?o) AND subClassOf(?c, ?r2) AND
Restriction(?r2) AND onProperty(?r2, ?p) AND
allValuesFrom(?r2, ?o))

AND
subClassOf(?c, ?r1) AND Restriction(?r1) AND
onProperty(?r1, ?p) AND someValuesFrom(?r1, ?o) AND
subClassOf(?c, ?r2) AND Restriction(?r2) AND
onProperty(?r2, ?p) AND allValuesFrom(?r2, ?o);

addNClosureRestriction([subject]?c, ?p, ?o) :=
NOT <PREVIOUS(?c)(subClassOf(?c, ?r1) AND
Restriction(?r1) AND onProperty(?r1, ?p) AND
someValuesFrom(?r1, ?o)) AND

<PREVIOUS(?c)>(subClassOf(?c, ?r2) AND
Restriction(?r2) AND onProperty(?r2, ?p) AND
allValuesFrom(?r2, ?x) AND (NOT unionOf(?x, ?l1))

AND
subClassOf(?c, ?r1) AND Restriction(?r1) AND
onProperty(?r1, ?p) AND someValuesFrom(?r1, ?o) AND
subClassOf(?c, ?r2) AND Restriction(?r2) AND
onProperty(?r2, ?p) AND allValuesFrom(?r2, ?y) AND
unionOf(?x, ?l1) AND member(?l1, ?x) AND
member(?l1, ?o);

addNClosureRestriction([subject]?c, ?p, ?o) :=
NOT <PREVIOUS(?c)(subClassOf(?c, ?r1) AND
Restriction(?r1) AND onProperty(?r1, ?p) AND
someValuesFrom(?r1, ?o)) AND

<PREVIOUS(?c)>(subClassOf(?c, ?r2) AND
Restriction(?r2) AND onProperty(?r2, ?p) AND
allValuesFrom(?r2, ?x) AND unionOf(?x, ?l))

AND

124 Change Definitions

subClassOf(?c, ?r1) AND Restriction(?r1) AND
onProperty(?r1, ?p) AND someValuesFrom(?r1, ?o) AND
subClassOf(?c, ?r2) AND Restriction(?r2) AND
onProperty(?r2, ?p) AND allValuesFrom(?r2, ?x) AND
unionOf(?x, ?l) AND member(?l, ?o);

Note that the base change definitions can be used for both the pur-
pose of change requests and change detection. The definition of the con-
ceptual change definition is therefore defined as addNClosureRestriction=
〈{d1, d2, d3} , {d1, d2, d3} , {}, {}〉 where d1, d2 and d3 are the base change
definitions given above.

5.6 Meta-Change Definitions

In the two previous sections, we have discussed both primitive and complex
change definitions. As seen in Section 3.2, we also distinguish meta-change
definitions. Meta-change definitions define, in contrast with primitive and
complex change definitions not what has changed, but rather the implica-
tions of a change. This has as consequence that meta-change definitions are
not useful for the purpose of change requests, and therefore are only used for
the purpose of change detection. Consequently, when a conceptual change
definition δ is a meta-change definition, the set Rδ of the conceptual change
definition δ is the empty set i.e., Rδ = ∅.

An example of a meta-change was already given in Section 5.3 to il-
lustrate the flexibility of the change detection approach. It concerned the
rangeWeakened conceptual change definition for which a simplified definition
of its base change definition was given. The conceptual change definition
represents the change where the range of Property is weakened i.e., the ob-
ject of the old range subsumes the object of the new range. We give a more
complete base change definition of rangeWeakened below:

rangeWeakened(?p) :=
// the range of ?p in the past was ?o
<SOMETIME(?p)>(range(?p, ?o) AND
// ? o was already a subclass of ?s

subClassOf*(?o, ?s)) AND
// but changed to ?s
(NOT range(?p, ?o)) AND range(?p, ?s) AND
// and ?o is currently a subclass of ?s
subClassOf*(?o, ?s) AND
// check that the postcondition was not already
// satisfied in the previous version of ?s
NOT <PREVIOUS(?p)>(NOT range(?p, ?o) AND

range(?p, ?s));

5.6 Meta-Change Definitions 125

The base change definition, as defined above, further complements the
previously presented definition by ensuring that the postcondition of the
definition was not already satisfied in the previous version of the Property.
Note that the definition doesn’t take transitive changes into account. One
can avoid transitive changes from being detected by applying a similar solu-
tion as we did for the changeSubClassOf ontology change. The rangeWeak-
ened conceptual change definition is defined as 〈{}, {d}, {}, {}〉 where d is
the base change definition shown above.

Consider as a second example of a meta-change the conceptual change
definition abstractionAdded. This conceptual change definition represents
the change where a level of abstraction is added between either two Classes
or two Properties. We define this change by means of two base change
definitions shown below. The first base change definition defines the addition
of abstraction between two Classes, the second one between two Properties.

// abstraction of Classes
AbstractionAdded(?c, ?d) :=

// ?c [=* ?d
<PREVIOUS(?c)>(subClassOf*(?c, ?d)) AND
// ?c [=* ?x and ?x [=* ?d was not the case...
NOT <PREVIOUS(?c)>(subClassOf*(?c, ?x) AND
subClassOf*(?x, ?d)) AND

// ... until now
subClassOf*(?c, ?x) AND subClassOf*(?x, ?d);

// abstraction of Properties
AbstractionAdded(?c, ?d) :=

// ?c [=* ?d
<PREVIOUS(?c)>(subPropertyOf*(?c, ?d)) AND
// ?c [=* ?x and ?x [=* ?d was not the case...
NOT <PREVIOUS(?c)>(subPropertyOf*(?c, ?x) AND
subPropertyOf*(?x, ?d)) AND

// ... until now
subPropertyOf*(?c, ?x) AND subPropertyOf*(?x, ?d);

As both base change definitions are similar, we only discuss the first
one. The definition states that an abstraction was added between ?c and
?d whenever ?c was previously already a subclass of ?d but there didn’t
exist a Class ?x so that ?c was a subclass of ?x and ?x was a subclass of
?d, although there exists such an ?x now. The conceptual change definition
AbstractionAdded consists of both base change definitions and is defined as
the tuple 〈{}, {d1, d2}, {}, {}〉 where d1 and d2 are the base change definitions
shown above.

126 Change Definitions

5.7 Summary

In this chapter, we discussed the different purposes of the conceptual change
definitions in our ontology evolution approach. In our approach, the con-
ceptual change definitions are used for two different purposes: either to
request and apply changes to an ontology or to detect changes that have
occurred but that were not explicitly requested. Because we use the Change
Definition Language for different purposes, we evaluate change definitions
differently depending on the purpose concerned. For the purpose of change
requests, we discussed how ontology engineers can specify change requests,
what the restrictions are on the constructs of the Change Definition Lan-
guage in order to be applicable, and how change requests are evaluated.
For the purpose of change detection, we also discussed the evaluation of
conceptual change definitions in order to detect change occurrences. As a
side effect of the change detection mechanism, we discussed the recovering
of a number of changes that, in retrospect, turn out to be needlessly applied
changes, but were caused by the use of a sequence of changes instead of an
equivalent complex change.

In the second part of this chapter, we gave a number of example concep-
tual change definitions. We provided a complete and minimal set of primitive
change definitions for the OWL Web ontology language, and introduced a
number of representative examples of both complex change definitions and
complex meta-change definitions.

Chapter 6

Conducting Ontology
Evolution

In the previous chapter, we explained how both primitive and complex
changes as well as complex meta-changes can be defined using the Change
Definition Language. For these different types of ontology changes, we gave
a number of representative examples together with possible change defini-
tions. We also explained how ontology change definitions can be used by
ontology engineers to express a change request, and how a change request is
evaluated to lead to the implementation of the requested changes. Finally,
we showed how the ontology change definitions are used in the change de-
tection phase to detect additional changes not specified in a change request.

In this chapter, we discuss two facets that conduct the ontology evolution
process. The first facet is consistency maintenance; the second facet is
backward compatibility.

As ontologies are used to reason about and to infer implicit knowledge
from, it is essential for an approach supporting ontology evolution to en-
sure that ontologies evolve from one consistent state into another consistent
state. Therefore maintaining consistency is one of the requirements of our
approach. As changes to an ontology may possibly introduce inconsisten-
cies, a method to detect and resolve inconsistencies in the ontology is needed.
For OWL DL, several reasoners capable of checking for inconsistencies have
been developed (e.g., RACER [62], Fact [37], Pellet [81]). These reasoners
are based on the description logic tableau algorithm. While such reasoners
allow detecting inconsistencies, determining why the ontology is inconsistent
and how to resolve these inconsistencies is far from trivial. However, (1) pin-
pointing the axioms that lead to an inconsistent ontology, (2) determining
the reasons for the inconsistencies, and (3) using these reasons to offer the
ontology engineer suggestions how to resolve these inconsistencies, should
be part of an ontology evolution approach.

Moreover, the functionality of an approach supporting ontology evolu-

128 Conducting Ontology Evolution

tion should go beyond conducting the ontology evolution process to assure
that consistency is maintained. Ontology engineers and maintainers of de-
pending artifacts are in most cases also interested whether a new version
of the ontology remains backward compatible for a given depending arti-
fact i.e., can the old version of the ontology be replaced by the new version
without breaking the dependency. The manner in which backward compat-
ibility influences the ontology evolution process is twofold. First, ontology
engineers may avoid certain change requests or certain solutions to solve in-
consistency knowing that it will break backward compatibility for (some of)
their depending artifacts. Secondly, maintainers of depending artifacts may
let their decision whether to update to the latest ontology version, an in-
termediate version, or to not update at all, depend on which (intermediate)
version of the ontology is still backward compatible.

The structure of the chapter is as follows. In Section 6.1, we present
an approach that determines which axioms are causing an inconsistency.
We do this by extending the tableau algorithm most state-of-the-art reason-
ers rely on by introducing an Axiom Transformation Graph and a Concept
Dependency Tree. In Section 6.2, we describe a set of rules that ontology
engineers can apply to the axioms involved in the cause of an inconsistency
in order to restore consistency. In Section 6.4, we discuss how compatibility
requirements (i.e., the requirements a version of an ontology should fulfill to
be considered backward compatible with its previous version) can be spec-
ified and how these can be used to verify whether backward compatibility
holds for a given ontology and given depending artifact. Finally, Section 6.5
provides a summary of the chapter.

6.1 Consistency Checking

Checking consistency of an OWL DL ontology can be achieved by running
a DL reasoner on the ontology. To achieve this, most state-of-the-art rea-
soners have adopted the description logic tableau algorithm as mentioned
earlier. Although reasoners can be used to identify unsatisfiable concepts,
they provide very little information about which axioms are actually caus-
ing the inconsistency. This makes it extremely difficult to offer the ontology
engineer possible solutions to solve the inconsistency.

In this section, we present an approach to select those axioms of an
ontology that are causing an inconsistency. In Section 6.1.1 we discuss the
different forms of consistency found in literature and state our focus on
logical consistency (see Section 6.1.2). In Section 6.1.3 to Section 6.1.7, we
focus on the various aspects of our approach.

6.1 Consistency Checking 129

6.1.1 Different Forms of Consistency

In literature, three forms of ontology consistency are in general distin-
guished: logical consistency, structural consistency and user-defined con-
sistency [32]. Current research has mainly focused on techniques to discover
and resolve structural- and user-defined inconsistencies, while less attention
has been paid to the problem of logical consistency. The difference between
these three forms of consistency is as follows:

• Logical Consistency: an ontology is considered logically consistent
when the ontology conforms to the underlying logical theory of the
ontology language. In the case of OWL Lite or OWL DL, this is a
variant of description logics. E.g., specifying the range of a Property
requires the objects of all instantiations of this Property to be in the
range specified. An ontology O (composed of a TBox and ABox) is
considered to be consistent if all concepts of the TBox are satisfiable
and the ABox is consistent w.r.t. the TBox.

• Structural Consistency: an ontology is considered structurally con-
sistent when the constructs provided by the ontology language are
correctly used by the ontology. Instead of structural consistency, one
often also speaks of the well-formedness of an ontology. Structural
consistency can be enforced by checking a set of structural consistency
conditions defined for the underlying ontology language. Examples of
such structural consistency conditions include: ‘the complement of a
Class must be a Class’, ‘a Property can only be a subproperty of a
Property’, etc. In case of the OWL language, the set of structural
conditions depends on the variant of OWL used. E.g., the set of struc-
tural conditions for OWL Lite will be more restrictive than these for
OWL DL. An ontology is structurally consistent when the ontology
meets all structural consistency conditions of the ontology language
used.

• User-defined Consistency: this form of consistency means that
users can add their own, additional conditions that must be met for
the ontology to be considered consistent. E.g., users could require that
classes can only be defined as a subclass of at most one other class (i.e.,
preventing multiple inheritance). User-defined consistency conditions
can be seen as additional structural consistency conditions to further
restrict the language constructs of the underlying ontology language.
As user-defined consistency conditions can be written as structural
consistency conditions, we won’t consider user-defined consistency as
a separate form of consistency in the remainder of this section.

An ontology is considered to be consistent when it is both structurally
and logically consistent. An ontology must first be structurally consistent

130 Conducting Ontology Evolution

before logical consistency can be verified. In Section 6.1.2, we explain our
approach to check logical consistency and resolve logical inconsistencies. To
detect and resolve structural inconsistencies, we refer to the work of [32].
The authors define a set of structural consistency conditions and resolution
strategies for both the Lite and DL variant of OWL. When an axiom vi-
olates a structural consistency condition, the structural inconsistency can
be resolved either by removing that axiom or by rewriting that axiom so
that it becomes in accordance with the OWL variant chosen. Consider as
example (taken from [32]) the following axiom stating that all publications
must have at least one author who is not a student:

Publication v ∃author.¬Student

Although this is a valid axiom in OWL DL, it is not in OWL Lite as
the latter OWL variant disallows the use of negation. Nevertheless, the
structural inconsistency can be resolved by introducing two new axioms:
Student ≡ ∃R.> and NotStudent ≡ ∀R.⊥ (where R is a new role name)
and rewriting the original axiom to:

Publication v ∃author.NotStudent

6.1.2 Logical Consistency

The objective of our approach is to verify whether an ontology remains
logically consistent when the requested changes are applied to the ontology.
As we are only dealing with logical consistency in our approach, we simply
use the term ‘consistency’ when actually meaning ‘logical consistency’. We
differentiate between two possible scenarios based on the common distinction
found in literature between TBox (terminological or concept knowledge) and
ABox (assertional or instance knowledge):

1. A new axiom was added to the TBox or an existing axiom
from the TBox was modified: to check consistency of the ontology,
two tasks are required. First, we verify whether the concepts of the
TBox itself are still satisfiable (without considering a possible ABox).
We refer to this task as the TBox Consistency Task. Secondly, we
verify if the ABox remains consistent w.r.t. the modified TBox, called
the ABox Consistency Task.

2. A new axiom was added to the ABox or an existing axiom
from the ABox was modified: we verify if the ABox remains con-
sistent w.r.t. its TBox (called ABox Consistency Task).

Note that, in the two scenarios described above, we don’t take the dele-
tion of an axiom from either the TBox or ABox into account. Because OWL
DL is based on a monotonic logic, an ontology can only become inconsistent

6.1 Consistency Checking 131

Figure 6.1: Overview of the consistency checking process

when new axioms are added or existing ones are changed i.e., when a set
of axioms is consistent, it will still be consistent when deleting any axiom.
As a consequence, we only check for ontology consistency in the above men-
tioned scenarios. An overview of the consistency checking process is shown
in Figure 6.1.

The figure reads as follows. When an ontology engineer requests a change
to the TBox of an ontology, the TBox Consistency Task is performed first
(see 1). When the TBox is determined to be inconsistent, deduced changes
are added to the change request to change the TBox to resolve the inconsis-
tency (see 2). Resolving inconsistencies is an iterative process as different
inconsistencies are resolved one by one. When the TBox is consistent, the
ABox Consistency Task is performed (see 3). Inconsistencies in the ABox
can be resolved either by changing particular axioms of the TBox so that
the TBox conforms to the changed ABox, or by changing axioms of the
ABox so that the changed ABox forms a valid model for the TBox (see 4).
When an ontology engineer requests a change that only affects the ABox
of an ontology, the TBox Consistency Task is omitted from the consistency
checking process.

Inconsistency is resolved by weakening axioms involved in the detected
inconsistency so that contradictions among these axioms are solved (see Sec-
tion 6.2). Note that a weakening of axioms can never introduce new (logical)
contradictions between axioms of the ontology, nevertheless it may result
into structural inconsistencies. Consider the following small OWL ontology,
consisting of three Classes A, B and C, which is obviously inconsistent as
A is a subclass of both B and its complement:

<owl:Class rdf:ID="A">
<rdfs:subClassOf>

132 Conducting Ontology Evolution

<owl:Class>
<owl:complementOf rdf:resource="#B"/>

</owl:Class>
</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="#B"/>

</owl:Class>
<owl:Class rdf:ID="B"/>
<owl:Class rdf:ID="C">
<rdfs:subClassOf rdf:resource="#A"/>

</owl:Class>

We could solve the contradiction e.g., by completely deleting the Class
A from the ontology (although other - and probably better - solutions are
feasible). Although this solves the contradiction, it introduces a structural
inconsistency as the definition of C now contains references to a non-existing
Class A. The most rational solution to solve the incompleteness would be
to remove the respective subClassOf Property in the definition of C.

As the state-of-the-art OWL reasoners are based on the DL tableau
algorithm, we conclude this subsection with a short overview of the tableau
algorithm. The tableau algorithm allows verifying the satisfiability of a
concept C w.r.t. a given TBox i.e., whether C doesn’t denote the empty
concept, as well as the consistency of a given ABox w.r.t. a TBox i.e.,
whether the assertions in the ABox form a valid model for the axioms defined
in the TBox. An ontology O (composed of a TBox and ABox) is considered
to be consistent if all concepts of the TBox are satisfiable and the ABox is
consistent w.r.t. the TBox.

The basic principle of the tableau algorithm to check the satisfiability
of a concept C is to gradually build a model I of C i.e., an interpretation
I in which CI is not empty. The algorithm tries to build a tree-like model
of the concept C by decomposing C using tableau expansion rules. These
expansion rules correspond to constructors in the description logic. E.g.,
CuD is decomposed into C and D, referring to the fact that if a ∈ (CuD)I

then a ∈ CI and a ∈ DI . The tableau algorithm ends when either no
more rules are applicable or when a clash occurs. A clash is an obvious
contradiction and exists in two forms: C(a) ⇔ ¬C(a) and (≤ n R) ⇔ (≥
mR) wherem > n. A concept C is considered to be satisfiable when no more
rules can be applied and no clashes occurred. The tableau algorithm can be
straightforwardly extended to support consistency checking of ABoxes. The
same set of expansion rules can be applied to the ABox, requiring that we
add inequality assertions a 6= b for every pair of distinct individual names.

If we assume C to be a concept, then we use sub(C) to denote the set of
subconcepts of the concept C and all concepts D where C v∗ D. We define
a tableau, that is constructed by the tableau algorithm for a concept C, as
follows:

6.1 Consistency Checking 133

Definition 6.1 (Tableau). A tableau for a concept C is a tuple 〈V,E〉
where V is the set of nodes and E is the set of edges. Each node a ∈ V
is labeled with a set L(a) ⊆ sub(C) of concepts and each edge 〈a, b〉 ∈ E
is labeled with a set L(〈a, b〉) of roles (including super roles) occurring in
sub(C). We also call L(a) the set of labels of a node a and L(〈a, b〉) the set
of labels of an edge 〈a, b〉.

Important to note is that, although the tableau algorithm allows us to
check ontology consistency, the algorithm doesn’t provide us any informa-
tion regarding the axioms causing the inconsistency, neither does it suggest
solutions to overcome the inconsistency. In the remainder of this section and
the next section (see Section 6.2), we discuss how we can overcome these
shortcomings. We discuss the different aspects of the approach by means
of a small example. We consider for our example the following TBox T
consisting of the following axioms:

PhDStudent v ∃enrolledIn.Course
∃enrolledIn.Course v Undergraduate

Undergraduate v ¬PhDStudent
PhDStudent CS v PhDStudent

6.1.3 Axiom Transformations

To increase the performance of the tableau algorithm drastically, most rea-
soners apply a number of transformations to the axioms of an ontology as
a pre-processing optimization step. These axiom transformations are per-
formed before the actual tableau algorithm is ran. We give an overview of
the different kind of transformations that occur during the preprocessing
step of the tableau algorithm below:

• Normalization: The performance of the tableau algorithm can be
greatly improved if a contradiction between two concepts can be de-
tected based on the syntactical equivalence between the first con-
cept and the negation of the second concept. To realize this, ax-
ioms are transformed into a syntactic normal form. E.g., a con-
tradiction between C u D and ¬C t ¬D can be directly detected
by transforming the second concept into ¬(C u D). In [4], a com-
plete set of normalization functions is given. For our example, this
means that PhDStudent v ∃enrolledIn.Course is transformed to
PhDStudent v ¬∀enrolledIn.¬Course. Other forms of normaliza-
tion (e.g., negation normal form) can be treated in a similar way.

• Internalization: Another task in the preprocessing step concerns the
transformation of axioms to support General Concept Inclusion (GCI)
of the form C v D where C and D are complex concepts. In contrast

134 Conducting Ontology Evolution

to subsumption relations between atomic concepts (A v B), which are
simply unfolded by the appropriate tableau expansion rule, this is not
possible with GCI. To support GCI, C v D must first be transformed
into > v ¬CtD (meaning that any individual must belong to ¬CtD).
In our example, ∃enrolledIn.Course v Undergraduate is transformed
to > v Undergraduate t ∀enrolledIn.¬Course.

