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Abstract

When Nintendo released its Wii gaming platform, they introduced motion sensing to the general
public. Motion sensing is a technique which can help users to control other electronic devices by
performing hand or full body movement. Motion sensing is a more natural way to communicate
with computers compared to keyboards, mice, buttons or other input devices. Motion sensors
are capable of measuring specific physical quantities including acceleration, rotation, magnetic
fields. Most consumer electronics are equipped with these motion sensors to provide a better
user experience. For example, photo cameras may have a tilt sensor, which is used to sense
whether a picture has been taken holding the camera in portrait or landscape mode. The
motion sensors embedded in electronic devices can not only provide data to the device itself,
but also provide input for other applications users want to interact with. This enables developers
to create applications that can be controlled trough user motion without having to develop and

sell specific motion sensing hardware.

The iGesture framework has been developed to help application developers to register and
recognise gestures. Originally, iGesture supported 2D gestures recorded with a digital pen or
a mouse. Later, 3D gesture recognition has been added to the framework. iGesture distincts
itself from other frameworks trough its support of multiple input devices. Developers can add
new devices to the framework in such a way that existing gesture recognition algorithms can be

reused.

As part of this thesis, we first did a thorough investigation of common sensors and how they can
be used in gesture recognition. In addition, we analysed existing devices for motion sensing and
inspected their capabilities. Beside these two studies, the iGesture framework has been analysed

to get familiar with its current support for 3D gesture recognition.

In a second phase, support for new IP-based devices has been integrated into iGesture. IP-based
devices are input devices with embedded motion sensors capable of communicating using the

IP protocol. An Android application has been developed to support iGesture’s IP-based com-
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munication on motion sensing devices running the Android operating system. The addition
of new devices introduces more flexibility and provides a larger collection of devices for future
iGesture developers to choose from. Besides the integration of these new devices, a 3D gesture
recognition algorithm based on the Dynamic Time Warping algorithm has been developed and

integrated.

Finally, an extensive set of tests to evaluate the recognition rates of our new algorithm has been
performed. Different input devices were used by different users to perform various gestures. The
results show that the current algorithm implementation in combination with the existing input

devices and new Android input devices can be used for 3D gesture recognition.



Samenvatting

Wanneer Nintendo zijn Wii spel platform uitbracht, introduceerden ze bewegingssensoren als in-
voerapparaat aan het algemene publiek. Motion sensing, het gebruik van bewegingssensoren, is
een techniek die gebruikers helpt elektronische apparaten te controleren door hand of lichaams-
bewegingen. Motion sensing is een meer natuurlijke manier om te communiceren met computers
in tegenstelling tot toetsenborden, muizen, knoppen of andere invoerapparaten. Bewegingssen-
soren zijn in staat een natuurlijke grootheid te meten zoals acceleratie, rotatie en magnetische
velden. De meeste elektronische apparaten bevatten deze bewegingssensoren om een betere ge-
bruikservaring aan te bieden. Bijvoorbeeld, foto camera’s kunnen uitgerust zijn met een tilt
sensor, deze tilt sensor wordt gebruikt om te meten of een foto is getrokken in landschap of
portret modus. De bewegingssensoren ingebouwd in deze elektronische apparaten kunnen niet
alleen data verzamelen voor het toestel zelf, maar ook voor andere applicaties waarmee de
gebruiker wil communiceren. Dit staat ontwikkelaars toe om applicaties te bouwen die door
middel van beweging gestuurd kunnen worden zonder bijpassende hardware te ontwikkelen en

te verkopen.

Het iGesture framewerk is ontstaan om applicatie ontwikkelaars te helpen om bewegingen te
registreren en te herkennen. Oorspronkelijk ondersteunde iGesture enkel 2D bewegingen gere-
gistreerd met een elektronische pen of een muis. Later werd 3D bewegingsherkenning toegevoegd
aan het framewerk. iGesture onderscheidt zichzelf van de andere framewerken door zijn onders-
teuning van meerdere invoerapparaten. Ontwikkelaars kunnen nieuwe apparaten toevoegen aan

het framewerk zodat de bestaande bewegingsherkenning algoritmes hergebruikt kunnen worden.

