
FACULTY OF SCIENCES AND BIO-ENGINEERING
SCIENCES

Thesis submitted for obtaining the degree of Master in Applied Computer Science

An RSL-based Associative
Filesystem

Gregory Cardone

Promotor: Beat Signer

Academic Year 2009-2010

FACULTEIT WETENSCHAPPEN EN BIO-
INGENIEURSWETENSCHAPPEN

Eindwerk ingediend voor het behalen van de graad van Master in de Toegepaste
Informatica

An RSL-based Associative
Filesystem

Gregory Cardone

Promotor: Beat Signer

Academiejaar 2009-2010

Abstract

The persistent storage capacity of personal computers in the form of disk space is

growing every year, and we are already dealing with terabytes of data. People use

their computer not only for work, but also for entertainment. However, since the

number of files is increasing, problems of organizing and retrieving data are arising.

With current filesystems, it is possible to organize files in folders and to define com-

plex hierarchies of folders. But over the time and with an increasing number of files,

an efficient organization becomes more complex to realize. The general issue is that

users can have difficulties to remember in which folders their data is located and

how it is organized. This is because files can be located in deep folder hierarchies.

Search functionality do not help us in most of these situations since files often have

non-trivial names. Therefore, we propose a mechanism to classify files and folders

within multiple folders, called multiple classification, in order to organize our data

and access it from multiple folders, and to avoid creating deep folder hierarchies.

Furthermore, in existing filesystems we do not see whether files are semantically re-

lated to each other (for example a photo and a video that have been created at the

same geographical place and in the same context). Also, we encounter sometimes

situations where it is difficult to create a correct organization of our files with fold-

ers. We introduce the concept of semantic links, which enables us to semantically

link data in order to understand how a set of data is related, and make it possible to

flexibly organize our data (i.e. not only organizing files and folders within folders).

Moreover, we often create “temporary” files that become irrelevant after some time.

For example, if we want to insert a part of an image in a document, we may have

to create a cropped version of the image before inserting it into our document. In

many cases, we forget to later remove those “temporary” files. Thus, they pollute

our collection of files and waste unnecessary space on our hard disk drive. To solve

the problem, we introduce the concept of content recycling, which consists of reusing

data by pointing to (parts of) the content of files and render it within other files.

In addition, current filesystems add their own predefined metadata to files or fold-

ers, but do not allow us to define our own metadata. Furthermore, search functions

can only be based on this limited system-defined metadata. Therefore, we propose

1

to let users create user-defined metadata, called properties, on any data such as files

or partial content of files.

Last but not least, we introduce the concept of content traveling and explain how it

is useful when we want to consult the content of different information sources in a

non-linear way. We also explain the concept of content outsorters in order to adapt

the view (or environment) of our data. Finally, we show how we can grant access

rights to our data, and how we can combine it with content outsorters in order to

adapt the presentation of data.

To achieve these goals, we have extended the Resource-Selector-Link (RSL) model, a

metamodel that has the purpose to link and compose data, with an extension called

the RSL-based Associative Filesystem (RBAF) model. We have implemented an

initial prototype of the RSL-based Associative Filesystem as a proof of concept.

2

Acknowledgments

I would like to thank my promotor, Professor Beat Signer, for supporting me

throughout the period of my thesis. He made an effort to review my thesis several

times. His comments on my research results, and his advices were invaluable.

I also would like to thank my parents for giving me the opportunity to study and

to obtain my Master’s degree at the Vrije Universiteit Brussel.

Finally, I would like to thank somebody special from whom I got the physical and

mental strength to persevere until the finish.

3

Contents

1 Introduction 12

2 Background 16

2.1 The Memex . 16

2.2 Overview of the History of Filesystems 21

2.3 Project Xanadu . 26

2.3.1 The Transcopyright Model 26

2.3.2 The Xanalogical Structure . 28

2.4 The oN Line System (NLS) . 32

2.5 Human Memory Types and the Synapse-State Theory of Mental Life 33

2.5.1 What types of Human Memory can we draw Inspiration from

for a Filesystem? . 33

2.5.2 What Inspiration can we draw from the Human Nervous Sys-

tem (Synapse-State Theory) for a Filesystem? 35

2.6 The RSL Model . 38

2.6.1 RSL Links . 39

2.6.2 RSL Structures . 40

2.6.3 RSL Users . 41

2.6.4 RSL Layers . 42

2.7 Summary . 43

3 Scenarios 44

3.1 Scenario 1 : Souvenirs from Italy . 44

3.2 Scenario 2 : Preparing PowerPoint Presentations 48

4 RSL-based Associative Filesystem 51

4.1 Files and Folders . 52

4.2 Metadata on Files and Folders . 53

4.2.1 Adding Properties to Files and Folders: Why? 54

4.3 Semantic Links . 56

4.4 Content Recycling . 58

4

4.4.1 Structuring File’s Content, and Metadata on Links 62

4.4.2 Layering Selectors within Files 65

4.5 Multiple Classification . 67

4.6 Content Traveling . 69

4.7 Advanced Linking . 71

4.8 Content Outsorting and Access Rights 73

4.9 Summary of the RBAF System . 77

5 Implementation 79

5.1 The RBAF Architecture . 79

5.2 Db4o database . 80

5.2.1 How Objects are queried and stored in Db4o 81

5.3 Prefuse Toolkit . 83

5.3.1 Integrating the Prefuse API to draw a Semantic Link Graph 84

5.4 PowerPoint Files Manipulation in the .pptx Format 86

5.4.1 What is OOXML? . 86

5.4.2 The General Structure of PowerPoint OOXML Files 87

6 User Guide 89

6.1 The Associative File Explorer . 89

6.1.1 Presentation of the User Interface 89

6.1.2 Files, Folders, and Properties 90

6.1.3 Semantic Links . 91

6.1.4 Structural Folderlinks . 93

6.1.5 Move and Delete operation 94

6.1.6 Searching by Name, Property or Semantic Link 95

6.2 The PowerPoint Linker . 95

6.2.1 Presentation of the User Interface 95

6.2.2 Functionality of the PowerPoint Linker 96

7 Conclusion and Future Work 97

7.1 Conclusion . 97

7.2 Future work . 98

A UML Diagrams 100

A.1 application.explorer package . 101

A.2 application.powerpointdemo package 103

A.3 model.rsl package . 104

A.4 facade package . 105

A.5 metadatastorage.db4o package . 106

5

Bibliography 109

6

List of Figures

2.1 The Memex . 17

2.2 A camera fixed on the forehead of a scientist 19

2.3 The Transcopyright model . 27

2.4 Transpointing windows . 29

2.5 A reference pointers list is a virtual document that points to external

contents . 30

2.6 A piece of text of document B is linked to a piece of text of document A 30

2.7 Document B still points to the old same piece of text of document A

after an update . 31

2.8 Document B points to the reduced piece of text of document A . . . 31

2.9 Example of each memory type . 34

2.10 The Synapse-State model of the nervous system 36

2.11 RSL links . 39

2.12 RSL structures . 40

2.13 RSL users . 41

2.14 RSL layers . 42

3.1 Initial data organization . 45

3.2 Second data organization . 46

3.3 Third data organization in the My Pictures folder 46

3.4 Third data organization in the My Videos folder 47

3.5 Outline of ’The firewall’ presentation 48

3.6 Outline of a second presentation about Windows firewalls 49

3.7 Outline of a third Linux firewall presentation 49

4.1 BumpTop . 52

4.2 Files and Folders represented in the RBAF model 53

4.3 Properties in the RBAF model . 55

4.4 Virtual folders . 56

4.5 Semantic links in the RBAF model 57

4.6 Semantic link between two folders 58

7

4.7 Concrete selectors associated with file types 60

4.8 RBAF system architecure communicating with applications and plug-

ins . 60

4.9 Structural filelink . 62

4.10 A WYSIWYG editor edits a document structurally linked to an en-

tire image and to a part of the image 64

4.11 A document has a structural filelink to a selector. The document

can access parts of an image via a plug-in, which will require the

selector’s metadata . 64

4.12 UML representation of structural filelinks 65

4.13 The above selector is selected and shows the text with the top tab . 66

4.14 The bottom selector is selected and shows the text with the bottom

tab . 67

4.15 Structural folderlinks modeled in the RBAF model 67

4.16 Multiple classification of pictures . 68

4.17 Navigation links . 69

4.18 Illustration of navigational links between different files 70

4.19 The student sequentially browses from folder to subfolder 70

4.20 The system suggests folders (in the right corner) based on the stu-

dents’s previously tracked navigational behavior 71

4.21 The two Java projects are semantically linked together. Another link

has been attached to the previous link as an annotation 72

4.22 The two Java projects have been semantically linked together. Two

other links have been attached to the previous link as annotations . 73

4.23 On the left side we see how the content outsorters are modeled. On

the right side we see how access rights are modeled 74

4.24 On the right-hand corner we see content outsorters associated with

the My Images folder (which is located in the Pictures Library) . . . 75

4.25 The document’s content presentation will be influenced depending

on who is the user, and the content outsorter for that user 76

5.1 RBAF architecture . 80

5.2 Object Manager Enterprise plug-in in Eclipse 81

5.3 Example of a possible data visualization with Prefuse 84

5.4 Internal structure of a .pptx file . 87

6.1 Associative File Explorer . 90

6.2 The properties viewer shows the properties of the selected resource . 91

6.3 Summary of how to create a semantic link between two resources.

The last step just shows the result after the creation 92

8

6.4 The Semantic Link Graph Viewer . 93

6.5 The selected file (which original parent folder is Camp) has been

structurally folderlinked in the Ardennes folder. The parent folders

panel shows the parent folders of the selected resource 94

6.6 The PowerPoint Linker . 96

A.1 Classes of the Associative File Explorer (part 1) 101

A.2 Classes of the Associative File Explorer (part 2) 102

A.3 Classes of the PowerPoint Linker . 103

A.4 Classes of the extended RSL model 104

A.5 RbafFacade class . 105

A.6 Db4oPersistency class . 106

9

List of Tables

2.1 Comparison of filesystems . 25

10

Listings

4.1 contentOutsorterForJamesPhotos.xml 74

5.1 openObjectContainer method . 81

5.2 Storing an object in db4o . 82

5.3 Querying an object in db4o . 82

5.4 semanticgraph.xml . 84

11

Chapter 1

Introduction

Since the 60s, computers have evolved fast and many filesystems have been devel-

oped in order to store and retrieve data on different types of data storage. Those

filesystems have evolved as well, and gradually introduced new features. While

the first purpose of a filesystem was to store data and retrieve them from a small

data storage, the main changes where the support for a higher data storage size,

the introduction of folders in order to organize files, and more system-predefined

metadata attached to files and folders. Extra features such as shortcuts and user

policies have been introduced, and search functions helped users to speed up the

search of files and folders. Nowadays, files are not only a stream of characters, but

can be any type of data we know today: photos, videos, e-mails, documents and

other data for personal usage are such examples. With the help of graphical user

interfaces to represent folders, we can organize this data in an intuitive way.

Unfortunately, the evolution has stopped there and we are still using filesystems

with the same features. Because the storage size of data storage does not cease

to grow, we are starting to face problems in organizing and retrieving data in an

efficient way.

First, folder hierarchies can become deep and complex, and we often have to browse

folders in a recursive way to find a file. We can use search functionality to find files,

but it often happens that we did not give a proper filename or gave a shortened

filename during the creation of our files, which does not provide much information

about the content. Therefore, in many cases the search function does not help

and we are forced to manually search the desired file. The reason why we have to

recursively browse folders to find a file is because a file is uniquely located in one

folder. Also a folder can only be uniquely located in another folder. We can avoid

to put files in deep hierarchies of folders and access them from different folders by

classifying our files within multiple folders. A file is thus no longer located in a

single folder, but in multiple folders at the same time.

12

Second, we cannot see whether files are semantically related to each other. For ex-

ample, a photo and a video that have been created at the same geographical place

and in the same context. In our brain, all information is stored and associated with

each other. This is why we can remember something when we see a visual instance

or when we think about a related event. Suppose that one tries to remember a

particular person. One probably can remember the person by its hairstyle, or be-

cause the person told a funny joke. We can try to mimic the brain by introducing

the concept of semantically linking files and folders. Users can on one hand make

use of this concept in order to understand how a set of data is related, and on the

other hand create a flexible organization of their files and folders. This means that

we are not limited to organize our data in folders, but we can also make it clear

that data belongs together via semantic associations. For example, suppose that a

user has a folder containing biology documents and a folder containing mathematics

documents. While reading biology documents, they know that regularly consulting

mathematics documents is necessary in order to understand calculations mentioned

in the biology documents. Moving the folder of mathematics within the folder of

biology, or the other way around is not logical (because biology and mathematics

are two different domains). Therefore, they can use semantic links in order to se-

mantically relate the two folders. With the word “flexible”, we mean that we are

not organizing data in a direct way (such as we do when creating subfolders within

folders). We know that a collection of data “has something to do with” another

collection of data (i.e. just as they are grouped within folders).

Third, we cannot reuse (parts of) the content of files (for example a part of an

image) and integrate them into other files. Reusing (parts of) the content of files

has the advantage that we avoid creating unnecessary additional or replicate infor-

mation on our disk drive. This can be solved with a concept invented by Ted Nelson

called transclusions[10], which are structural relationships between (parts of) files.

The idea is that a file, for example a document, does not contain an element such

as an image or a piece of text, but to compose its content by linking to (a part of)

another document. When opening the document, the linked elements are rendered

in the document itself, and not physically merged (i.e. copy and paste) with the

document. The concept of content recycling is inspired by Ted Nelson’s idea, and

has the purpose to create and compose data by reusing existing data on the filesys-

tem.

Fourth, finding a file is only possible via its filename, via some system-predefined

properties or via the content of text-based files. Other files like videos and photos

cannot be retrieved by entering keywords of a certain sequence of a video or parts of

a photo. Also files and folders contain limited information, beside system-predefined

properties (such as the creation date), about their content, which makes it difficult

13

to understand what data they contain. It would be nice if one could have more

freedom in augmenting data with supplementary metadata by, for example, adding

properties in the form of keywords as a description.

Fifth, suppose that we consult different websites one after the other in our web

browser. We use tabs in order to switch between those webpages. When suspend-

ing the search, copying and pasting the content of webpages in a separate document

is not necessary. Before closing the web browser, we can save the session together

with those tabs in order to reopen them next time.

Similarly, when we regularly consult the same content in different files in an ordered

way, we probably do not want to create a separate document and copy and paste

pieces of their content. With the concept of content traveling, we can let users

create navigational links between files (or folders) in order to jump from one piece

of content to another piece of information.

Sixth, we can let users adapt the presentation or environment of their files and

folders (i.e. how it looks like or what it contains) with different criteria such as

properties. For example, a user might want to view only files with properties bank-

ing transactions and Dexia (which is a Belgian bank). He can define a set of rules

that must match a set of criteria and apply those rules in order to only view the

desired files. We can compare this with the Thunderbird mailclient, which uses

virtual folders. In virtual folders, a user can define a set of rules such as for which

e-mail account they want to apply those rules, and what e-mail to view that match

criteria such as ’job’. The virtual folder will be viewed as a regular folder, and when

the user clicks on it, it will contain only e-mails that match the criteria. We propose

to integrate a similar feature, which we call content outsorters, in a filesystem where

users can define their rules for a set of files and apply them when they want.

Last but not least, we can grant access rights to our data in order to define what

can be viewed/accessed or not. For example, who can view/access a semantic link

to a folder. The user can configure access rights in two ways: via policies, which

are the ownerships and access rights to data, and settings, which define parameters

on what the RBAF system or applications should be considered before accessing

data. We can also combine content outsorters and access rights in order to adapt

the environment depending on the user, policies and settings.

The goal of this master thesis was to investigate an alternative way to create,

organize and retrieve files with the introduction of a filesystem called RSL-based

Associative Filesystem (RBAF). A prototype has been realized based on the RBAF

model, which is an extension of the Resource-Selector-Link (RSL) metamodel.

14

In Chapter 2 we discuss the evolution of filesystems, related work and how peo-

ple use their brain to organize and retrieve information in their memory. Chapter 3

discusses two scenarios, each addressing specific problems in dealing with current

filesystems. Chapter 4 introduces the main concepts and architecture of the RSL-

based Associative Filesystem in combination with illustrative examples. Chapter 5

provides an overview of the implementation of the prototype of the RSL-based As-

sociative Filesystem. Furthermore, Chapter 6 introduces 2 applications that have

been developed to demonstrate the functionality of the RBAF system. Finally,

some conclusions and comments about future work are provided in Chapter 7.

15

Chapter 2

Background

2.1 The Memex

In 1945, Vannevar Bush [2] had a dream to help scientists to store, organize and

retrieve all kind of information they collected during their work in a collective way

by allowing every scientist to collaborate together. One of the main ideas was to

record the path of thoughts that scientists used during their research. Those paths

can be used to navigate from one page to the other similar to hyperlinks on the Web

to navigate from one webpage to another. The paths are called “trails”. He came

with this idea because of the problems of classifying and retrieving information.

“When data of any sort are placed in storage, they are filed alpha-

betically or numerically, and information is found (when it is) by tracing

it down from subclass to subclass. It can be in only one place, unless

duplicates are used; one has to have rules as to which path will locate

it, and the rules are cumbersome. Having found one item, moreover,

one has to emerge from the system and re-enter on a new path. The

human mind does not work that way. It operates by association. With

one item in its grasp, it snaps instantly to the next that is suggested

by the association of thoughts, in accordance with some intricate web

of trails carried by the cells of the brain”.([2] p.43).