• Absorption: The problem with GCI axioms is that they are time-
expensive to reason with due to the high-degree of non-determinism
that they introduce [4]. They may degrade the performance of the
tableau algorithm to the extent that it becomes in practice non-termi-
nating. The solution of this problem is to eliminate GCI axioms when-
ever possible. In general, a distinction between concept absorption [42]
and role absorption [87] is made. Concept absorption is a technique
that tries to absorb GCI axioms into primitive axiom definitions. E.g.,
the GCI axiom A u ∃R.C v ∃S.D can be transformed and absorbed
into the primitive definition of A (also using the normalization func-
tions as described in the first item) so that A v ¬∀S.¬Dt¬(¬∀R.¬C).
Role absorption is only useful for those reasoners directly supporting
domain and range axioms. This technique transforms GCI axioms of
the form > v ∀R.C and ∃R.C v > into domain and range axioms
respectively. This technique of role absorption can be extended to
support a wider range of axioms. An axiom of the form ∃R.C v D
can be absorbed into a range axiom Range(R,Dt¬(¬∀R.¬C)) as the
axiom can be rewritten first as ∃R.> v Dt¬(¬∀R.¬C). Similarly, an
axiom of the form D v ∀R.C can be absorbed into a domain axiom
Domain(R,¬Dt∀R.C). Note that not all reasoners have support for
domain and range axioms (e.g., the Fact reasoner has no support for
such axioms).

• Axiom composition: different axioms can be composed together
into one axiom. E.g., the axioms C v A and C v B can be trans-
formed to C v A u B. Axiom composition is often also seen as part
of the absorption technique described in the previous item. Assume
that in the example used in the previous item, the primitive defini-
tion of A was A v B. In this case, the resulting axiom would be
A v B u (∃S.D t ¬(¬∀R.¬C)).

• Axiom decomposition: an axiom of the form C ≡ D is decomposed
into two axioms of the form C v D and D v C.

We introduce the notion of an Axiom Transformation Graph (ATG) to
keep track of the transformations that occur during the pre-processing step
i.e. an ATG stores the step-by-step transformation of the original axiom (as
defined by the ontology engineer) to their transformed form. When later on

6.1 Consistency Checking 135

Figure 6.2: An Axiom Transformation Graph (ATG) for the given example

the tableau algorithm ends with a clash, the ATGs can be used to retrieve
the original axioms by following the inverse transformations from the axioms
causing the clash (as found by the tableau algorithm) to the original ones.
We define an Axiom Transformation Graph as follows:

Definition 6.2 (Axiom Transformation Graph). An Axiom Transfor-
mation Graph, notation ATG, is a directed acyclic graph starting from one
or more axioms φ1, . . . , φn, and ending with a transformed axiom φ′. Each
branch of the tree represents a transformation and is accordingly labeled as
follows:

• →NRM: indicates a transformation into normal form;

• →GCI: indicates a transformation of a General Concept Inclusion ax-
iom (GCI);

• →ABS: indicates an absorption of an axiom into a primitive axiom
definition (including both concept and role absorptions);

• →CMP: indicates a composition of axioms into one single axiom;

• →DCM: indicates a decomposition of an axiom into two separate ax-
ioms.

Figure 6.2 shows the ATG for the following axioms of our example1:

∃enrolledIn.Course v Undergraduate
PhDStudent v ∃enrolledIn.Course

1Note that we didn’t apply the role absorption technique to the ∃enrolledIn.Course v
Undergraduate axiom

136 Conducting Ontology Evolution

6.1.4 Concept Dependencies

The tableau algorithm itself reasons with the transformed axioms resulting
from the pre-processing step described in the previous subsection. For our
example, the set of transformed axioms is given below:

PhDStudent v ¬∀enrolledIn.¬Course u
(Undergraduate t ¬(¬∀enrolledIn.¬Course))

Undergraduate v ¬PhDStudent u
(Undergraduate t ¬(¬∀enrolledIn.¬Course))

PhDStudent CS v PhDStudent u
(Undergraduate t ¬(¬∀enrolledIn.¬Course))

To test the satisfiability of a concept C, the set of tableau expansion
rules are applied to expand this concept until either a clash occurs or no
more rules are applicable. As we are interested in the axioms leading to
a possible clash (as these axioms are involved in the cause of the unsatis-
fiability), we need to keep track of all concept axioms (or Class axioms in
OWL terminology) used in the expansion of the concept C under investiga-
tion. Besides concept axioms, SHOIN (D) also introduces a number of role
axioms (or Property axioms in OWL terminology) including role hierarchy
axioms R v S, transitive role axioms Trans(R), inverse role axioms R ≡ S−

and symmetric role axioms R ≡ R−. Besides role axioms, also individual
axioms exist including concept assertions C(a), role assertions R(a, b), indi-
vidual equalities a = b and inequalities a 6= b. We therefore also keep track
of all role and individual axioms involved in the satisfiable checking of C.

To keep track of the axioms leading to a possible clash, we introduce
an extended version of a tableau where each label associated with a node is
annotated with the set of labels that were used by the tableau algorithm to
add the annotated label to the node. The addition of a label l1 to a node is
caused by the appliance of one of the tableau expansion rules on a label l2,
possibly with the use of role and individual axioms. To express that a label
l1 was added to a node by applying a tableau expansion rule on a label l2, we
denote causedBy(l1, l2,A) where A is the set of role or individual axioms
used in the addition of l1. We define an annotated tableau as follows:

Definition 6.3 (Annotated Tableau). An annotated tableau for a concept
C is a tuple 〈V,E〉 where V is the set of nodes and E is the set of edges.
Each node a ∈ V is labeled with a set L(a) ⊆ sub(C) of concepts and each
edge 〈a, b〉 ∈ E is labeled with a set L(〈a, b〉) of roles (including super roles)
occurring in sub(C). Each label l ∈ L(a) of each node a ∈ V is annotated
with a set Ann(a, l) = {(li, lj ,A) | li, lj ∈ sub(C)∧causedBy(lj , li,A)}. The
following conditions hold for an annotated tableau:

• ∃lk ∈ sub(C).((lk, l,A) ∈ Ann(a, l))

6.1 Consistency Checking 137

• ∃lk ∈ sub(C).((C, lk,A) ∈ Ann(a, l))

• ∀lk ∈ sub(C).((l, lk,A) /∈ Ann(a, l))

When there exists (li, lj ,A) and (lj , lk,A′), both elements of Ann(a, l),
we say that li and lk are dependent on each other, and denote this as
dependent(li, lk). Note that the dependent relation has a transitive property
i.e., if dependent(li, lk) and dependent(lk, ln), then also dependent(li, ln).

To list all axioms (including both concept axioms as well as role and
individual axioms) involved in the satisfiability checking of a concept C, we
introduce the notion of a Concept Dependency Tree (CDT). Such a CDT
is constructed whenever a clash is found in a node a of a tableau. The
construction of a CDT is based on an annotated tableau we introduced in
the previous definition. A Concept Dependency Tree itself is defined as
follows:

Definition 6.4 (Concept Dependency Tree). Assume a clash is found
in a node a between the concepts D1 and D2. A Concept Dependency Tree
for a given concept C is defined as an n-ary tree CDTC = 〈V,E〉 where
V is the set of nodes and E is the set of edges. A node N ∈ V is a tuple
〈φ,RIA〉 where φ is a concept axiom and RIA is a set of role and individual
axioms. An edge between two nodes is a tuple 〈Ni, Nj〉 where Ni, Nj ∈ V.
The following conditions hold for a CDT:

• for each (li, lj ,A) ∈ Ann(a,D1) ∪ Ann(a,D2) where li is an atomic
concept, there exists a node N = 〈φ,RIA〉 where φ is the concept
definition of li and

RIA =
⋃

∀ (lm,ln,A)

A where dependent(li, lm)

• for each node Ni = 〈φ,RIA〉, where φ is the concept definition of a
label li, and node Nj = 〈ψ,RIA′〉, where ψ is the concept definition
of a label lj, there exists an edge 〈Ni, Nj〉 iff dependent(li, lj);

Furthermore, we say that a child(Ni, Nj) relation exists between two
nodes iff there exists an edge 〈Ni, Nj〉 ∈ E. Furthermore, we define parent
as the inverse relation of child, and child∗ and parent∗ as the transitive
counterparts of respectively child and parent.

The construction of the CDTs occurs during the execution of the tableau
algorithm and is based on the use of an annotated tableau. For each label
added to a tableau, the annotated tableau keeps track of the path of labels
(together with possible role and individual axioms) leading to the addition
of that label to the tableau. When a clash is found between two labels, the
annotations associated with both labels are used to construct the CDT. For
each concept axiom φ represented in an annotation, we add a new node N

138 Conducting Ontology Evolution

Figure 6.3: Example tableau and associated CDTs

to the CDT (unless such a node already exists) as child of the previous node
(if any) so that N = 〈φ, {}〉. When we encounter a role axiom or individual
axiom ψ, we add it to the RIA set of the current node N of the CDT so that
ψ ∈ RIA where N = 〈φ,RIA〉. When a non-deterministic expansion occurs
in the tableau algorithm (e.g., as result of a disjunction A t B), this leads
to different search paths. We construct copies of the CDT to represent the
various search paths of the non-deterministic expansion. All these CDTs are
equal until the moment of occurrence of the non-deterministic expansion.
Furthermore, note that cyclic axioms (e.g., C v ∀R.C) don’t lead to the
construction of an infinite CDT, as reasoners normally include some sort of
cycle checking mechanism, such as blocking.

The result of the tableau algorithm testing the satisfiability of the con-
cept PhDStudent CS in our example is shown in Figure 6.3 at the top,
while the CDTs are shown below2. The tableau consists of a single node
called a that is gradually filled with labels added by applying a tableau ex-
pansion rule. Each appliance of a tableau expansion rule is indicated with

2Note that, as it concerns a fairly simple example, no role axioms are included in the
example. A more complex example including role axioms will be elaborated in Section
6.3.

6.1 Consistency Checking 139

a small arrow shown on the left side of the tableau. Note that the appli-
ance of the →t tableau expansion rule results into two branches due to the
non-determinism of the rule. Each label in the node of the tableau is an-
notated with the path of labels leading to the addition of that node (noted
in superscript)3. The tableau algorithm terminates with the following two
clashes:

PhDStudent ⇔ ¬PhDStudent
¬∀enrolledIn.¬Course ⇔ ¬(¬∀enrolledIn.¬Course)

Note that the non-deterministic expansion in the tableau results into the
creation of two CDTs, one for each search path. Both the CDTs con-
tain the different axioms involved in the unsatisfiability of the concept
PhDStudent CS.

Before discussing the interpretation of the Concept Dependency Trees in
the following section, we first give the definition of the root node of a CDT.

Definition 6.5 (Root node). For a given CDTC , Nr is defined as the
root node, notation rootNode(Nr), iff ¬∃Ni.(parent(Ni, Nr)) where Ni is a
node of CDTC .

6.1.5 Interpretation of Concept Dependencies

In this section, we discuss which axioms listed in the CDTs are causing an
ontology inconsistency. The interpretation of which axioms are causing an
inconsistency depends on the task performed: the TBox Consistency Task
or the ABox Consistency Task.

In the TBox Consistency Task, at least one CDT is constructed for
each unsatisfiable concept C in the TBox. More than one CDT may be
constructed for a single unsatisfiable concept when non-determinism occurs
during the satisfiability checking of that concept. When a concept C is
determined to be unsatisfiable, all the CDTs of that concept C contain
clashing concepts.

To represent the outcome of the TBox Consistency Task, we intro-
duce the notion of a Concept Dependency Set for a TBox Consistency Task
(CDST). The definition is given as follows:

Definition 6.6 (CDST). Assume NT to be the set of concept names of all
unsatisfiable concepts of a TBox T . A Concept Dependency Set for a TBox
Consistency Task, notation CDST , is defined as a finite set so that

∀σ ∈ NT ,∃!c ∈ CDST .(c = {CDTσ,1, . . . , CDTσ,n})

where CDTσ,1, . . . , CDTσ,n are the CDTs of σ resulting from possible differ-
ent search paths due to non-determinism.

3Note that the annotations shown in Figure 6.3 are a simplified representation of the
annotations as defined in Definition 6.3 for reasons of clarity.

140 Conducting Ontology Evolution

During the ABox Consistency Task, a reasoner constructs at least one
CDT for each concept assertion C(a) in the ABox until a clash is detected.
The ABox is determined to be inconsistent when a clash exists between
concepts of two different CDTs. Note that it is impossible that one CDT
contains both concepts involved in a clash as this would reveal an inconsis-
tent TBox. However, an inconsistent TBox cannot occur at this moment in
time as the TBox Consistency Task is performed before the ABox Consis-
tency Task and should have resolved all possible TBox inconsistencies.

The result of the ABox Consistency Task is a set of tuples of two CDTs
that represent the clashes detected (the CDTs not representing a clash are
omitted). To represent the outcome of the ABox Consistency Task, we
introduce the notion of a Concept Dependency Set for an ABox Consistency
Task (CDSA). The definition is as follows:

Definition 6.7 (CDSA). Assume a clash exists between the concepts C and
D. A Concept Dependency Set for an ABox Consistency Task, notation
CDSA, is defined as a finite set

CDSA = {〈CDTC,1, CDTD,1〉 , . . . , 〈CDTC,n, CDTE,n〉}

where each element of CDSA lists all the combinations of CDTs that rep-
resent a detected clash. Different combinations correspond to the different
search paths due to non-determinism in the reasoning process.

In the remainder of this subsection, we discuss the different interpreta-
tions of the CDT for the TBox and ABox Consistency Task.

TBox Consistency Task

For a given Concept Dependency Tree CDTC , all the axioms contained in
CDTC together form the cause of the clash found. are the axioms along
the two paths starting from the top node of CDTC and ending at the node
with the axiom containing one of the concepts involved in the detected
clash. Removing one of the axioms along the paths, which start from the
top node of CDTC and end at the node with the axiom containing one
of the concepts involved in the detected clash, ensures that the particular
clash will be avoided. The clash will be avoided because removing an axiom
(including concept-, role-, and individual axioms) will interrupt at least one
of the paths leading to the clash.

Although removing one of the axioms of a CDT will remove the con-
tradiction represented by the detected clash, we consider it in general bad
practice to take all the axioms of the path into consideration to remove the
contradiction. We will explain this by means of an example. Assume a TBox
populated with the following axioms:

{C v B,B v ¬∀R.¬D,D v E,E v A u F, F v ¬A}

6.1 Consistency Checking 141

Figure 6.4: Example of a CDT in the TBox Consistency Task

Checking the satisfiability of C will reveal that it is unsatisfiable due to
a clash between A ⇔ ¬A. The top part of Figure 6.4 shows the tableau,
the bottom part the associated CDT. The tableau shows two nodes a and b,
and one edge 〈a, b〉 (indicated with a dashed arrow). Although removing for
example the axiom C v B will resolve the unsatisfiability of C, this change
fails to address the true cause of the unsatisfiability as the overall TBox
remains inconsistent (e.g., D is and remains unsatisfiable). The only reason
that C is unsatisfiable, is because C depends on a concept that in its turn
is also unsatisfiable. In our example, the reason that C is unsatisfiable is
because the concept E is unsatisfiable. In other words, the unsatisfiability
of C is a victim of the unsatisfiability of E.

To decide whether the unsatisfiability of a concept is a direct cause of
contradictory concept definitions or simply because the concept depends on
another unsatisfiable concept, we take the following procedure. A concept is
considered unsatisfiable if a clash is found (in the case of non-deterministic
branches, a clash needs to be found in each non-deterministic branch of the
tableau). The axioms containing the concepts involved in a clash must have
a common parent in the CDT. Otherwise, it would be impossible that a
clash was found between these concepts (in our example the concepts A and
¬A). Only the first common parent of these axioms and the axioms along
the paths from this first common parent to the clashes are directly involved
in the unsatisfiability problem. Removing or adapting axioms leading to
this common parent (e.g. C v B or D v E) may resolve the unsatisfiability
of the concept under investigation, but this doesn’t tackle the true cause

142 Conducting Ontology Evolution

Figure 6.5: Example of CDTs in the ABox Consistency Task

as the actual contradiction remains. We therefore introduce the notion of a
FirstCommonParent for a CDT, and define it as follows:

Definition 6.8 (FirstCommonParent). We define Nc as the first com-
mon parent of two nodes Ni and Nj, notation FirstCommonParent(Nc, Ni,
Nj), iff parent ∗ (Nc, Ni) ∧ parent ∗ (Nc, Nj) ∧ ¬∃Nk.(parent ∗ (Nk, Ni) ∧
parent ∗ (Nk, Nj) ∧ child ∗ (Nk, Nc) ∧Nk 6= Nc).

To select the axioms forming the true cause of the inconsistency, we
take the union of all axioms of the FirstCommonParent Nc of the nodes
containing the concepts involved in the detected clash and all axioms of
all the child nodes of Nc. In our example, the node containing the axiom
E v AuF is the first common parent for the nodes with axioms containing
the concepts A and ¬A involved in the clash. We therefore restrict the set of
axioms causing the inconsistency to the following set: {E v AuF, F v ¬A}.

ABox Consistency Task

The interpretation of a CDT for the ABox Consistency Task is different from
the interpretation used for the TBox Consistency Task we discussed previ-
ously. Consider the following example with TBox: {C v B,B v ∀R.D,E v
A,D v ¬A} and ABox: {C(a), E(b)}. Note that the TBox doesn’t contain
any unsatisfiable concepts (as the TBox Consistency Task was performed
previously and possible contradictions should have been resolved). Adding
the assertion R(a, b) to the ABox will result in an inconsistent ABox as a
clash occurs between A(b) ⇔ ¬A(b). Figure 6.5 shows for this example the
tableaus at the top (one for each assertion C(a) and E(b)) and the associ-
ated CDTs at the bottom. The tableaus consists of two nodes a and b, and
one edge 〈a, b〉 (indicated with a dashed arrow).

6.1 Consistency Checking 143

As shown in the figure, checking ABox consistency for our example re-
sults in two CDTs, one for each concept assertion of the ABox (i.e., C(a) and
E(b)). The individual axioms C(a), R(a, b) and E(b) are added to the CDTs
as elements of the RIA set of the CDT nodes where appropriate. Note that
we only consider individual axioms that were present in the original ABox.
Individuals that were added by the tableau algorithm to direct reasoning
are not taken into account. Consistency can be restored by interrupting
one of the paths leading to the concepts involved in the clash. Therefore,
the axioms causing the inconsistency are the axioms, including both con-
cept axioms as well as the axioms of the RIA set, along the paths from the
top node of the CDTs to the node with the axiom containing the concept
involved in the clash. For our example, this results into the following set:
{C v B,B v ∀R.D,E v A,D v ¬A,C(a), E(b), R(a, b)}.

6.1.6 Axiom Selection

In this section, we give an overview of the overall algorithm to determine the
axioms causing an inconsistency based on the interpretations of the CDTs
given in the previous section. Note that the axioms that will be consid-
ered will differ for the TBox and ABox Consistency Task. We therefore
discuss two distinct algorithms, one for each task. Before explaining both
algorithms, we fist need to address the following issues:

• Mark axioms: It is not necessarily true that a complete concept
axiom is in its entirety the cause of an inconsistency. Instead, in
most cases, only a part of the axiom will form the true cause of an
inconsistency. E.g., for an axiom C v A u ∀R.C u . . . u ¬A, only the
concepts A and ¬A are involved in the unsatisfiability of C, while the
remaining concepts (i.e., ∀R.C, . . .) in the axiom are not involved.
A concept is involved in the cause of an inconsistency either because
it is directly involved in the detected clash, or because it is indirectly
leading to a concept involved in the detected clash. The algorithm
therefore marks the concepts of the axioms involved in the cause of
an inconsistency. In order to do so, we assume a markAllParents(N)
function that marks all concepts in the concept axiom of all the parent
nodes of a node N .

• Non-inconsistency-revealing clashes: The clashes found between
transformed axioms by the tableau algorithm may not always indicate
real contradictions between the original axioms as defined by the on-
tology engineer. Figure 6.3 (see Section 6.1.4) illustrates this. The
first detected clash:

¬∀enrolledIn.¬Course⇔ ¬(¬∀enrolledIn.¬Course)

144 Conducting Ontology Evolution

seems to reveal a contradiction at first sight, but when we transform
the axioms back to their original form using the reversed transforma-
tions of the ATG, it is clear that both concepts involved in the clash are
actually the same concept and no contradiction is possible. Consider
as example the axiom:

PhDStudent v ¬∀enrolledIn.¬Course u
(Undergraduate t ¬(¬∀enrolledIn.¬Course))

Following the reversed transformations of the ATG, we recover that
this axiom originates from the following two axioms as defined by the
ontology engineer:

PhDStudent v ∃enrolledIn.Course
∃enrolledIn.Course v Undergraduate

After the transformation to the original axioms, it becomes clear that
the two concepts involved in the clash are actually both the same con-
cept i.e., ∃enrolledIn.Course. The detected clash guided the tableau
algorithm, rather than revealing an actual inconsistency.

As we will see in Section 6.2, a detected inconsistency is resolved by
weakening the axioms contained in a CDT in order to solve the contra-
diction. However, for CDTs representing a non-inconsistency-revealing
clash, there is no contradiction to resolve. Nevertheless, the CDT rep-
resents a set of axioms that are leading to a clash found in another
non-deterministic branch of the tableau (representing a consistency-
revealing clash). So, removing one of the axioms of the CDT will
resolve the inconsistency as the path to a consistency-revealing clash
(represented by another clash) will be broken. In our example, the pre-
viously mentioned CDT indicates that ∃enrolledIn.Course was used
to expand from PhDStudent to Undergraduate. Removing one of the
axioms of the CDT resolves the inconsistency.

TBox Consistency Task

To select the axioms causing an inconsistency in the TBox Consistency Task,
we don’t take all CDTs into account. As described in Section 6.1.5, not all
axioms contained in a CDT are always involved in the true cause of the
detected inconsistency. Therefore, when the root node of a CDT and the
first common parent of the nodes including the concepts involved in the
clash found are not the same node, the CDT is not further considered. For
the remaining CDTs, we transfer the contained axioms back to their original
form using the inverse transformations specified in the ATG.