Als onderdeel van deze thesis, hebben we een grondig onderzoek gedaan naar de meest voor-
komende sensoren en hoe deze sensoren gebruikt kunnen worden voor bewegingsherkenning.
Daarnaast hebben we een analyse gemaakt van de bestaande apparaten voor bewegingsherken-
ning en hebben we de mogelijkheden van deze apparaten geinspecteerd. Bovenop deze twee

studies werd het iGesture framewerk geanalyseerd om bekend te raken met zijn huidige status
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van 3D bewegingsherkenning.

In een tweede fase werd onder-steuning voor IP gebaseerde apparaten toegevoegd aan iGesture.
IP gebaseerde apparaten zijn invoerapparaten met bewegingssensoren welke kunnen commu-
niceren door middel van het IP protocol. Een Android applicatie is ontwikkeld om iGesture’s
IP communicatie op Android toestellen met bewegingssensoren te ondersteunen. Het toevoe-
gen van deze nieuwe apparaten introduceert meer flexibiliteit en biedt een grotere keuze aan
invoerapparaten voor toekomstige iGesture gebruikers. Naast het integreren van deze Android
apparaten, werd er een 3D bewegingsherkenning algoritme gebaseerd op Dynamic Time Warping

ontwikkeld.

Als laatste werden er uitgebreide testen uitgevoerd om de herkenningsgraad van dit nieuw algo-
ritme te bepalen. Verschillende invoerapparaten werden gebruikt door verschillende gebruikers
om verzamelingen van bewegingen te classificeren. De resultaten tonen aan dat de huidige im-
plementatie van het bewegingsherkenning algoritme in combinatie met zowel, de bestaande als

de nieuwe invoerapparaten, kan gebruikt worden voor 3D bewegingsherkenning.
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Chapter 1

Introduction

This first chapter describes the context of this thesis, provides a description of the problems

that we addressed together with the approach that was used to solve these problems

1.1 Context

Motion sensing devices have become a part of our daily life. Most people come in contact
with cellphones, handhelds, tablets, game controllers and other motion sensing devices on a
day-to-day basis. These devices are all equipped with motion sensors to give their users a
better experience when using them. Unfortunately, these devices are dedicated systems specially
developed for one purpose only. Due to this fact, motion sensing on the PC platform has not
had its breakthrough yet, as there is no motion sensing hardware available for the PC platform.
The iGesture framework could fill in this gap through the integration of existing motion sensing

hardware such as 3D gesture input devices.

iGesture has been developed to help developers to implement customised gesture recognition in
their applications. iGesture eliminates the complicated task of researching and implementing
gesture recognition algorithms. iGesture currently contains multiple recognisers for 2D gestures,
however 3D gesture recognition is lacking. With the introduction of motion sensing devices to

iGesture, good 3D gesture recognition would add a valuable feature to the iGesture framework.
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1.2 Problem Description

When Nintendo released its Wii gaming platform, motion sensing was introduced to the general
public. Since then, other manufactures have tried to build new applications and platforms fea-
turing motion sensing. Unfortunately, the PC platform has been left out of this new technology.
No dedicated input devices have been sold to a widespread audience, no application software

has been developed.

One of the biggest questions of motion sensing application development is how to process sensor
data coming from these input devices to something you can use? The average programmer
is not familiar with these devices, let alone there capabilities. Programmers are not trained in
developing 3D device drivers and recognition algorithms. They know how to develop mainstream

software and they are capable of integrating other components with this software.

This is where iGesture comes into play. iGesture is an open source Java framework built to help
programmers to implement gesture recognition as part of their application. Until now, iGesture
has an outstanding reputation concerning 2D gestures. Unfortunately, decent 3D gesture sup-
port is lacking. Currently, the only supported 3D device is the Nintendo Wii Remote and the
implementation and integration of the Wii Remote has still some open issues. The drawing pre-
sented to the user when preforming a gesture with the Wii Remote does not resemble the gesture
that the user has executed. Beside this aesthetic issue there are some doubts on the accuracy of
the recognition algorithms. The already present knowledge of 2D gestures has been reused for
3D gesture recognition. This might not be the most efficient way for 3D gesture recognition. A
new algorithm, capable of working with acceleration values for its gesture recognition needs to

be developed.