Therefore, he wanted to mimic human associative thoughts with trails instead of via

hierarchical classification. Nowadays, we use the hierarchical classification system

with folders in an abundant way, and this will probably not change soon. However,

we can use the idea of trails in our system for multiple applications. One application

can be that our search behavior is tracked and saved as a navigational linkage

between folders and files. Next time, instead of browsing the previous path by

clicking recursively on subfolders and searching for the next subfolder to click on,

16

we can follow the navigational linkage and browse the items one by one until we

find the file we are looking for. It is possible that we are looking for another file

that is on the same navigation linkage.

Also, every scientist had to be able to annotate the information (in the visual form

of encyclopedia paper) he was consulting and save it. Bush introduced a machine

called the memex. The memex looks like a desktop as illustrated in Figure 2.1a.

It has at the bottom front side drawers were scientists can put persistent storage

units in the form of microfilms. In the top middle we find two displays which have

almost the same size of an A4 paper format as we can find it in most encyclopedias.

Those two displays are used to view the information in the form of pages, stored on

microfilms which will be accessed by the memex and projected to the two displays.

At the bottom of each display we find a switch which can be moved from left to

right and vice versa. These switches are used to browse the pages that are stored

on the microfilms.

(a) The Memex in its entirety (b) The “Yellow Pages”

Figure 2.1: The Memex

On the top right hand side of the memex we find four other tools. The first

tool is a mechanical display that can maximally show seven letters or numbers.

The letters and numbers are used to compose a unique code to identify a page.

The second tool is a sort of quick-viewer, like the Yellow Pages we use to find

the telephone number of a person, where the desired category of information is

associated with a code. The third tool is a keyboard used to input the code of

the book. Whereas the fourth tool is a pen to write on the two displays. On the

left-hand side of the memex, we find an extra display which is used to view other

pages that are on other trails. A scientist who wants to search information for his

research works as follows: first he may have to add new microfilms to the drawer

depending on which microfilms store the required information. Since the number

of information is huge, the user will first look where that information is located on

17

the microfilms by consulting the “Yellow Pages” (see Figure 2.1b) to find the code

of the page he is looking for. Once he has found the code of the page in the “Yellow

Pages”, he will have to introduce the code manually on the keyboard. After having

actioned the switch to proceed in order to view the page, the code of that page will

first be displayed on the mechanical display above the “Yellow Pages”. Then the

image of the page will be projected on one of the two displays in the middle of the

memex. The user can repeat the same procedure to find another page and display

it on the other display. Furthermore, the scientist has the possibility to register a

trail between the two pages. The trail has a unique identification code and is stored

permanently. The pen is used to annotate the pages with handwritten comments

and draws. The main trail can also be linked with a side trail in order to reach

a particular item. A few years later, the scientist can search for a specific trail

by entering its code and display the item linked with that trail. This is similar to

the examples mentioned before, except that if trails would exist in our filesystem,

we would store metadata on a trail to search for it. The trail can be shared with

another scientist by photographing the whole trail, save it on a microfilm and pass

it to the other scientist.

Some ideas of Bush’s memex have been taken into account, especially the idea of

“linking” pages, for example in the Xanadu project. Nowadays, the idea of linking

pages is a concept used on the World Wide Web. Webpages link to other pages of

other websites or to different webpages on the same website. Since the introduction

of the Web 2.0, people can easily create content on the Web and annotate webpages,

in a similar way to the idea of Bush’s memex. For example, we can add tags to

a webpage which can then be used when searching for a specific webpage or we

can attach comments to webpages. The Web has become an immense source of

information where everybody works, updates information and collaborates with

other people on the Web. We find all kind of information in a lot of formats

including sound and video. Unfortunately, these features that are available on the

Web are not found in current filesystems. We cannot tag files with properties,

neither attach comments. It would be useful to have the features to add metadata

or annotate a file with personal comments in order to understand its content. We

can compare the usefulness to adding comments to methods when we are editing

the source code of an application, in order to understand what the functionality of

a method is.

The memex can be seen as the pioneer of todays Web, and the Web could be seen

as a network-enabled memex. Some ideas of the memex have been extended, and

others have been distorted over the time. The memex originally was not meant to be

used on a network, even if it would have been a good idea if the technology existed

at that time. It was meant to be used as a sort of desktop where all microfilms are

18

stored locally (but which can be transported). Some projects have tried to build an

information system with the idea of linking resources in a special way. For example,

project Xanadu proposed to use bi-directional links. Unfortunately bi-directional

links have not been realized so far on the Web, neither on filesystems. Bi-directional

links on filesystems can be useful in some situations. For example, suppose that a

file is being used by another file and that the two files are bi-directionally linked

together. If we try to delete the target file, probably because we think that is

not useful anymore, we would see that this file is used by another file (i.e. is

linked by), and thus prevent the target file to be deleted. The source file of the

bi-directional link will therefore not point to a nonexistent file. To illustrate this

with a concrete example, suppose that an application A is installed together with

.dll files (dynamic link library). Later, an application B is installed and needs the

same .dll files as application A. Therefore, we let application B point to those .dll

files. After a while, we do not need application A anymore and decide to remove it.

With bi-directional links, we would see that application B uses the same .dll files

as application A. Thus we would just remove application A and leave the .dll files

in order for application B to still work. An existing software management system

using a similar idea to check the dependencies between applications is the Redhat

Package Manager (RPM) [21]. We do not intend to only use bi-directional links for

software management systems, but for the entire filesystem.

The idea of storing data permanently was imagined by Bush by using microfilms.

Since of Bush’s time photo cameras with microfilms existed, he thought of using

that same idea for taking snapshots of articles and pages of books (or other relevant

information sources). The photos would have been taken by fixing a small camera

fixed on the forehead of the scientist as shown in Figure 2.2.

Figure 2.2: A camera fixed on the forehead of a scientist

19

When the scientist sees a page or a visual instance he is interested in, he just

takes a picture of it. When finished, the microfilm tape of the photo camera would

probably have been attached to a bigger microfilm that would fit into the drawers

of the memex, and use the memex to project the photos from the microfilms on a

higher resolution. We can draw inspiration from taking snapshots of visual instances

and integrate it in a filesystem. For example, we can select a part of the content of

any file (like a video sequence) we are interested in and save it. The saved “file” is

not a file on its own, but a link to a part of another file. When we open that “file”

(or link to it from another file), we would only view the selected part.

Although the memex at that time was a good idea and integrating the concept of

linking our documents would have been great, it misses some useful features. The

memex does only link entire pages, and not parts of pages such as pieces of text.

For example it would be handy if we do not have to copy and paste in our HTML

webpage some text of another webpage and restructure everything by removing tags

like <H1>, <P> that do not fit in our webpage. An example is that we have a website

and some webpages that should embed content of other webpages. A reason for

doing that is if we have to extend or restructure the content of the website, we can

instead of making new webpages and copy and paste the new content, just reference

to the content on other websites and render it in our webpage. In a similar situation

on a filesystem, instead of copying and pasting text from a document A to another

document B, we can link to the piece of text we want and render it in our document

A itself. There exist alternative technologies like mashups in order to extract parts

of websites we are interested in and integrate them automatically into our webpage.

Unfortunately, this functionality is not integrated in HTML. What is surprising

with HTML is that it is possible to embed any kind of media like video, sound and

images of other websites and render them in our webpage, but it is not possible to

do that with text.

There are two other features that are missing in the memex. The first one is that

there is no possibility to search for a page with keywords, without searching the

code in the “Yellow Pages” and insert it manually. The second missing feature is

the lack of metadata which can describe the content of a page.

The memex has never been realized, but other projects such as Xanadu have been

inspired by Bush’s idea of associative memory and come up with similar ideas like

hypertext. It would be nice to integrate the idea of trails (navigational links) and

bi-directional links in a filesystem. As mentioned before, we can take advantage of

those two concepts for some applications. Also the idea of selecting parts of a file

and be able to link to it can be useful, as it has the advantage to reuse data instead

of duplicating it. Although search functionality and metadata exist in filesystems,

they are very limited. It is not possible to add our own metadata to files, which

20

can be useful to search for them. Also the search functionality is limited to search

files by name and system-predefined metadata (properties).

2.2 Overview of the History of Filesystems

Mankind has always discovered new things and had the need to keep their knowl-

edge in order to be reused on the long term. The evolution of the way how humans

“wrote their knowledge down” before the 20th century was quite slow, in the sense

that we used first at a certain time rolls, for example in the old Kingdom. Books

that we know today had many more advantages, like the containment of more con-

tent, the logical separation of the content by using chapters, the easiness to consult

that content and even organize those books (for example by author or subject).

They have been introduced thousands of years later during the Middle Ages.

At the end of the 20th century, new discoveries and the related knowledge started to

emerge very quickly. This was possible especially with the introduction of comput-

ers, because they had a promising future to save a lot of information in a compact

and, later, portable way. Saving and retrieving data was so important that since the

early 60s, many filesystems have been introduced in order to achieve that purpose.

Some players in the filesystem market that will be discussed are Microsoft, Apple,

Unix, Linux and BeOS [13].

The popular File Allocation Table (FAT), was first introduced by Microsoft. The

first version was FAT-12, because it could only address 12 bit at the time to count

the clusters on the persistent storage (at that time, floppy disks were used as stan-

dards). In total, FAT-12 could only address a space of 32 MB (212 = 4096 ,with

8KB clusters). The naming convention of files was “8.3”, meaning that a file could

contain a name of maximum eight characters, and three characters used to distin-

guish the type of file with an extension. The filesystem initially did not support

the use of directories at all. It only stored each files next to the other. Later, the

storage space grew, and nested directories were introduced because it would have

been impossible to arrange all that data without any hierarchical logic. Microsoft

introduced FAT-16 after FAT-12. That filesystem could address a maximum of 2

GB storage space, but still had the limitation of naming files with eight charac-

ters and three characters for the extension. Together with Windows 95, VFAT has

been introduced, which let the user to enter a filename up to 255 characters. To

solve the problem of backward compatibility with older filesystems, VFAT needed a

workaround. The trick was to let the user enter a filename up to 255 characters and

automatically shorten it to eight characters (the remaining letters were hidden and

stored elsewhere in the system). For example a file called “vacation in Paris.gif” is

shorten to “VACATI1̃.gif”. VFAT was not able to solve the problems originating

21

from FAT-16 (problems with space waste and fragmentation). Instead of refining

VFAT, Microsoft introduced FAT-32, which could address a storage space of 32 GB

maximally (this was a limitation made by Microsoft even if the filesystem could ad-

dress 8 TB of storage space). Together with the introduction of Windows NT, the

NTFS filesystem saw the daylight, which was a 64-bit filesystem. The particularity

of the filesystem was an enhanced security by using ACL (Access Control Lists),

disk encryption and disk quotas. Compared to FAT-12, -16 and -32, which had

some predefined metadata, NTFS introduced more predefined metadata. Another

particularity was the indexed search of files to speed up the searches.

Apple also wanted to become a major player on the market, so it introduced the

Macintosh FileSystem, or MFS, which originally had a limit of 20MB and 4,096

files. The user could create graphical “folders” and drag files into them, but there

were no folder hierarchies. MFS was replaced by a system with proper hierarchi-

cal directories in 1985 . Because of this, it was called the Hierarchal FileSystem,

or HFS. HFS used 512KB clusters with a 16-bit pointer, so the maximum size of

a drive was 32GB. MFS and HFS introduced an innovative way of handling files,

called “forks”. Instead of storing metadata separately, HFS represented each file

by two files: the file itself (the “data fork”) and an invisible “resource fork” that

contained structured data, including information about the file, such as its icon.

The file was not readable anymore when it was sent to another computer that did

not know about forks. HFS used a massively four-letter “type code” and another

creator code, which were stored in the filesystem’s metadata, treated as a peer to

information such as the file’s creation date. But HFS had some technical limita-

tions. As long as it was used in a single tasking system, the filesystem was fast.

But later, multitasking caused some problems, which were fixed by HFS+. It used

a 32-bit number for block numbering.

Unix almost completely dominated the market for scientific workstations and servers

before being neatly replaced by a work-alike clone called Linux, which started out

as a pun on Unix. The filesystem used was called Unix FileSystem (UFS). Inodes

were used, which are pointers that locate files. Unix-like systems have introduced

an interesting way to organize files and folders beside hierarchical folders : symbolic

and hard links. A symbolic link is a special type of file that contains a reference

to another file or directory in the form of an absolute or relative path, and that

affects the pathname resolution. Programs which read or write to files named by a

symbolic link will behave as if operating directly on the target file. However, if a

symbolic link is deleted, its target remains unaffected. But if the target is moved,

renamed or deleted, any symbolic link that used to point to it continues to exist

but now points to a non-existing file. Hence, those symbolic links are broken1. A

1http://en.wikipedia.org/wiki/Symbolic link

22

hard link is a directory entry that associates a name with a file. Multiple hard links

can be created for the same file. This has the effect of creating multiple names for

the same file, causing an aliasing effect. In contrast to symbolic links, they are not

a link to a file itself, but to a filename. This also creates aliasing, but in a different

way. Most operating systems do not allow to create hard links for directories to

prevent endless recursion, which is a limitation2. Shortcuts, another type of link

used in Windows systems, may resemble symbolic or hard links. But the main

difference is that applications must be aware of shortcuts (i.e. how to access them)

in order to reach target files, whereas symbolic or hard links are transparent for

applications when accessing target files. A common limitation for the three men-

tioned link types in most operating systems is that they do not give the possibility

to delete the target file or folder immediately (at least in graphical environments):

the link will be deleted, but the target file or folder will remain (this case for hard

links is only true if there is more than one hard link to a same file). NTFS Junction

Points3 partially solve the problem by allowing to link to directories and to delete

the target directories immediately. However, they are only usable on NTFS and

cannot be created by users (unless the system is tweaked). Operating systems like

Windows Vista, 7 and Mac OS X now also support symbolic and hard links. In

the beginning, there was no journaling in Unix filesystems, which means that if

the system is for example shutdown while manipulating data, then the data was

corrupt. The solution to this was to run a utility called fsck (for filesystem check).

Many variants have been introduced like ext2, ext3, ext4 and ReiserFS. A few of

those filesystems have succeeded to be faster and more reliable, for example those

support journaling.

The operating system BeOs has been introduced together with the new hardware

platform BeBox. The BeOs used initially a filesystem called OFS. It was particular

in the sense that it used a relational database to store metadata of each file. Users

could add metadata as much as they wanted. A drawback of the filesystem is that

it was slow. Later, the BFS was invented that supported journaling, and was a

much faster filesystem. Unfortunately, this filesystem has not survived long on the

market because of the huge competition with Microsoft and Apple and the lack of

knowing how to sell the product on the market.

A new filesystem called Windows Future Storage (WinFS)4 [6], is currently being

developed by Microsoft. The aim of this filesystem is to associate (user-defined)

metadata to files and integrate an indexed search functionality via a relational

database, just like the BFS. The major drawback of the attempt of Microsoft to

create a new filesystem is that it is proprietary. It cannot be used by other filesys-

2http://en.wikipedia.org/wiki/Hard link
3http://en.wikipedia.org/wiki/NTFS junction point
4http://en.wikipedia.org/wiki/WinFS

23

tems like ext4 and HFS+. In contrast, the RBAF system aims to work with any

filesystem.

As seen in the history of filesystems, the aim was to make the best filesystem

in terms of reliability and performance. However, less attention has been spent on

the organization of data. Symbolic and hard links are indeed additional ways to

organize files, but symbolic links are too fragile because they can be broken with-

out warning the user, and hard links are not intended for folders. Both link types

do not give full access to the target file such as deleting it through the link itself.

Other link types such as shortcuts and NTFS junction points are used in specific

operating systems. Since NTFS, ext4 and HFS+, no major new release has been

introduced for years. Unfortunately, BeOS has been abandoned for his idea of us-

ing a relational database and user-defined metadata. To complete this section, a

comparison Table 2.1, shows the usage of concepts of folders, metadata, symbolic

and hard links for the organization of files in past and current filesystems.

24

T
a
b
le

2
.1
:

C
o
m

p
a
ri

so
n

o
f

fi
le

sy
st

em
sa

F
il

es
y
st

em
n

am
e

C
om

p
an

y
or

D
ev

el
op

er
(s

)
H

ie
ra

rc
h

ic
a
l

fo
ld

er
su

p
p

o
rt

M
et

a
d

a
ta

su
p

p
o
rt

S
y
m

b
o
li

c
li
n

k
s

H
a
rd

li
n

k
s

F
A

T
-1

2
M

ic
ro

so
ft

In
tr

o
d

u
ce

d
la

te
r

L
im

it
ed

a
n

d
sy

st
em

p
re

d
efi

n
ed

N
o

N
o

F
A

T
-1

6
M

ic
ro

so
ft

Y
es

L
im

it
ed

a
n

d
sy

st
em

p
re

d
efi

n
ed

N
o

N
o

V
F
A

T
M

ic
ro

so
ft

Y
es

L
im

it
ed

a
n
d

sy
st

em
p

re
d

efi
n

ed
N

o
N

o

F
A

T
-3

2
M

ic
ro

so
ft

Y
es

L
im

it
ed

a
n

d
sy

st
em

p
re

d
efi

n
ed

N
o

N
o

N
T

F
S

M
ic

ro
so

ft
Y

es
L

im
it

ed
a
n

d
sy

st
em

p
re

d
efi

n
ed

Y
es

Y
es

M
F

S
A

p
p

le
N

o
L

im
it

ed
a
n

d
sy

st
em

p
re

d
efi

n
ed

N
o

N
o

H
F

S
A

p
p

le
Y

es
L

im
it

ed
a
n

d
sy

st
em

p
re

d
efi

n
ed

Y
es

N
o

H
F

S
+

A
p

p
le

Y
es

L
im

it
ed

a
n

d
sy

st
em

p
re

d
efi

n
ed

Y
es

Y
es

U
F

S
C

R
S

G
Y

es
L

im
it

ed
a
n

d
sy

st
em

p
re

d
efi

n
ed

Y
es

Y
es

ex
t2

R
ém

y
C

ar
d

Y
es

L
im

it
ed

a
n

d
sy

st
em

p
re

d
efi

n
ed

Y
es

Y
es

ex
t3

S
te

p
h

an
T

w
ee

d
ie

Y
es

L
im

it
ed

a
n

d
sy

st
em

p
re

d
efi

n
ed

Y
es

Y
es

ex
t4

M
in

gm
in

g
C

ao
an

d
ot

h
er

Y
es

L
im

it
ed

a
n

d
sy

st
em

p
re

d
efi

n
ed

Y
es

Y
es

R
ei

se
rF

S
H

an
s

R
ei

se
r

Y
es

L
im

it
ed

a
n

d
sy

st
em

p
re

d
efi

n
ed

Y
es

Y
es

O
F

S
B

e
In

c.
Y

es
,

re
la

ti
o
n

a
l

d
a
ta

b
a
se

a
d

d
s

ex
tr

a
fl

ex
ib

il
it

y
U

se
r

d
efi

n
ed

Y
es

Y
es

B
F

S
B

e
In

c.
Y

es
,

re
la

ti
o
n

a
l

d
a
ta

b
a
se

a
d

d
s

ex
tr

a
fl

ex
ib

il
it

y
U

se
r

d
efi

n
ed

Y
es

Y
es

a
p
a
rt

ia
ll
y

ta
k
en

fr
o
m

h
tt

p
:/

/
en

.w
ik

ip
ed

ia
.o

rg
/
w

ik
i/

C
o
m

p
a
ri

so
n

o
f

fi
le

sy
st

em
s

25

2.3 Project Xanadu

In this section, we first give a short introduction of the Xanadu project. Next,

we discuss the model which is used in the architecture of Xanadu, and finally we

discuss the idea of transclusion used in the project.