A more detailed description of the algorithm for the TBox Consistency
Task to select the axioms causing an inconsistency is given as follows:

6.1 Consistency Checking 145

1. For each CDTC,i of a Concept Dependency Set CDST , representing
a clash X ⇔ Y , lookup the nodes NX = 〈φX ,RIA〉 and NY =
〈φY ,RIA′〉 with respectively a concept axiom φX containing the con-
cept X involved in the clash and a concept axiom φY containing the
concept Y involved in the clash. Mark these concepts as being directly
involved in the clash.

2. For each CDTC,i of CDST , verify whether the root node of CDTC,i is
also the first common parent i.e., rootNode(Nr)∧ firstCommonPa−
rent(Nr, NX , NY). If this is not the case, remove CDTC,i from the
set CDST . According to the interpretation of the CDTs, as discussed
in Section 6.1.5, we may remove the CDTs where the root node and
first common parent don’t fall together because there exists another
CDT (where the root node and first common parent do fall together)
that narrows the number of axioms responsible for the detected incon-
sistency further down to those axioms forming the true cause of the
inconsistency.

3. For each marked node4 N , mark all parent nodes using the markAllPa-
rents function to mark the concepts that are leading to a concept
directly involved in the clash.

4. For each CDTC,i of CDST , create a set SC,i listing all axioms (includ-
ing concept-, role- and individual axioms) contained in the nodes of
CDTC,i so that:

SC,i =
⋃

∀ 〈φ,RIA〉∈ CDTC,i

{ψ |ψ = φ ∨ ψ ∈ RIA}

5. For each set SC,i, replace all axioms ψ ∈ SC,i with their original coun-
terparts by applying the inverse transformations as specified in the
ATG.

ABox Consistency Task

For each combination of CDTs found in the ABox Consistency Task, we
select all axioms (including concept, role and individual axioms) listed in
these two CDTs. We then transform them back to their original form using
the transformations specified in the ATG.

A more detailed description of the algorithm for the ABox Consistency
Task to select the axioms causing an inconsistency is given as follows:

1. For each tuple of CDTs 〈CDTC,i, CDTD,i〉 ∈ CDSA, lookup the nodes
NX = 〈φX ,RIA〉 in CDTC,i and NY = 〈φY ,RIA′〉 in CDTD,i with

4We consider a node N = 〈φ,RIA〉 to be marked if φ contains a marked concept.

146 Conducting Ontology Evolution

respectively a concept axiom φX containing the concept X involved in
the clash and a concept axiom φY containing the concept Y involved
in the clash. Mark these concepts as being directly involved in the
clash.

2. For each marked node N , mark all parent nodes using the markAllPa-
rents function to mark the concepts that are leading to a concept
directly involved in the clash.

3. For each tuple of CDTs 〈CDTC,i, CDTD,i〉 of a Concept Dependency
Set CDSA, create a set SC,D,i listing all axioms contained in the nodes
of CDTC,i ∪ CDTD,i so that:

SC,D,i =
⋃

∀ 〈φ,RIA〉∈ CDTC,i∪CDTD,i

{ψ |ψ = φ ∨ ψ ∈ RIA}

4. For each set SC,D,i, replace all axioms ψ ∈ SC,D,i with their original
counterparts by applying the inverse transformations as specified in
the ATG.

Example

Applying the algorithm of the TBox Consistency Task to our example intro-
duced in Section 6.1.2 results in two sets: SPhDStudent,1 and SPhDStudent,2

(note that the last set represents a non-inconsistency revealing clash). We
use the following convention: single-underlined concepts are the concepts
marked by the markAllParents algorithm, double-underlined concepts are
the concepts directly involved in the consistency-revealing clash.

SPhDStudent,1 = { PhDStudent v ∃enrolledIn.Course,
∃enrolledIn.Course v Undergraduate,

Undergraduate v ¬PhDStudent }

SPhDStudent,2 = { PhDStudent v ∃enrolledIn.Course,
∃enrolledIn.Course v Undergraduate }

6.1.7 Completeness of Axiom Selections

Under some circumstances, the axioms selected by the algorithm for the
TBox Consistency Task discussed in the previous section, may result into
an incomplete set of axioms. When checking the satisfiability of a concept
C, a reasoner stops the reasoning process for that concept either as soon
as it encounters a clash, or when no tableau expansion rules are applicable.
This means that, in the case where there exists more than one reason for the
unsatisfiability of a concept, only the axioms for one reason will be selected

6.2 Inconsistency Resolving 147

as the reasoner halts after the first clash found. Consider as an example the
following set of axioms: {C v A u B,A v ¬A,B v ¬A}. It is clear that C
is unsatisfiable because of two reasons: first, any instance of C must be an
instance of both B and its complement; secondly, any instance of C must be
an instance of A and its complement. Nevertheless, the selection algorithm
will only select either {C v A u B,A v ¬B} or {C v A u B,B v ¬A}
(depending on the decision made by the reasoner).

An incomplete axiom selection is not dramatically because the remaining
reasons for the unsatisfiability of a concept will be dealt with in the next
iteration of the ontology consistency checking process. Nevertheless, it may
be disturbing for certain users not knowing all reasons for an unsatisfiability
at once. The authors of [69] describe an approach to reveal all clashes for an
unsatisfiable concept. The approach extends the tableau algorithm with an
additional tableau expansion rule, the clash continue rule, which allows for
the tableau expansion to continue even after a clash has been detected. In
this way, the tableau algorithm reveals all possible clashes. The drawback
of wanting to reveal all possible clashes is the negative influence it has on
the performance of the tableau algorithm.

6.2 Inconsistency Resolving

The reason for an inconsistent ontology is that the overall set of axioms of
the ontology is too restrictive in the sense that axioms are contradicting
each other. A straightforward solution to overcome an inconsistency would
be to simply remove one on the axioms selected by our algorithm discussed
in the previous section. As simply removing axioms is often a too drastic
solution, we propose a solution of weakening the restrictions imposed by the
axioms in order to resolve inconsistencies. In this section, we present a set
of rules that ontology engineers can use to weaken the set of axioms in order
to overcome the ontology inconsistency detected.

In the previous section (see Section 6.1.5), we have specified two algo-
rithms to determine the set of axioms causing an inconsistency based on the
task performed: TBox Consistency Task or ABox Consistency Task:

• The result of the TBox Consistency Task is one or more sets SC,i

filled with axioms causing the unsatisfiability of C where i indicates
the ith set of axioms for the concept C. More than one set of axioms
for the same concept occurs due to non-determinism in the reasoning
process. The unsatisfiability of a concept C can be solved by changing
an axiom of one of the sets SC,i applying the set of rules we present
in this section.

• The result of the ABox Consistency Task is one or more sets SC,D,i

filled with axioms causing the ABox inconsistency where i indicates

148 Conducting Ontology Evolution

the ith set of axioms. As with the TBox Consistency Task, more than
one set of axioms may occur due to non-determinism in the reasoning
process. The ABox inconsistency detected can be solved by changing
an axiom of one of the sets SC,D,i applying the set of rules we present
in this section.

Before introducing the set of rules to solve an ontology inconsistency,
we first define a number of auxiliary definitions. We call Hc the concept
hierarchy of all concepts present in the axioms of a given set S5 and Hr the
role hierarchy of all roles present in the axioms of a given set S. Note that
these hierarchies don’t include concepts or roles not present in S. We define
both hierarchies as follows:

Definition 6.9 (Concept & Role Hierarchy). For a given set S, the
concept hierarchy Hc is defined as a finite set so that Hc = {〈C,D〉 | C v
D ∧ ¬∃Z.(C v Z ∧ Z v D ∧ Z 6= C ∧ Z 6= D)} where C, D and Z are all
concepts marked in the axioms of S.
For a given set S, the role hierarchy Hr is defined as a finite set so that
Hc = {〈R,S〉 | R v S ∧ ¬∃T.(R v T ∧ T v S ∧ T 6= R ∧ T 6= S)} where R,
S and T are all roles used in the axioms of S.

We call a concept Ct a top concept of a concept C for a concept hierarchy
Hc and a role Rt a top role of a role R for a role hierarchy Hr according to
the following definition:

Definition 6.10 (Top Concept & Role). A concept Ct is called a top
concept of a concept C for a concept hierarchy Hc, notation top(Ct, C,Hc),
iff Ct v C ∧ ¬∃ 〈Ci, Cj〉 ∈ Hc.(Cj = Ct).
A role Rt is called a top role of a role R for a role hierarchy Hr, notation
top(Rt, R,Hr), iff Rt v R ∧ ¬∃ 〈Ri, Rj〉 ∈ Hr.(Rj = Rt).

In contrary to a top concept and top role, we call a concept Cl a bottom
concept of a concept C for a concept hierarchy Hc and a role Rl a bottom
role of a role R for a role hierarchy Hr according to the following definition:

Definition 6.11 (Bottom Concept & Role). A concept Cl is defined as
bottom concept of a concept C for a concept hierarchy Hc, notation bottom−
(Cl, C,Hc), iff C v Cl ∧ ¬∃(Ci, Cj) ∈ Hc.(Ci = Cl).
A role Rl is defined as bottom role of a role R for a role hierarchy Hr,
notation bottom(Rl, R,Hr), iff R v Rl ∧ ¬∃(Ri, Rj) ∈ Hr.(Ri = Rl).

In the remainder of this section, we present a collection of rules that
guides the ontology engineer towards a solution to overcome the inconsis-
tency. A rule either calls another rule or requests a change to an axiom. Note
that it remains the responsibility of the ontology engineer to decide which

5We simply use S to refer to either a set SC,i or a set SC,D,i.

6.2 Inconsistency Resolving 149

axiom of a set S he desires to change. First, we define a set of rules that
handle the different types of axioms (i.e. C ≡ D, C v D, R v S, Trans(R),
C(a), R(a, b), a = b and a 6= b). Secondly, we define the necessary rules to
weaken or strengthen the different types of concepts.

Note that axioms can always be weakened by removing the axiom. We
therefore won’t mention this option explicitly in the rules below. The rules
for weakening axioms are as follows:

• Concept Definition Axiom: A concept definition axiom C ≡ D
can be weakened either by strengthening C or weakening D, or by
weakening C or strengthening D (depending on the direction in which
the axiom was used in the reasoning process leading to the found
clash6). The first rule listed below corresponds to the direction C v D,
the second rule corresponds to the direction D v C:

weaken(C ≡ D) ⇒ strengthen(C) ∨ weaken(D) (6.1)

weaken(C ≡ D) ⇒ weaken(C) ∨ strengthen(D) (6.2)

• Concept Inclusion Axiom: A concept inclusion axiom C v D can
be weakened by strengthening C or weakening D:

weaken(C v D) ⇒ strengthen(C) ∨ weaken(D) (6.3)

• Role Inclusion Axiom: A role inclusion axiom R v S can be weak-
ened by strengthening R or weakening S:

weaken(R v S) ⇒ strengthen(R) ∨ weaken(S) (6.4)

• Transitive Axiom: A transitive axiom Trans(R) can only be weak-
ened by removing the transitivity property of R:

weaken(Trans(R)) ⇒ deleteTransitive(R) (6.5)

• Inverse Axiom: An inverse axiom R ≡ S− can only be weakened by
removing the inverse axiom:

weaken(R ≡ S−) ⇒ deleteInverseOf(R,S) (6.6)

• Symmetric Axiom: A symmetric axiom R ≡ R− can only be weak-
ened by removing the symmetric axiom:

weaken(R ≡ R−) ⇒ deleteSymmetric(R) (6.7)
6Because C ≡ D is transformed to C v D and D v C in the pre-processing optimiza-

tion step, the direction in which a concept definition axiom is used can be derived from
whether C v D or D v C was used in the CDT.

150 Conducting Ontology Evolution

• Concept Assertion: A concept assertion C(a) can be weakened by
replacing C with a superclass of C:

weaken(C(a)) ⇒ changeInstanceOf(a,C,D) (6.8)

where ∃Cl.(Cl v D ∧ leaf(Cl, C,Hc))

• Role Assertion: A role assertion R(a, b) can be weakened by replac-
ing R with a superproperty of R:

weaken(R(a, b)) ⇒ changePropertyOfPropertyV alue(a, b, R, S)
(6.9)

where ∃Rl.(Rl v S ∧ leaf(Rl, C,Hc))

• Individual Equality & Inequality: An individual equality a = b
and individual inequality a 6= b can only be weakened by removing the
axiom:

weaken(a = b) ⇒ deleteSameAs(a, b) (6.10)

weaken(a 6= b) ⇒ deleteDifferentFrom(a, b) (6.11)

The second part of rules deal with the weakening and strengthening of
concepts. A concept can be always be weakened by removing the concept.
We therefore won’t mention this option explicitly in the rules below. When
the rules to weaken a concept are similar to the rules to strengthen a concept,
we omit these last rules. The rules for weakening and strengthening concepts
are defined as follows:

• Conjunction: A conjunction C uD can be weakened (strengthened)
by weakening (strengthening) either C or D. The rules for weakening
are given below; the rules for strengthening are analogous:

if Marked(C) then

weaken(C uD) ⇒ weaken(C) (6.12)

if Marked(D) then

weaken(C uD) ⇒ weaken(D) (6.13)

if Marked(C) ∧Marked(D) then

weaken(C uD) ⇒ weaken(C) ∨ weaken(D) (6.14)

• Disjunction: A disjunction C t D can be weakened (strengthened)
by weakening (strengthening) either C or D. The rules for weakening
are given below; the rules for strengthening are analogous:

6.2 Inconsistency Resolving 151

if Marked(C) then

weaken(C tD) ⇒ weaken(C) (6.15)

if Marked(D) then

weaken(C tD) ⇒ weaken(D) (6.16)

if Marked(C) ∧Marked(D) then

weaken(C tD) ⇒ weaken(C) ∨ weaken(D) (6.17)

• Existential Quantifier: An existential quantification ∃R.C can be
weakened and strengthened in two manners as it represents both a car-
dinality restriction (“at least one”) and a value restriction. To weaken
∃R.C, we either remove ∃R.C if it concerns a cardinality restriction
violation, or we weaken C if it concerns a value restriction violation.
To strengthen ∃R.C, we either add a minimum cardinality restriction
if it concerns a cardinality restriction violation, or we strengthen C if
it concerns a value restriction violation:

if Marked(R) then

weaken(∃R.C) ⇒ del.SomeV aluesFromRestr.(∃R.C) (6.18)

if Marked(C) then

weaken(∃R.C) ⇒ weaken(C) (6.19)

if Marked(R) then

strengthen(∃R.C) ⇒ addMinCardinalityRestriction(R, 2) (6.20)

if Marked(C) then

strengthen(∃R.C) ⇒ strengthen(C) (6.21)

• Universal Quantifier: A universal quantification ∀R.C can be weak-
ened (strengthened) by weakening (strengthening) C. The rule for
weakening is given below; the rule for strengthening is analogous:

weaken(∀R.C) ⇒ weaken(C) (6.22)

152 Conducting Ontology Evolution

• Maximum Cardinality: A maximum cardinality restriction (≤ n R)
can be weakened either by raising n or by removing the cardinality
restriction altogether. To strengthen (≤ n R), we can lower n:

weaken((≤ nR)) ⇒ changeCardinality((≤ n R),m) (6.23)

where m ≥ 1 if (≤ n R) conflicts with ∃R.C, or m ≥ α if (≤ n R)
conflicts with (≥ α R)

strengthen((≤ n R)) ⇒ changeCardinality((≤ n R),m) (6.24)

where m = 0 if (≤ n R) conflicts with ∃R.C, or m ≤ α if (≤ n R)
conflicts with (≥ α R)

• Minimum Cardinality: A minimum cardinality restriction (≥ n R)
can be weakened by either lowering n or by removing the cardinality
restriction altogether. To strengthen (≥ n R), we can raise n:

weaken((≥ nR)) ⇒ changeCardinality((≥ n R),m) (6.25)

where m ≤ α if (≥ n R) conflicts with (≤ α R)

strengthen((≥ n R)) ⇒ changeCardinality((≤ n R),m) (6.26)

where m ≥ α if (≥ n R) conflicts with (≤ α R)

• Negation: A negation ¬C is weakened by either removing ¬C or by
strengthening C. To strengthen ¬C, we need to weaken C:

weaken(¬C) ⇒ strengthen(C) (6.27)

strengthen(¬C) ⇒ weaken(C) (6.28)

• Atomic Concept: An atomic concept A is weakened either by remov-
ing the concept or by replacing it with a superclass of A. To strengthen
an atom concept A, we replace it with a subclass of A. When no (ap-
propriate) sub- or superclass exists, the ontology engineer may create
one first:

weaken(A) ⇒ changeClass(A,C) (6.29)

where ∃Cl.(Cl v C ∧ leaf(Cl, A,Hc))

strengthen(A) ⇒ changeClass(A,C) (6.30)

where ∃Ct.(C v Ct ∧ top(Ct, A,Hc))

6.2 Inconsistency Resolving 153

• Role: A role R is weakened either by removing the role or by replacing
it with a superproperty of R. To strengthen a role R, we replace it
with a subproperty of R. When no (appropriate) sub- or superproperty
exists, the ontology engineer may create one first:

weaken(R) ⇒ changeProperty(R,S) (6.31)

where ∃Rl.(Rl v S ∧ leaf(Rl, R,Hr))

strengthen(R) ⇒ changeProperty(R,S) (6.32)

where ∃Rt.(S v Rt ∧ top(Rt, R,Hr))

Before we apply the set of rules to our example, first consider the fol-
lowing remarks regarding this set of rules:

• In the set of rules, several cases exist where more than one rule can be
considered for appliance (e.g., in rule 6.3, a concept inclusion axiom
C v D can be weakened by either weakening C or D) or where the
same rule can be applied in different ways (e.g., in rule 6.31, a role
R can be weakened by replacing it with a role S that holds to the
condition imposed by the rule; in general, several possibilities for S
are valid). In these cases, it is the responsibility of the engineer to
make a decision best suiting his needs or beliefs.

• Note that in the precondition of rule 6.17, the two concepts C and D of
a disjunction CtD are marked. At first sight however, one would think
think this rule will never get triggered as two inconsistency revealing
clashes in both search paths of the disjunction would result into two
sets S: one where C is marked and one where D is marked. The
only situation where this may occur is when the disjunction actually
represents a conjunction when transformed into NNF i.e., ¬(¬C t
¬D) = C uD.

We conclude this section with our example. Remember that the TBox
Consistency Task resulted in two sets. Assume that the ontology engineer
selects the set S containing the following axioms:

SPhDStudent,1 = { PhDStudent v ∃enrolledIn.Course,
∃enrolledIn.Course v Undergraduate,

Undergraduate v ¬PhDStudent }

When for example an ontology engineer beliefs that the axiom:

∃enrolledIn.Course v Undergraduate

doesn’t reflect the real word situation as it is too restrictive, he may decide
to weaken the axiom by weakening the concept Undergraduate. The on-
tology engineer could change the axiom to ∃enrolledIn.Course v Student,
assuming Undergraduate v Student, by following the rules 6.3 and 6.29.

154 Conducting Ontology Evolution

6.3 Example

In this section, we elaborate a more complex example then the one used in
the previous sections to illustrate the use of our approach. To check a new
version of an ontology on logical consistency, we retrieve the latest version
from the version log (using S(now)) and use it as input of a reasoner that
has implemented the modified tableau algorithm. The approach will select
the axioms that are causing a detected inconsistency (in the occurrence of
one) and the set of rules can be used to resolve the inconsistency.

Consider as example the following set of axioms in an OWL DL ontology
O where A,B,C,D are concepts and P,R, S are roles:

C v ∃R.A
C v ∀R.B uD
A v ∃S.¬B
∃P.> v D
S v R
P v S

Trans(R)
Trans(P)

Checking logical consistency will reveal a clash between B ⇔ ¬B when
testing the satisfiability of C. After the transformations in the optimization
step of the reasoner, the set of axioms looks as follows:

C v ¬∀R.¬A u ∀S.B uD
A v ¬∀S.B
domain(P,D)

S v R
P v S

Trans(R)
Trans(P)

Figure 6.6 shows the resulting tableau and the associated CDT of the
satisfiability testing of C. The tableau consists of three nodes a, b and c, and
two edges 〈a, b〉 and 〈b, c〉. Each node in the labels of the tableau is annotated
with the path leading to the addition of that node (noted in superscript).
Note that both the transitive feature of R and the role inclusion axiom
S v R was required to encounter a clash between B and ¬B. The resulting
CDT consists of four axioms (including the transitive feature Trans(R)
and the role inclusion axiom S v R). Applying the algorithm for the TBox
Consistency Task, results in the following set SC,1 listing the original axioms
causing the unsatisfiability of C:

SC,1 = {C v ∃R.A,C v ∀R.B uD,Trans(R), S v R,A v ∃S.¬B}

6.4 Backward Compatibility 155

Figure 6.6: An example of logical consistency checking: tableau and associ-
ated CDT

Following the set of rules, the inconsistency could be resolved by for instance
deleting the role axiom S v R or Trans(R). Another possible solution could
be the weakening of ¬B in the axiom A v ∃S.¬B by replacing B with a
subclass (due to the negation) following the rules 6.3, 6.19, 6.27 and 6.30.
Note that other solutions are certainly possible.

6.4 Backward Compatibility

The approach discussed in the previous sections to resolve ontology incon-
sistencies is used in the evolution process of an ontology to come from an
inconsistent state to a consistent state. As we have seen in Section 6.2,
there exists, in general, a number of ways to solve the same inconsistency.
It is the responsibility of the ontology engineer to select one of these so-
lutions. The knowledge of which of these solutions breaks the backward
compatibility of the ontology for a certain depending artifact mangaged by
the same ontology engineer7 may influence his decision of which solution to
take. Furthermore, the knowledge of whether the new version of an ontology
is backward compatible with its predecessor or not, may have an influence
on the decision of maintainers of depending artifacts to update to the latest
version, an intermediate version or to not update at all.