Up until now the Wii Remote is the only 3D motion sensing input device integrated into iGesture.
In the meanwhile other 3D motion sensing capable devices have been adapted by potential
iGesture’s users. It would give the iGesture framework an extra edge if new, commonly available,
motion sensing devices could be integrated into the framework. This would give developers the
possibility to choose between different input devices when searching for the best match for their

applications.
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1.3 Approach

Until now 3D gesture recognition has been performed by double integration acceleration values to
obtain x,y,z values. When using these integrated values, datasets for the three different planes
Xy,xz,yz can be computed. Once these three datasets are computed, 2D gesture recognition
algorithms can be applied on each plane. The actual 3D gesture recognition is realised through
a combination of gesture recognition results from these three planes. In our new approach, we
will develop an algorithm that works directly with acceleration values, eliminating the double

integration and dataset computations.

Firstly, we have performed a detailed study of the sensors that were to be used in our experi-
ments. This gave us a good idea of the possibilities and error margins of the acquired sensor data.
This analysis helped us in developing a good strategy to process this sensor data to a format
usable for gesture recognition. After studying the sensors, we looked into different techniques

on how to combine different sensors to maximise sensor data accuracy.

Secondly, when working with acceleration values, the previously mentioned 2D recognition al-
gorithms are no longer applicable. A new 3D gesture recognition algorithm had to be developed
from scratch. This algorithm should only use acceleration values without the double integration

in its recognition process.

1.4 Contributions

In this section, we will give an overview of the different contribution this master thesis has made.

e An in depth analysis of the different sensors and sensor combinations, devices and frame-
works (including iGesture), for 3D gesture recognition has been made. This analysis helped
us to evaluate input device candidates, gesture recognition algorithms and application pos-

sibilities/limitations.

e A new IP based communication protocol for iGesture input devices has been developed.
This communication protocol will extend iGesture capabilities to different mobile devices

like cellphones, handhelds and smartphones running different operating systems.

e An Android application implementing iGesture’s IP communication has been developed.
This enables iGesture users to, use Android devices for gesture recognition in combination

with iGesture.
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e Support for the Wii Motion Plus extension has been added to iGesture. A description on
how to use the Wii Motion Plus extension in combination with the Wii Sensor Bar and

the Wii Remote is provided.

e A new 3D gesture recognition algorithm based upon the k-Nearest Neighbour and Dynamic
Time Warping algorithms has been implemented. This algorithm is configurable to be
executed with three different metrics. The new algorithm is integrated with iGesture’s
workbench enabling iGesture users to simulate different algorithm configurations. This

will help them to optimise their custom 3D gesture recognition results.

e Extensive testing using different versions of the algorithm, different gestures and different

devices has been performed to analyse the performance of our new algorithm.
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Background and Related Work

2.1 3D Motion Capture Devices

A multitude of motion capture devices are commercially available. All these devices use different
sensors in order to provide some kind of motion sensing experience. It is important to know the
capabilities and limitations of these devices before using them. We will give a brief overview of

some of the most commonly known devices.

2.1.1 Wii Remote

In December 2006, Nintendo released its Wii gaming platform in Europe. Nintendo tried to dis-
tinguish the Wii from other consoles (e.g. Xbox and Playstation) by introducing the Wii Remote
(commonly known as the Wii Mote). The wireless Wii Remote incorporates an accelerometer
and an infrared sensor. The Nintendo Wii is a closed source, proprietary platform. After some

reverse engineering effort, the following sensor details became available!:

e The accelerometer is a ADXL 330 with a 4+ 3g sensing range?.

e Inside the Wii Remote, a PixArt imaging camera is incorporated. This camera is capable
of tracking up to 4 infrared lights. It has a 1024 * 768 (4:3) resolution at a 100Hz refresh
rate. It uses 4 bit to express the size and 8 bit for the intensity. The camera is supposed to
track the infrared bar that needs to be placed on top or beneath the television. The sensor

bar consists of 3 LEDs on each side of the bar. One rather strange fact about the camera

Thttp://www.parleys.com /#st=58&id=1637
Zhttp://www.analog.com/en/mems-sensors/inertial-sensors/adx1330 /products/product.html

5
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is its positioning inside the remote. Vertically it has a 30 degree view port 15 degrees up
and 15 degrees down. Horizontally the sensor is capable of viewing 18 degrees to the left
and 22 degrees to the right. Presumably Nintendo introduced a small bias in favour of

right handed people.