Ted Nelson created Xanadu5 [9], a project of information system for instant and

universal sharing of computer data. Ted Nelson has been influenced by the ideas

of Vannevar Bush, when introducing hypertext. Hypertext is text which contains

links to other texts. The idea of hypertext is inspired by the idea of Bush’s “trails”.

Just as Bush, Ted Nelson believed that linear text was a limited medium for ac-

cessing information. The principal idea of the Xanadu project was a networked

system that would store and index all of the world’s literature and other public and

private information. Users would access information, for example documents, via

the hypertext system and access one document via a document’s link. Ted Nelson

also included other visions within Xanadu. It would be a system that automatically

bills a user for the delivery of copyrighted material, and rewards the author with

for example money. Also, the user can link documents and has a view of two linked

documents on one screen, with full support for versioning. In Bush’s memex, the

user can only follow a trail between documents in a sequence, expect if the trail has

different paths. Ted Nelson proposed to the user the choice to freely move between

links.

2.3.1 The Transcopyright Model

Ted Nelson has proposed a different way to create and publish content online. The

idea is shown in a model called Transcopyright6 as shown in Figure 2.3.

It is an extension to a previous model called Xanadu model7. The difference

is that the Transcopyright model adds to the Xanadu model a copyright mecha-

nism. The purpose of creating content is to not create files that are a sequence

of bytes. Instead, we can create (a) “content(s)” as stand-alone data such as a

pieces of text or images, located separately and be accessed by anyone, which are

grouped in order to form a source of information. We can easily mix content from

different sources. Content is stored in an abstract space called a pool. Any content

can be created separately and is unified in a so called virtual file to represent the

desired contents. A virtual file is nothing more than a list containing pointers to all

content located in the pool. That virtual file has the extension .xvf. Ted Nelson

knew that copyright issues play an important role, and therefore added in his model

5http://en.wikipedia.org/wiki/Project Xanadu
6http://xanadu.com/tco/index.html
7http://xanadu.com/xuTheModel/index.html

26

Figure 2.3: The Transcopyright model

a copyright mechanism to restrict access to specific contents. The cycle from the

creation of content to the reading of the content by the end-user is as follows and

shown in Figure 2.3. The author works with a virtual editor application which lets

him create content and publish it in the pool. He also can read content of other

authors and freely quote them, which is similar to the idea of annotating pages in

Bush’s memex. When the content is created, a virtual file will be generated that

will hold the structure of all contents. The end-user can read the virtual file with

a special browser plug-in for virtual files. The plug-in will read the virtual file and

find the content associated with the virtual file, and put all contents together and

finally present them to the end-user. We can use this idea to implement a similar

feature in a filesystem: when a user wants to create a new file, for example a Power-

Point presentation, they will first check whether content can be reused in other files,

such as entire PowerPoint slides in other PowerPoint presentations. Slides are not

copied and pasted, but the content and structure of the PowerPoint presentation

are created by linking to those external PowerPoint slides. Once the PowerPoint

presentation is finished, the next time it is opened, the content of the external slides

will be rendered and structured in the PowerPoint presentation itself.

This is how an author can publish content and a reader can read it freely. If content

should be copyrighted, then the following approach is proposed. Any rights holder

grants permission in advance to content. When the reader wants to access some

contents in the virtual file, which are not free, one or multiple micro payment first

27

have to be done in order to have access to the desired content and so fill out the vir-

tual file. Once the reader has purchased the desired content, the proof of purchase

is stored in a deep cache. Next time, the reader can access the previously consulted

content again if the proof of purchase is retrieved in the deep cache. Again, we can

draw inspiration of this idea for a filesystem as well. We can, for example, adapt

the access to linked content depending which user has to access it, or in which

context (for example on which computer and operating system) the user is viewing

it. Suppose that a student, which is logged in with a student account, has to view

a document containing instructions for a course exam. In this document, there is

linked content for students and linked content for teachers (for example instructions

of how to correct the exam). The view of the document can be adapted by hiding

the linked content of teachers from the students.

The pool is a transparent unification of different servers that host different content.

Those servers send their content from requests of the reader when opening the vir-

tual file.

Content can be linked together with two-way links (bi-directional links). The mean-

ing is that we can see which content is connected to the other and vice versa. This

concept is interesting to use in a filesystem. For example, we can make shortcuts,

used in Windows systems, bi-directional in order to know which file is being linked

by which other files, and prevent to accidentally delete a referenced file. Links are

treated as content, and can be created and published freely in the pool. To search

any content in the pool, it will not be addressed via its URI, but via its name.

2.3.2 The Xanalogical Structure

The functionality of linking documents (which also includes composing documents

with other content, as with virtual files) is based on the Xanalogical structure [10].

It is a symmetric connective system that enables to link multiple forms with each

other and view those links as connections between two forms. Ted Nelson calls

this parallel documents, which has been introduced in 1965 to represent abstract

documents that can be associated in two ways. The first way is by linking documents

with each other, which is called links. The second way is a more complex linkage

that links content of a document and incorporates it in another, which is called

transclusion. One of the main purposes is to be able to view documents side by

side and compare them. Graphically we can view two documents next to each

other, and see what is being linked and what is extracted from one document that

is incorporated into another. The graphical representation of parallel documents is

called transpointing windows as shown in Figure 2.4. The necessity of working with

transpointing windows can be varied. Two main valid contexts that come to our

mind is first when building documents that are the continuity of previous versions.

28

When writing the following version of a document, for example version 2, it is

handy to view version 1 next to version 2 to compare and add content in version 2

from version 1. Second, another situation is simply when studying literature. An

example is when we study geometrical optics, it is possible that there are some

study fields or terms that we do not know. Therefore, there can be links that point

to other documents that treats the subject or term. In geometrical optics, we refer

to subjects like polarization and terms like rays and imaging. When the reader

selects one of those links, the corresponding document page will appear next to the

document about the geometrical optics. The reader will be able to read gradually

the part of the subject or term that he wants to read about while keeping an eye

on the chapter of geometrical optics.

Figure 2.4: Transpointing windows

As we have seen previously, documents are considered as a virtual representation

of content entities in a “space” (which is the pool mentioned before). In other words

they are pointers to content entities located somewhere. Figure 2.5 shows pointed

contents that together form a document.

Content is created by everyone, and a document contains a list of all the content

that should be shown in an order. In transpointing windows, we use the concept of

transclusion. The idea is that we can reuse parts of documents by linking to those

29

Figure 2.5: A reference pointers list is a virtual document that points to external contents

parts from a document and render the linked content in that document. Suppose

that somebody, called Mister X, has a document called B and it contains a part

that explains a mathematical definition of a formula. He can select and then point

that part to the piece of information about the formula in document A. When he

wants to visualize document B he will see that it is composed of the content of B

itself, and the link that points to document A. Figure 2.6 shows that document B

links a part of its content to a piece of information of document A.

Figure 2.6: A piece of text of document B is linked to a piece of text of document A

The aim of links used in transcluded content is that they are unbreakable. Sup-

pose that document A has extended the part that explains about a mathematical

formula. The updated part adds new lines in the paragraph itself. It is like the

paragraph has been split in two and the new lines are pushed between the two

30

splitting parts. The link to the transcluded part of document A will be updated by

creating two links that point to the separated lines. Figure 2.7 shows the link of

document B pointing to the extended piece of information of document A.

Figure 2.7: Document B still points to the old same piece of text of document A after an

update

When a part is deleted, the link will also be updated by pointing to the remaining

lines. Figure 2.8 shows that document B still links to the piece of text of document

A even if a part of that text has been deleted.

Figure 2.8: Document B points to the reduced piece of text of document A

Using the idea of transclusion in a filesystem is also interesting. From the previ-

31

ous example of linking PowerPoint presentations to PowerPoint slides, we can link

to parts of the slides in order to reuse the same content in our PowerPoint presen-

tation, such as a piece of text, and not an entire PowerPoint slide. In this way, we

can avoid replicating or creating files for a temporary usage to finally save storage

space efficiently. A consecutive advantage is that we can reduce fragmentation on

our disk drive, since we do not create, copy, paste or move content between different

files.

Many ideas of Ted Nelson are reality today. However, Ted Nelson’s system was never

realized because it was unclear at that time how it should be realized. Input/out-

put issues, filemanagement issues, facility sharing and networking were things that

needed to be figured out before this system could become reality8. Today we have

the technology to realize some of Nelson’s ideas. The idea of transclusion does not

only need to be used for the Web, but also on filesystems. Just as the transpointing

windows of Ted Nelson, we can use that concept to view in a filesystem which files

are linked by which one and what is linked. In this way, we are aware how files are

related to each other, and thus we understand how files are composed, forming a

unified set of data.

2.4 The oN Line System (NLS)

The oN Line System (NLS)9 [1] has been invented by Douglas Engelbart in the 60s.

The NLS was a system to let scientists and professionals collaborate on a project

whose activities were to resolve complex problems. He has mainly been inspired

by the memex of Vanevar Bush, who also wanted that scientists could collaborate

and exchange their discovery. The NLS was the first system that introduced a

set of mechanisms for information sharing. He also introduced inventions like the

video-conference, windowing system (in a graphical user interface), the mouse and

keyboard. The NLS was the first system that implemented a functional system

that used the concept of linking (parts of) documents to other douments. It was

possible to have internal links in documents by linking parts of the document to

itself and only view those linked parts by selecting their link. Linking was not only

possible in text, but also in graphics such as pictures. One could select a part of

graphics and for example link to a piece of text in a document. So a user can

for example select a part of a map and link it to a piece of text in a document.

When clicking on that part of the graphic, the user jumps to that piece of text.

Just like in the memex, it was possible to create chains of views. In other words

we can link pieces of text in different documents and jump from one text to the

8http://www-personal.umich.edu/ mattkaz/history/hypertext2.html
9http://sloan.stanford.edu/mousesite/1968Demo.html

32

other. An application of the link concept used in the NLS was the Journal. The

Journal was conceived as an electronic version of a scientific journal, consisted of

a permanent database, which consists of a set of published articles, where users

could access for consultation. The NLS facilitated the organization and retrieval of

items through a system of indexes, catalogs and cross-references. The Journal was

a primitive hypertext-based groupware program which can be seen as a predecessor

of all contemporary server software that supports collaborative document creation

(like wikis)10.

As Douglas Engelbart used links in his system, we can also make use of a similar

feature in a filesystem. The idea is to link (parts of the content of) files and travel

from (the content of) one file to the other.

2.5 Human Memory Types and the Synapse-State The-

ory of Mental Life

In this section we first discuss three types of human memory that we can draw

inspiration from and implement features for a filesystem11. Finally, we shortly

explain a theory of Paul Naur [8] about the general working of human’s nervous

system and what inspiration we can draw from it.

2.5.1 What types of Human Memory can we draw Inspiration from

for a Filesystem?

The human memory has three different common memory types (which are memory

processes) of the long term memory12.

One of those types is the semantic memory. The semantic memory is concerned

with abstract definitions and facts to understand something. For example when we

are in a school class following a lecture about rhinoceroses, although we probably

have never seen a real rhinoceros in Africa, we do not have to remember a specific

event of having seen a rhinoceros in order to understand the lecture. We can make

use of the semantic memory in order to remember what is it (it has four legs, it

lives in a warm country, it is a mammal, and so forth).

The second type of memory is the episodic memory. This memory is related with

chronological events such as time and associated emotions. For example, remem-

bering the name of our child we gave to him at his birth.

We also have a third type of memory, which is the procedural memory. This type

of memory is used to remember how to accomplish things. For example, how does

10http://en.wikipedia.org/wiki/NLS computer system
11http://en.wikipedia.org/wiki/Semantic memory
12http://www.wisegeek.com/what-is-semantic-memory.htm

33

one open a book. The semantic memory, together with the two previous mentioned

types of memory gives us the possibility to remember objects or concepts that have

a meaning to us and relate them in order to give it a sense, from the phase of un-

derstanding it to the phase of how do we use or do it. For example, when we want

to read a book, our procedural memory remembers how we read it, but is it the

semantic memory that will make it possible to understand what the different letters

mean and that relating specific letters in a specific order will result in a meaningful

word or sentence. The episodic memory lets us remember in which context we are in

the story of the book and what happened before that story. With semantic memory

we can also read every book with a different type of font because we understand

the concept of a letter, and do not have to remember a specific example of a letter

(e.g. with the font type Times New Roman). Figure 2.9 shows an example of each

memory type.

Figure 2.9: Example of each memory type13

For each type of memory, we can draw inspiration and extend functionality in a

filesystem. For the episodic memory, we can use metadata in files as a description to

remember its content. Not only the date would be stored, but also other properties

such as in which context it has been created, why and what content it has. Another

functionality can be linking files to semantically relate them. For example, we can

relate a photo to a video because a photo has been taken of a historical monument,

and the video of that monument has been created as well. For semantic memory,

13http://www.abacon.com/slavin/t58.html

34

we can use multiple classification of files within different folders [16]. The idea is

that a same file (not a copy) can be contained in multiple different folders. Suppose

that we have a folder containing photos of the sea during our vacation, and another

folder about images of nature. We can classify photos of the sea as images of nature,

because the sea is part of nature. Therefore we can classify photos of the sea both

in the folder of ’vacation’ and in the folder of ’nature’. For procedural memory, we

can again use metadata stored in files and give instructions to applications on how

they should manipulate a file.

2.5.2 What Inspiration can we draw from the Human Nervous

System (Synapse-State Theory) for a Filesystem?

Peter Naur [8] argues that there is no similarity with computers and human think-

ing. He states that human thoughts are very complex and the way of a human to

think is very flexible and variable. This means that we do not think about some-

thing twice in the same way. In order to show how flexible and complex human

thoughts are, he has created a model that represents the cooperation of neurons

that are influenced by many factors in different layers. Neurons are cells in our

brain that are influenced by millions of other neurons via plastic conductors called

synapses. An habitual connection between those neurons is called association.

The model is divided into five layers shown in Figure 2.10. Those layers are the

item-layer, the attention-layer, the specious-present-layer, the sense-layer and the

motor-layer. The item-layer is in the middle of the model, the attention-layer is in

the left corner, the specious-present-layer is in the right corner, the sense-layer is on

the top of the model, and the motor-layer is on the bottom of the model. The nodes

are shown with boxes, neurons are shown with lines and the synapses are shown

with short words in capital letters. Those words are ITEM,ATT,SPEC,SENS, and

MOT.

The Item-layer

This layer contains all habits and information that stands on the long term in our

organism. The first thing that attracts our attention are the rectangles which are

nodes. The nodes are the end-points of neurons. When enough neurons, which

are connected with a node, are active then this node represent an acquaintance

objects,which is simply a thought. The nodes are connected with other nodes in

a specific order. The path from a node A to a node B is composed of a neuron,

a synapse and a neuron again. The synapse on the model is represented in the

form of ITEM-x. The synapses play an important role because they will make it

possible that two (or more) neurons become unified, which will have a sense for

possibly each individual person. To clarify this, a newborn has synapses that are

35

Figure 2.10: The Synapse-State model of the nervous system

not conductive. While it is exposed in front of external factors, multiple nodes will

be excited. When in a random situation two nodes are significantly excited at the

same time, the synapse that relates those two nodes will be excited too and thus will

be more conductive. The more those two nodes are excited, the more the synapse

will be conductive. When the synapse is conductive enough, the newborn will have

learned that two nodes have something to do with each other. We say then that

those nodes are associated. Once the two nodes are no more excited, the synapse

that relates those node will be less conductive with the years, which probably will

result of having forgotten about the relation between the two nodes. If we want to

mimic that behavior in a filesystem, we can compare a node with a file, a neuron

with a link and a synapse with properties attached to a link. When we search for a

file, but with no results, we can try to search for properties on links (i.e. metadata

on links) between files that match the search criteria. Once a link is found with

properties based on the search criteria, we can be asked if a file on the other side of

the link is what we are looking for. If this is the case, a property which represents

a search “hit” will be updated. Next time we start a search process with similar

search criteria, the search results will first show the “hit” file from the previous

search process.