In the context of databases, a database schema is considered backward
compatible if all data that was accessible through the old version can still
be accessed through the new version of the schema [78]. One refers to
this form of backward compatibility as data preservation. In the context

7An ontology engineer can be a maintainer of a depending artifact at the same time.

156 Conducting Ontology Evolution

of ontologies, the definition of backward compatibility is more complex as
depending artifacts don’t necessarily rely on instance data only, but may also
rely on Classes and Properties of the ontology [51]. This form of backward
compatibility is generally called consequence preservation and is defined as
follows:

Definition 6.12 (Consequence Preservation). For an ontology O, con-
sequence preservation is defined as a form of backward compatibility where
all the facts that could be inferred from the old version of an ontology Oold

can still be inferred from the new version Onew.

Note that this form of backward compatibility is extremely restrictive
when applied to an ontology in its entirety, as a new ontology version is
only backward compatible with its predecessor if all the facts that can be
inferred from the new version is a superset of all the facts that could be
inferred from the old version. This means that a lot of changes will break
the backward compatibility of an ontology. In practice however, ontology
depending artifacts (mostly) don’t rely on all concepts of an ontology, but
rather abide by a finite set of ontology concepts [51]. It makes therefore
more sense to define backward compatibility for only a set of concepts of
an ontology. Which concepts of the ontology it concerns depends on the
ontology-depending artifacts in use.

The remainder of this section is structured as follows. In Section 6.4.1,
we discuss how maintainers of depending artifacts can express requirements,
called compatibility requirements, that an ontology should fulfill to be consid-
ered backward compatible. These compatibility requirements express which
facts that could be inferred from the old version of an ontology must still
be inferable from the new version of the ontology. We extend the Change
Definition Language we introduced in Section 4.3 to express compatibility
requirements. We illustrate this with a few examples. In Section 6.4.2, we
explain how the compatibility requirements can be applied to check for back-
ward compatibility of an ontology and how this fits into the overall ontology
evolution framework.

6.4.1 Compatibility Requirements

Compatibility requirements allow maintainers of depending artifacts to ex-
press which facts that could be inferred from the old version of an ontology
must still be inferable from the new version. Backward compatibility can
be seen as a stronger version of ontology consistency. A new version of an
ontology is backward compatible with an old version for a given depending
artifact if the depending artifact remains consistent with the new version and
all compatibility requirements are met. Note that backward compatibility
of an ontology is always specified for a specific depending artifact. As a con-
sequence, an ontology that is not backward compatible for one depending

6.4 Backward Compatibility 157

artifact may be backward compatible for another depending artifact.
As a compatibility requirement in fact only expresses that a certain ax-

iom that held in the last used version of an ontology must still hold in the
new version of that ontology, it can be expressed in terms of the Change
Definition Language. For reasons of convenience, we extend the Change
Definition Language to include support for the implication operator8. We
therefore extend the syntax of an expression as shown below where an ex-
pression can be an implication.

expression ::= implication
implication ::= term (‘->’ term)?
term ::= factor (‘OR’ factor)*
factor ::= secondary (‘AND’ secondary)*
secondary ::= (primary | ‘NOT’ primary)
primary ::= (statement |

parenExpression |
tempExp |
nativeFunction)

We explain the use of the (extended) Change Definition Language to ex-
press compatibility requirements by means of a number of examples. Con-
sider as example a depending artifact that relies on the different subclasses
of a Class Individual of an ontology O. In other words, a new version of
the ontology Onew is backward compatible for that depending artifact if all
the subclasses of Individual are a superset of the subclasses of Individual
from the old version of the ontology Oold. We express this compatibility
requirement as follows:

requirement(?x) :=
<T(old_version)>(subClassOf*(?x, Individual)) ->
subClassOf*(?x, Individual);

The compatibility requirement expresses that if ?x was a subclass of
Individual in the old version of the ontology, it still must be a subclass of
Individual in the current version. The parameter old version ∈ T indirectly
refers to the old version of the ontology used by the depending artifact (by
using the moment in time the version was valid as parameter of the T tense
operator). The new version of the ontology is backward compatible with
the old version if the requirement holds for all concepts of the ontology.
Note that this requirement doesn’t prohibit that changes are made to the
class hierarchy without breaking backward compatibility as is illustrated in
Figure 6.7. In the old version of the ontology, there exists two subclasses

8The extension isn’t an absolute requirement to express compatibility requirements as
φ→ ψ can be written as ψ ∨ ¬φ

158 Conducting Ontology Evolution

Figure 6.7: First example of a compatibility requirement

Figure 6.8: Second example of a compatibility requirement

of Individual i.e., the Classes Expert and Detective. In the new version of
the ontology, it was decided to treat the Class Detective as a subclass of
Expert as a detective is an expert in investigation. This change does obey
the compatibility requirement as all the subclasses of Individual in the old
version are still subclasses of Individual in the new version.

In a second example, the depending artifact is an ontology O that de-
pends on the ‘Friend of a Friend’ (FOAF) ontology9. The ontology O de-
scribes concepts and properties of the movie domain (including movies and
its actors, director, . . .). The ontology uses the Person Class of the FOAF
ontology to describe the different persons involved in the production of a
movie. Figure 6.8 shows a small part of the ontology O. A movie has actors
(hasActor) and a director (isDirectedBy) where both Properties have as
domain Person of the FOAF ontology. The concept Person has a number of
Properties among which name, homepage and publications. For the movie
ontology, only the Properties name and homepage associated with Person
in the FOAF ontology are of interest, while Properties as publications are
in the movie context completely irrelevant. In other words, as long as name
and homepage are associated with Person, the FOAF ontology suits the
needs of the movie ontology O.

The maintainer of ontology O may therefore define the following compat-
ibility requirements where the domain of the Properties name and homepage
must still be Person in a new version of the FOAF ontology to be considered

9See http://www.foaf-project.org/

6.4 Backward Compatibility 159

backward compatible for the movie ontology O:

requirement1() :=
<T(old_version)>(domain(foaf:name, foaf:Person)) ->
domain(foaf:name, foaf:Person);

requirement2() :=
<T(old_version)>(domain(foaf:homepage, foaf:Person)) ->
domain(foaf:homepage, foaf:Person);

Note that other concepts of the FOAF ontology, besides the name and
homepage Properties, can’t break the backward compatibility of the movie
ontology O.

The third and last example is a little different from the previous examples
as backward compatibility depends on a particular instantiation of ontology
concepts. The ontology in this example describes the political situation of
several countries (current government, prime minister, president, . . .). The
dependent artifact is a website providing political news. The website uses
the political ontology to annotate the content of the website. An example of
such annotation is a group photo of all the ministers of a government on one
of the web pages that is annotated with an instantiation of the Government
Class. A government consists of a number of ministers expressed by the
hasMinister Property and Minister Class. One may argue that the image
of the government is a correct representation of the actual government as
long as no ministers are replaced. The maintainer of the website could
formulate a compatibility requirement as follows (assuming V HFII, which
stands for ‘Verhofstadt II’, is an instance of Government used to annotate
the image):

requirement(?m) :=
<T(old_version)>(hasPropertyValue(VHFII, ?pv) AND
ofProperty(?pv, hasMinister) AND
object(?pv, ?m)) ->

hasPropertyValue(VHFII, ?pv) AND
ofProperty(?pv, hasMinister) AND
object(?pv, ?m));

6.4.2 Checking Backward Compatibility

We consider an ontology to be backward compatible for a given depending
artifact when the depending artifact remains consistent and all its compat-
ibility requirements hold for all its ontology concepts. When one of the
compatibility requirements fails for one of the concepts, backward compat-
ibility is no longer guaranteed. E.g., when we consider the compatibility
requirement of the last example, all the instances of the Class Minister that
were member of the ‘VHFII’-government in the old version, must still be

160 Conducting Ontology Evolution

instances of the Class Minister and must still be member of the same gov-
ernment in the new version.

Remember that checking of backward compatibility is used in two differ-
ent scenarios in our ontology evolution framework. In the first scenario, the
ontology engineer requests a change and is interested whether the requested
change and possible deduced changes to restore consistency keep the result-
ing version of the ontology backward compatible with the old version for
the depending artifacts that the ontology engineer manages. In the second
scenario, a maintainer of a depending artifact is interested which of the ver-
sions (including intermediary versions) coming after the version currently
in use, is still backward compatible. In the remainder of this section, we
discuss both scenarios.

In the first scenario, the ontology engineer formulates a change request
in the Change Request phase that leads to one or more new versions in
the version log with status set to ‘requested’. In the following phase, the
Consistency Maintenance phase, possible deduced changes are added to the
change request to restore the ontology inconsistency caused by the requested
change. In their turn, the deduced changes also result in one or more new
versions in the version log with status set to ‘requested’. At the end of the
Consistency Maintenance phase, implementing the changes of the change
request (including deduced changes) will transform the ontology into an-
other consistent version. At this point, we check whether the changes break
backward compatibility of the ontology for the known depending artifacts of
the ontology engineer. Based on the outcome of the backward compatibil-
ity checking, the ontology engineer may decide to go on with the requested
changes or to cancel them. The former means that the status of the added
versions is changed from ‘requested’ to ‘confirmed’ indicating that these new
versions are confirmed for implementation. The latter means that either the
ontology engineer undoes the deduced changes and chooses another solution
(if one exists) to resolve the inconsistency, or he cancels his change request
completely forcing all added versions to be undone.

In the second scenario, a maintainer of a depending artifact of an ontol-
ogy O is interested in upgrading from an old version of the ontology O to the
new version of that ontology. This situation is illustrated in Figure 3.6 on
Page 55. One of the things the maintainer of the depending artifact may be
interested in, is which of the versions between the old version and the new
version (the new version included) is the latest backward compatible version.
In other words, what is the latest version of the ontology for which all the
compatibility requirements hold? This activity is part of the Cost of Evolu-
tion phase in the ontology evolution framework. Checking whether a version
is backward compatible involves setting the now variable temporarily to the
time point of that version before evaluating the compatibility requirements.
The end result is a time point t ∈ T indicating the time point of the latest
backward compatible version. Using this information, the maintainer of a

6.5 Summary 161

depending artifact may decide to update to the latest version (which may
not be a backward compatible version), the latest backward compatible ver-
sion or to not update at all. The exact procedure how to update is discussed
in the next chapter (see Section 7).

6.5 Summary

In this chapter, we have discussed two facets that conduct the ontology
evolution process: ontology consistency and backward compatibility. Con-
cerning ontology consistency, the focus in this dissertation is on logical con-
sistency. An ontology O (composed of a TBox and ABox) is considered to be
logically consistent if all concepts of the TBox are satisfiable and the ABox
is consistent w.r.t. the TBox. To check logical consistency of an OWL DL
ontology, we can rely on existing DL reasoners. However, the disadvantage
of current reasoners is that they don’t provide any information about the
cause of an inconsistency and don’t offer any solutions to overcome incon-
sistencies. To overcome this disadvantage, we have extended the tableau
algorithm on which most of the reasoners rely, to reveal the cause of an in-
consistency. We keep track of the internal transformations on the axioms by
means of an Axiom Transformation Graph (ATG) and pinpoint the axioms
that are leading to a clash by means of a Concept Dependency Tree (CDT).
Both the ATG and CDT are used to determine a set of axioms forming the
cause of a detected inconsistency. Furthermore, we discussed a set of rules
that ontology engineers can apply on the axioms that form the cause of an
inconsistency, in order to resolve an inconsistency. The idea behind the set
of rules is to weaken the axioms so that contradictions are resolved.

The second facet concerns backward compatibility. An ontology version
is considered to be backward compatible with a previous version for a given
depending artifact if the depending artifact remains consistent and a set of
compatibility requirements hold. Compatibility requirements allow main-
tainers of depending artifacts to express which facts that could be inferred
from the old version of an ontology must still be inferable from the new
version. All compatibility requirements must be met for an ontology to be
considered backward compatible for that specific depending artifact. The
compatibility requirements are specified in terms of the Change Definition
Language.

162 Conducting Ontology Evolution

Chapter 7

Evolution in a Decentralized
Environment

In the previous chapters, we discussed an approach to support the evolution
of a single ontology in isolation. In Chapter 4, we explained how a ver-
sion log describing the history of an ontology is constructed, introduced a
Change Definition Language aimed at defining changes and meta-changes,
and introduced an evolution log to describe the evolution of an ontology
in terms of requested, deduced and detected changes. In Chapter 5, we
illustrated how the Change Definition Language is used to express the dif-
ferent types of changes and how these definitions are evaluated either to
request or detect changes. In Chapter 6, we presented an approach to both
check the consistency of a new ontology version and resolve inconsistencies
when needed. Furthermore, we discussed a manner to verify whether a new
ontology version is backward compatible with an older version for a given
depending artifact.

In this chapter, we abandon the track of considering only a single ontol-
ogy but rather focus on the problems that arise when dealing with a network
of ontologies. As ontologies are defined as a specification of a shared concep-
tualization, ontologies are intended to be reused by several actors, possibly
for different purposes. Moreover, ontologies may reuse and extend the con-
ceptualizations specified by other ontologies. As we focus in this dissertation
on the Web Ontology Language OWL, the environment these OWL ontolo-
gies normally reside in is the World Wide Web (WWW). One of the main
characteristics of the WWW is that it is a decentralized environment, which
means that there is not a central authority being in control. In this chapter,
we discuss the influence of this decentralized characteristic on the process
of ontology evolution. The key principle turns out to be tolerance.

This chapter is structured as follows. In Section 7.1, we discuss the
problems and limitations that come with a decentralized environment. In
Section 7.2, we revise the version log we introduced in Section 4.1 on Page

164 Evolution in a Decentralized Environment

59 to be able to deal with ontologies that use and extend other ontologies. In
Section 7.3, we present the effects of dealing with multiple ontologies on the
ontology evolution framework. In Section 7.4, we discuss how a depending
ontology can be updated to a newer version of the ontology it depends on
and how consistency with this new version can be assured. In Section 7.5,
we focus on the problem where a refusal of an ontology engineer to update
an ontology may cause all depending ontologies to be blocked. We conclude
this chapter with a brief summary in Section 7.6.

7.1 Overview

As is clearly illustrated by the stack of Semantic Web layers (see Figure 2.1
on Page 17), OWL is built on top of the URI layer. This URI layer provides
means for identifying resources in the Semantic Web i.e., any resource can
be referred to using a URI. Based on this principle of URIs, ontologies can
use and extend other ontologies by referring to concepts defined in other
ontologies. OWL supports a number of constructs to enhance the use and
extension of other ontologies. It allows to include XML namespace decla-
rations to offer a means to unambiguously interpret identifiers and make
the ontology more readable. Furthermore, it provides a construct to im-
port other ontologies. Importing another ontology brings the entire set of
axioms defined in that ontology into the importing ontology. Note that im-
port statements are transitive i.e., if ontology A imports B, and B imports
C, then A imports both B and C.

To better understand the problems associated with a decentralized en-
vironment, we introduce an example. The example environment is depicted
in Figure 7.1. The environment consists of three ontologies. The base ontol-
ogy is the ‘friend-of-a-friend’ (foaf) ontology describing people, the relations
between them and the things they create and do (Figure 7.1 only shows a
small part of this ontology). A second ontology, called emp, describes certain
aspects of the business domain. This ontology expresses for example that
an employee works for a company and that a company executes projects.
The emp ontology bases its concept definitions on concepts defined in the
foaf ontology. E.g., the emp Class Employee is defined as a subclass of
the foaf Class Person. A third ontology describes concepts commonly as-
sociated with a university. We refer to this ontology as the uni ontology.
The uni ontology depends in its turn on the emp ontology1. The ontology
introduces a Class Academic Staff and a Class University, both defined as
subclass of respectively the emp Classes Employee and Company. Further-
more, it adds an additional restriction on the worksFor Property of the emp
ontology requiring all values to be instances of the Class University. We

1Note that the uni ontology indirectly depends on the foaf ontology through the emp
ontology.

7.1 Overview 165

Figure 7.1: Example of ontology extensions

say that ontology emp depends on ontology foaf, and that the ontology uni
depends on both the ontology emp and the ontology foaf.

It is clear from Figure 7.1 that changes to an ontology may have (besides
consequences for the changed ontology itself) consequences for depending
ontologies. E.g., the decision to remove the Class Project from the foaf
ontology would turn both the ontologies emp and uni into an inconsistent
state. The ontology emp becomes inconsistent because the range of the exe-
cute Property points to a non-existing Class, and the ontology uni becomes
inconsistent because it imports an inconsistent ontology emp.

Current solutions often rely on a technique called change propagation
where changes made to an ontology are further propagated to depending
ontologies in order to resolve the inconsistencies of these depending ontolo-
gies [60]. In our example, the propagation of the deletion of the Project Class
in the foaf ontology could lead to the deletion of the execute Property in the
emp ontology, thereby restoring the consistency of this depending ontology.
While this approach might work in a centralized controlled environment, the
applicability of this technique in a decentralized environment as the WWW
is questionable at least. It is unfeasible to force ontology engineers manag-
ing depending ontologies to update their ontologies on demand. Moreover,
in a setting as the WWW, it is in the first place impossible to know which
ontologies are depending on a given ontology as linking is a unidirectional
operation.

166 Evolution in a Decentralized Environment

We distinguish three types of dependencies between depending artifacts
and ontologies: intra dependencies, managed inter dependencies and un-
managed inter dependencies. They are defined as follows:

• Intra dependencies: these are dependencies between concepts de-
fined within one ontology. An intra dependency between two concepts
exists when both concepts are interconnected. E.g., the Class Docu-
ment is defined in the foaf ontology in Figure 7.1 as being the range of
the publication Property. We say that there exists an intra dependency
between publication and Document.

• Managed inter dependencies: these are dependencies between con-
cepts defined in two different ontologies, but both ontologies are man-
aged by the same authority. E.g., in our example shown in Figure 7.1,
a managed inter dependency may exist between the Classes Academic-
Staff in uni and Employee in emp assuming that both ontologies are
controlled by the same ontology engineer.

• Unmanaged inter dependencies: these are dependencies between
concepts defined in two different ontologies, and both ontologies are
managed by different authorities. E.g., in our example shown in Figure
7.1, an unmanaged inter dependency may exist between the Classes
Employee in emp and Person in foaf assuming that both ontologies
are not controlled by the same ontology engineer.

The technique of change propagation may be appropriate for both intra
dependencies and managed inter dependencies (where in both cases one
has sufficient permissions to make changes to the depending ontology), it
becomes unusable for unmanaged inter dependencies.

To overcome this problem, an approach of ontology replication, or some-
times called reuse through replication, is often introduced [83]. In this ap-
proach, ontologies are not used and extended by directly referring to the
original ontology. Instead, a replication of the original ontology is made
and stored locally, and ontologies use and extend this replica instead of the
original ontology. The benefit is that changes to the original ontology don’t
directly affect the depending ontologies as they rely on a replica of the origi-
nal ontology that remains unchanged. As a consequence, ontology engineers
of depending artifacts are not forced to update, and they may update at
their own pace. Reuse through replication has a number of advantages. A
first advantage concerns the reliability of a system. Reuse through replica-
tion ensures a low coupling between a depending ontology and the ontologies
it depends on. This prevents a failure of one ontology server to cause failure
of all depending ontology servers. A second advantage concerns the per-
formance of a system. Ontology replication avoids a huge communication
overhead between different ontology servers. Although for some types of

7.2 Revised Version Log 167

Figure 7.2: Using and extending ontologies by means of an associated version
log

applications, these advantages may justify the appliance of ontology repli-
cation, we consider it in general an unsatisfying approach for two reasons.
First of all, ontology replication opposes the main principle of the WWW as
a distributed and decentralized environment. Imagine that every link that is
created on the Web would result into a replication of the target resource of
that link! Secondly, in order to correctly replicate an ontology, it demands
replicating all the ontologies it depends on, plus replicating all the ontologies
these ontologies depend on, etc. When taking into account that ontologies
themselves may grow fairly large and that dependencies between ontologies
may become numerous, reuse through replication becomes impracticable.

In this chapter, we propose an approach that overcomes the disadvan-
tages of both the approach where ontologies are directly linked to other
ontologies, and the approach of ontology replication. Instead of linking di-
rectly to an ontology, we link to a given version of an ontology by making
use of the version log associated with the different ontologies. Changes ap-
plied to an ontology won’t affect depending ontologies as these depending
ontologies rely on a specific version that can be reconstructed by means of
the associated version log. Furthermore, it overcomes the necessity to repli-
cate all ontologies an ontology directly or indirectly depends on. Figure 7.2
visualizes the proposed approach. Dependencies between two ontologies are
now represented by dependencies between two versions of these ontologies.
The source of a dependency is always the latest version of the associated
ontology, the target of a dependency is the version explicitly specified by a
time point t of the associated ontology. In order to use this approach, we
need to extend the version log as introduced in Section 4.1. We discuss this
extension in the next section.

7.2 Revised Version Log

In order to express dependencies between ontologies in terms of dependen-
cies between ontology versions using the version logs associated with the
respective ontologies, we need to extend the version log in order to support

168 Evolution in a Decentralized Environment

dependencies between ontologies because the version log as it was defined in
Section 4.1 only supports a single ontology. We first define how to express
a dependency on an ontology with a given time point indicating the version
of the ontology to be used, before extending the definition of a version log.
A dependency also indicates whether the ontology needs to be imported or
not. A dependency is therefore defined as follows:

Definition 7.1 (Dependency). Assume U to be the set of all possible
URIs and S to be the set of all possible strings. A dependency d on an
ontology O with associated version log Ω is defined as a five-tuple, so that
d = 〈NS, i,URIO,URIΩ, t〉 where NS ∈ S is the namespace assigned to the
ontology O, i ∈ {true, false} indicates whether the ontology O needs to be
imported or not, URIO ∈ U is the URI of the ontology O, URIΩ ∈ U is the
URI of the version log Ω associated with O, and t ∈ T is a time point of the
timeline associated with the version log Ω to indicate the version to be used.