The Wii Remote is connected to the console via a Bluetooth connection. Using the Bluetooth

protocol, it is possible to connect a Wii Remote to a computer.

2.1.2 Wii Motion Plus

In June 2009 Nintendo released the Wii Motion Plus®, a Wii Remote extension that adds a
gyroscope to the Wii Remote. Nintendo aims to improve the Wii Remote accuracy so that
game developers can push the limits of motion-based game development even further. The
Wii Motion Plus contains a 3-axis gyroscope enabling Wii developers to compute true linear

acceleration®.

Figure 2.1: Wii Remote with the acceleration and rotation axis indicated

2.1.3 Kinect for XBox 360

The Kinect is an addition for Microsoft’s Xbox 360 gaming platform. The Kinect is designed

to bring motion sensing to the Xbox. The Kinect is a camera add-on which enables users to

3http://en.wikipedia.org/wiki/Wii_MotionPlus/
“http://invensense.com/mems,/gaming.html
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control the Xbox without any handheld device. The camera is capable of full-body 3D motion
capturing with facial and voice recognition. Trough reverse engineering® it has been revealed

that the Kinect has an eight bit VGA resolution (640*480) with depth sensing.

e

XBOX 360

=

Figure 2.2: Microsoft Kinect

2.1.4 Playstation Move

The Playstation Move® is an input device for Sony’s Playstation 3 gaming platform first revealed
in June 2009. It is capable of motion sensing trough a set of different sensors. The Playstation
Move uses an Eye camera to track the controller position. The controller is equipped with an
glowing orb at the top of the controller. The orb can glow in a full range of RGB colours. This
enables the eye camera to minimise external colour interference while tracking the controllers.
Furthermore, the Playstation Move is equipped with a 3-axis accelerometer and a 3-axis rate

7 is measures angular rate like a gyroscope, but is also used for devices

sensor. A rate sensor
with a low cut off frequency that is other than zero. The Playstation Move uses the Bluetooth

2.0 protocol to communicate with the Playstation console.

Figure 2.3: Playstation Eye Figure 2.4: Playstation Move

Shttp://openkinect.org/wiki/Main_Page/
Shttp://en.wikipedia.org/wiki/PlayStation_Move/
"http://en.wikipedia.org/wiki/Rate_sensor/
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2.1.5 Android Devices

Android was released in November 2007 by Google. Android is an open source platform built on
top of the Linux kernel. The majority of Android applications are written in a stripped down
version of the Java programming language. Android was primarily intended to be used as a
cellphone platform. Cellphone manufacturers quickly adapted Android due to its open source
licensing model. Google does not limit manufacturers to run android on devices with certain

hardware specifications. This leads to a large variety of existing android devices.

Most android phones have integrated Wifi, accelerometers, GPS and magnetic sensors. Some

newer models, provide an integrated gyroscope®?10
i
ry
» X
2z
Figure 2.5: Android acceleration axis Figure 2.6: Android rotation axis

2.2 3D Recognition Frameworks

A number of applications for 3D gesture recognition for the PC platform have been developed
in the past [24, 12, 9, 3]. Unfortunately, the majority of these applications are just a proof of
concept. Due to the absence of stable software for 3D gesture recognition, there is an opportunity
for 3D gesture recognition on the PC. This application shortage is the result of an absence of, by
default, integrated 3D devices on PC platforms. This forces gesture recognition developers to
first integrate a 3D device with the PC platform before they can develop any algorithms. This is
where one of the advantages of iGesture comes into play: the combination of device integration

with gesture recognition.

3D gesture recognition software is mainly executed on dedicated systems like the Nintendo

Shttp://www.samsungnexuss.com /nexus-s-specs,
“http://www.htc.com/europe/product /sensation/specification.html
Yhttp:/ /www.samsunggalaxys2.net/nieuws /touchwiz-4-0-gyroscope/
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Wii, Microsoft’s XBox and the Playstation (Move). Besides these gaming platforms, custom
interactive motion sensing applications have been developed [8, 2]. These custom installations

focus on a predefined, limited set of gestures that cannot easily be changed and extended.