36

The Attention-layer

The attention node, which is called the attention excitation, is a particular node

that will result in the attention of an acquaintance object. Every node is connected

with the attention excitation node which contains its synapse in the form of ATT-x.

If for example a node A is excited beyond a certain level, possibly by external

factors like senses (for example eyes and taste) or by other nodes that are connected

with node A, then the synapse ATT-A between the attention excitation node and

node A will be conductive for a short duration. The summation of impulses will be

influenced and we say then that the attention sits in node A. The synapse ATT-A

will get weaker very quickly, in terms of seconds, and needs to recover before it can

be excited again. In a filesystem, we can mimic a similar feature with properties

on a file. Suppose we often use a file located in a folder. Every time we open that

same folder, we will see that file highlighted in order to attract our attention and

immediately perceive that file, instead of looking where that file in the folder is.

This feature would work for any file in any folder.

The Specious-present Layer

This layer is almost similar with the attention-layer. We also have a node called

the specious present excitation node that is connected to nodes with each their own

synapse in the form of SPEC-x. The difference between the two layers is that the

synapses of the specious present excitation node are slower. The nodes connected

with the specious-present excitation node need to have a certain level of excitation

to excite the synapse SPEC-x itself. There can be other nodes that are excited

at the same time and will excite their synapse SPEC-x too. Once a synapse is

excited, it will last for a short time, which is longer than a synapse of the attention

excitation node. We can compare this process with the short term memory.

The Sense-layer

External factors signals are captured by nodes in the sense-layer called transducers.

Those transducers are translated and excite a specific or multiple nodes called which

have the form of Sx, for example S1,S2,... where S stands for sensation. When those

nodes are excited there will be a tendency where some nodes in the item-layer are

excited. When a lot of the nodes Sx are excited and excite in their turn a particular

node with a synapse in the form of SENS-x, then that node by summation of

impulses will be strongly excited. When the excitation is strong enough to excite

the attention-synapse, we say then that the corresponding acquaintance object is

in our perception, and thus the nodes Sx stay excited as well in the same time. It

is also possible that the conductivity between the ITEM node and the SENS node

37

occurs in the opposite direction. We can imitate that behavior in a situation where

a file is structurally linked to an image. i.e. the file that links to the image will

render that image in its own content, but does not physically contain that image.

If in this file we often modify the image, and later browse the folder containing

the image, we would see (with for example a notification) that the image has been

modified multiple times by the file.

The Motor-layer

The item nodes are connected with nodes in the form of Mx in the motor-layer

through synapses MOT-<item name><number>, for example an item node A can be

connected with a node M2 with the synapse MOT-A2. When a synapse of the motor

layer is excited, it will activate a muscle contraction in our organism. A MOT node

will last less longer, more or less a few weeks, compared to an item node, which can

last for a few years. For example when we play the piano, we need to train often

if we do not want to lose the ability to play it well. This means that the nodes

in the motor-layer need to be excited regularly if we do not want them to faint.

The conductivity of the synapses in the motor-layer are increased with training.

In a filesystem, we can use properties attached to a link between files. A property

would contain an instruction of what to do when a certain event occurs, for example

“onDelete”.

2.6 The RSL Model

Many hypermedia models have been proposed in order to be used as an architec-

ture to implement extra navigational functionality in hypermedia systems. These

models have the purpose to be used as a certain design style and representation of

the general architecture of an implemented hyper media systems. An example of a

popular hypermedia system is the World Wide Web, which is a distributed hyper-

media system that works on top of services provided by the Internet. The World

Wide Web is based on a client/server model. This model defines protocols, like the

hypertext transfer protocol, in order to exchange information between World Wide

Web client and servers. The metamodel called the resource-selector-link (RSL)

model [19] has been developed to be general and flexible in order to be used for

hypermedia systems that evolve. The RSL model is based on the concept of linking

arbitrary resources. Although the RSL model has the initial purpose to be used in

hypermedia systems, we can use this model as a basis to realize extended function-

ality in a filesystem (which we will discuss in Chapter 4). There are three types of

concepts that are important in the model: resources, selectors and links.

38

2.6.1 RSL Links

The RSL model is expressed with the OM data model [11]. All the concepts are

grouped in rectangles. Those rectangles are collections of object instances. For

example a link, which is an instance, belongs to the classification of Links. We

distinguish six types of concepts shown in Figure 2.11. We will start with the

concept of entities.

Figure 2.11: RSL links

An entity from the Entities collection is an abstract representation of any ob-

ject that will exist in the hypermedia system. Because it is abstract, it needs to be

extended by other subtypes. We distinguish three subtypes of an entity.

The resource subtype, which is another abstract concept, must be also extended

in order to address concrete types of media, for example an image.

The selector subtype is a concept that is used to select a part of a resource. It is

also an abstract concept that should be extended in order to create specific selec-

tors to address parts of certain media types. We can imagine to create a selector

to be able to select parts of a specific media. The association RefersTo has two

cardinality constraints between a selector and its resource. The constraint (1,1)

on the selector means that a selector is associated with exactly one resource. The

other constraint (0,*) means that a resource can have zero or more selectors that

refer to it.

The link subtype is a concept that has the purpose to link entities to each other.

This means that we can have different combinations of linkages between different

types of entities. For example, we can link from a resource to a selector of a re-

source, link a resource with another resource or link two links with each other. The

link concept has an association HasSource with the Entities collection, and an

association HasTarget. An entity as a source must have at least one target, but it

can be linked to multiple target entities. Furthermore, a target entity can be linked

by multiple entities.

39

An entity can only be extended by one subtype as indicated by the partition con-

straint, which means that we cannot have an entity that is a selector and a resource

at the same time.

Next we have the concept of context resolvers from the ContextResolvers collec-

tion. A context resolver tells us whether an entity can be accessed or not in a

certain context. Each entity can have multiple context resolvers as indicated by the

HasResolver association. An example of the usage of context resolvers is a resource

that is linked to multiple target resources. By coupling a context resolver on each

link, we can define in which context each link will be visible or not. Suppose that

we have a photo linked to a video and we are in a context where we only want to

view photos, then it will be not relevant to show a link pointing to videos.

Finally, we have the concept of properties that we find in the Properties collec-

tion. A property is a key/value string tuple. We can compare a property with an

attribute. The ’key’ is the description of the property. The ’value’ is the information

that the ’key’ contains.

2.6.2 RSL Structures

The link concept described above has the possibility to be extended with one of two

other subclasses. Those subclasses are the StructuralLinks and the Navigation-

alLinks.

Structural links are links that are used by resources that want to be composed with

other resources whom they are linked to, as shown in Figure 2.12.

Figure 2.12: RSL structures

The StructuralLinks collection is associated with the Structures collection

via the HasElements association.

The responsibility of the Structures collection is to keep the elements that are

referenced via structural links. For example, we can link a document to multiple

images. The links will make it possible to structurally compose the document of

40

images. That idea is similar to Ted Nelson’s transclusion concept. We also need

to know the order of such entities since we are talking about structures. This is

achieved via the ordered | HasChild | association between the structural links and

the entities collection. An example of an order is the order of a document that

contains chapters, which in their turn contain paragraphs. We can not only define

a structure over data, but also over other structures. This means that we can for

example take a substructure of a document like taking one chapter with all its

paragraphs, and make that substructure part of another structure within another

document. Structural links can also form structures of regular associative links.

Navigational links from the NavigationalLinks collection are used to navigate

between different entities. We can compare it with hyperlinks on the Web, where

we can navigate from one webpage to another. We can also combine the concept

of structural links together with navigational links. For example, we can define

an ordered list of navigational links where the user can select to navigate orderly

from one entity to another. This idea is similar to Bush’s trails, and the links used

in NLS to jump from document to document. We can use that feature to create

navigation trails which guide the user to visit entities in an order.

2.6.3 RSL Users

We can define access policies for each entity that is meant for users only.Four con-

cepts are distinguished beside the entities concept, as shown in Figure 2.13.

Figure 2.13: RSL users

First we have the Users collection. This collection contains all the users that

can be in contact with an entity. The Users collection is an abstract concept, and

must therefore be extended with one of two other subcollections.

The first subcollection of the Users collection is the Individuals collection. This

collection contains every people individually.

The second subcollection is the Groups collection. This collection deals with a

41

greater range of users that can all be grouped. A group can contain individuals or

other groups. Note that an individual and a user should not be confused. A user

can be an individual or a group. An individual is somebody in person. From the

Entities collection, there are three associations with the Users collection.

The first one is the AccessibleTo association. This association represents the

accessibility of an entity by a certain user (either individual or group).

The second association is the InaccessibleTo association. This association has

the same constraints as the previous one.

The third one is the CreatedBy association, which is associated with the Individu-

als collection. The Users collection has two other associations. One with the

Preferences collection and one with the Groups collection.

The association with the Preferences collection means that every user has personal

applied policies for each entity it is in contact with. The Preferences collection

groups all parameters of every user. For example which entity can be accessed and

which not.

The last association with the Groups collection is the HasMembers association : a

user can be part of no group or many other groups.

2.6.4 RSL Layers

The RSL model deals with the problem of how to visualize and choose selectors

that overlap each other on a same resource. Figure 2.14 shows the layers part of

the model.

Figure 2.14: RSL layers

We identify two concepts in the layers model that deal with that problem.

First, we have the Layers collection that maintains the layers of different overlap-

ping selectors on a same resource. Every selector is on a layer. The constraint

(1,1) on the association OnLayer means that each selector is situated in exactly one

layer. The association | HasLayers | from the resources type to the layers type is

42

an ordered association, and means that a resource can have multiple layers.

The subcollection of the Layers collection is the ActiveLayers. This collection is

responsible to maintain the active layers in the Layers collection. We can activate

or deactivate layers depending which selector we want to view and depending which

context we are.

2.7 Summary

We conclude this chapter with a summary of which ideas and concepts from the

previous discussions are interesting to implement in a filesystem. The concept of

trails in Bush’s memex can be used in order to follow a navigational path from a

file or folder to another file or folder. Also, navigating from a part of the content of

a file to another is an interesting idea, which was done in the NLS. Next, we have

seen the evolution of filesystems where the focus was on data organization. The

most important features are hierarchical folders, metadata, symbolic and hard links

(in combination with other link types such as shortcuts and NTFS Junction Points,

which are system specific). Unfortunately, no further improvement has been seen

for making hierarchical folders more flexible and let users create their own meta-

data. An interesting idea, which has been abandoned, was the use of a relational

database as in the OFS and BFS filesystems, to make flexible folders possible and

add user-defined metadata. Symbolic links are fragile because they can be broken

and thus dangle in the filesystem, and hard links are in most operating systems pro-

hibited to link to directories. Other link types have advantages and disadvantages,

such as shortcuts and junction points, but are only usable for specific systems. Fur-

ther, the following concepts of the Xanadu project are nice. Transclusion, which

can be used to link to (parts of) the content of files and render that content in

another file. From the idea of a copyright mechanism and check if the user has

paid for the copyrighted content, we can draw inspiration of it by implementing a

similar mechanism, but in this case it is used to adapt for example the content of

a file depending which user is accessing it or in which context the user is viewing

the file (or what files he desires to view). Furthermore, we have seen how we can

draw inspiration from the human memory and nervous system which motivates to

implement features such as multiple classification. Finally, we have explained the

RSL model, which forms the basis of our proposed filesystem discussed in Chapter 4.

In the next Chapter, we show two motivating scenarios that highlight some draw-

backs of current filesystems in organizing and creating data. In Chapter 4, we then

introduce the RSL-based Associative Filesystem (RBAF) system and its model.

43

Chapter 3

Scenarios

In this chapter, everyday examples are shown to demonstrate how we organize

and create our data, followed by a discussion of some of the drawbacks of current

filesystem-based solutions.

3.1 Scenario 1 : Souvenirs from Italy

For this example, we invent a fictive journalist named Charles Fricker and his family

who are going for a holiday on the beach in Rimini. He and his family decide to go

to Riccione in July 2010 for the first time. They plan to stay in a hotel for three

weeks. The first week, they visit the local place of Riccione, where every day they go

to the beach and enjoy a good time while swimming in the sea. Charles takes quite

a lot of photos when his wife and kids are swimming, walking on the beach, having

a chat and eating in their beach cot. His wife is filming the beach with her video

camera to see how the children are playing, how the sea is waving and to capture

the ambiance of the local beach place where there are a lot of tourists. During that

week, they also visit the rest of the city, do some window-shopping, walking during

the evening to see all the open stores and buy some local stuff. The second week

arrives and the family decides to go visit the museum of Territory. There they take

photos of the archeological finds. They film the guide when he gives explanations

to other visitors. A few days later, they want to enjoy the nice weather in the La

Perla Gardens. They enjoy the wonderful show of the fountains where they take

photos of their children splashing their hands in the water. At the end of the day,

Charles and his family walk around in the gardens and film his wife and kids.The

third week they go to the Agolanti Castle. They take some photos and also film the

interior of the castle. At the end of their vacation, Charles and his family go back

home. In the evening, Charles organizes all the data that he and his wife captured

with the photo and video camera on his personal computer. He uses Windows XP

44

as his operating system and creates two folders with the name Rimini in the folders

My Pictures and My Videos. Each of these folders contains a number of files that

he and his wife made during their vacation as shown in Figure 3.1.

(a) Photo organization (b) Video organization

Figure 3.1: Initial data organization

Charles liked the climate in Rimini. The year after, he decides to do another

trip to Coriano in Italy. There he stays on his own for two weeks. He visits some

nice places and takes photos and videos to show to his family. When he returns

home, he organizes the data on his personal computer. He faces the problem that

he would like to distinguish the photos and videos that he made in Coriano and

Riccione. Therefore, he has to create two subfolders Coriano and Riccione. He puts

the older photos and videos in the Riccione folder whereas the new resources are

stored in the Coriano folder, as shown in Figure 3.2.

Then a few years later, in 2014, he remembers how much he liked Riccione and

decides to return there with his family. This time, they visit the archaeological site

in San Lorenzo. The day is shiny, so they take their photo and video camera with

them. They do not take a lot of pictures, but prefer to film some interesting parts

of the site. This is the only place where they went to do some tourism. They prefer

to enjoy the beach and the sea every day. The parents also like to spend time with

their children since they could not do this as much as they wanted during the year

because of their work.

When the whole family returns home, Charles saves his data on his personal

computer. When he looks at the folder hierarchy, he realizes that he would like to

differentiate the photos taken in Riccione in 2010 and in 2014. So he has no choice

rather than to restructure his files. He creates two subfolders named 2010 and 2014

and puts the older photos and videos in the folder ’2010’ and the new content in the

’2014’ folder. Figures 3.3 and 3.4 show how the organization looks like. Note that

45

(a) Photo organization (b) Video organization

Figure 3.2: Second data organization

one image has not been given a name and therefore has the default name ’photo1’.

Figure 3.3: Third data organization in the My Pictures folder

As shown in this example, when our personal data space grows, we encounter

all kind of problems. If we add new files from a different event (e.g. assignment

or vacation), the chances are high that we must restructure all the files by creating

46

Figure 3.4: Third data organization in the My Videos folder

new subfolders and move those files to the new subfolders. Over the time, our

personal data space can become very complex and rather difficult to browse. A

complementary way to enhance the organization and retrieval of the files is to add

properties to them and group those files that are the most related (e.g. by place

or by year). Properties add more meaning to files and can be used for different

purposes like the semantic regrouping of files when we search after them with the

help of a search function or give instructions to an application. Even if the photos

and videos have been taken at the same place and time, we currently cannot see

that those data have something in common. We can try to give consistent names

to the files. For example, suppose that Charles Fricker made a photo and a video

of the fountains of the La Perla Gardens in the previous scenario. If we want to

show that a photo and video have been taken on the same place, we can name the

photo and video ’the fountains with kids’. But if Charles has multiple photos that

have been taken in the La Perla Gardens and wants to know that those photos have

been taken while also filming, he cannot rely on a naming convention anymore. For

example he cannot name a photo ’the fountains when kids are running’ and another

one ’the fountains when kids splashing in water’. It is not a good idea to give a

description of the image as the name for the file, because the names can be too

short or too long to provide enough information about the photo.

47

Actually, there is no way to relate the photos and videos. We can guess that the

video and some photos have a semantic relation only if we view the video and the

photos, and remember that they have been taken at the same place (as in Riccione

from the scenario).

3.2 Scenario 2 : Preparing PowerPoint Presentations

Mister John Kennon is a fictive doctor in computer science. He is invited at the

conference of the MICT (ministry of information and communication technology)

to present to visitors the use of firewalls in today’s computers. He prepares a

PowerPoint presentation simply entitled ’The firewall’. He thinks about what he

will talk about and which subjects he will cover (we will not talk about the content

of the presentation in this example). Finally, he comes to the conclusion to use

these subjects as seen in Figure 3.5.

Figure 3.5: Outline of ’The firewall’ presentation

While writing the appropriate content, he searches for some images on the In-

ternet about the architecture of firewalls to paste on his slides. Finally, when all is

done, he saves his PowerPoint presentation. A few months later, he has to give a

lecture about firewalls in Windows. Again, he prepares his presentation and at the

end of the day he finishes the presentation containing the subjects in Figure 3.6.

John Kennon realizes that his presentation has more or less the same content

as the previous presentation he made at MICT. Nevertheless, he wants to avoid

repeating the same thing in a slightly different way and therefore decides to copy

and paste some of the slides of his previous presentation.

Two years later, John Kennon must give a lecture about the Netfilter architec-

ture in Linux. Like always, he prepares his presentation for the next day, by copying

some slides, modifying some images and pasting them in the new presentation. His

48

Figure 3.6: Outline of a second presentation about Windows firewalls

presentation has the subjects highlighted in Figure 3.7.

Figure 3.7: Outline of a third Linux firewall presentation

In that same year he must also give the same lecture about Windows firewalls.