For each ontology O that a given ontology Od depends on, we add a
dependency d to the version log Ω associated with Od. The namespace
NS of the dependency represents the namespace that is assigned to the
ontology O used in Od. When no namespace is assigned for O in Od, the
empty string is assigned to NS. Important to mention is that the i of a
dependency, which indicates whether the ontology O needs to be imported
or not, greatly affects the semantics of the ontology Od. Therefore, the
decision whether to import an ontology or not exerts a great influence on
the consistency checking process [28]. Importing an ontology O means an
inclusion of all the axioms defined in that ontology. These added axioms
are taken into account when checking ontology consistency of Od. When
deciding not to import an ontology O, nothing of the semantics of this
ontology is brought into the depending ontology Od, which means that the
axioms of O are not taken into account when checking ontology consistency
of Od. Furthermore, an ontology that is specified to depend on itself is
considered a null-operation. Finally, when creating a dependency of Od on
O, the time point t of the dependency refers, in general, to the latest time
point of O (i.e., to the now time point of O).

To keep track of the dependencies of an ontology, we need to extend the
version log that is associated with that ontology. As with ontology concepts,
dependencies may change over time. We therefore introduce, analogously to
concept versions, the notion of dependency versions. A dependency version
expresses the validity in time of a dependency by keeping track of a start and
end time point, and stores the state of the dependency (i.e., either ‘pending’,
‘confirmed’ or ‘implemented’). The semantics of these states is the same as
with concept versions. A dependency version is defined as follows:

Definition 7.2 (Dependency Version). A dependency version ω is a
tuple 〈d, s, ts, te〉 where d is a dependency, s ∈ {‘pending’, ‘confirmed’, ‘im-
plemented’ } is the state of the dependency version, and ts, te ∈ T are

7.2 Revised Version Log 169

Figure 7.3: Properties of a Dependency

respectively the start- and end time of the dependency version. The start-
and end time depict a closed interval [ts, te].

In Section 4.1, Definition 4.15 defined a version log as a tuple 〈O,V〉
where O is the associated ontology and V is the set of concept evolutions.
In the following definition, we extend the original definition of a version log
to be able to express that the associated ontology O depends on one or
more other ontologies. We realize this by extending the tuple representing
a version log to include a set of dependency versions. The definition of an
extended version log is given as follows:

Definition 7.3 (Extended Version Log). Assume N to be the set of
all used concept names. An extended version log Ω is defined as the tuple
〈O,D,V〉 where O is the associated ontology, D is a set of dependency
versions, and V is the set of concept evolutions, so that

V =
⋃

∀σ∈N

Eσ

As is the case with regular ontology concepts (i.e., Classes, Properties
and Individuals), dependencies can also be added to an ontology, modi-
fied or removed from an ontology. This requires that ontology engineers
must be able to request changes to dependencies, and that changes to de-
pendencies must be detectable by the detection process of our approach.
To realize this, we first need to extend the OWL meta-schema we intro-
duced in Section 4.3.1 to be able to express change definitions involving
dependencies. Figure 7.3 depicts the extension to the OWL meta-schema to
include dependencies. It introduces a Class Dependency as the domain of
five Properties namespace, import, URI ontology, URI versionlog, and ver-
sion. For the interested reader, the complete meta-schema can be found at
http://wise.vub.ac.be/ontologies/OWLmeta.owl.

170 Evolution in a Decentralized Environment

Now that we have extended the OWL meta-schema, we are able to extend
the set of primitive changes that we introduced in Section 5.4 (see Table 5.1
and 5.2) in order to add and delete dependencies. For this purpose, we add
the following two primitive changes: addDependency and deleteDependency.
Both their change definitions are given as follows:

• Name: addDependency(?n, ?i, ?o, ?l, ?v)
Description: Represents the change where a new dependency is added
to the ontology with a namespace ?n, a URI to an ontology ?o, a URI
to a version log ?l, and a version ?v. The parameter ?i indicates
whether the ontology needs to be imported or not.
Definition:

addDependency(?n, ?i, ?o, ?l, ?v) :=
NOT <PREVIOUS>(Dependency(?d)) AND
Dependency(?d) AND
namespace(?d, ?n) AND import(?d, ?i)
URI_ontology(?d, ?o) AND
URI_versionlog(?d, ?l) AND version(?d, ?v);

• Name: deleteDependency(?d)
Description: Represents the change where a dependency is deleted
from the ontology.
Definition:

deleteDependency(?d) :=
<PREVIOUS>(Dependency(?d)) AND
NOT Dependency(?d);

In the same way, complex changes can be defined to modify the different
aspects of a dependency (e.g., changing the namespace of a dependency).
However, we omit the change definitions of ‘modify’-changes concerning de-
pendencies from the discussion here. These change definitions are evaluated
in the same way as discussed in Chapter 5.

With these aforementioned extensions to the version log and the intro-
duction of two additional primitive changes, ontology engineers can express
a request to add and delete dependencies, and changes to dependencies can
automatically be detected by the ontology evolution framework. The only
remaining shortcoming is that we don’t have a manner in the version log to
actually refer to concepts defined in ontologies we depend upon. We there-
fore change the definition of a concept name given in Section 4.1.2. While in
the former definition, a concept name was a simple string, the new definition
defines a concept name as the combination of a URI and a string. The URI
is either the URI of the ontology associated with the version log, or one of
the ontology URIs of the declared dependencies. We therefore revise the
definition of a concept name as follows:

7.3 Framework Effects 171

Definition 7.4 (Extended concept name). Assume S to be the set of all
possible strings and U to be the set of all possible URIs. We then define the
set of Class names CN as CN ⊆ U× S, the set of Property names PN as
PN ⊆ U×S, and the set of Individual names IN as IN ⊆ U×S. We now
define the set of all concept names N = CN ∪ PN ∪ IN. Furthermore, we
require that CN ∩ PN ∩ IN = ∅.

As defined above, concepts names consist of the name of the concept it-
self and the URI of the ontology where the concept is defined. Important to
note is that this ontology URI should never be used directly when following
the reference to a concept as the ontology may have changed in the mean
time, possibly breaking the reference. Instead, the URI of the version log
(URIΩ) and the associated version (t) should be resolved from the depen-
dency 〈NS, i,URIO,URIΩ, t〉 where URIO is the ontology URI. Therefore,
following a reference to a concept in an ontology means following a refer-
ence to a concept in a reconstructed version of the ontology. A version of
an ontology is reconstructed by means of S(t) where t indicates the version
in a given version log.

7.3 Framework Effects

When only considering a single ontology, the axioms to consider for the con-
sistency checking, backward compatibility checking, change detection and
inconsistency resolving task are only those axioms defined in that particular
ontology. When we proceed to a more complex situation, where ontologies
can import other ontologies, the situation becomes different.

In this section, we discuss the effects that the imports of ontologies have
on these different tasks of our ontology evolution framework. The effects
on most of these tasks are rather limited as we will see in Section 7.3.1,
which discusses the consistency & backward compatibility checking task,
and in Section 7.3.2, which discusses the change detection task. However,
the effects on the inconsistency resolving task will be more profound as we
will see in Section 7.3.3.

7.3.1 Consistency & Backward Compatibility Checking

Remember that importing an ontology means that the semantics defined by
that ontology must be included in the importing ontology. In other words,
the axioms to consider for an ontology O1 that imports an ontology O2

are the axioms defined in both O1 and O2. As a consequence, the ontology
evolution framework needs to take all the axioms of O1 and all the axioms of
the imported ontologies into consideration when checking the consistency of
the ontology O1 as no contradictions must exist between the axioms defined
in O1 and the axioms defined in the imported ontologies. The same holds

172 Evolution in a Decentralized Environment

for the backward compatibility checking task. When checking whether a
new version of the ontology O1 remains backward compatible for a certain
depending artifact, the ontology evolution framework needs to take all the
axioms of O1 and all the axioms imported by O1 into account.

7.3.2 Change Detection

The effects on the change detection task slightly differ from the consistency &
backward compatibility checking task discussed in the previous subsection.
When detecting changes that have occurred in an ontology, we are only
interested in the changes that have occurred in that particular ontology, but
not in changes that have occurred in ontologies it depends on. The evolution
log that results from the change detection task describes the evolution in
terms of change occurrences of exactly one ontology. We therefore restrict
the change detection task to the detection of changes to axioms defined in
one ontology, although axioms defined in imported ontologies may be taken
into account in order to satisfy change definitions.

7.3.3 Inconsistency Resolving

As discussed in Chapter 6, the extended tableau algorithm allows determin-
ing a set of axioms that are responsible for a detected inconsistency. An
ontology engineer can resolve an inconsistency within one single ontology
by applying a set of rules on one of the axioms forming the cause of the in-
consistency. Note that an ontology engineer can opt to change any of these
axioms. The reason for this is that dependencies within an ontology are
all intra dependencies which are controlled by the same ontology engineer
i.e., he has sufficient permissions to change all axioms. When considering
imported ontologies, inconsistency resolving becomes more complex as the
set of axioms causing the inconsistency may be composed of axioms defined
in different ontologies. The solution to restore consistency depends on the
type of dependency that exists between ontologies.

We first introduce a small example that we will use in this section to
explain the different cases. Consider an ontology O1 consisting of the fol-
lowing axioms: C v A and B v ¬A. A second ontology O2 imports ontology
O1. The ontology engineer of O2 decides to add the following axiom to O2:
O1 : C v O1 : B. Note that we use the syntax O1 : C to refer to concepts de-
fined in an imported ontology where O1 represents the URI of the ontology
and C represents a concept. Before the requested change can be imple-
mented, it needs to be verified whether the ontology O2 remains consistent
or not. Checking consistency of ontology O2 means checking the consistency
of the axioms of both O1 and O2 i.e., O1 : C v O1 : A, O1 : C v O1 : B
and O1 : B v ¬O1 : A. Consistency checking reveals a clash between the
concepts O1 : A ⇔ ¬O1 : A. The resulting set S, representing the set of

7.3 Framework Effects 173

axioms causing the inconsistency, contains for our example all three axioms
i.e., S = {O1 : C v O1 : A,O1 : C v O1 : B,O1 : B v ¬O1 : A}.

Managed Inter Dependency

We first consider the case of a managed inter dependency between two on-
tologies where one imports the other. A managed inter dependency between
two ontologies means that both ontologies are managed by the same ontology
engineer. As a consequence, this ontology engineer has the necessary per-
missions to change any axiom of both ontologies. In the case of a managed
inter dependency between two ontologies, both ontologies can be treated as
one single ontology for the purpose of inconsistency resolving. So when we
assume a managed inter dependency between the ontologies O2 and O2, any
axiom of the set S can be changed to resolve the inconsistency in O2.

Unmanaged Inter Dependency

The situation becomes different when it concerns an unmanaged inter depen-
dency between two ontologies where one imports the other. An unmanaged
inter dependency between two ontologies means that the ontology engineer
of the ontology that imports the second ontology doesn’t have sufficient
permissions to change axioms defined in the imported ontology. As a conse-
quence, this ontology engineer can only restore the inconsistency by changing
axioms that are defined in his own ontology. Imagine in our example that
the dependency between O2 and O1 concerns an unmanaged inter depen-
dency. In that case, the ontology engineer of O2 doesn’t have the sufficient
permissions to make changes to the axioms of S that do not fall under his
authority. Therefore, the only axiom of the set S that he can change is the
singleton {O1 : C v O1 : B} as this is the only axiom defined in O2.

The problem is that changing only axioms defined in the ontology itself
doesn’t always result in a satisfying solution. It might be the case that the
axioms defined in an ontology form a correct reflection of the real world
situation from one ontology engineer’s viewpoint, but that his view conflicts
with the one described by an ontology it depends on. As a consequence,
it becomes impossible to preserve the dependency between both ontologies
as they represent conflicting views. Before removing a dependency between
two ontologies, the imported axioms need to be duplicated in the importing
ontology. As the axioms originally defined in the imported ontology now
became part of the importing ontology, all axioms contained in S, listing all
axioms causing the inconsistency, can be considered to resolve the detected
inconsistency.

When we consider our example, there are two possibilities. It is possible
that the inconsistency of O2 was introduced by the added axiom O1 : C v
O1 : B to O2 because it doesn’t reflect the real world situation and is too

174 Evolution in a Decentralized Environment

restrictive causing a contradiction with the axioms defined in O1. In this
situation, the set S of axioms is for example weakened by changing the
axiom O1 : C v O1 : B (defined in ontology O2) to O1 : C v O2 : D
where O1 : B v O2 : D. The dependency between both ontologies remains
as the changed axiom is defined in O2. A second possibility is that the
ontology engineer may be convinced that the added axiom is correct and
reflects the real world situation. As a consequence, both views of O2 and
O1 clearly contradict. To turn ontology O2 back into a consistent state,
the only option is to remove the dependency on ontology O1 and duplicate
the axioms of O1 to O2. Ontology O2 now consists of the following set
of axioms: {C v B,C v A,B v ¬A} without depending any longer on
O1. All axioms originally listed in S may now be considered when resolving
the inconsistency. For example, the ontology engineer may belief that the
disjointness between A and B is inappropriate. Removing B v ¬A will
resolve the detected inconsistency.

Range of Duplication

The previous paragraphs discussed the solution to inconsistency resolving
in the case of unmanaged inter dependencies. In the situation of two in-
compatible ontologies, the axioms of an imported ontology are duplicated
to the importing ontology and the dependency between both is removed.
Note however that the duplication of axioms is not necessarily restricted to
axioms of directly imported ontologies, also axioms of indirectly imported
ontologies may need to be duplicated. Imagine that the ontology O1 in our
example also imports another ontology O. Whether we also need to dupli-
cate the axioms of O when duplicating the axioms of O1 to O2 depends on
two factors. First of all, when no axioms of O are involved in the detected
inconsistency, there is absolutely no need to duplicate the axioms of O to
O2. Note that whenthe dependency between O2 and O1 is removed, a new
dependency should be created between O2 and O. Secondly, when axioms
of O are involved in the detected inconsistency and the ontology engineer
of 02 beliefs that the axioms of 0 don’t reflect any longer the real world
situation, the axioms of O (and of O1 as it is in between 02 and O) need to
be duplicated to O2.

7.4 Version Consistency

In this section, we discuss the last phase of our ontology evolution frame-
work, the version consistency phase. The purpose of this phase is to keep
ontologies consistent whenever ontologies they depend on evolve. When a
new version of an ontology is released, ontology engineers of depending on-
tologies are confronted with the question whether to update or not. To make
a well-considered decision, the ontology evolution framework must be able

7.4 Version Consistency 175

to provide the ontology engineer with information about the changes that
have occurred since the version currently used (by means of an evolution
log), the latest backward compatible (intermediate) version, and possible
inconsistencies that occur when updating to a non-backward compatible
version.

Because of the decentralized nature of the Web, ontology engineers can-
not be forced to update to the latest version of an ontology they depend on.
As a consequence, an ontology engineer has three different options:

• An ontology engineer can decide to not update to the latest version of
an ontology, or at least not to update at this moment in time;

• An ontology engineer can decide to update to the a backward compat-
ible version of an ontology;

• An ontology engineer can decide to update to the a non-backward
compatible version of an ontology.

No update

When an ontology engineer decides not to update (or at least not to update
at this moment in time), the depending ontology doesn’t become inconsistent
with the changed ontology it depends on. The depending ontology depends
on a specific version of an ontology, and remains to depend on that version
even though a newer version was released. Remember that references to
concepts defined in another ontology are always resolved to a specific version
of that ontology by means of a version log. It is however important for users
of an ontology to ascertain themselves of which versions are being used of
the ontologies this ontology depends on. For example, when querying an
ontology O, all queries involving concepts defined in an ontology Oi that O
depends on must be conform to the version of Oi used by O.

Update to a backward compatible version

When an ontology engineer decides to update an ontology O to a backward
compatible version, the old version of the ontology can easily be replaced
by the newer backward compatible version. This involves modifying the
corresponding dependency in the version log, where the previous version t
used is replaced by the backward compatible version. Nothing needs to be
changed to the actual ontology. Note that although nothing changed for
ontology O, the update to a backward compatible version may still have
consequences for other ontologies that depend on O. A new version of an
ontology can be considered backward compatible with an older version for
one particular ontology, but this doesn’t mean that the new version is also
backward compatible for another ontology as each ontology defines its own
backward compatibility requirements.

176 Evolution in a Decentralized Environment

Update to a non-backward compatible version

Updating an ontology O to a non-backward compatible version of an ontol-
ogy Oi that O depends on, is more troublesome as it requires changes to
the ontology O. Changes are necessary to resolve possible inconsistencies
that may occur with the new version and/or to take care of the changes in
the new version of Oi that caused it to be no longer backward compatible.
Consistency & backward compatibility checking and inconsistency resolving
can be realized as described in respectively Section 7.3.1 and Section 7.3.3.
Furthermore, it is the responsibility of the ontology engineer to deal ade-
quately with changes in the new version of Oi that caused it to be no longer
backward compatible.

Although the ontology evolution framework can verify whether a new
version of an ontology Oi, that an ontology O depends on, introduces in-
consistency in O or breaks backward compatibility for O, updates should
always be handled with care as unintentional conceptualizations may arise
that cannot be identified automatically by the ontology evolution frame-
work. This problem arises when O and Oi evolve independently in the same
way. Consider the example shown in Figure 7.1 where the ontology uni uses
and extends the ontology emp (e.g., by defining a Class AcademicStaff as
subclass of the Employee Class defined in emp). Assume that the ontol-
ogy engineer of emp now decides to change his ontology in a similar way:
creating different types of employees among which a Class AcademicStaff.
When the uni ontology is updated to the latest version of emp, the Class
Employee has among others two distinct subclasses uni:AcademicStaff and
emp:AcademicStaff, although both concepts represent the same real world
concept. It is however impossible for the ontology evolution framework to
decide that both classes are equal. Solutions to overcome this problem in-
cludes removing the uni:AcademicStaff or stating that both concepts are
actually the same concept (using the OWL sameAs Property), although this
last option would turn the ontology into an OWL Full ontology.

7.5 Blocked Ontologies

In a decentralized environment as the WWW, ontology engineers cannot be
forced to update their ontologies when an ontology they depend on changes.
For diverge reasons, ontology engineers may decide to update at a later
moment in time, or decide to update not at all. A problem is that the
refusal of an ontology engineer to update his ontology prevents the ontology
engineer of depending ontologies to update either. Consider as example the
set of ontologies outlined in Figure 7.1. An ontology uni imports an ontology
emp that in its turn imports an ontology foaf. The dependencies between
the three ontologies are considered to be unmanaged inter dependencies.
Assume that the ontology engineer of foaf releases a new version of its

7.5 Blocked Ontologies 177

ontology. The changes to this ontology since the last public version include
the addition of numerous new Properties for the Class Person (e.g., first
name, surname, homepage, . . .) and the deletion of the Project Class and
currentProject Property.

The ontology engineer of emp decides not to update his ontology to
the latest version of foaf at this moment in time. Updating would break
the consistency of emp as the range of the execute Property refers to the
deleted Class Project. Instead, the ontology emp remains depending on the
old version of foaf.

The ontology engineer of uni on the other hand is eager to update as he
likes to make use of the new Properties added to the new version of foaf.
However, the refusal of the ontology engineer of emp to update to the latest
version of foaf blocks the update wishes of the uni ontology engineer. The
ontology uni cannot directly update to the latest version of foaf as it only
depends indirectly on foaf through emp. Unfortunately, emp still depends
on the old version of foaf. The ontology engineer of uni cannot add the
latest version of foaf as a direct dependency, as this would mean that the
ontology depends on two, not necessarily consistent versions of the same
ontology. We say that the ontology uni is blocked. A blocked ontology gets
unblocked whenever the ontology it depends on is updated. So, the ontology
uni gets unblocked whenever emp updates to the latest version of foaf.

Waiting until emp updates to the new version of foaf is in a lot of cases
not a satisfiable solution. The ontology engineer of uni is probably unaware
of when emp will be updated or if it will ever be updated in the first place.
Even if it is known when the ontology emp will be updated, forcing the
ontology engineer of uni to postpone updating is a severe limitation. This
limitation is even more severe when we take into account that all ontolo-
gies depending on uni also get blocked. A naive solution is to duplicate all
the axioms introduced in the new version of foaf that are of interest to the
ontology engineer of uni to the uni ontology. In this way, it is no longer
necessary to update to the latest version of foaf in order to make use of the
new axioms that were introduced. This solution has a number of serious
drawbacks. First of all, the solution introduces redundancy by duplicating
the axioms. When the emp ontology eventually updates, the copied axioms
are defined twice, once in ontology foaf and once in ontology uni. Secondly,
the solution can only be applied when the duplicated axioms would not cause
an inconsistency with axioms of emp. Another solution consists of removing
the dependency between the ontologies uni and emp, and duplicating all
axioms of emp to uni. This solution allows uni to update to the new version
of foaf as it controls now the former axioms of emp. In this situation, we
distinguish two cases. In a first case, the ontology engineer of emp never
intends to update. The proposed solution is in this case a satisfiable solution
as it doesn’t make sense to maintain the dependency with an ontology that
is no longer maintained. In a second case, the ontology engineer of emp in-

178 Evolution in a Decentralized Environment

Figure 7.4: Extension of a version log

tends to update his ontology, but at a later moment in time. The drawback
of the proposed solution is that the dependency between the two ontolo-
gies is cut and the ontology engineer is burdened with the responsibility of
maintaining the axioms originating from emp, although an update of emp
may follow shortly. The proposed solution doesn’t handle blocked ontologies
well because it immediately breaks the dependency between ontologies. The
problem of course is that, in general, there is no way of knowing whether an
ontology will ever be updated or not.