Again, since this presentation has been given two years ago, he recognizes that the

slides ’What is a firewall?’ and ’How does it work?’ in his presentation are a bit out

dated. He gives a look at the most recent presentation of Netfilter architecture in

Linux to check the slides that have the same subject name and copies those slides

into his old presentation.

In the previous scenarios, we have seen that doctor Kennon does quite some

repetitive work. He had to copy and paste the same content of previous presenta-

tions in more recent ones. He also feels that his data is never up to date, even if

he works on it. As seen in the previous scenarios, he has often worked on similar

subjects (e.g. firewalls). In each new presentation, he has possibly updated some

49

sentences about those subjects from previous presentations. In the last scenario, he

had to give a second presentation of a PowerPoint presentation he delivered a few

years ago. There the content, especially the two often referenced subjects in his

presentations, were outdated. He had no other choice but to look at a presentation

that contains the same most updated subjects and to copy and paste the content

into an older presentation.

The previous two scenarios are examples of daily work practices that could be

accomplished in a different way. The current filesystems do not help us to organize

our data in a way that we can remember or find those data more easily. In the

first scenario, mister Fricker will probably on the long term have a complex folder

hierarchy. The way how he gives names to subfolders are not necessarily intuitive,

and the depth of subfolders can be of more than three levels. In this case, he has

two choices. He can “dive” in the folder hierarchy and click on each subfolder until

he meets the target, or he can make use of a search function of his operating system

to find an item with a technical search criteria like name, date and file extension.

The latter option can be a temporary solution to search in a small amount of data.

When the amount of data becomes higher and search criteria like the filename are

not relevant anymore, probably because the filename has not a significant name,

the search process can take much more time and maybe end with no results. All the

data is spread in two different parts, namely in photos and videos. Even if they have

been created on the same place and have something in common, mister Fricker does

not have a lot of options to make those relations visible. In this case, he can only

try to give unique and meaningful filenames. In the second scenario, doctor Kennon

cannot reuse or update data with minimal efforts. He is forced to search for Power-

Point presentations which have similar content and to update one of them manually.

In the next chapter, we introduce our RSL-based Associative Filesystem that can

help to solve some of these problems.

50

Chapter 4

RSL-based Associative

Filesystem

In this chapter we introduce the RSL-based Associative Filesystem (RBAF system)

based on the RBAF model (which extends the RSL model introduced in Chap-

ter 2), and explain how it can help to overcome some of the problems mentioned

in Chapter 3. Other illustrative examples will accompany the different concepts of

the RBAF system.

Existing filesystems have seen an immense improvement in storage space address-

ing and performance during the last years. We start to use solid state disks (SSD)

where the read speed is higher than the traditional hard disk drive. But during

the last years, we almost forgot that the task of filesystems is not only to store

digital information, but also to be able to organize and retrieve the information.

As mentioned in the introduction, we saw that while the storage space evolved to-

gether with filesystems, we needed a way to separate and categorize all data. We

have introduced directories, also graphically known as folders in order to bring a

minimum order in our personal data. An effort has been put to bring symbolic,

hard links, shortcuts and NTFS junction points (which all have advantages and

disadvantages). Most filesystems now support system-predefined metadata on files

and folders which can be used to search and sort data. But still, we did not pay

further attention on how to improve the organization and retrieval of data for users

with their increasing number of files for every system.

We have chosen to build the RSL-based associative filesystem on top of an existing

filesystem as a current solution. The reason is because we should give the choice

to operating systems between using the functionality of the RSL-based associative

filesystem or use their usual filesystem for backward compatibility, which is a shared

opinion as in [15]. In contrast to [12], which proposes to study and come with a new

51

solution in the long term to replace the existing hierarchical filesystem, we provide

a short term solution with the RBAF system. In the long term, we can implement

the RBAF system as a new filesystem if all operating systems use it exclusively. We

can compare the idea of working on top of an existing system with the BumpTop1

application shown in Figure 4.1. This application works on top of the Windows and

Mac OS X desktops. The purpose of the application is to enhance the user expe-

rience by providing a 3D illusion that their files and folders are on a real desktop.

One can create files or folders, move them, pile them, hang photos or sticky notes

on a wall, and so forth. The user is free to profit from the functionality offered by

BumpTop, and abandon it if they are not interested to use the application anymore.

In that case, the user will not benefit from the customizations made via BumpTop,

but will still access their files on the desktop as usual.

Figure 4.1: BumpTop works on top of an existing desktop to emulate behaviors and in-

teraction with the 3D desktop like in the real world2

4.1 Files and Folders

In the RBAF model, any object can be addressed via the abstract entity type,

and should therefore be extended with three subtypes. The first subtype will be

discussed in this section, whereas the two other subtypes in the next sections.

The first subtype is the resource type. A resource can be any instance located

1http://www.bumptop.com/
2http://blog.weebo.ro/bumptop-desktop-3d-asa-cum-nu-ati-mai-vazut/

52

Figure 4.2: Files and Folders represented in the RBAF model

on the filesystem. It is an abstract concept that should also be extended with other

subtypes. The RBAF model extends the RSL model with two different subtypes

shown in Figure 4.2. The first subtype of the resource type is the file. It is a more

precise type that addresses any file on the filesystem, and can access information

such as system-predefined metadata (e.g. creation date). Although we can address

any type of files, the file type in the RBAF model should be extended with con-

crete file types in order to know what file we are manipulating. An example of a

concrete file is a PowerPoint presentation with the extension of .ppt. Beside files,

the RBAF model also extends the resource type with the subtype folder. The

folder type represents any folder that is located on the filesystem. Just as in most

filesystems, we can for instance create folders, list or access their content such as

files and other folders. Also system-predefined metadata such as the creation date

of a folder can be accessed.

With system-predefined metadata, we mean that the user cannot add or modify

metadata attached to a file and a folder in the current filesystem. For instance, we

cannot add a property artist to an image file. In the next section, we will show

that adding metadata to files and folders can be useful.

4.2 Metadata on Files and Folders

In the RBAF model, we represent metadata with the property type, which is

associated with the entity type. A property gives a meaning or describes an

53

entity. It is a key/value string tuple. Users, the RBAF system or other applications

can make a different use of properties depending on their needs.

4.2.1 Adding Properties to Files and Folders: Why?

As already mentioned before, folders help us to logically order data, but the draw-

back of this approach is that a file can be located in a deeply located folder (i.e. a file

that is located in a folder, which in its turn is recursively located in another folder).

Thus, once a file reaches a certain depth in a folder hierarchy tree, the user will

probably never look after that file by recursively clicking on a folder one after the

other. Therefore, search functionality is available in modern operating systems in

order to quickly retrieve these files or folders, without browsing a complex hierarchy

of folders. However, there are other related problems. First, every file can only be

uniquely identified via its filename together with the filepath. In order to retrieve a

file, we must remember its name. Giving a correct and understandable name is not

always simple, especially when we have a group of files in the same folder, which

have some similarities (e.g. what name does one give to multiple photos that show

the same person in the same context such as on the beach?). In the example of the

journalist named Charles Fricker from the first scenario in Chapter 3, we have seen

that some photos were left with a default name followed by a number(i.e. photo1)

because he did not know what name to give to the photo. Second, if we type in the

name of a file in a search field, it often happens that we get a long list of search

results. We probably have seen that there are even files that share the same key-

word in their name, but have absolutely nothing in common. For example, suppose

that we are looking for an HTML file. The only thing we remember is that it has

the word ’web’ in its filename. So we type in the keyword ’web’ in the search field

hoping to find it. Astonishingly, there is a long list of search results with files we

did not know they are located on our hard drive. In that situation, we probably

will have to browse the long list of search results to find the file that we are looking

for.

To clarify, it is not easy to remember all files and search after them only by their

filename. We should be able to remember a file according to aspects we remember

the best. For example a photo that we took with our Sony photocamera. In order

to describe a file in more than one way, we can use properties. The RBAF model

allows a user to add properties to any file and folder (and also to other entities

that are introduced in the next sections). Figure 4.3 shows how the properties are

modeled in the RBAF model.

Returning back to the first scenario, the journalist Charles Fricker noticed that

his data hierarchy started to become difficult to organize even with a little amount

54

Figure 4.3: Properties in the RBAF model

of data. He can now annotate his files with properties and later use a search function

in order to retrieve them more easily. We can compare this with Youtube3 where a

user can enter different tags as keywords when posting a video online. Those tags

are very useful because when searching for a video, the entered keywords are used

to look for a video which has video sequences that are described by tags [23]. This

means that our search results will point more accurately to videos with content that

we are interested in.

The same result can be obtained in the RSL-based associative filesystem, by using

a search function that bases its search process on the properties of a file or folder.

But are properties only useful for users? The answer is no since a user can add a

property to a file with information from which computer it comes from (e.g. the

computer in the living room), whereas an application can add a property to a file

in order to identify it when the application opens the file. Even the RBAF system

can take advantage of this, for example if a file in a temporary folder is older than

200 days and has not been read or modified during that period, then it should be

deleted.

Properties can be used for other applications as well, as indicated in [4, 18, 22],

where we can use properties of files to generate virtual folders, as a search result

or for classifying the files depending on the search criteria. A virtual folder is a

representation of a group of files that share some common properties. For exam-

ple, searching for a file with the keyword ’dog’ can be regrouped in a folder that

contains all photos of a dog called Bobby, and in a folder with all documents about

3http://www.youtube.com

55

canine medicine if the user is for instance a veterinary. Figure 4.4 shows a possible

graphical representation of virtual folders.

Figure 4.4: Virtual folders grouping the files whose properties match to the search criteria

Using properties is not the only feature in the RBAF system to retrieve and

organize our data. In the next sections, we will introduce other concepts that can

be helpful to relate and organize our data.

4.3 Semantic Links

In the previous section, we have seen a subtype of the entity type called resource,

which has two subtypes: file and folder. The second subtype of the entity type

is the link type. A link is a concept that logically connects entities, and is bi-

directional. This means that we can see if an entity is the source or target of a link,

and by which entity it is linked or what it is linked to. In contrast to one-way links,

the fact that we, for example, know if an entity is being linked by another entity,

can influence operations on a particular entity such as the decision to delete a file

or not, depending on whether it is used elsewhere. Links are treated as first-class

3photo of dog taken from http://www.brolive.org/gallery/Photos Skateboarders

56

objects [20], which means that they are not treated as simple metadata, but we

can use them for other purposes as highlighted in the next sections. There are

three different types of links. Therefore, the Links collection in the RBAF model is

made abstract, and is meant to be extended. In this section, we first introduce the

subclass called SemanticLinks. Figure 4.5 shows how links and semantic links are

modeled in the RBAF model. Other types of links will follow in the next sections.

Figure 4.5: Semantic links in the RBAF model

The semantic link concept is used to semantically associate entities. We can, for

instance, link any file or folder, including links themselves. With the word “seman-

tic”, we mean to relate any data on a high level. This data is probably not meant

to fit together on the first view, but the relations form a new source of information

and make a more flexible organization of files and folders possible.

Let us take two examples. We can semantically link a video of our friends of their

vacation in China, to an e-mail that we have received earlier from them during their

journey in China. The e-mail body describes events they have experienced, and the

video shows those events they have filmed. While it may seem strange to “couple”

a video together with an e-mail (i.e. when viewing the video we see that an e-mail is

linked to it), it does make sense if we want to remember that some sequences of the

video are described in the body of the e-mail. For a second example, as illustrated

in Figure 4.6, suppose that a user has two different folders: one containing docu-

ments about mathematics and another about biology. They know that they need

to consult documents about mathematics when reading biology documents in order

to understand some calculations. Currently, there is no other way to organize files

and folders but with folders. It does not seem logical to put the folder containing

mathematics documents within the folder containing biology documents (because

they are for instance two distinct courses), or the other way around. If they are not

sure how to organize files in that situation, they can create a semantic link between

the two folders. Without creating or moving folders, the semantic link “couples”

57

the two folders, and thus the folders are organized in a flexible and logical way.

Semantic links can also be handy when one needs to associate their files with other

people’s similar files (i.e. “keep an eye”) if they are working together on the same

project (for example in an enterprise network), similarly as in [3].

Figure 4.6: Instead of putting the Mathematics folder in the Biology folder the other way

around, we can create a semantic link between the Biology and Mathematics

folder

A semantic link has the purpose to link data in order to semantically unify,

organize, and view it in different aspects.

4.4 Content Recycling

There are common problems present in most filesystems that pollute our data orga-

nization and waste some space on our disk drive. When we surf the Web, our web

browser creates a lot of temporary files in a temporary folder. Most of these files

are only required for a short time. There exist some applications such as Ccleaner4

that analyze the folders containing those temporary files and delete them. Tempo-

rary files are not only created by applications, but also by users (such as pictures

that have been downloaded, and copied and pasted in a document). Those files

are not necessarily localized in a single folder, but probably in many other sepa-

rated folders. After some time, we do not remember their presence anymore, and

thus we leave them on our disk drive. For example, suppose that one has to write

a document containing a lot of diagrams. They gradually create diagrams in an

application such as Microsoft Visio 2007. If they draw thirty diagrams, they have

to manually save every diagram as an image file (in order to use them in another

application). After that, they have to copy and paste those images one by one in

4http://www.piriform.com/ccleaner

58

their document.

The first consequence of this way of working is that we waste space of our disk drive

just to make images of diagrams, while they already exist in our Visio 2007 project

file (i.e. .vsd). This project file takes much less space than all created images to-

gether. For example, a .vsd file containing thirty diagrams will more or less have a

size of 416 KB. Grouping the thirty created images (in the PNG format) together,

and knowing that each image has a size of 145 KB, will result with data with a

total size of 4,24 MB! This number may seem innocuous for those thirty images, but

we may create higher quality images other than diagrams (such as family photos),

which each can have a size of 4 MB. The number of those high quality photos can

be more than thirty.

The second consequence is that we are polluting our images folder with images that

are not useful outside our document. In other words, our folder contains images

that we do not even wish to see or organize.

Third, we have to copy and paste each image into our document, which means that

we merge them with our document to extend its size. This is again wasted space

on our disk drive space.

To clarify, we are not using our data efficiently. We create temporary, irrelevant

or duplicate files that take space, and that are not easy to organize. We probably

will never look for those files when we do not need them anymore. Thus, we just

abandon them in our collection of files.

To solve this problem, we introduce the concept of content recycling. The purpose

of content recycling is to grab the content of files, and reuse (parts of) that content

in other files by linking to it (and not recreate that same content again or merge

the content with any file). In this section, we show how the concept of content

recycling works.

As we have seen earlier, the entity type has until now two subtypes: the resource

and link type. The entity type has also a third subtype, which is the selector

type. A selector is a concept to select parts of the content of a file. It is an abstract

concept and should be extended with other concrete selector subclasses. Figure 4.7

shows how concrete selectors are modeled in the RBAF model.

The concrete selector subclasses are meant for specific file types (i.e. subtypes

of the file type in the RBAF model), and are created and accessed via plug-ins,

which are developed by developers and plugged-in to the RBAF system. The selec-

tor contains metadata about the selected part(s) of the file, such as the coordinates

of the selected part of an image.

59

Figure 4.7: Concrete selectors associated with file types

The general architecture of how applications communicate with the RBAF system

and plug-ins is shown in Figure 4.8.

Figure 4.8: RBAF system architecure communicating with applications and plug-ins5

Applications always communicate with the RBAF system when they want to

5photo of child taken from http://www.mamaenzo.nl/images/redactioneel/Kinderen/plus 1

jaar/Kind water de vijver.jpg

60

access (parts of) files. We will call external files that an application wants to access

its content and to select parts of it (such as an image), alpha files, and files that

applications are editing (such as a document), beta files. The RBAF system in its

turn will communicate with the appropriate plug-in, which will provide the func-

tionality to the application to select and access (parts of) a alpha file (for example,

a GUI window shows the content of an image, and the user can use a tool such as

a dotted square to select parts of it). Once the application has selected the part

of the alpha file it needs, the plug-in will extract the part of the alpha file (as a

stream of bytes), and create a selector for the alpha file. The RBAF system will

save the selector and the association between the selector and the beta file located

on the filesystem. Note that it does not merge the selector with the alpha file or

beta, nor does it save the association in the filesystem: the RBAF system saves the

selector, and an association (as a reference) between the selector and the beta file

within the RBAF system itself. Next time, when the application opens the beta

file again (still via the RBAF system), it will see that there is a selector associated

with the beta file, and ask to the RBAF system, which in its turn will ask to the

plug-in to read the selector in order to give access to the specific part of the alpha

file the application selected the previous time (so the selector contains information

about which parts of the file to select). The plug-in will then open the alpha file

and return a stream of bytes of that part of the file to the application.

Separating the plug-ins from applications has the advantage to make both inde-

pendent of each other. One might want to update an older plug-in with a newer

one if a new file type has come out, or alternatively add a newer version of a plug-in

and leave the older one if we need to work with older and newer file types. We

will illustrate an instance of the working of the architecture with an example, also

shown in Figure 4.8. Suppose that a developer has built one plug-in that can select

parts of JPEG images, and another plug-in for GIF images. He also has created

a plug-in to select parts of AVI videos (selecting parts of a video is for instance

selecting time sequences). All three plug-ins have been plugged-in to the RBAF

system. At a certain moment, a document editor application, once passed through

the RBAF system, wants to get access to parts of a JPEG image. The RBAF

communicates with the JPEG plug-in, which will let the application select a part

of a JPEG image (for example with a dotted square). The plug-in extracts the part

of the image and creates a selector. The RBAF system saves the selector and the

association between the selector and the document. The application will receive a

stream of bytes that are the part of the file, and render it in its own view. Next

time, when the application opens the document, it will see that there is a reference

to a selector. Therefore, it will do the same process again where the plug-in will

61

be asked to read the selector to select the part of the file the application needs to

access and return the part of the image to render it (as a stream of bytes again).