Virtual Version Log

We propose a new approach to manage blocked ontologies by introducing
the notion of a virtual version log. Note that this approach doesn’t prevent
ontologies from getting blocked, instead it offers ontology engineers a chance
to bypass a blocked ontology. When an ontology O is blocked because an
ontology O2 it depends on refuses at this moment in time to update to the
latest version of O1 it depends on, the ontology engineer of O can create a
virtual version log that extends the current version log associated with O2

and that depends on the latest version of O1. The purpose of the virtual
version log is to update the ontology O2 to the latest version of O1 and
to resolve all possible inconsistencies that occur as result of the update.
Note that the ontology engineer of O does not actually change the ontology
O2 (he also doesn’t have the permissions to do so), instead the changes
are simulated by creating a virtual version log that extends the original
version log of O2. We call this type of version log virtual as it describes the
hypothetical evolution of the O2 ontology i.e., the evolution of O2 that the
ontology engineer of O wished for in order to update to the latest version
of O1. The version log of O is changed to depend on the virtual version
log instead of on the version log of O2. From the view point of ontology O,
ontology O2 has updated to the latest version of O1, although nothing has
changed for ontology O2 as it still depends on the old version of O1.

A virtual version log is fairly similar to a normal version log, although
there is a point of difference. A virtual version log is not directly associated
with an ontology as it is the case with a normal version log. Instead, it
extends another version log by referring to a version log and a time point.
This time point indicates the moment in time of the extension. The virtual
version log represents a sidetrack of the evolution of the ontology associated

7.5 Blocked Ontologies 179

with the version log it extends. Figure 7.4 illustrates this graphically. The
virtual version log extends the version log associated with the ontology O.
The virtual version log represents an alternative evolution of O after time
point t. Note that the version log of O may describe an alternative evolution
after time point t. The definition of a virtual version log is given as follows:

Definition 7.5 (Virtual Version Log). We define a virtual version log
Ωv as the tuple 〈E,D,V〉 where E is a tuple representing the version log it
extends so that E = 〈Ω, t〉 where Ω is a version log and t is the time point of
the extension, D is a set of dependency versions, and V is the set of concept
evolutions.

The purpose of a virtual version log is to bypass the problem of blocked
ontologies by allowing ontology engineers to update a blocked ontology with-
out having to wait until the ontology gets unblocked. A virtual version log
is used to simulate the necessary changes required to resolve possible incon-
sistencies caused by an update. As is clear from Figure 7.4, the owner of a
virtual version log describes with his virtual version log how he should evolve
the ontology O in order to update to the latest version of an ontology that O
depends on. Note that, when the ontology engineer of O eventually decides
to update and unblocks the ontologies that depend on O, the real evolution
of O may differ from the virtual one. We discuss the different possibilities
that may occur in that case at the end of this section. The advantage of
virtual version logs, compared to previously mentioned solutions, is that a
link is maintained with the original version log and that no axioms need to
be duplicated.

Figure 7.5 visualizes the different version logs of the example shown in
Figure 7.1. At the top left of the figure, the version log associated with the
foaf ontology is shown. The release of a new version of the foaf ontology
(referred to as foaf ’) is accompanied with an evolved version log (see 1),
shown at the top right of the figure. The ontology uni is blocked for as long
as the ontology engineer of emp doesn’t update to the new version of foaf
and the ontology uni depends on emp. In order for the ontology engineer
of uni to bypass the ontology block, he creates a virtual version log that
extends the version log of emp and depends on the latest version of foaf
(see 2). The virtual version log Ωv initially looks as follows (we use Ωemp to
refer to the version log of emp and d to represent the new dependency on
the latest version of foaf):

Ωv = 〈E,D,V〉

where E = 〈Ωemp, 28〉, D = {〈d, ‘confirmed’, 29, now〉}, and V = {}.
The extension E declares that the virtual version log extends version log

Ωemp after time point 28 i.e., the evolution of emp before time point 28 is
described by Ωemp, a (possible) evolution after time point 28 is described

180 Evolution in a Decentralized Environment

Figure 7.5: Example use of a virtual version log

by Ωv
2. The first change that is simulated by the Ωv is a modification of

the dependency on emp on time point 29, so that it now depends on the
latest version of foaf. The set of concept versions V is initially empty as
no concepts have been changed yet. Changing the dependency to the latest
version of foaf may cause inconsistencies in the virtual ontology that the
virtual version log represents. An actual ontology can be extracted from
the virtual version log using S(now) (where now is the current time for the
virtual version log). Consistency checking and inconsistency resolving for
the extracted ontology can be done as discussed in Section 7.4. Resolving
inconsistencies results in the addition of new concept versions to the set V
of the virtual version log. Finally, the ontology uni needs to be changed so
that the dependency on emp is based on the created virtual version log Ωv,
instead of the version log of emp i.e., Ωemp.

Unblocking Ontologies

As already mentioned, an advantage of the appliance of virtual version logs is
that a blocked ontology can be updated awaiting the update of the ontology
it depends on. Figure 7.5 shows in step 3 an update of the emp ontology
to the new version of the foaf ontology. Note that the updated version of
the emp ontology may be different from the one represented by the virtual
version log created by the ontology engineer of uni as they can have different
views on the same domain.

After the emp ontology has been updated, the ontology engineer of uni
needs to decide whether he wants to restore the dependency to the original
emp ontology instead of using the virtual ontology he created. This decision

2The time point 28 is a random chosen time point for the sake of this example.

7.5 Blocked Ontologies 181

depends most likely on the fact whether his view on the evolution of emp
can be brought in correspondence with the view of the ontology engineer of
emp itself, and the cost of doing this. Replacing the virtual ontology with
the original ontology can be seen as an evolution from the virtual ontology
(which is seen as the old version) to the original one (which is seen as the
new version). The ontology evolution framework is able to provide:

• detailed information about the changes that were applied to emp by
means of the evolution log listing requested, deduced and detected
changes and meta-changes;

• information about whether the updated version of the original ontology
(i.e., the new version) is backward compatible with the virtual version
(i.e., the old version) for the uni ontology;

• information about possible inconsistencies in the uni ontology that get
introduced when going back to the original ontology.

Based on this information, the ontology engineer of uni needs to take a
decision whether to restore the original dependency or not. If he chooses
to restore the original dependency, the version log of the dependency on
ontology emp is changed from the virtual version log to the version log of
emp. Possible inconsistencies need to be resolved as described in Section 7.4.
Note that the loss of changes introduced by the virtual version log is no loss
of information as they were only applied to resolve inconsistencies due to the
update to the new version of foaf. When the ontology engineer of uni decides
not to change the dependency, the dependency with the virtual version log
can be maintained or he can extract an ontology from the virtual version log
and change the former dependency from an unmanaged inter dependency to
a managed inter dependency.

Depending on Virtual Ontologies

Consider for our example a fourth ontology that depends on the uni ontol-
ogy. We refer to this fourth ontology as the vub ontology. This ontology
introduces additional concepts which are not present in the uni ontology
but are needed for a particular university. In this case, it concerns the ‘Vrije
Universiteit Brussel’ (the ‘Free University of Brussels’ in English). As pre-
viously seen, the uni ontology is updated by means of a virtual version log
that extends the version log of emp in order to use and extend the latest
version of the foaf ontology. From the point of view of the ontology engineer
of vub, it seems that both the ontologies uni and emp have been updated to
the latest version of foaf, although the update of emp was simulated by the
ontology engineer of uni by using a virtual version log. When the ontology
engineer of vub agrees with the applied changes, he can update to the new

182 Evolution in a Decentralized Environment

Figure 7.6: Example of an ontology depending on a virtual version log

version of uni by changing its dependency on the uni ontology to the latest
version (and possibly apply other changes in order to maintain consistency).
Figure 7.6 visualizes this situation. Note that the vub ontology actually de-
pends on a virtual version of the emp ontology as its version log indirectly
depends on a virtual version log extending the version log of emp.

Important to note is that an ontology engineer is not restricted to one
single virtual version log to bypass a blocked ontology. Consider the example
given in Figure 7.7. Once more, the ontology engineer of foaf has released
a new version of its ontology. In contrast to previous examples, both the
ontology engineers of the emp and uni ontologies are not willing to update
immediately. However, the ontology engineer of the vub ontology is very
interested in using the new version of the foaf ontology. Note that the
vub ontology is blocked as (in this case two) ontologies it depends on do
not update at this moment in time. To bypass the blocking, the ontology
engineer of vub first creates a virtual version log that extends the version log
of the emp ontology and depends on the new version of the foaf ontology.
The purpose of the virtual version log is to resolve possible inconsistencies
in the emp ontology as result of the update to the new version of the foaf
ontology. Subsequently, he creates a second virtual version log that extends
the version log of the uni ontology and depends on the previously created
virtual version log. The purpose of this second virtual version log is to resolve
possible inconsistencies in the uni ontology as result of the update to the
virtual version of the emp ontology. Finally, the vub ontology is changed so
that it depends on the virtual ontology represented by the second virtual
version log instead of the original uni ontology.

7.6 Summary 183

Figure 7.7: Example use of multiple virtual version logs

7.6 Summary

In this Chapter, we discussed the problem of evolution of multiple ontologies
in a decentralized environment such as the Semantic Web. The problem is
that changes to one single ontology may turn depending artifacts into an
inconsistent state. The technique of change propagation, where changes are
propagated to depending artifacts to restore inconsistency, no longer holds
in a decentralized environment as maintainers of depending artifacts can-
not be forced to update. As a solution, we redefined dependencies between
depending artifacts and ontologies to dependencies between depending ar-
tifacts and ontologies at a given moment in time i.e., a depending artifact
depends on a specific version of an ontology. When an ontology changes,
its depending artifacts remains consistent as they still dependent on the old
version. Its maintainers can update at their own pace, or decide not to
update to the new version.

Just as ontologies can evolve, so are dependencies between depending
artifacts and ontologies subject to possible changes. In order to deal with
multiple ontologies and to represent the evolution of dependencies, we re-
vised the version log that we introduced in Section 4.1. We introduced the
notion of a Dependency Version to describe the different versions of a depen-
dency over time. Furthermore, we also extended the set of primitive change
definitions to support changes on dependencies. Moreover, we also discussed
the effect of multiple ontologies on the consistency & backward compatibil-
ity checking task, change detection task and inconsistency resolving task of
the ontology evolution framework.

184 Evolution in a Decentralized Environment

Finally, we also presented the problem of blocked ontologies. In a decen-
tralized environment, ontology engineers cannot be forced to update their
ontologies when an ontology they depend on changes. For diverge reasons,
ontology engineers may decide to update at a later moment in time, or
decide to not update at all. A problem is that the refusal of an ontology en-
gineer to update his ontology prevents the ontology engineers of depending
ontologies from updating either. We say that these ontologies are blocked.
We provided an answer to the problem of blocked ontologies by introducing
a virtual version log. A virtual version log allows a maintainer of a depend-
ing artifact to simulate a new version of an ontology it depends on without
actually changing that ontology.

Chapter 8

Implementation

In the previous chapters, we have described a complete ontology evolution
framework to support and guide ontology engineers and maintainers of de-
pending artifacts in the evolution process of ontologies in order to maintain
consistency of both ontologies and depending artifacts. Chapter 4 discussed
the foundations of the ontology evolution framework. Chapter 5 explained
how changes and meta-changes can be formally defined and how conceptual
change definitions are evaluated for both the purpose of change requests
and change detection. Chapter 6 presented an approach to determine the
cause of an inconsistency and to offer solutions to the ontology engineer to
resolve inconsistencies. Furthermore, a method was proposed to verify the
backward compatibility of an ontology w.r.t. a given depending artifact. Fi-
nally, Chapter 7 discussed the problems associated with ontology evolution
in a decentralized environment such as the Web.

In this chapter, we discuss a number of prototype implementations that
serve as proof of concept for the feasibility of the main ideas presented
in this dissertation. We have opted to implement our different software
artifacts as an extension to the Protégé ontology editor1 [65]. This chapter is
structured as follows. Section 8.1 discusses a plug-in for the Protégé ontology
editor to automatically create a version log representing the evolution of an
ontology. Section 8.2 discusses the implementation of the Change Definition
Language and its evaluation to automatically detect changes. Section 8.3
discusses the extensions that were implemented to the FaCT++ Description
Logic reasoner [88] to retrieve the axioms of an ontology causing a detected
inconsistency. Finally, Section 8.4 provides a summary of the chapter.

8.1 Version Log Generation

In this section, we discuss the implementation of a plug-in for the Protégé
ontology editor to automatically generate a version log. The plug-in inter-

1See http://protege.stanford.edu/

186 Implementation

Figure 8.1: Properties of the ConceptEvolution and ConceptVersion Classes

cepts the changes that an ontology engineer applies to the ontology loaded
into Protégé, and generates a version log describing the evolution of that
ontology. The version log is expressed in terms of a version ontology, de-
scribing all necessary concepts to express a version log. In Section 8.1.1, we
give an overview of the representation of this version ontology. In Section
8.1.2, we discuss the overall architecture and functioning of the plug-in.

8.1.1 Representation

Version logs are represented in terms of instances of the concepts of this
version ontology. Remember that a version log describes the state of each
concept ever created in an associated ontology at the different moments in
time. In Section 4.3.1 on page 75, we introduced a meta-schema of the OWL
ontology language. As a version log is intended to describe the various states
of concepts over time, we take this meta-schema as basis for the version
ontology and extend it to be able to represent different versions of the same
concept.

Figure 8.1 gives an overview of the Classes and Properties defined in the
evolution ontology to represent different versions of concepts. The Classes
ConceptEvolution and ConceptVersion reflect the definitions of respectively
Concept Evolution and Concept Version introduced in Section 4.1.2 on
page 62. A ConceptEvolution represents the evolution of a particular concept
and keeps track of the current concept name (conceptName) and of the
different versions of that concept (conceptVersion). A ConceptVersion stores
the definition of a concept (conceptDefinition), possible deduced versions
(deducedVersion), the state of the version (state) (pending, confirmed or
implemented), and the start and end time of the version (startTime and
endTime).

Furthermore, parts of the meta-model we introduced in Section 4.3.1

8.1 Version Log Generation 187

Figure 8.2: Concepts to represent a version of a Class

have to be adapted slightly to be able to correctly represent different ver-
sions of concept definitions. The reason for the adaption is that the object
of an object Property does not refer to a specific version of that object as
this object itself may change. Figure 8.2 gives an overview of the required
changes for representing a version of a Class. Instead of linking concepts
directly to other concepts, concepts are linked to concept evolutions describ-
ing the evolution of a particular concept. E.g., a Class is the subclass of
a ConceptEvolution describing the evolution of another Class. The parts
of the meta-schema concerned with Properties, Individuals and Restrictions
are adapted in a similar way.

8.1.2 Architecture

In this section, we briefly discuss the general architecture and the function-
ing of the Protégé plug-in to automatically generate a version log. Figure
8.3 gives an overview of the different components of the architecture. Notice
that we didn’t implement the change request phase of our framework, but
rather reused the functionality to modify an ontology already contained in
Protégé. The functionality already contained in Protégé suffices to illus-
trate the generation of a version log and to implement the change detection
mechanism (see Section 8.2).

We discuss the components of the architecture by means of Figure 8.3.
Whenever an ontology is loaded in Protégé, either a new version log is cre-
ated for the loaded ontology in the case that no associated version log already

188 Implementation

Figure 8.3: Architecture of the version log generator

exists, or otherwise, the associated version log is opened. When changes are
applied to the ontology, the Version Log Generator catches the change events
thrown by Protégé caused by modifications made to the ontology and up-
dates the version log by creating the appropriate new EvolutionConcepts
and EvolutionVersions representing the new state of the changed concepts.
The Version Log Generator relies on the Jena Semantic Web Framework2

to write the version log to file.
Changes to an ontology may cause previously inferred knowledge to be

no longer valid and, the other way round, previously not inferred knowledge
may become inferable after the change. As we also want to be able to detect
changes to implicit knowledge, we explicitly store this inferred knowledge in
the version log. To retrieve implicit knowledge from an ontology, we rely on
an external Description Logic reasoner. As we rely on the ‘standard’ DIG
interface3 to communicate with the Description Logic reasoner, any reasoner
supporting this DIG interface can be used for this purpose. Furthermore,
we use the Jena framework to retrieve a model of inferable statements from
the ontology by means of the plugged-in reasoner. Inferred statements that
are not present in current concept versions in the version log are added to
the version log, while statements in current concept versions in the version
log that are not present in the model of inferred statements are removed.

Figure 8.4 shows a screenshot of the Protégé plug-in to generate a version
log. The plug-in also offers a graphical user interface to browse through the
different versions of the ontology concepts. The list on the left shows all the
concepts ever created in the ontology, the list at the top shows the available
versions of a selected concept, while the bottom list shows the details of a
selected version.

8.2 Change Detection

In this section, we discuss the implementation of the Change Definition Lan-
guage and its evaluation to support change detection. Similar to the version
log generator, we have chosen to implement it as a plug-in for Protégé. The

2See http://jena.sourceforge.net/
3See http://dig.sourceforge.net/

8.2 Change Detection 189

Figure 8.4: Screenshot of the version log plug-in

190 Implementation

Figure 8.5: Concepts of the change definition ontology

plug-in takes as input a Change Definition Set, containing a set of conceptual
change definitions, and a version log, representing the evolution of an on-
tology. The plug-in evaluates the given conceptual change definitions w.r.t.
the given version log and builds up an evolution log. Similar to the ver-
sion ontology for version logs, we have defined a change definition ontology
to represent change definition sets and an evolution ontology to represent
evolution logs. In Section 8.2.1, we give an overview of both ontologies. In
Section 8.2.2, we discuss the general architecture of the plug-in.

8.2.1 Representation

In this section, we describe the concepts defined in both the change definition
ontology and the evolution ontology. Figure 8.5 gives an overview of the
concepts defined in the change definition ontology. A conceptual change
definition (ConceptualChangeDefinition) is defined in terms of base change
definitions for both the purpose of change requests (defForCR) and change
detection (defForCD). Furthermore, a conceptual change definition can be
specified to be a subtype of (subChangeof) or disjoint with (disjointWith)
other conceptual change definitions.

Figure 8.6 gives an overview of the concepts defined in the evolution on-
tology. An occurrence of a change (OccurrenceOfChange) is an occurrence
of a particular conceptual change definition (ofConceptualChange) and in-
stantiates one of the base change definitions of this conceptual change def-
inition (instantiates). Such an instantiation stores the header of the base
change definition (baseChangeHeader) and possibly has a number of param-
eter bindings (hasBinding). A parameter binding consists of the name of
the parameter (parameter) and a value (value).

8.2.2 Architecture

As already mentioned in the introduction of this section, the plug-in takes
as input a Change Definition Set defined in terms of the Change Definition

8.3 Consistency Checking 191

Figure 8.6: Concepts of the evolution ontology

Ontology and a version log. The plug-in builds up an evolution log by evalu-
ating the change definitions in the Change Definition Set. For this purpose,
it implements an evaluator for the Change Definition Language. Starting
from the EBNF grammar of the Change Definition Language, a parser was
generated using the ANTLR parser generator4. The parser is used to parse
the base change definitions specified in the different conceptual change def-
initions listed to be used in the change detection phase. An evaluator for
the Change Definition Language was implemented that evaluates the base
change definitions as temporal queries on the given version log. The plug-in
relies on the RDQL implementation of the Jena framework to do the actual
querying of the version log, while the implementation of the tense operators
is handled by the plug-in itself. The results of the query executions are used
to add appropriate occurrences of change to the evolution log. The Jena
framework is used to write the evolution log to file.

Figure 8.7 shows a screenshot of the Protégé plug-in implementing the
change detection mechanism. The plug-in offers a graphical user interface
to select a Change Definition Set and a version log. The list at the bottom
gives an overview of the detected changes. The two dropdown boxes on top
give the user the possibility to filter the detected changes in the list below
by selecting a concept or conceptual change definition.

8.3 Consistency Checking

In this section, we discuss the extension of an existing Description Logic
reasoner in order to reveal the axioms of an ontology causing a detected

4See http://www.antlr.org

192 Implementation

Figure 8.7: Screenshot of the change detection plug-in

8.4 Summary 193

inconsistency. We have opted to extend the open source FaCT++ reasoner5,
the successor of the FaCT reasoner. FaCT++ supports the SHOIQ(D)
Description Logic variant which corresponds to OWL DL augmented with
qualifying cardinality restrictions, and is written in C++.

As explained thoroughly in Chapter 6, the extended FaCT++ reasoner
keeps track of the internal axiom transformations by maintaining an Axiom
Transformation Graph. Furthermore, the nodes that are added to a tableau
are traced in order to construct a Concept Dependency Tree. The Concept
Dependency Trees forms the basis of the selection mechanism of axioms
causing a detected inconsistency.

8.4 Summary

In this chapter, we discussed the implementation of the prototype tools that
serve as proof of concept for the feasibility of the main ideas presented in this
dissertation. Two plug-ins for the Protégé ontology editor were developed:
one to automatically generate a version log based on the changes that are
applied to an ontology in Protégé, a second plug-in implements a parser and
evaluator for the Change Definition Language that allows querying a given
version log. We discussed for both plug-ins the internal architecture and
representations used. A version log is represented in terms of the version
ontology, while a change definition set and an evolution log are represented
in terms of respectively the change definition ontology and the evolution
ontology. Furthermore, we also extended the existing FaCT++ reasoner in
order to pinpoint a set of axioms that form the cause of a detected incon-
sistency.

5See http://owl.man.ac.uk/factplusplus/

194 Implementation

Chapter 9

Conclusion

In the previous chapter, we have described a number of prototype imple-
mentations that serve as proof of concept for the feasibility of the main
ideas presented in this dissertation. We discussed the implementation of
two Protégé plug-ins and an extension of the FaCT++ Description Logic
reasoner. A first Protégé plug-in implements the automatic generation of
a version log that describes the evolution of an ontology, while a second
plug-in implements a parser and evaluator of the Change Definition Lan-
guage that allows querying a (generated) version log. Finally, the extension
of the FaCT++ reasoner makes it possible to retrieve the exact cause of an
inconsistency.

In this final chapter, we seize the opportunity to reflect on the achieve-
ments of this dissertation and to look forward to possible new research di-
rections. This chapter is structured as follows. Section 9.1 summarizes the
work presented in this dissertation. Section 9.2 discusses the main contribu-
tions and achievements of this dissertation, thereby reflecting on the problem
statement as described in the introduction (see Section 1.2). Furthermore,
section 9.3 lists a number of limitations of our approach. Finally, Section
9.4 presents possible future work.