The application does not have to select the part of the image with the intervention

of the user again) .

Until now, we talked about “accessing” parts of files and “holding a reference”

between a selector and a file. But how does a file point to (parts of) another file

and structure its content? And what information do we save about the associa-

tion between the file and its selectors? We will answer these questions in the next

subsections.

4.4.1 Structuring File’s Content, and Metadata on Links

We have mentioned earlier that the link type has multiple subclasses. One of those

subclasses we saw was the SemanticLinks. Now, another subclass of the link type

is the StructuralLinks. The idea is to create links from alpha resources(which we

call here to nominate source resources) that point to other beta resources (which we

call here to nominate target resources) such as a paragraph in a document or images,

structure those links and render the linked target content of the beta resources in

the alpha resources. It is an abstract concept and is extended with two subclasses.

One of those subclasses is the StructuralFileLinks shown in Figure 4.9.

Figure 4.9: Structural filelink

A structural filelink associates a file with the content of another file in a struc-

tured way. Thus, those structural filelinks let other files to be composed with other

62

resources (e.g. images) by linking to them. The StructuralFileLinks class can be

extended with other subclasses specialized for other file types such as PowerPoint

presentations. In such a case, we call this class a StructuralPowerPointLinks.

Creating specialized structural filelinks can be useful for example when we want to

refine a search process to find only structural powerpointlinks. Another thought is,

for example, to be able to classify structural powerpointlinks. We will refine the

first example of this section to explain the interest of structural filelinks combined

with selectors. Suppose that a biologist has to write a document about the lifecycle

of frogs. Beside including diagrams that represent statistics, he also needs pho-

tos about frogs to include in its document. Therefore, he goes to a river multiple

times to take photos of the evolution of the frogs in six stages: egg, embryo in egg,

tadpole without mouth and eyes, tadpole with mouth and eyes, tadpole with back

legs, tadpole with front arms, and finally lost of tail to become a full frog. After

having taken enough photos, he starts to write his document. All diagrams (saved

as images) and photos are saved in a folder on the disk drive. Meanwhile, he adds

diagrams and photos of the frogs. But in a part of his document, he wants to have

frog images that are zoomed versions of the original ones. So the biologist must edit

the photos in an image editor, crop the part where only the frog is visible, zoom

in and save it as a new image. Finally, the images are copied and pasted into the

document.

From this example, we first see that the user has to open another application, edit

the original image to make a new one, and copy and paste it into the document.

Second, if he does that task of creating new images and edit them for other docu-

ments, he will end up with a lot of irrelevant images in his images folder. We can

instead let the user open the image, select the part he wants, zoom in and link to

that aspect of the image, which will be rendered in the document. Note that the

part of the image will not be merged with the document, but referenced and finally

rendered in the document. The user is not limited to link to parts of images, but

also can link to the whole image and render it in the document. The link from the

document to (parts of) the images is modeled via structural filelinks. An example

of a WYSIWYG editor that edits a document which is structurally linked with

images is shown in Figure 4.10.

Properties are added to the structural filelinks (such as if we are pointing to

a selector) and those selectors contain information about where the image needs

to be cropped in pixels and the zoom factor. When the document viewer will see

that there is structural filelink to a selector, it will ask to the plug-in, via the

RBAF system, to read it to get the part of the image zoomed in, and render the

received part of the image in its turn. Figure 4.11 shows that the document has a

6photo of frog taken from http://www.ristohurme.com/insularum.htm

63

Figure 4.10: A WYSIWYG editor edits a document structurally linked to an entire image

and to a part of the image6

structural filelink to the selector, which describes how to access parts of an image

via a JPEG-plugin.

Figure 4.11: A document has a structural filelink to a selector. The document can access

parts of an image via a plug-in, which will require the selector’s metadata

The user sees the document, with its own content (e.g. text) and structural links

to images, as one file. But what do we mean with “a file that is composed of the

content of another file”? Figure 4.12 illustrates in UML (it does not strictly reflect

64

the structural filelinks in the RBAF model) the structural filelinks: any (part of a)

the content of a file can be part of any other file.

Figure 4.12: UML representation of structural filelinks

We can use structural filelinks not only to compose documents, but also to

compose other types of files such as linking to parts of an image within an image

itself, in order to enrich the image. The idea of structural filelinks is similar as in

[17], but we use them also for other files than digital documents.

Using structural filelinks, a file can be flexible and change easily. Suppose that we

work in a WYSIWYG document editor and decide to update an image A, we can

then change the link from image A to image B, instead of deleting image A and copy

and pasting image B. Returning to the scenario of Dr. John Kennon in Chapter 3,

some of his PowerPoint presentations are composed of parts of other PowerPoint

slides. Using structural filelinks, he does not have to copy and paste text from a

slide to a presentation because its presentation is updated if the slide to which it is

linked to, changes.

It is not excluded to compose files from the content of other files that is structurally

composed of other contents (or selectors), as we have seen in the background chapter

of the RSL model where a resource can link to a collection of structures.

4.4.2 Layering Selectors within Files

Consider the following situation: suppose that one has a document that contains

text, and they are interested to link multiple parts of that document to another

document (in other words, they want that some parts of the document are accessible

to other documents). For example, they want to link a paragraph that contains ten

65

lines. First, they select line 1 to line 4 and link that selection to one document, and

second they select line 3 to line 10 and link it as well in another document. How

can two selectors overlap each other and how can one visually distinct between two

overlapping selectors? We can solve that problem with the concept of layers. A layer

is used to encapsulate a selector of a specific file. The selector linked by a file or by a

part of a file, and is on a layer. The file knows which layers it contains and the order

of the layers. Now that we achieved that a document can have multiple selectors

linked from other files, suppose that one would like to show or hide some selectors

in the document. For that purpose we can activate or deactivate certain selectors in

order to obtain the exact information we want via the ActiveLayers collection. To

illustrate the usefulness of using layers, suppose that we have written a document

A. We remember that we have another document B that we find interesting, and

thus we decide to link to a paragraph and select the first four lines. Then in another

part of the document, we would like to refer to the same paragraph of the other

document, but starting from line 3 to line 6. In the current document B, by using a

WYSIWYG editor, we can render the differentiation of the selections, which would

be the task of a plug-in to add metadata to the selector that is overlapping another,

and the application shows two tabs on the right of the paragraph. Each tab would

have a distinct color. When clicking on one of those two tabs, the corresponding

selector will show up and show the text that is selected from the other document.

Figure 4.13 shows in a first instance the above text addressed by a selector. The

selector is visually rendered when the top tab is selected. Figure 4.14 shows in a

second instance the text below, which is also selected by a selector and is visually

rendered when the bottom tab is selected. The point is that overlapping selectors

can be visually rendered.

Figure 4.13: The above selector is selected and shows the text with the top tab

66

Figure 4.14: The bottom selector is selected and shows the text with the bottom tab

4.5 Multiple Classification

In the previous section, we have seen that a the StructuralLinks collection has a

subclass called StructuralFileLinks and what it is used for. It also has a second

subclass called StructuralFolderLinks shown in Figure 4.15.

Figure 4.15: Structural folderlinks modeled in the RBAF model

This concept has the purpose to provide extra flexibility for folders, when orga-

nizing files and folders within folders. Currently, we are limited to save our files and

folders in one folder at a time. As it is stated in [14], we can only localize files and

folders within a unique path, which prevents us from classifying our files and folders

in more than one way (i.e. in more than one folder). With structural folderlinks,

67

we can classify files and folders in multiple ways within different folders at the same

time. We call that multiple classification, which is similar in [16, 7]. A folder can

therefore point to the files and folders located in other folders, as if they owned

those files and folders. The pointers are modeled with structural folderlinks. With

multiple classification, we can avoid the problem of long filepaths (in other words,

files or folders located in a deep folder hierarchy), and therefore not force the user

to recursively create subfolders within folders. The user has also the possibility to

reach their files or folders from different locations (from other folders) and classify

them in a more flexible way. In the first scenario in Chapter 3, Charles Fricker can

use multiple classification to create folders that will contain (i.e. point to) some

of those same files, instead of moving files from one folder to the other each time

a new (sub)folder is created. For example, instead of creating a folder Riccione

and Coriano and put them as subfolders inside the folder Rimini, and moving some

files to Riccione and other ones to Riccione, he can leave all his files in the folder

Rimini, place the two folders Riccione and Coriano “on the same level” as the folder

Rimini (i.e. they are not subfolders of Rimini, but next to it) and let them point to

specific files that are located inside the folder Rimini, as shown in Figure 4.16 (the

arrows are structural folderlinks). The advantage is that the user no longer has to

browse a deep folder hierarchy, but can click on the corresponding folder (let us say

Riccione) and immediately go to the photos he is looking for.

Figure 4.16: Multiple classification of pictures

68

4.6 Content Traveling

Until now we have seen that there are three types of links: semantic links and struc-

tural file- and folderlinks. The last subclass of the Links class is the Navigational-

Links class shown in Figure 4.17.

Figure 4.17: Navigation links

We can use a navigational link for any entity, for example to travel between

the content of different files, from one file to the other and vice versa. A file can

have multiple other navigational links that point to different files, which gives us

the possibility to follow other paths. As we have seen in the background chapter

about the memex, Bush said that a page can be linked with a second page. The

second page can be in its turn linked with another page, and so on. The utility

of navigational links is to follow a trail and navigate between entities (which can

for example be files or selectors) when we are looking for information contained

in the linked entities one after the other. We can compare a navigational link

with a hyperlink from the Web. We can navigate from one page to another by

clicking on the corresponding hyperlink. Websites do not necessarily deal with

the same subject, but they can contain paragraphs in their webpages that have a

certain relation. Navigating between different information and organization of data

is called content traveling, as illustrated in Figure 4.18.

We can also create navigational links between different folders in order to follow

a frequent path when we browse from a folder to a (sub)folder. Also the system can

make use of content traveling to keep track of a navigation behavior of a user, and

suggest that same behavior to the user later. For example, a student often browses

within the same folders and subfolders to look after documents. When browsing

the folders, the student is not aware that the system is tracking his navigational

behavior. Next time, the system can show to the student his navigational behavior

69

Figure 4.18: Illustration of navigational links between different files

and choose between different suggestions. The system will show to the user all the

files or folders he was the most interested in, and let the student choose between the

suggestions to immediately access what he desires. Figure 4.19 shows the order of

the student browsing a folder and its subfolders. A possible graphical representation

of the system’s suggestions is shown in Figure 4.20.

Figure 4.19: The student sequentially browses from folder to subfolder

70

Figure 4.20: The system suggests folders (in the right corner) based on the students’s

previously tracked navigational behavior

4.7 Advanced Linking

Links in the RBAF system are very flexible, and can be used for different purposes

such as structuring and organizing data. But we may think that one particular type

of link, the semantic link, is a weak concept that does not bring much to organize

our data.

We said earlier that we can link not only files and folders, but also links themselves.

We can for instance use links to annotate any files, and create links whose source

and targets are defined by other links. We will illustrate that with a more complex

example. A first illustration is shown in Figure 4.21.

Suppose that a developer works with the Eclipse IDE for Java on a Java project

called AccountancyApplication. This application has the purpose to manage the

accountancy of a company. Recently, the developer has discovered by reading a

book that there exist an API to compute interesting XML operations which can

be used for the AccountancyApplication project. Therefore, they create a new

Java project called TestXmlAPI, and import all the .jar archives that they down-

loaded from the Internet to that project and test the API. In the TestXmlAPI

project, the developer often adds new Test-classes and does some other experi-

ments because they gradually discover other functionality of the API that they can

use in the AccountancyApplication project. Because the developer often uses

the AccountancyApplication project with the TestXmlAPI project, they want to

71

Figure 4.21: The two Java projects are semantically linked together. Another link has

been attached to the previous link as an annotation

make clear that both projects are related, and therefore they semantically link

them. The developer has also found two PDF documents on the Internet that are

tutorials explaining other functionality of the API used in the TestXmlAPI project.

So the developer decides to annotate the semantic link between the two projects

with two other semantic links, each pointing to a PDF document. If the devel-

oper does not work on the AccountancyApplication project for a few weeks, and

reopens the project again in the Eclipse IDE, the semantic link between the two

projects will remind the developer that the TestXmlAPI project is used together

with the AccountancyApplication project to test some functionality of the API.

The semantic link between the two projects is also semantically linked to the two

PDF documents that have been downloaded the previous time, and the developer

will see that those documents are tutorials about the XML API. Also in the other

way around, when browsing through their documents, they can see that the docu-

ments are linked to the semantic link between the two projects (because links are

bi-directional). Thus, the developer knows why they have downloaded those PDF

files. Figure 4.22 shows a possible graphical representation when a developer wants

to view the semantic links between files and projects in the Eclipse IDE.

——————————————————————-

72

Figure 4.22: The two Java projects have been semantically linked together. Two other

links have been attached to the previous link as annotations

4.8 Content Outsorting and Access Rights

With the help of properties, links and selectors, we can efficiently organize our data

and enrich our data with other sources of information. However, in some situa-

tions we would like to include or exclude information from other sources. A file

for example can have a certain association with other files with specific proper-

ties that are not relevant in some contexts. As we have seen in the background

chapter when we talked about context resolvers from the RSL model, we now ex-

tend the ContextResolvers collection in the RBAF model with a subclass called

ContentOutsorters, as shown in Figure 4.23.

This concept is used to adapt our data depending in which situation we are,

or what we desire to adapt. A content outsorter is accessed by the RBAF system

(or an application) to determine if an entity (such as a file or a link to a selector)

should be visible or not. Suppose that we regularly want to view specific photos

we have taken in Blankenberge, at the Belgian coast, and we only want to see

photos where a friend called James is visible. Instead of searching those photos

via a search functionality, or creating a folder to classify all the photos of our

friend by selecting them one by one, we can create a content outsorter where the

73

Figure 4.23: On the left side we see how the content outsorters are modeled. On the right

side we see how access rights are modeled

view conditions can be based for example on properties that the images contain

like James or Blankenberge. A possible way to implement content outsorters is to

use an XML configuration file and defining for which (type of) file, together with

its properties, the content outsorter should be applied on, and which properties

should be excluded or included. Beside properties, we can also base the content

outsorter on other criteria like structural filelinks to include or exclude. The user

will be able to define their own criteria with an appropriate graphical interface to

configure a content resolver. In Listing 4.1, we can see an example of such an XML

configuration for a content outsorter.

Listing 4.1: contentOutsorterForJamesPhotos.xml

1 <c o n t e n t o u t s o r t e r>

2 <name>Photos o f James</name>

3 <d e s c r i p t i o n>Extract photos o f James</ d e s c r i p t i o n>

4 <r e s ou r c e>

5 <type> f o l d e r</ type>

6 <name>My Images</name>

7 </ r e sou r c e>

8 <r e s ou r c e>

9 <type>image</ type>

10 </ r e sou r c e>

11 <i n c lude>

12 <p r o p e r t i e s>

13 <property>u s e r : v a c a t i o n</ property>

74

14 <property>use r :b l ankenbe rge</ property>

15 <property>user :James</ property>

16 </ p r o p e r t i e s>

17 </ inc lude>

18 </ c o n t e n t o u t s o r t e r>

In the XML file, we first give a name and a description to the content outsorter.

Then we define on which group of files and which type of file we want to apply the

content outsorter. In this case, we only want to view images located in the folder

My Images. Next, we define the criteria (which in this case is based on properties)

that the content outsorter must consider.

Once the content outsorter has been created, it is seen by the user who can click

on it and view all the photos of our friend in Blankenberge, as shown in Figure 4.24.

Figure 4.24: On the right-hand corner we see content outsorters associated with the My

Images folder (which is located in the Pictures Library)

Beside adapting the presentation of our files, we can also give access rights to

our files.

The RBAF model extends the preferences concept with two other concepts, as

shown in Figure 4.23. The first subtype is the policies type. A policy is a rule

75

which defines the ownership and access rights to entities. The second subtype is

the settings type. A setting defines a special requirement in which way and what is

needed when an entity should be accessed by a user or an application. For example,

a user might define a setting when they want to have access to files located in an

external data storage if the local ones are not present on the current data storage.

Applications on the other hand can load other defined settings in order to know

what to do with a file.

We will illustrate with an example that it is possible to combine access rights with

adaption of the environment depending the user, as shown in Figure 4.25.

Figure 4.25: The document’s content presentation will be influenced depending on who

is the user, and the content outsorter for that user

Imagine that a doctor is doing a research about the variability of human’s tem-

per. He has invited eight groups of three people to complete a form on a computer,

where each participant is going to access the computer in a quiet, closed room.

Each group has to fill in a different form with some questions and images that are

the same in every form, and other questions and images that are unique for each

form. The doctor does not want to write eight different documents differing in their

questions and images. So he writes one document with all the possible questions

with the corresponding images that are being pointed to via structural filelinks.

76

The doctor creates eight content outsorters for the document, and each content

outsorter defines which questions and images are included in the document. Each

user receives beforehand an account with a password to login to the computer. A

policy is applied for each user, which defines which content outsorters are accessible

from the document, and setting defines where the document is located (in this case

on the desktop). When the user is logged in, they will view only one document on

the desktop. When they open it, the application to view the document will try to

access the document. The RBAF system will first check which user is authenticated

and then let the application read the authorized content outsorter in order to know

which questions and structural filelinks to images should be viewed. When the user

saves the document after they are finished, the application will save the results in

a file only accessible by the doctor.

This example shows that we can restrict and adapt the structure of our data with-

out creating additional files (i.e. creating documents with different questions and

images), while having the control of what needs to be viewed and what not.

4.9 Summary of the RBAF System

A resource can be either a file or a folder. The file type in the RBAF model is

extended with concrete file types, for example PowerPoint presentations (.ppt).

An entity can have properties, which is a key/value tuple that adds extra infor-

mation. It can be used to describe an entity, or used by applications or the RBAF

system as instructions to understand how to work with an entity.

We have introduced the concept of content recycling, which uses the concepts of

selectors and structural filelinks.

A selector is used to select parts of entities in order to be accessed by other entities.

For example, selecting a part of an image and refer to it in a document. The selector

type is abstract and is extended with concrete selectors for specific file types. It is

used by plug-ins to address parts of specific file types. Each selector is on a layer. A

layer shows the distinction of overlapping selectors. For example, a selector which

selects a piece of text can overlap another piece of text selected by another selector.

A link logically associates two entities. It can be a semantic link, structural link or

navigational link.

A semantic link semantically relates two entities. It is useful to relate data in

77

order to form a new information source (for example we do not see two files as two

distinct pieces of information, but as one piece of information), or to organize data

in a flexible way.

A structural link associates an entity with another entity, making the first en-

tity structurally composed of the second entity. It can be either a structural file- or

folderlink.

A structural filelink is used to compose the file’s content with external content.

For example, we can associate a document with a photo, in order to make the

photo structurally part of the document without merging the document with the

photo.

Structural folderlinks are used to classify files or folders in multiple folders. They

are used for the concept of multiple classification.

A navigational link associates two entities in order to navigate from one entity

to the other. For example, consulting pages from different documents one after the

other. Navigational links are used in the content traveling concept.

An entity can also have content outsorters. A content outsorter, which belongs

to the ContentOutsorters subclass of the ContextResolvers class, is used to at-

tach visibility criteria to entities. For example, we might want that a file should

not be visible when we view it in certain folder.

Entities are owned and accessible by users. Each user can have preferences for

entities, which can be policies or settings. We can combine content outsorters and

access rights in order to adapt the presentation or environment depending the user,

its policies and settings.

78

Chapter 5

Implementation

In this chapter, we discuss the implementation of the RBAF system in general.

The RBAF system and two other applications have been implemented in Java. For

details please have a look at the class diagrams in Appendix A. We first look in

more detail at the architecture of the RBAF system. Next, we justify the usage of

db4o as a database and the Prefuse toolkit and its API for building information

visualization. Finally, we explain how the structure of PowerPoint files in the .pptx

format looks like, which has enabled us to create a PowerPoint plug-in to manipulate

.pptx files.

5.1 The RBAF Architecture

We have already discussed in Chapter 4 one aspect of the general functionality of

the RBAF system on a high level. Now we are going to look at the organization of

the architecture one level deeper. As shown in Figure 5.1, the RBAF system itself

is divided in four main parts: RbafFacade, Model, Metadatastorage and Plug-ins.

The RafFacade can be seen as an API, which is the entry point for applications

when communicating with the RBAF system. The RbafFacade is also responsible

to access files and folders in the filesystem. The Model is where the RBAF model

is implemented, such as the definition of entities and links. The Metadatastorage

is responsible to save and retrieve all objects and their relation (such as the se-

mantic links between resources) in a db4o database. Finally, the Plug-in is where

we add extra functionality in the form of stand-alone code to the RBAF system

to access new types of resources, such as manipulating slides in PowerPoint files.

The RbafFacade can access and manipulate new types of data via the plug-in’s

functionality.

79

Figure 5.1: RBAF architecture

5.2 Db4o database

We have chosen to store all metadata (such as as resources, properties and semantic

links) in a database called db4o1. Db4o (database for objects) is an embeddable

open source object database for Java and .NET . There are a few advantages that

influenced our decision to make use of it above a relational database:

• we do not have to create a database beforehand with tables, nor dealing with

relations (primary and foreign keys) between tables. Db4o stores all objects

in a file. The advantage is that if the implementation in the RBAF system

changes, nothing has to be changed in the db4o database.

• it is portable: we can not only carry it with the actual application, but also

transfer and use it in other applications, since the database is simply a file.

• we can use the native programming language (in this case Java) to query

objects instead of using string-based queries such as SQL, which takes time

to update manually.

• we do not have to care about how objects are stored (including their relation

with other objects). When querying the object, related objects are automat-

ically queried.

• indexing of objects is possible in order to speed up queries.

1http://www.db4o.com/

80

We can browse the objects saved in a db4o database with an Eclipse plug-in

called Object Manager Enterprise (OME). OME offers functionality such as brows-

ing and searching for classes and objects easily, and creating queries with drag and

drop. A screenshot of OME in Eclipse is shown in Figure 5.2.

Figure 5.2: Object Manager Enterprise plug-in in Eclipse

5.2.1 How Objects are queried and stored in Db4o

Accessing the database does not require to create configuration files, or even to

create the database itself. When we start to store and query objects in the database,

the database itself will be automatically created. In order to be able to access the

database, we must at least mention where it must be located. Listing 5.1 shows

a method used to create and return a new ObjectContainer in order to access the

database as an object.

Listing 5.1: openObjectContainer method

private stat ic ObjectContainer openObjectContainer ()

{
EmbeddedConfiguration embeddedConfiguration =

Db4oEmbedded . newConf igurat ion () ;

embeddedConfiguration . common() . add (new

TransparentPers i s tenceSupport ()) ;

81

return Db4oEmbedded . openFi l e (embeddedConfiguration , ” database /

Db4oStorage”) ;

}

The last line of code enables us to open the database named Db4oStorage located

in the database folder. The database file is automatically created if it does not exist.

Listing 5.2 shows an example of a method to store an object of type File in

db4o.

Listing 5.2: Storing an object in db4o

ObjectContainer db=openObjectContainer () ;

try

{
F i l e n e w f i l e = new F i l e (id , newfi lename , newlocat ion) ;

db . s e t (n e w f i l e) ;

return (F i l e) n e w f i l e ;

}
f ina l ly

{
db . c l o s e () ;

}

First we create an ObjectContainer object allowing us to access the database.

Then, we create a new File object, and save it in the database with the method

set(object to save). Finally we close the database with the method close().

Listing 5.3 shows an example of querying all File objects in the db4o database.

Listing 5.3: Querying an object in db4o

ObjectContainer db=openObjectContainer () ;

try

{
F i l e f i l e=new F i l e (null , null , null) ;

ObjectSet r e s u l t=db . get (f i l e) ;

return r e s u l t ; // r e s u l t i s a da ta s t ruc tu r e o f type L i s t

}
f ina l ly

{
db . c l o s e () ;

}

82

The used way to query objects is Query by Example (QBE). This means that we

create a prototypical object for db4o to use as an example. In the previous example

code, the prototypical object is a new File object. Db4o will retrieve all objects of

the given type that contain the same (non-default) field values as the candidate.

Since we want to retrieve all File objects, we give null values in the constructor.

The result will be handed as an ObjectSet instance.

Updating an object is done by querying the object we want from db4o, change its

fields (for example via setters of the object) and save that object again in db4o with

the set(object to update) method.

Deleting an object is also very easy: just query the object from the database and

execute the method delete(object to delete).

Just because db4o uses a file to store objects does not mean that queries are slow.

We can speed up queries by telling to db4o that we want our objects to be indexed

when we store them. This is done with one line of code:

Db4o.configure().objectClass(“org.ximtec.rbaf.model.rsl.File”).indexed

(true);

This line of code means that we want to index objects of type File in the package

org.ximtec.rbaf.model.rsl.

5.3 Prefuse Toolkit

In one of our applications, which is a specialized file explorer, we have developed a

way to visualize semantic links between resources of the RBAF system. We have

used a toolkit called Prefuse with its API2 to help us to realize that. Prefuse is a

user interface toolkit written in Java for building interactive information visualiza-

tion applications. The API simplifies the processes of representing and efficiently

handing data, mapping data to visual representations such as graphs, and inter-

acting with the data. The efficiency to show data is one of our criteria which

influenced our decision to use this API over others. Another criteria is that it offers

the possibility to create different forms of visualizations of data. Figure 5.3 shows

an example.

We can describe and hand in data (such as the definition of the edges and

nodes) to the toolkit in an XML file, which will read it and generate a predefined

visualization.

In the background chapter, we have seen that we can represent the human

nervous system, or memory, with a sort of a graph, as one in Figure 2.10. We

also wanted to use a graph to represent the semantic links as connections between

2http://prefuse.org/
3images taken from http://prefuse.org/gallery/

83

Figure 5.3: Example of a possible data visualization with Prefuse3

resources, just as the associated nodes explained in the Synapse-State theory.

In our graph, the nodes represent the resources (file or folder), and the edges are

the semantic links. When the user selects a resource in our file explorer application,

they have the possibility to view all other resources semantically linked with it.

5.3.1 Integrating the Prefuse API to draw a Semantic Link Graph

We first need to create the XML file containing the definition of the nodes, edges

and other data that influences the visualization of the graph. The GraphMLReader

class will load the graph from the XML file and return an instance of a Graph. An

example of such an XML file is shown in Listing 5.4.

Listing 5.4: semanticgraph.xml

1 <graphml>

2 <graph edgede f au l t = ” und i rec ted ”>

3 <key id = ” id ” f o r = ”node” a t t r . name = ” id ”

4 a t t r . type = ” s t r i n g ”/>

5 <key id = ”name” f o r = ”node” a t t r . name = ”name”

6 a t t r . type = ” s t r i n g ”/>

7 <key id = ” type ” f o r = ”node” a t t r . name = ” type ”

8 a t t r . type = ” s t r i n g ”/>

9 <key id = ” l o c a t i o n ” f o r = ”node” a t t r . name = ” l o c a t i o n ”

10 a t t r . type = ” s t r i n g ”/>

11 <key id = ” linkname ” f o r = ” edge ” a t t r . name = ” linkname ”

12 a t t r . type = ” s t r i n g ”/>

13

14 <node id = ”286”>

15 <data key = ” id ”>286</ data>

16 <data key = ”name”>Images2</ data>

17 <data key = ” type ”>Folder</ data>

18 <data key = ” l o c a t i o n ”>

19 C:\Users \Gregory\Pic tu r e s \Moi\SubFolder\ Images2

84

20 </ data>

21 </node>

22 <node id = ”287”>

23 <data key = ” id ”>286</ data>

24 <data key = ”name”>Images3</ data>

25 <data key = ” type ”>Folder</ data>

26 <data key = ” l o c a t i o n ”>

27 C:\Users \Gregory\Pic tu r e s \Moi\SubFolder\ Images3

28 </ data>

29 </node>

30

31 <edge source = ”286” t a r g e t = ”287”>

32 <data key = ” linkname ”> l i n k 1</ data>

33 </ edge>

34

35 </graph>

36 </graphml>

Line 2 in the semanticgraph.xml file means that we want an undirected graph.

Starting from line 3 to 12, we declare our attributes we want to assign to nodes

and edges. From line 14 to 29, we define the nodes with their attributes we want

to appear in the graph. In this semanticgraph.xml example, we declare two nodes

which represent folders in the RBAF system. Finally, from line 31 to 33 we de-

fine the connections between the nodes with edges (in this case we define one edge

between the two nodes). Each edge will have to show its semantic linkname when

drawn. Next, we need to create a Visualization instance, which constructs an

abstraction of the graph, and add the graphdata to it.

In order to show labels (such as the name of the nodes and edges), we need to

create a LabelRenderer instance to create the labels, and pass that instance to the

DefaultRendereFactory to render the labels visually.

We can also assign colors to the nodes so that we can see the difference between

types of nodes. In this case, we have to see the difference between nodes that rep-

resent folders and nodes that represent files. So we create a ColorAction instance

and define the colors for the nodes and edges (we assign the default black color to

the edges).

Then we create an ActionList instance that groups all the color assignment actions

into a single executable unit.

We also need to create a separate ActionList providing an animated layout. We

have created a class SemanticLinkLayout which extends the ForceDirectedLayout

class to inherit the functionality to position the nodes and edges correctly when they

are drawn. For example the nodes and edges must not overlap each other.

Finally, we have added existing interactive controls, such as the DragControl

85

class that permits to move the graph with the mouspointer. We only needed

to create the ClickResourceControl class that extends the FocusControl class.

ClickResourceControl listens to click events on nodes and shows the clicked re-

source that represents the node in our file explorer.

5.4 PowerPoint Files Manipulation in the .pptx Format

In the second application that we have developed, we needed to manipulate Pow-

erPoint presentations. The idea behind is to be able to grab PowerPoint slides

from any PowerPoint presentation and to generate a customized PowerPoint pre-

sentation that includes those slides. We have first been looking for existing API’s

to manipulate .ppt or .pptx files. The APIs we thought were the most promising

were POI-HSLF 4 and openxml4j 5 (manipulates only .pptx files). Unfortunately,

POI-HSLF still does not support .pptx files. During our tests, we have tried to

manipulate .ppt files. But the API has limitations, such as the impossibility to

copy a slide from one presentation to the other. The official website of openxml4j

was during the period of the thesis not available. In other words no official source

code or documentation was available.

We have realized that Microsoft Office’s new file types .pptx, which are Office

Open XML files (OOXML), are fully described in XML. Thus, we have decided to

study the structure of such an OOXML file and write our own code to access and

manipulate PowerPoint OOXML files.

5.4.1 What is OOXML?

Since the introduction of Microsoft Office 2007 suite, new file types have been in-

troduced with extensions like .docx and .pptx (older versions have the extension

.doc and .ppt). Those new file types are called Office Open XML (OOXML). One

of the objectives of OOXML is to allow applications to store their documents in

a form fully described in XML and then compress it in a Zip archive. The older

file types such as .ppt are not described in OOXML, and are simply a stream of

non-readable bytes. An advantage of OOXML is that we do not have to run an

instance anymore of a Microsoft Office application in order to access and edit files.

For example, instead of using macros written in Visual Basic, which requires an

instance of Microsoft Office to run, we can create and manipulate OOXML files

with any developed application or API that can manipulate XML documents and

compress files in the Zip format. It offers many opportunities, such as creating a

webservice that enables users to create and edit PowerPoint presentations.

4http://poi.apache.org/
5http://openxml4j.org/

86

Each OOXML file has a slightly different structure. In the next subsection, we

explain how the general structure of .pptx files looks like.

5.4.2 The General Structure of PowerPoint OOXML Files

Once a .pptx file has been created (for example by using Microsoft Office), we

can change the file extension from .pptx to .zip in order to have a compressed Zip

archive. Figure 5.4 shows the structure of the zipped file.

Figure 5.4: Internal structure of a .pptx file

We only describe some files and directories we needed to access and manipulate.

87

All slides are described in a file called slideX.xml, where the X behind slide is

the number of the slide order in the PowerPoint presentation. Each XML file de-

scribes the layout and structure of the slide.

For each slideX.xml, a file called slideX.xml.rels is necessary. That file defines

a relation between the slide and a template (described in slideLayoutX.xml).

The presentation.xml.rels file defines a relationship between each slide and

other necessary XML files (which, for example, contain properties). For each rela-

tionship, an rId is assigned in order to uniquely identify the slides and XML files.

The presentation.xml file defines the structure of the entire PowerPoint presen-

tation.

The [Content types].xml file , located in the root of the zip package, identi-

fies every necessary type of XML file, such as slides, found within the Power-

Point presentation zip archive. Each XML file needs to have its type listed in

the [Content types].xml file. XML files need to have identifiable types so that

the Microsoft Office 2007 knows how to use each XML file when rendering the Pow-

erPoint presentation. The types also enable to understand the XML file’s purpose

and how to use them.

Finally, media files such as images are located in the folder ppt/media.

In the next chapter, we explain the functionality of two developed applications

that work with the RBAF system.

88

Chapter 6

User Guide

In this chapter, we introduce two implemented applications that work with the

RBAF system. The first application is called Associative File Explorer. The second

one is called PowerPoint Linker.

6.1 The Associative File Explorer

6.1.1 Presentation of the User Interface

The Associative File Explorer is like a file explorer that we find in most operating

systems, but with some extra functionality of the RBAF system. The user interface

is divided in five parts as highlighted in Figure 6.1.

The first part contains two panels next to each other which we call the main

panels. Each panel shows the resources forming part of a folder. We can single-click

on a file or folder (which triggers operations that we describe later). Additionally,

we can double-click on a folder in order to view the resources of that folder, just as

we double-click on a folder in a any file explorer to see the files and folders within

it. Above each main panel, there is a Go Back button that allows to view the

resources of a previously visited folder. Next to each Go Back button is a field

that shows the name of the folder we are currently browsing. Below each main

panel, a panel shows the parent folders of a selected resource. It shows the parent

folder of the selected resource, and the folders that are structurally folderlinked with

the selected resource. We will see later how we can create a structural folderlink.

We can double-click on a parent folder to view the containing resource in the main

panel. The reason why two panels are present is to facilitate the navigation between

multiple folders and to keep an eye on the content of two folders at the same time.

For example, we might want to copy multiple files from one folder to another folder.

The second part of the user interface contains a panel that lists the properties of a

selected resource from one of the main panels. This panel that shows the properties

89

Figure 6.1: Associative File Explorer

is called properties viewer. The properties viewer is divided in two columns. The

first column shows the keys of properties, while the other column shows the values.

Each associated key and value is shown next to each other. The third part of the

user interface is a panel that has a similar layout as the properties viewer and is

called semantic links viewer. When a resource is selected, a list of all resources

which are the source of semantic links to the selected resource are shown in the

column sources. The other column shows the target resources of the semantic links

of the selected resource. The semantic links viewer also has a button that shows a

graph of all semantic links of a selected resource in a separate window. It is called

the semantic link graph viewer. The functionality of the semantic link graph viewer

will be explained later. The fourth part of the user interface is the menu of the

application. What the menu items mean will also be clear later. The last part is a

notification area on the bottom-right corner of the Associative File Explorer. This

area shows any application feedback.