9.1 Summary

In this dissertation, we have presented a new ontology evolution approach.
This ontology evolution approach proposes a framework that consists of a
number of phases, each having a specific purpose. The framework allows
ontology engineers to request and apply changes to the ontology he man-
ages. The framework assures that the ontology remains consistent after
changes are applied so that the ontology evolves from one consistent state
into another consistent state. Moreover, the framework also guarantees that
the depending artifacts of an ontology remain consistent after that ontology
has changed. Furthermore, the framework provides a detailed overview of

196 Conclusion

the changes that have occurred, supporting different levels of abstraction,
different view points and different interpretations. This enhances the com-
prehensibility of the evolution of an ontology for the ontology engineers as
well as for maintainers of depending artifacts.

Before we review the different phases of our ontology evolution frame-
work, we first mention the cornerstones on which the framework is founded.
A first key element of our approach is the notion of a version log. A version
log has the purpose to describe the evolution of an ontology by keeping track
of the different versions of all concepts ever created in an ontology. Impor-
tant to note is that a version log simply registers the evolution of an ontology,
but doesn’t form an interpretation of the evolution. For this purpose, the
framework offers an evolution log that describes the evolution of an ontol-
ogy in terms of change definitions. This brings us to another key element
of our approach: the Change Definition Language. This Change Defini-
tion Language allows users to explicitly capture the semantics of changes
they are interested in by formulating conceptual change definitions. The
Change Definition Language itself is based on a hybrid-logic approach that
is midway between modal-logic and predicate-logic approaches. The tense
operators that are included in the language allow users to define changes in
terms of differences between current and past versions of concepts.

The conceptual change definitions play a double role in our approach.
First of all, they are used by ontology engineers to request the changes they
want to apply to an ontology. Ontology engineers request changes by speci-
fying a change request in terms of change definitions to be applied. Secondly,
the conceptual change definitions also play a key role in the change detec-
tion mechanism offered by our approach. This change detection mechanism
allows automatically detecting changes that satisfy the change definitions
specified. The detection of these changes is possible because the Change
Definition Language is based on a temporal logic i.e., the change definitions
can be evaluated as temporal queries on a version log. We discuss both roles
of the conceptual change definitions in the following paragraphs.

When an ontology engineer specifies a change request, simply applying
the requested changes listed in the change request to an ontology may turn
the ontology into an inconsistent state. Our ontology evolution framework
ensures that an ontology evolves from one consistent state into another con-
sistent state. It therefore checks whether requested changes introduce incon-
sistencies. When inconsistencies are found, the approach offers the ontology
engineer possible solutions to resolve the inconsistencies. To check for possi-
ble inconsistencies in an ontology, our framework relies on OWL reasoners.
However, the problem with existing reasoners is that they are built to detect
inconsistencies, but don’t reveal the cause of the inconsistencies detected.
Nevertheless, being able to retrieve the cause of an inconsistency is a neces-
sary condition to be able to resolve the inconsistency. We therefore extended
the tableau algorithm on which most state-of-the-art reasoners are based.

9.1 Summary 197

We keep track of the internal transformations that occur as a preprocess-
ing step of the tableau algorithm by means of an Axiom Transformation
Graph (ATG). Furthermore, we trace the axioms of an ontology that are
used by the tableau algorithm to reveal a contradiction, and construct a
Concept Dependency Tree (CDT) with these axioms. The CDT allows us
to determine the axioms that are causing an inconsistency, while the ATG
allows us to retrieve the axioms in their original form. To offer the ontol-
ogy engineer solutions to resolve a detected inconsistency, we have defined
a number of rules. The rules take as input the axioms that are found to
cause an inconsistency by the extended tableau algorithm and result in the
resolution of the inconsistency. Note that in a given situation, it is possible
that more than one rule is applicable. In that case, it is the responsibility
of the ontology engineer to select the rule that is most appropriate to solve
the inconsistency.

When an ontology changes, this may not only lead to inconsistencies in
the ontology itself, but may also cause inconsistencies in the depending arti-
facts. Due to the decentralized nature of the Web, it becomes not desirable
and even impossible to propagate the changes made to an ontology to all
its depending artifacts in order to maintain consistency. In the approach
taken by our framework, we have redefined dependencies between depend-
ing artifacts and ontologies as dependencies between depending artifacts and
specific versions of ontologies i.e., a depending artifact depends on a specific
version of an ontology. Whenever an ontology changes, the consistency of
depending artifacts is maintained as they remain depending on a previous
version of the ontology. Previous versions of an ontology can be easily re-
trieved by means of the version log. This allows maintainers of depending
artifacts to update at their own pace. However, we also indicated in this
dissertation that postponing an update might prevent other depending ar-
tifacts from updating as well. We have proposed an approach based on the
use of a virtual version log to circumvent this problem. A virtual version
log allows a maintainer of a depending artifact to simulate a new version of
an ontology it depends on without actually changing that ontology.

The second role of the conceptual change definitions is its use in the
change detection mechanism provided by our framework. As mentioned
earlier, an evolution log represents just one possible view and interpretation
of an ontology evolution. In our approach, an evolution log is not solely
populated with changes listed in change requests, instead it may also include
changes detected based on the conceptual change definitions given. Due
to this change detection mechanism, different users each can create their
own evolution log, as different users may define their own set of conceptual
change definitions. This provides the opportunity to have different views
and interpretations of the same evolution.

Finally, to validate the main ideas presented in this dissertation, a num-
ber of prototype tools were developed. We have implemented a plug-in

198 Conclusion

for the Protégé ontology editor to automatically create a version log. The
plug-in is able to capture all changes that are applied to an ontology and au-
tomatically generates a version log representing the evolution of the loaded
ontology. In a second plug-in for Protégé, a parser and evaluator for the
Change Definition Language is implemented. The plug-in is able to take as
input a set of conceptual change definitions and a version log, to evaluate
the change definitions w.r.t. the given version log and to generate an evo-
lution log forming an interpretation of the ontology evolution. Finally, we
have implemented an extension to the FaCT++ Description Logic reasoner
in order to retrieve the axioms that are causing a detected inconsistency.

9.2 Contributions

In this section, we discuss the contributions and achievements that are the
result of this dissertation by means of the problem statements we formulated
in the introduction (see Chapter 1).

Problem 1: Comprehending changes Whenever an ontology evolves,
maintainers of depending artifacts that depend on this ontology must
be able to get a clear understanding of the changes that have occurred
as their decision to update to a new version of the ontology depends for
a great part on this understanding. To assist maintainers of depend-
ing artifacts in understanding changes, ontology evolution approaches
should be able to give a complete overview of the changes that have
occurred supporting different levels of abstraction, different viewpoints
and even different interpretations.

To assist maintainers of depending artifacts in understanding changes,
our approach offers them the possibility to (semi-)automatically gener-
ate an evolution log representing the evolution of an ontology in terms
of change definitions. Because changes are in our approach formally
defined using the Change Definition Language, it becomes possible to
detect occurrences of change definitions as change definitions can be
evaluated as temporal queries on a version log. The outcome of the
change detection process is used to build an evolution log.

To support different levels of abstraction, the Change Definition Lan-
guage allows to define both primitive and complex changes. Primitive
changes give a fine-grained overview of the evolution, while complex
changes rather give a more coarse-grained insight in the evolution of
an ontology. Furthermore, the Change Definition Language also allows
to define meta-changes, which describe the implications of a change
rather then the change itself (e.g., rangeWeakened), and domain de-
pendent changes, which describe changes in terms of domain concepts

9.2 Contributions 199

instead of OWL constructs (e.g., fireEmployee instead of deleteIndi-
vidual). Finally, due to the change detection mechanism and the fact
that maintainers of depending artifacts can define their own set of
change definitions, different interpretations can be associated to the
same ontology evolution by generating different evolution logs, each
based on one set of change definitions.

Problem 2: Ontology consistency Changes to an ontology may turn
the ontology into an inconsistent state. We have extended the tableau
algorithm, which most state-of-the-art reasoners rely on to check for
consistency, to be able to retrieve the exact axioms that are causing
an inconsistency. Furthermore, we have defined a set of rules that
ontology engineers can apply to resolve inconsistencies. The rules are
applied to the axioms that are causing the inconsistency in order to
remove the contradiction that lead to the inconsistency.

Problem 3: Decentralized authority The decentralized nature of the
Web imposes a number of problems with respect to ontology evolution.
First of all, a decentralized architecture means that changes to an
ontology can not be propagated to depending artifacts to maintain
consistency. Secondly, the refusal of depending artifacts to update
to the latest version of an ontology, may prevent other depending
artifacts from updating as well. We say that these depending artifacts
are blocked.

To prevent depending artifacts from becoming inconsistent, we rede-
fine dependencies between depending artifacts and ontologies to depen-
dencies between depending artifacts and ontologies at a given moment
in time i.e., a depending artifact depends on a specific version of an
ontology. When an ontology changes, its depending artifacts remain
consistent as they still depend on the old version. Its maintainers can
update at a later moment in time, or decide not to update at all.
Furthermore, we have provided an answer to the problem of blocked
ontologies by introducing a virtual version log. A virtual version log
allows a maintainer of a depending artifact to simulate a new version
of an ontology it depends on without actually changing that ontology.

Problem 4: Depending artifact consistency In order for a maintainer
of a depending artifact to decide whether he wants to update to the
latest version of an ontology, or to an intermediate version, or to not
update at all, it is important for him to know the consequences of
updating to a certain version.

To provide an answer to this problem, we introduced the notion of
compatibility requirements that express the requirements a new on-
tology version should fulfill to be considered backward compatible for

200 Conclusion

a given depending artifact. Using these compatibility requirements,
our approach is able to determine the last backward compatible ver-
sion of an ontology for a depending artifact. A maintainer knows that
updating to a backward compatible version can be done without any
consequences for the depending artifact. Finally, when a maintainer
of a depending artifact decides to update to a non-backward com-
patible version, our approach is able to determine the consequences
for the depending artifact (when the depending artifact is an OWL
ontology). For this purpose, our approach depends on the extended
reasoner mentioned in problem statement 2.

9.3 Limitations

As already mentioned in the introduction of this dissertation, the proposed
ontology evolution approach does not solve all problems associated with
ontology evolution. In this section, we discuss the boundaries and limitations
that apply to the work:

• Limitations of the Change Definition Language: While the
Change Definition Language allows to define a great variety of possi-
ble change definitions, its expressiveness is limited. For example, it is
currently not feasible to reuse existing change definitions in other defi-
nitions, their is no support for explicit quantifiers, and advanced filter
expressions (e.g., wildcard expressions) are not part of the Change Def-
inition Language. Furthermore, the language itself consists of rather
low-level constructs which may make it not obvious for ontology en-
gineers to define their own change definitions. It might be interesting
to look for patterns that are often used in change definitions (e.g., ex-
pressions to excluding transitive changes), and include these as more
high-level language constructs in the Change Definition Language.

• No complex dependencies: In this dissertation, we considered only
‘simple’ dependencies between ontologies. A simple dependency is rep-
resented as a single Property between a concept defined in one ontol-
ogy and a concept defined in another ontology. However, in various re-
search domains such as ontology alignment and ontology merging there
are often complex dependencies needed between ontologies. Complex
dependencies are often represented in terms of a mapping ontology
that represents a mapping between two or more concepts defined in
two ore more different ontologies. The consistency checking and incon-
sistency resolving approach presented in this approach doesn’t support
complex dependencies.

• No support for collaborative development: We assume in this
dissertation that ontologies are developed and maintained by a sin-

9.4 Future Work 201

gle ontology engineer, or that at least a single ontology engineer has
the last word in the management of an ontology. In practice, the
development and maintenance of an ontology is often a collaborative
activity between different users. Certainly when we take into account
that an ontology is a shared conceptualization. The collaborative de-
velopment and maintenance of ontologies raises issues such as change
request negation, conflict resolution of requested changes and concur-
rency control which are not covered by our approach.

• Limitations of the implementation: The tools that have been
developed for this dissertation serve as proof of concept for the feasi-
bility of the main ideas presented. They don’t cover all aspects of the
ontology evolution approach and still have a number of limitations.
Consequently, they can not be seen as a full-fledged implementation
of the complete ontology evolution framework.

9.4 Future Work

The research presented in this dissertation yields several possibilities for fu-
ture work. In this section, we discuss possible future work that we envisage.
Some future work concerns straightforward elaborations or extensions to the
current ontology evolution framework, and mostly arise from the limitations
listed in the previous section. Other further work is concerned with applying
the ideas presented here to other research areas possibly resulting in new
research (sub-)areas.

As already mentioned as a limitation, the presented ontology evolution
framework does not support complex dependencies. Complex dependencies
between ontologies are often represented by means of a mapping ontology
(e.g., the MAFRA (MApping FRAmework for distributed ontologies) on-
tology [59]). The problem is that this mapping ontology is situated on a
different level then the ontologies it interconnects as it doesn’t describe a
particular domain but rather serves as an extension to an ontology language
in order to express complex mappings. As a consequence, such a mapping
ontology cannot be regarded the same way as the ontologies it interconnects
when maintaining ontology consistency. Instead, the consistency checking
and inconsistency resolving approach presented in this dissertation need to
be extended to take into account the semantics of the complex mappings.

Somewhat related to the problem of complex dependencies is the prob-
lem of importing ontologies. Our ontology evolution approach only supports
importing ontologies as a whole, but doesn’t allow to import only parts of
an ontology. This is not a limitation inherent to our approach as this lim-
itation is the result of the OWL language. OWL only allows importing
complete ontologies, not parts of an ontology. Unfortunately, only allowing
to import ontologies as a whole has a negative effect on the performance of

202 Conclusion

reasoning activities as they take all concepts defined in the imported ontol-
ogy into account. Recently, research has focused on formalisms that allow
ontology engineers to partially import concepts from other ontologies. For
this purpose, the authors of [55] have proposed the ε-connections frame-
work. Furthermore, the authors of [28] have proposed an extension of the
ε-connections formalism to integrate it into OWL. Extending our ontology
evolution framework to cope with partial imports by means of ε-connections
seems to be appealing future work.

A rather straightforward extension of the ontology evolution framework
consists of support for ontology versioning instead of solely ontology evolu-
tion. Ontology versioning differs from ontology evolution in the sense that
the former deals with creating and managing explicit versions of an ontology,
while the latter deals with the adaptation of an ontology without maintain-
ing explicit versions. The implementation phase can be easily extended to
create an explicit new version of the ontology for the requested changes.
Furthermore, a version log can be associated with each explicit version of
an ontology describing the changes since the previous ontology version. To
reveal the modifications that have occurred since earlier versions, different
version logs must be combined. Moreover, the change detection mechanism
should be adapted so that it can work with combinations of version logs.

The work presented in this dissertation also lends itself perfectly to be
combined with other research areas. Some interesting future work is pre-
sented in the remainder of this section.

The work presented in this dissertation doesn’t have to be restricted to
the Semantic Web in particular, but may be interesting for the research
domain of hypermedia systems in general. Possible future work in this do-
main concerns the maintenance of link integrity. Hypermedia systems are
in general liable to frequent changes: content is often added and removed,
the structure of the system may alter and also the presentation is often
subject to changes. As a consequence of these changes, links in hypermedia
systems quickly become dangling links or point to the wrong information.
An interesting research topic would be to investigate whether keeping track
of the evolution of a hypermedia system could provide added value, e.g., to
allow reducing the number of dangling and wrong-pointing links. A possible
option could be to redirect outdated links in the case that information was
moved to a different location in the system. Moreover, nodes of the hyper-
media system could also be reconstructed in case the requested information
is no longer available in the current version of a system.

Other possible future work concerns the domain of adaptive hypermedia
systems. Brusilovsky [11] defines adaptive hypermedia systems as all hy-
pertext and hypermedia systems which reflect some features of the user in
the user model and apply this model to adapt various visible aspects of the
system to the user. As adaptive hypermedia systems are subject to frequent
changes, support for evolution is even more insistent then it is the case for

9.4 Future Work 203

non-adaptive systems. However, research in adaptive hypermedia systems
has mainly focused on techniques to monitor user behavior in order to con-
tinuously update a user model and adapt the presentation accordingly. As
far as we are aware of, no research has been done concerning evolution in
adaptive hypermedia systems. Nevertheless, several problems come to mind.
One of the problems is that the adaptive behavior of the system can eas-
ily lead to an improperly working system (e.g., some information becomes
impossible to reach). Another problem is that changes made to the system
by its maintainer may cause conditions that were once met to be no longer
true. When these conditions have triggered an adaptation, the question
arises what should happen to the adapted system. Should the adaptation
be reverted? Or does it suffice that a condition was once met to maintain
the adaptation?

Furthermore, we also vision interesting future work in the domain of
model driven development. Model driven development has gained much
attention recently due to OMG’s Model Driven Architecture (MDA) ini-
tiative1. An example of model driven development are model-based hy-
permedia systems that represent the system in terms of models that cap-
ture different aspects of the system (e.g., content, navigation, presentation).
WSDM [15], OOHDM [80] and Hera [43] are a few examples of well-known
model-based hypermedia systems. When changes are applied to models of
the hypermedia system (either applied by the designer or by adaptive be-
havior), the models of the system run the risk of becoming inconsistent,
resulting in a broken hypermedia system. To maintain consistency of the
various models, the approach presented in this dissertation could be taken
as a starting point. This is especially the case when we take into account
that a lot of these model-based hypermedia systems rely on ontologies to
represent their models.

As a last possible future work, we envisage a more intelligent ontology
evolution approach that is able to learn from actions taken by ontology engi-
neers. In the current approach, the framework offers the ontology engineers
a set of rules they can use to resolve inconsistencies. The framework could
learn from the rules applied by an ontology engineer in different situations
in order to draw up resolution strategies. These resolution strategies can be
used by the framework to offer ontology engineers complete and adequate so-
lutions, or even resolve inconsistencies automatically. Another possibility is
the scenario where the framework learns patterns in the sequence of changes
that are applied by an ontology engineer. For patterns of changes that
are often applied, the framework could then automatically define complex
changes that define these patterns, and offer them to the ontology engineer.

1See http://www.omg.org/mda/

204 Conclusion

Appendix A

Syntax Change Definition
Language

changeDefinition ::= identifier
‘(’ (parameterListH)? ‘)’ body ‘;’

parameterListH ::= parameterH (‘,’ parameterH)*
parameterH ::= (‘[’ role ‘]’)? ‘?’ IDENT
role ::= (‘subject’ | ‘old’ | ‘new’)

body ::= (‘:=’ | ‘:<’) condition
condition ::= expression

expression ::= term
term ::= factor (‘OR’ factor)*
factor ::= secondary (‘AND’ secondary)*
secondary ::= (primary | ‘NOT’ primary)
primary ::= (statement |

parenExpression |
tempExp |
nativeFunction)

parenExpression ::= ‘(’ expression ‘)’

statement ::= identifier (‘*’)? ‘(’ subject
(‘,’ object)? ‘)’

subject ::= (parameter | identifier)
object ::= (parameter | identifier | value)
parameter ::= ‘?’ IDENT
identifier ::= IDENT
value ::= ‘"’ IDENT ‘"’

tempExp ::= (unaryTempExp | binaryTempExp)

206 Syntax Change Definition Language

unaryTempExp ::= ‘<’ (unaryTenseOp | timeRef) ‘>’
parenExpression

binaryTempExp ::= ‘<’ binaryTenseOp ‘>’
‘(’ expression ‘,’ expression ‘)’

unaryTenseOp ::= (‘ALWAYS’ |
‘SOMETIME’ |
‘PREVIOUS’)
(‘(’ parameter |

identifier ‘)’)?
binaryTenseOp ::= ‘SINCE’ | ‘AFTER’
timeRef ::= ‘T’ ‘(’ INTEGER ‘)’

nativeFunction ::= nativeID ‘(’
nativeArg ‘,’
nativeArg ‘)’

nativeArg ::= (parameter | identifier | value)
nativeID ::= ‘equal’ | ‘lt’ | ‘gt’

INTEGER ::= (‘0’..‘9’)+
IDENT ::= (‘a’..‘z’ | ‘A’..‘Z’)

(‘a’..‘z’ | ‘A’..‘Z’ | ‘_’ |
‘0’..‘9’)*

Bibliography

[1] J. Allen. Time and time again: the many ways to represent time.
International journal of intelligent systems, 6(4):341–356, 1991.

[2] C. Areces, P. Blackburn, and M. Marx. Hybrid logics: characteri-
zation, interpolation and complexity. The Journal of Symbolic Logic,
66(3):977–1010, 2001.

[3] A. Artale, E. Franconi, and F. Mandreoli. Description logics for mod-
elling dynamic information. In J. Chomicki, R. van der Meyden,
and G. Saake, editors, Proceedings of an outcome of a Dagstuhl semi-
nar on Logics for Emerging Applications of Databases, pages 239–275.
Springer, 2003.

[4] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-
Schneider, editors. The Description Logic handbook: Theory, imple-
mentation, and applications. Cambridge University Press, 2003.

[5] F. Baader, I. Horrocks, and U. Sattler. Description logics for the se-
mantic web. KI – Künstliche Intelligenz, 16(4):57–59, 2002.

[6] K. Baclawski, C. Matheus, M. Kokar, J. Letkowski, and P. Kogut. To-
wards a symptom ontology for semantic web applications. In S. McIl-
raith, D. Plexousakis, and F. van Harmelen, editors, Proceedings of 3rd
International Semantic Web Conference (ISWC ’04), volume 3298 of
Lecture Notes in Computer Science, pages 650–667. Springer, 2004.

[7] J. Banerjee, W. Kim, H. Kim, and H. Korth. Semantics and implemen-
tation of schema evolution in object-oriented databases. In U. Dayal
and I. Traiger, editors, Proceedings of the 1987 ACM SIGMOD in-
ternational conference on Management of data (SIGMOD ’87), pages
311–322. ACM, 1987.

[8] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web: A new
form of web content that is meaningful to computers will unleash a new
revolution of possibilities. Scientific American, 284(5):34–43, 2001.