6.1.2 Files, Folders, and Properties

When we open the Associative File Explorer for the first time, we assume that there

are no files or folders present on the disk drive. The Associative File Explorer gives

use the possibility to create an empty file or folder on the disk drive. To create a

file or folder, go to the menu and select File → New File or New Folder. We are

90

asked to give a name to the resource. We can also import existing files and folders

by going to the menu and selecting File → Import files and folders in RBAF

system. In this case we are asked to select the folder in which the resources we

want to be imported are located. Once the importation is done, we will see the

content of the imported folder in both main panels. When resources are created

on the disk drive or imported, they are registered in a Db4o database in order to

identify and keep track of them. We can add properties to any resource as much as

we want. To add a property to a resource, select the resource of your choice, then

in the menu, choose Property → Add property to a resource. We are finally

asked to give a property key and value. Every time we select a resource, all the

properties we have created for a resource will be shown in the properties viewer, as

shown in Figure 6.2.

Figure 6.2: The properties viewer shows the properties of the selected resource

In the properties viewer, we can also select a property key or value, and view all

resources that have the same property key or value within one of the main panels.

The main panel that will show the resources depends which one got the focus for

the last time. By default, it is the left main panel that shows the resources.

6.1.3 Semantic Links

The Associative File Explorer also allows to semantically link resources. In order to

create such a semantic link, we first have to select in the menu Link → Semantic

link two resources. Next, we have select a resource as a the source of the se-

91

mantic link, and then the second resource as the target of the semantic link. We

are finally asked to give a name to the semantic link. To view all semantic links of a

resource, select the desired resource in one of the main panels and an overview of all

semantic links will be shown in the semantic links viewer. Figure 6.3 summarizes

the procedure.

Figure 6.3: Summary of how to create a semantic link between two resources. The last

step just shows the result after the creation

Each column of the semantic links viewer (source and target) shows the semantic

linkname and the name of the resource separated by a ’:’. When we click on the

resource name in the semantic links viewer (source or target), the actual resource

will be shown in one of the two main panels (depending which one got the focus for

the last time). The button on the right side of the semantic links viewer enables

us to view all semantic links (sources and targets) of the selected resource in the

form of a graph (which we called semantic link graph viewer). Figure 6.4 shows the

semantic link graph viewer.

The semantic link graph viewer is divided in two parts: the left side shows all

nodes (which represent the resources) and edges (which represent the semantic links

with their name). The right-hand side has two sliders. The bottom slider lengthens

the edges between the nodes. The upper slider determines how fast the lengthening

of the edge’s length should be visible. The semantic link graph viewer is interactive

and is to use in combination with the Associative File Explorer. When clicking on

one of the nodes, the corresponding resource will be shown in one of the two main

92

Figure 6.4: The Semantic Link Graph Viewer

panels. In that way, we can continue to perform further actions on that resource

such as viewing the properties of it. The line separating the two sides can be moved

to the right in order to hide the right side and leave more space for the graph itself.

6.1.4 Structural Folderlinks

We can classify any file or folder in multiple folders with structural folderlinks.

With this feature, we do not have to physically copy and paste a file or folder into

another folder, and thus data is not duplicated. Creating structural folderlinks

is made transparent to the user by using the terms copy and paste, instead of

saying start creation of structural folderlink and accomplish creation of structural

folderlink. To create a structural folder link, first select the desired file or folder.

Then go to the menu and select File → Copy. Navigate to any other desired folder

where the “copied” file or folder should be “pasted”, and select in the menu File →
Paste. The previously selected file or folder will be classified in the folder we want

it to be pasted. When clicking on the resource we have structurally folderlinked, we

see the original parent folder (i.e. in the real folder where the resource is located)

and all other folders that are structurally folderlinked with the resource. Figure 6.5

illustrates that. Note that a structural folderlink is not a shortcut, NTFS junction

point, symbolic or hard link. The RBAF system treats a folder which is structurally

93

folderlinked with a resource as a parent of the resource, and thus the resource as

a real resource. In the next subsection, the differences will be more clear. Refer

to 2.2 to review the differences between shortcuts, NTFS junction points, symbolic

and hard links.

Figure 6.5: The selected file (which original parent folder is Camp) has been structurally

folderlinked in the Ardennes folder. The parent folders panel shows the parent

folders of the selected resource

6.1.5 Move and Delete operation

The Associative File Explorer allows us to move and delete resources, but we can

only delete properties and semantic links. Moving a resource means changing the

physical location of it. For example a file physically located in C:\file.txt can be

moved to C:\folder\file.txt. Whether we are trying to move a resource that is

structurally folderlinked or not, we will always move the resource from its physical

location (we do not modify the structural folderlink of the resource). We can modify

a structural folderlink by moving the target resource from folder to another folder. It

is also possible to move the resource physically and leave all structural folderlinks

to it unchanged. The deletion of a resource operation works differently in two

situations: when we try to delete a resource structurally folderlinked, the structural

folderlink itself will be deleted, and not the real resource. For example when we try

to delete a file that is structurally folderlinked with a folder A within that folder,

and is physically located in folder B, we will not see the file in folder A anymore, but

it will still be available in folder B. However, suppose that in that situation we try

94

to delete the file in folder B, then we are at the point to delete not only physically

the file, but also all structural folderlinks with other folders. Therefore, we are

asked whether we are sure about this action. Otherwise we are advised to move the

file somewhere else if it is not our intention to delete the real file, but to remove

the classification of the file from folder B. We can perform the move and delete

operation either by right-clicking on the resource and select the operation in the

popup menu, or go to the menu and select File → Move or Delete. We can delete

a property by right-clicking on the property key in the properties viewer and select

the operation in the popup menu. Or, we can select the property key, go the menu

and select Property → Delete property of resource. Finally, we can delete a

semantic link by right-clicking on the source or target resource in the semantic links

viewer, and select the operation in the popup menu. Alternatively, we can delete a

semantic link by selecting the source or target resource in the semantic links viewer,

go to the menu and select Link → Delete semantic link of resource.

6.1.6 Searching by Name, Property or Semantic Link

We have the possibility to search resources in three ways:

1. by name

2. by property: we can give in a property key or value

3. by semantic link: we can give in the name of the semantic link. The results

are the sources and targets of all semantic links that have that name

To start a search process, go to the menu and select Search → By name, By

property or By semantic link. The search result shows all resources that match

the search criteria in one of the two main panels, depending which one got the focus

for the last time.

6.2 The PowerPoint Linker

6.2.1 Presentation of the User Interface

The PowerPoint Linker allows to create structural powerpointlinks from a Pow-

erPoint presentation to slides contained in other PowerPoint presentations. The

user interface, shown in Figure 6.6, is divided in four parts. The first part consists

of a panel that shows the PowerPoint presentation from which we want to create

structural powerpointlinks to slides. The second part consists of another panel that

shows slides that we can structurally powerpointlink to the current PowerPoint pre-

sentation. The third part consists of a menu, and the last part is a notification area

which shows the application’s feedback.

95

Figure 6.6: The PowerPoint Linker

6.2.2 Functionality of the PowerPoint Linker

To start to use the application, we need to import 1) the PowerPoint presentation

to which we want to add structural powerpointlinks to PowerPoint slides, and 2)

other PowerPoint presentations, which contain those slides. To do so, go to the menu

and select PowerPoint → Import presentation and slides. We are asked to

browse the hard disk drive and select the main PowerPoint presentation and other

PowerPoint presentation(s) that contain the desired slides. When finished, we will

see the imported presentation and slides. To create a structural powerpointlink from

a presentation to a slide, go to the menu and select Link → Create structural

powerpointlink. Then select the presentation to which we want to add a slide,

and finally select the desired slide. When finished, the structural powerpointlinked

slide will have a visual mark. We can delete a structural powerpointlink to a slide

by selecting the desired slide, going to the menu and selecting Link → Delete

structural powerpointlink. When satisfied with the result, we can generate

the PowerPoint presentation with the structural powerpointlinked slides. Go to

the menu and select PowerPoint → Generate PowerPoint presentation. The

location of the generated PowerPoint presentation is defined in a configuration file

called PowerPoint.properties.

96

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we first have investigated how we can improve hierarchical filesystems

in order to help users to better organize and retrieve their data, because the number

of data that are created and stored on disk drives is constantly increasing.

We have introduced six concepts:

• multiple classification via folders

• semantically link data

• content recycling

• user-defined metadata

• content traveling

• content outsorting and access rights

We have shown that single classification of files via folders limits the flexibility

of data organization. Thus, we have argued that introducing multiple classification

via folders not only improves the flexibility of organization, but also reduces the

complexity of folder hierarchies (i.e. deeply nested folder structures).

When we create files such as pictures and videos, it often happens that they are

related to each other, as we have seen in the first scenario in Chapter 3. Using

folders to group related files is not always possible. We have shown that creating

semantic links between related data helps in two ways: to understand and view

data as a unification, and to organize data in an alternative and flexible way that

is impossible to achieve via folders. Semantic links are not only used for resources

(i.e. files and folders), but can be used for other purposes, like semantically linking

links (as annotation) with other entities as we have seen in 4.7.

97

We have further argued that with content recycling, we can reuse (parts of) of the

content of other data in order to limit the creation of temporary data and repli-

cation of existing data. This is possible by creating selectors that select parts of

the data we want to reuse, and create structural filelinks that point to them, and

finally rendering the content of the selected data.

Furthermore, we postulated that creating user-defined metadata to describe data,

called properties, has many advantages such as describing the content of a file and

improving the search functionality in operating systems.

Moreover, we have shown that content traveling helps in defining the consultation

order of the content of different sets of data, and that it has different applications.

This is similar to hyperlinks with which we can jump to and consult the content of

related webpages.

Last but not least, we have seen that content outsorters enable us to define arbi-

trary visibility criteria for data, such as creating a content outsorter to view only

pictures of a particular person in a specific context. We can also combine content

outsorters with access rights to establish policies of who can view what (content of)

data in a particular context.

We have developed a prototype called RSL-based Associative Filesystem (RBAF)

that has the purpose to provide services for the previously mentioned concepts. The

RBAF system is based on the RSL-based Associative Filesystem model, which in

its turn extends the Resource-Selector-Link model (RSL).

To demonstrate some functionality of the RBAF system, we have developed

two applications that make use of the RBAF system. One application is called the

Associative File Explorer, and the other one is called PowerPoint Linker.

7.2 Future work

Parts of the introduced RBAF functionality have been implemented at this moment

including the following concepts:

• multiple classification via folders (structural folderlinks)

• semantics links

• user-defined metadata (properties)

• structural filelinks

The implementation of the non-mentioned concepts, and probably the improve-

ment of the currently existing RBAF system may be part of future efforts. Finally,

98

other aspects need to be investigated: the RBAF system is currently supposed to

work on a local filesystem. It would be nice to be able to move resources from

one RBAF system to the other. Another interesting feature would be to not worry

anymore about the exact location of resources (such as local disk drives and remote

servers), which is also a vision we find in [5].

99

Appendix A

UML Diagrams

In this appendix, the UML class diagrams of currently implemented parts of the

RBAF system are presented.

100

A.1 application.explorer package

Figure A.1: Classes of the Associative File Explorer (part 1)

101

Figure A.2: Classes of the Associative File Explorer (part 2)

102

A.2 application.powerpointdemo package

Figure A.3: Classes of the PowerPoint Linker

103

A.3 model.rsl package

Figure A.4: Classes of the extended RSL model

104

A.4 facade package

Figure A.5: RbafFacade class

105

A.5 metadatastorage.db4o package

Figure A.6: Db4oPersistency class

106

Bibliography

[1] Douglas C. Engelbart : A Profile of His Work and Vision : Past, Present and

Future, November 2008.

[2] Vannevar Bush. As We May Think. Atlantic Monthly, 176(1):101–108, July

1945.

[3] Anthony Collins. Tabletop File System and Personal Information Management

in Pervasive Computing. Master’s thesis, School of Information Technologies,

University of Sydney, Australia, 2006.

[4] David K. Gifford, Pierre Jouvelot, Mark A. Sheldon and James W. O’Toole, Jr.

Semantic File Systems. In Proceedings of SOSP 1991, 13th ACM Symposium

on Operating Systems Principles, Pacific Grove, CA USA.

[5] Jens-Peter Dittrich, Lukas Blunschi, Markus Färber, Olivier René Girard,

Shant Kirakos Karakashian and Marcos Antonio Vaz Salles. From Personal

Desktops to Personal Dataspaces: A Report on Building the iMeMex Personal

Dataspace Management System. In Proceedings of BTW 2007, GI-Fachtagung

für Datenbanksysteme in Business, Technologie und Web, Aachen, Germany,

March 2007.

[6] Markus Majer. Database Driven Filesystems. Seminar Talk, January 2008.

[7] Gary Marsden and David E. Cairns. Improving the Usability of the Hierarchical

File System. South African Computer Journal, pages 67–78, 2004.

[8] Peter Naur. Computing versus Human Thinking. Turing Award 2005 Lecture,

Communications of the ACM, January 2007.

[9] Ted Nelson. Computer Lib/Dream Machines. Microsoft Press, 1987.

[10] Ted Nelson. Xanalogical Structure, Needed Now More than Ever: Parallel

Documents, Deep Links to Content, Deep Versioning, and Deep Re-Use. ACM

Computer Surveys, 31(4), December 1999.

107

[11] M.C. Norrie. An Extended Entity-Relationship Approach to Data Management

in Object-Oriented Systems. In Proceedings of ER 1993, 12th International

Conference on the Entity-Relationship Approach, pages 390–401, Arlington,

USA, December 1993.

[12] Ravasio Pamela. Personal Information Organisation: Studies on User-

Appropriate Classification and Retrieval Strategies and their Implications for

Information Management Systems Design. PhD thesis, ETH Zurich, 2004.

[13] Jeremy Reimer. From BFS to ZFS: Past, Present, and Future of File Systems.

[14] Gabrio Rivera. From File Pathnames To File Objects, An Approach to ex-

tending File System Functionality integrating Object-Oriented Database System

Concepts. PhD thesis, ETH Zurich, September 2001.

[15] Margo Seltzer and Nicholas Murphy. Hierarchical File Systems are Dead. In

Proceedings of HOTOS XII, 12th Workshop on Hot Topics in Operating Sys-

tems, Monte Verita, Switzerland.

[16] Beat Signer. GOMES - An Object-Oriented GUI for the Object Model Multi-

User Extended Filesystem. Master’s thesis, ETH Zurich, July 1999.

[17] Beat Signer. What is Wrong with Digital Documents? A Conceptual Model

for Structural Cross-Media Content Composition and Reuse. In Proceedings of

ER 2010, 29th International Conference on Conceptual Modeling, Vancouver,

Canada, November 2010.

[18] Beat Signer and Moira C. Norrie. An Extensible Framework for Personal Cross-

Media Information Management. In Proceedings of EuroIMSA 2005, European

Internet and Multimedia Systems and Applications, Grindelwald, Switzerland,

February 2005.

[19] Beat Signer and Moira C. Norrie. As We May Link : A General Metamodel for

Hypermedia Systems. In Proceedings of ER 2007, 26th International Confer-

ence on Conceptual Modeling, pages 359–374, Auckland, New Zealand, Novem-

ber 2007.

[20] Beat Signer and Moira C. Norrie. An Architecture for Open Cross-Media Anno-

tation Services. In Proceedings of WISE 2009, 10th International Conference

on Web Information Systems Engineering, pages 387–400, Poznan, Poland,

October 2009.

[21] Michael Solberg. Moving From Solaris to Red Hat Enterprise Linux. White

Paper, 2009.

108

[22] Stephan Bloehdorn, Olaf Goerlitz, Simon Schenk and Max Voelkel. Tagfs -

Tag Semantics for Hierarchical File Systems. In Proceedings of I-KNOW 2006,

6th International Conference on Knowledge Management, Graz, Austria.

[23] Cameron Dale Xu Cheng and Jiangchuan Liu. Understanding the Character-

istics of Internet Short Video Sharing: YouTube as a Case Study, July 2007.

109

	Introduction
	Background
	The Memex
	Overview of the History of Filesystems
	Project Xanadu
	The Transcopyright Model
	The Xanalogical Structure

	The oN Line System (NLS)
	Human Memory Types and the Synapse-State Theory of Mental Life
	What types of Human Memory can we draw Inspiration from for a Filesystem?
	What Inspiration can we draw from the Human Nervous System (Synapse-State Theory) for a Filesystem?

	The RSL Model
	RSL Links
	RSL Structures
	RSL Users
	RSL Layers

	Summary

	Scenarios
	Scenario 1 : Souvenirs from Italy
	Scenario 2 : Preparing PowerPoint Presentations

	RSL-based Associative Filesystem
	Files and Folders
	Metadata on Files and Folders
	Adding Properties to Files and Folders: Why?

	Semantic Links
	Content Recycling
	Structuring File's Content, and Metadata on Links
	Layering Selectors within Files

	Multiple Classification
	Content Traveling
	Advanced Linking
	Content Outsorting and Access Rights
	Summary of the RBAF System

	Implementation
	The RBAF Architecture
	Db4o database
	How Objects are queried and stored in Db4o

	Prefuse Toolkit
	Integrating the Prefuse API to draw a Semantic Link Graph

	PowerPoint Files Manipulation in the .pptx Format
	What is OOXML?
	The General Structure of PowerPoint OOXML Files

	User Guide
	The Associative File Explorer
	Presentation of the User Interface
	Files, Folders, and Properties
	Semantic Links
	Structural Folderlinks
	Move and Delete operation
	Searching by Name, Property or Semantic Link

	The PowerPoint Linker
	Presentation of the User Interface
	Functionality of the PowerPoint Linker

	Conclusion and Future Work
	Conclusion
	Future work

	UML Diagrams
	application.explorer package
	application.powerpointdemo package
	model.rsl package
	facade package
	metadatastorage.db4o package

	Bibliography