208 BIBLIOGRAPHY

[9] A. Borgida, R. Brachman, D. McGuinness, and L. Resnick. CLASSIC:
A structural data model for objects. In J. Clifford, B. Lindsay, and
D. Maier, editors, Proceedings of the 1989 ACM SIGMOD International
Conference on Management of Data (SIGMOD ’89), pages 58–67. ACM
Press, 1989.

[10] P. Brèche. Advanced principles for changing schemas of object
databases. In P. Constantopoulos, J. Mylopoulos, and Y. Vassiliou,
editors, Proceedings of the 8th International Conference on Advances
Information System Engineering (CAiSE ’96), volume 1080 of Lecture
Notes in Computer Science, pages 476–495. Springer, 1996.

[11] P. Brusilovsky. Methods and techniques of adaptive hypermedia. User
Modeling and User-Adapted Interaction, 6(2-3):87–129, 1996.

[12] P. Chen. The entity-relationship model: toward a unified view of data.
ACM Transactions on Database Systems, 1(1):9–36, 1976.

[13] J. Chomickie and D. Toman. Temporal logic in information systems.
Logics for databases and information systems, 98(1):31–70, 1998.

[14] C. Darwin. The Origin of Species by Means of Natural Selection: Or
the Preservation of Favoured Races in the Struggle for Life. Penguin
Books Ltd, July 1982.

[15] O. De Troyer and C. Leune. WSDM: A user centered design method
for web sites. Computer Networks, 30(1-7):85–94, 1998.

[16] D. Dey, T. Barron, and V. Storey. A conceptual model for the logical
design of temporal databases. Decision support systems, 15(4):305–321,
1995.

[17] C. Dyreson, F. Grandi, W. Käfer, N. Kline, N. Lorentzos, Y. Mit-
sopoulos, A. Montanari, D. Nonen, E. Peressi, B. Pernici, J. Rod-
dick, N. Sarda, M. Scalas, A. Segev, R. Snodgrass, M. Soo, A. Tansel,
P. Tiberio, and G. Wiederhold. A consensus glossary of temporal
database concepts. SIGMOD Record, 23(1):52–64, 1994.

[18] A. Farquhar, R. Fikes, and J. Rice. The ontolingua server: A tool for
collaborative ontology construction. International Journal of Human-
computer Studies, 46(6):707–727, 1997.

[19] D. Fensel. Relating ontology languages and web standards. In
J. Ebert, editor, Modelle und Modellierungssprachen in Informatik und
Wirtschaftsinformatik, Modellierung 2000. Verlag, 2000.

BIBLIOGRAPHY 209

[20] D. Fensel, I. Horrocks, F. van Harmelen, S. Decker, M. Erdmann, and
M. Klein. OIL in a nutshell. In R. Dieng and O. Corby, editors, Proceed-
ings of the 12th European Workshop on Knowledge Acquisition, Mod-
eling, and Management (EKAW ’00), volume 1937 of Lecture Notes in
Computer Science, pages 1–16. Springer, 2000.

[21] M. Fernandez, A. Gomez-Perez, and N. Juristo. METHONTOLOGY:
From ontological art towards ontological engineering. In Working Notes
of the AAAI Spring Symposium on Ontological Engineering, Stanford
University. AAAI Press, 1997.

[22] F. Ferrandina, T. Meyer, R. Zicari, G. Ferran, and J. Madec. Schema
and database evolution in the O2 object database system. In U. Dayal,
P. Gray, and S. Nishio, editors, Proceedings of the 21th International
Conference on Very Large Data Bases (VLDB ’95), pages 170–181.
Morgan Kaufmann, 1995.

[23] G. Flouris, D. Plexousakis, and G. Antoniou. On applying the AGM
theory to DLs and OWL. In Y. Gil, E. Motta, V. Benjamins, and
M. Musen, editors, Proceedings of the 4th International Semantic Web
Conference (ISWC ’05), volume 3729 of Lecture Notes in Computer
Science, pages 216–231. Springer, 2005.

[24] E. Franconi, F. Grandi, and F. Mandreoli. A semantic approach
for schema evolution and versioning in object-oriented databases. In
J. Lloyd, V. Dahl, U. Furbach, M. Kerber, K. Lau, C. Palamidessi,
L. Moniz Pereira, Y. Sagiv, and P. Stuckey, editors, Proceedings of the
1st International Conference on Computational Logic (CL ’00), volume
1861 of Lecture Notes in Computer Science, pages 1048–1062. Springer,
2000.

[25] M. Genesereth. Knowledge interchange format. In J. Allen, R. Fikes,
and E. Sandewall, editors, Proceedings of the Second International Con-
ference on the Principles of Knowledge Representation and Reasoning
(KR ’91), pages 238–249. Morgan Kaufman, 1991.

[26] M. Genesereth and R. Fikes. Knowledge interchange format, version
3.0, reference manual. Technical Report Logic-92-1, Computer Science
Department, Stanford University, 1992.

[27] M. Genesereth and N. Nilsson. Logical Foundations of Artificial Intel-
ligence. Morgan Kaufmann, September 1987.

[28] B. Grau, B. Parsia, and E. Sirin. Working with multiple ontologies on
the semantic web. In S. McIlraith, D. Plexousakis, and F. van Harmelen,
editors, Proceedings of the 3rd International Semantic Web Conference

210 BIBLIOGRAPHY

(ISWC ’04), volume 3298 of Lecture Notes in Computer Science, pages
620–634. Springer, 2004.

[29] H. Gregersen and C. Jensen. Temporal entity-relationship models - a
survey. Knowledge and Data Engineering, 11(3):464–497, 1999.

[30] T. Gruber. A translation approach to portable ontology specifications.
Knowledge Acquisition, An International Journal of Knowledge Acqui-
sition for Knowledge-Based Systems, 5(2):199–220, 1993.

[31] P. Haase, A. Hotho, L. Schmidt-Thieme, and Y. Sure. Collaborative and
usage-driven evolution of personal ontologies. In A. Gómez-Pérez and
J. Euzenat, editors, Proceedings of the 2nd European Semantic Web
Conference (ESWC ’05), volume 3532 of Lecture Notes in Computer
Science, pages 486–499. Springer, 2005.

[32] P. Haase and L. Stojanovic. Consistent evolution of OWL ontologies.
In A. Gómez-Pérez and J. Euzenat, editors, Proceedings of the 2nd Eu-
ropean Semantic Web Conference (ESWC ’05), volume 3532 of Lecture
Notes in Computer Science, pages 182–197. Springer, 2005.

[33] P. Haase, F. van Harmelen, Z. Huang, H. Stuckenschmidt, and Y. Sure.
A framework for handling inconsistency in changing ontologies. In
Y. Gil, E. Motta, V. Benjamins, and M. Musen, editors, Proceedings of
the 4th International Semantic Web Conference (ISWC ’05), volume
3729 of Lecture Notes in Computer Science, pages 353–367. Springer,
2005.

[34] T. Halpin. Information modeling and relational databases: from con-
ceptual analysis to logical design. The Morgan Kaufmann Series in Data
Management Systems. Morgan Kaufmann, April 2001.

[35] T. Halpin. ORM 2. In R. Meersman, Z. Tari, and P. Herrero, edi-
tors, Proceedings of On The Move to meaningful Internet systems 2005:
OTM 2005 workshops, volume 3762 of Lecture Notes in Computer Sci-
ence, pages 676–687. Springer, 2005.

[36] J. Heflin and J. Hendler. Dynamic ontologies on the web. In H. Kautz
and B. Porter, editors, Proceedings of the 17th National Conference on
Artificial Intelligence and 12th Conference on Innovative Applications
of Artificial Intelligence, pages 443–449. AAAI Press / The MIT Press,
2000.

[37] I. Horrocks. The FaCT system. In H. de Swart, editor, Proceed-
ings of the International Conference Tableaux on Automated Reasoning
with Analytic Tableaux and Related Methods (TABLEAUX ’98), volume
1397 of Lecture Notes in Computer Science, pages 307–312. Springer,
1998.

BIBLIOGRAPHY 211

[38] I. Horrocks. DAML+OIL: a description logic for the semantic web.
IEEE Data Engineering Bulletin, 25(1):4–9, 2002.

[39] I. Horrocks, D. Fensel, J. Broekstra, S. Decker, M. Erdmann, C. Goble,
F. van Harmelen, M. Klein, S. Staab, R. Studer, and E. Motta. OIL:
The Ontology Inference Layer. Technical Report IR-479, Vrije Univer-
siteit Amsterdam, Faculty of Sciences, 2000.

[40] I. Horrocks and P. Patel-Schneider. Reducing OWL entailment to de-
scription logic satisfiability. Journal of Web Semantics, 1(4):345–357,
2004.

[41] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive
description logics. In H. Ganzinger, D. McAllester, and A. Voronkov,
editors, Proceedings of the 6th International Conference on Logic for
Programming and Automated Reasoning (LPAR ’99), volume 1705 of
Lecture Notes in Computer Science, pages 161–180. Springer, 1999.

[42] I. Horrocks and S. Tobies. Reasoning with axioms: Theory and prac-
tice. In A. Cohn, F. Giunchiglia, and B. Selman, editors, Proceedings
of the 7th International Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR ’00), pages 285–296. Morgan Kaufmann,
2000.

[43] G. Houben, P. Barna, F. Frasincar, and R. Vdovjak. Hera: Develop-
ment of semantic web information systems. In J. Lovelle, B. Rodŕıguez,
L. Aguilar, J. Gayo, and M. Rúız, editors, Proceedings of the Interna-
tional Conference on Web Engineering (ICWE ’03), volume 2722 of
Lecture Notes in Computer Science, pages 529–538. Springer, 2003.

[44] Z. Huang and H. Stuckenschmidt. Reasoning with multi-version ontolo-
gies: a temporal logic approach. In Y. Gil, E. Motta, V. Benjamins, and
M. Musen, editors, Proceedings of the 4th International Semantic Web
Conference (ISWC ’05), volume 3729 of Lecture Notes in Computer
Science, pages 398–412. Springer, 2005.

[45] E. Hyvonen. Semantic Web kick-off in Finland - Vision, technolo-
gies, research, and applications, volume 2002-001. HIIT Publications,
Helsinki Institute for Information Technology, Heslinki, Finland, 2002.

[46] M. Jarrar and S. Heymans. Unsatisfiability reasoning in orm conceptual
schemes. In A. Illarramendi and D. Srivastava, editors, Proceeeding of
International Conference on Semantics of a Networked World, LNCS.
Springer, 2005.

[47] M. Jarrar and R. Meersman. Formal ontology engineering in the
DOGMA approach. In R. Meersman and Z. Tari, editors, Proceedings of

212 BIBLIOGRAPHY

On the Move to Meaningful Internet Systems - DOA/CoopIS/ODBASE
Confederated International Conferences DOA, CoopIS and ODBASE,
volume 2519 of Lecture Notes in Computer Science, pages 1238–1254.
Springer, 2002.

[48] A. Kalyanpur, B. Parsia, and E. Sirin. Black box techniques for debug-
ging unsatisfiable concepts. In I. Horrocks, U. Sattler, and F. Wolter,
editors, Proceedings of the 2005 International Workshop on Description
Logics (DL ’05), volume 147 of CEUR Workshop Proceedings. CEUR-
WS, 2005.

[49] J. Kamp. Tense logic and the theory of linear order. In Ph.D. Thesis,
1968.

[50] M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented
and frame-based languages. Journal of the ACM, 42(4):741–843, 1995.

[51] M. Klein. Change management for distributed systems. In Ph.D. The-
sis, 2004.

[52] M. Klein, D. Fensel, A. Kiryakov, and D. Ognyanov. Ontology ver-
sioning and change detection on the web. In A. Gómez-Pérez and
V. Benjamins, editors, Proceedings of the 13th International Confer-
ence on Knowledge Engineering and Knowledge Management (EKAW
’02), volume 2473 of Lecture Notes in Computer Science, pages 197–
212. Springer, 2002.

[53] M. Klein, A. Kiryakov, D. Ognyanov, and D. Fensel. Finding and char-
acterizing changes in ontologies. In S. Spaccapietra, S. March, and
Y. Kambayashi, editors, Proceedings of the 21th International Confer-
ence on conceptual modeling (ER ’02), volume 2503 of Lecture Notes
in Computer Science, pages 79–89. Springer, 2002.

[54] M. Klein and N. Noy. A component-based framework for ontology
evolution. In F. Giunchiglia, A. Gomez-Perez, A. Pease, H. Stucken-
schmidt, Y. Sure, and S. Willmott, editors, Proceedings of the Workshop
on Ontologies and Distributed Systems (IJCAI ’03). CEUR-WS, 2003.

[55] O. Kutz, F. Wolter, and M. Zakharyaschev. Connecting abstract de-
scription systems. In D. Fensel, F. Giunchiglia, D. McGuinness, and
F. Williams, editors, Proceedings of the 8th International Conference
of Knowledge Representation and Reasoning (KR ’02), pages 215–226.
Morgan Kaufmann, 2002.

[56] M. Lehman and J. Ramil. Software evolution in the age of component-
based software engineering. IEE Proceedings - Software, 147(6):249–
255, 2000.

BIBLIOGRAPHY 213

[57] D. Lenat and R. Guha. Building large knowledge-based systems: Rep-
resentation and inference in the Cyc project. Addison-Wesley, January
1990.

[58] R. MacGregor and R. Bates. The loom knowledge representation lan-
guage. Technical Report ISI/RS-87-188, University of Southern Cali-
fornia, Information Science Institute, Marina del Rey (CA, USA), 1987.

[59] A. Maedche, B. Motik, N. Silva, and R. Volz. MAFRA - a mapping
framework for distributed ontologies. In A. Gómez-Pérez and R. Ben-
jamins, editors, Proceedings of the 13th Conference on Knowledge En-
gineering and Knowledge Management, Ontologies and the Semantic
Web (EKAW ’02), volume 2473 of Lecture Notes in Computer Science,
pages 235–250. Springer, 2002.

[60] A. Maedche, B. Motik, and L. Stojanovic. Managing multiple and
distributed ontologies on the semantic web. The VLDB journal - The
International Journal on Very Large Data Bases, 12(4):286–302, 2003.

[61] A. Maedche, B. Motik, L. Stojanovic, R. Studer, and R. Volz. An
infrastructure for searching, reusing and evolving distributed ontologies.
In Proceedings of the 12th International World Wide Web Conference
(WWW ’03), pages 439–448. ACM, 2003.

[62] R. Möller and V. Haarslev. RACER system description. In R. Goré,
A. Leitsch, and T. Nipkow, editors, Proceedings of the 1st International
Joint Conference on Automated Reasoning (IJCAR ’01), pages 701–
706. Springer, 2001.

[63] B. Motik, A. Maedche, and R. Volz. A conceptual modelling approach
for building semantic-driven enterprise applications. In R. Meersman
and Z. Tari, editors, Proceedings of the 1st international conference
on ontologies, databases and application of semantics (ODBASE ’02),
volume 2519 of Lecture Notes in Computer Science, pages 1082–1099.
Springer, 2002.

[64] N. Noy and M. Klein. Ontology evolution: not the same as schema
evolution. Knowledge and information systems, 6(4):428–440, 2003.

[65] N. Noy, M. Sintek, S. Decker, M. Crubezy, R. Fergerson, and M. Musen.
Creating semantic web contents with protege-2000. IEEE Intelligent
Systems, 16(2):60–71, 2001.

[66] D. Oliver. Change management and synchronization of local and shared
versions of a controlled vocabulary. In Ph.D. Thesis, 2000.

[67] G. Ozsoyoglu and R. Snodgrass. Temporal and real-time databases: A
survey. Knowledge and Data Engineering, 7(4):513–532, 1995.

214 BIBLIOGRAPHY

[68] C. Parent, S. Spaccapietra, and E. Zimanyi. Spatio-temporal concep-
tual models: Data structures + space + time. In C. Bauzer-Medeiros,
editor, Proceedings of the 7th International Symposium on Advances in
Geographic Information Systems (ACM-GIS ’99), pages 26–33. ACM,
1999.

[69] B. Parsia, E. Sirin, and A. Kalyanpur. Debugging OWL ontologies. In
A. Ellis and T. Hagino, editors, Proceedings of the 14th international
conference on World Wide Web (WWW ’05), pages 633–640. ACM,
2005.

[70] J. Penney and J. Stein. Class modification in the GemStone object-
oriented DBMS. In N. Meyrowitz, editor, Proceedings of the Conference
on Object-oriented programming systems, languages and applications
(OOPSLA ’87), pages 111–117. ACM, 1987.

[71] R. Peters and M. Özsu. An axiomatic model of dynamic schema evo-
lution in objectbase systems. ACM Transactions on Database Systems,
22(1):75–114, 1997.

[72] H. Pinto, C. Tempich, and S. Staab. DILIGENT: towards a fine-grained
methodology for distributed, loosely-controlled and evolving engingeer-
ing of ontologies. In R. Lopez de Mantaras and L. Saitta, editors,
Proceedings of the 16th European Conference on Artificial Intelligence
(ECAI ’04), pages 393–397, Valencia, Spain, 2004. IOS Press.

[73] P. Plessers and O. De Troyer. Ontology change detection using a ver-
sion log. In Y. Gil, E. Motta, V. Benjamins, and M. Musen, editors,
Proceedings of the 4th International Semantic Web Conference (ISWC
’05), volume 3729 of Lecture Notes in Computer Science, pages 578–
592. Springer, 2005.

[74] P. Plessers and O. De Troyer. Resolving inconsistencies in evolving
ontologies. In Y. Sure and J. Domingue, editors, Proceedings of the
3rd European Semantic Web Conference (ESWC ’06), volume 4011 of
Lecture Notes in Computer Science, pages 200–214. Springer, 2006.

[75] P. Plessers, O. De Troyer, and S. Casteleyn. Event-based modeling
of evolution for semantic-driven systems. In O. Pastor and J. Cunha,
editors, Proceedings of the 17th Conference on Advanced Information
Systems Engineering (CAiSE ’05), volume 3520 of Lecture Notes in
Computer Science, pages 63–76. Springer, 2005.

[76] A. Prior. Papers on Time and Tense. Oxford university press, 1st
edition, January 2003.

BIBLIOGRAPHY 215

[77] A. Rector, N. Drummond, M. Horridge, J. Rogers, H. Knublauch,
R. Stevens, H. Wang, and C. Wroe. OWL pizzas: Practical experi-
ence of teaching OWL-DL: common errors & common patterns. In
E. Motta, N. Shadbolt, A. Stutt, and N. Gibbins, editors, Proceed-
ings of 14th International Conference on Knowledge Engineering and
Knowledge Management (EKAW ’04), volume 3257 of Lecture Notes in
Computer Science, pages 63–81. Springer, 2004.

[78] J. Roddick. A survey of schema versioning issues for database systems.
Information and Software Technology, 37(7):383–393, 1995.

[79] S. Schlobach and R. Cornet. Non-standard reasoning services for the de-
bugging of description logic terminologies. In G. Gottlob and T. Walsh,
editors, Proceedings of the 18th International Joint Conference on Ar-
tificial Intelligence (IJCAI ’03), pages 355–362. Morgan Kaufmann,
2003.

[80] D. Schwabe, G. Rossi, and S. Barbosa. Systematic hypermedia applica-
tion design with OOHDM. In Proceedings of the 7th ACM Conference
on Hypertext and Hypermedia, pages 116–128. ACM, 1996.

[81] E. Sirin and B. Parsia. Pellet: An OWL DL reasoner. In R. Möller
and V. Haarslev, editors, Proceedings of the 2004 International Work-
shop on Description Logics (DL ’04), volume 104 of CEUR Workshop
Proceedings. CEUR-WS, 2004.

[82] R. Snodgrass and I. Ahn. A taxonomy of time databases. In Proceedings
of the 1985 ACM SIGMOD international conference on Management
of data (SIGMOD ’85), pages 236–246. ACM, 1985.

[83] L. Stojanovic. Methods and tools for ontology evolution. In Ph.D.
Thesis. University of Karlsruhe, 2004.

[84] L. Stojanovic, A. Maedche, B. Motik, and N. Stojanovic. User-driven
ontology evolution management. In A. Gómez-Pérez and V. Benjamins,
editors, Proceedings of the 13th International Conference on Knowledge
Engineering and Knowledge Management. Ontologies and the Semantic
Web (EKAW ’02), volume 2473 of Lecture Notes in Computer Science,
pages 285–300. Springer, 2002.

[85] L. Stojanovic, A. Maedche, N. Stojanovic, and R. Studer. Ontology
evolution as reconfiguration-design problem solving. In J. Gennari,
B. Porter, and Y. Gil, editors, Proceedings of the 2nd international
conference on Knowledge capture (K-CAP ’03), pages 162–171. ACM,
2003.

216 BIBLIOGRAPHY

[86] M. Tallis and Y. Gil. Designing scripts to guide users in modifying
knowledge-based systems. In Proceedings of the 16th National Con-
ference on Artificial Intelligence (AAAI/IAAI), pages 242–249. AAAI
Press / MIT Press, 1999.

[87] D. Tsarkov and I. Horrocks. Efficient reasoning with range and domain
constraints. In V. Haarslev and R. Möller, editors, Proceedings of the
2004 International Workshop on Description Logics (DL ’04), volume
104 of CEUR Workshop Proceedings. CEUR-WS, 2004.

[88] D. Tsarkov and I. Horrocks. FaCT++ description logic reasoner: Sys-
tem description. In Proceedings of the International Joint Conference
on Automated Reasoning (IJCAR ’06), 2006. To appear.

[89] H. Wang, M. Horridge, A. Rector, N. Drummond, and J. Seiden-
berg. Debugging OWL-DL ontologies: a heuristic approach. In Y. Gil,
E. Motta, V. Benjamins, and M. Musen, editors, Proceedings of the 4th
International Semantic Web Conference (ISWC ’05), volume 3729 of
Lecture Notes in Computer Science, pages 745–757. Springer, 2005.