2.2.1 WiiGee

WiiGee [19] is an open source gesture recognition library for accelerometer-based gestures.
WiiGee only supports a single input device, the Wii Remote. While WiiGee is capable of
detecting the Wii Motion Plus and a Sensor Bar, only the accelerometer is used in the gesture
recognition process. WiiGee uses Hidden Markov Models (HMM) as its gesture recognition

algorithm. The WiiGee library can be trained to recognise arbitrary gesture sets.

CEX
Wiimote File Help

((Gestures | Infrared | Rotation | Settings

Acceleration:

In Motion Recognitian Training

Gesture Circle received.

N Gesture recognized]

N Gesture recognized!
Gesture Cirtle received

1

2

WiiMote

Button B pressed

Figure 2.7: WiiGee Demo GUI

2.2.2 Invensense

Invensense'! call themselves the leader in motion processing solutions. They have developed a
closed source motion processing platform to help devices in detecting, measuring, synthesising,
analysing and digitising an object’s motion in three-dimensional space [14]. The Invensense
motion processing platform is capable of using accelerometers, gyroscopes and other sensors.
It uses sensor fusion to improve sensor reading. Invensense developed its own gyroscope and

accelerometer chips integrating their own sensor fusion technology. This hardware is primarily

"http://invensense.com/mems/platform.html
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sold for gaming, handheld and tablet purposes. Invensense also developed their own remote

controller and image stabilisation software.

2.2.3 LiveMovePro

LiveMovePro'? is a proprietary framework for Motion recognition and tracking. AiLive collab-
orated with Nintendo to design the Motion Plus hardware and is offering LiveMove 2 to help

game developers to take full advantage of its capabilities. LiveMovePro features

Full support for the Wii MotionPlus

Simultaneous classification to provide semantic information about moves

Classification of two-handed, coordinated motions

Classification can use additional MotionPlus data to improve performance

2.3 Sensors

Sensors are electronic or mechanical components designed to measure a physical quantity. A
sensor can sense one physical quantity and translate it into electric signals so that the particular

quantity can be interpreted by computers.

More and more commercially available electronics come with built in sensors. For instance,
digital cameras incorporate gyroscopes for image stabilisation and GPS sensors for Geo tagging.
Smart phones have accelerometers, compasses, a GPS and in some cases even gyroscopes. Game
controllers are equipped with accelerometers, gyroscopes and image sensors. It is important to
fully understand the inner workings, capabilities and limitations of these different sensors before

one can interpret the generated data.

2.3.1 Accelerometer

An accelerometer is a small mass inside a reference frame connected through beams. These
beams are flexed under the forces of acceleration (movement) or gravity. The flexing of these
beams can be measured resulting in acceleration values. This design of an accelerometer has

two surprising effects:

2http://www.ailive.net/



CHAPTER 2. BACKGROUND AND RELATED WORK 11

e When an accelerometer lays still on a surface, it measures the down force of gravity.
The reference frame is kept still due to the surface. The forces of gravity pulls the mass
downwards flexing the top and bottom beams. Therefore the accelerometer will measure

the force of gravity.

e When a device is in free fall, there is no movement between the mass and the reference

frame. The accelerometer will measure zero on all axes.

Accelerometers cannot distinguish between acceleration caused by gravity or acceleration caused
by movement. Gravity could be filtered out by applying a high-pass filter. Conversely a low-pass
filter can be used to isolate the force of gravity. Using high- or low pass filters will decrease the

sensor response time and its accuracy.

In order to get better response times and higher accuracy, gyroscopes can be used in combination

with accelerometers.

2.3.2 Gyroscope

t!3 . Using the Coriolis effect

The inner workings of a gyroscope are based on the Coriolis effec
the angular velocity of a device can be measured. In order to get an orientation one has to

integrate the angular velocity. This integration step is shown in Equation 2.1.

/cos(27rft) = 27r1ft sin (27 ft) (2.1)

The integration step has important side effects: high frequency jittering (noise) is reduced, which
is a good thing. Unfortunately, low frequency jittering is turned into drift which is a bad thing.
Figure 2.8 shows gyroscope data samples gathered by holding the device still during one second.
Figure 2.9 shows the drift occurring when integrating these gyroscope values over time. Finally

Figure 2.10 shows the drift of a Wii Motion Plus lying still on a table.

Bhttp://en.wikipedia.org/wiki/Coriolis_effect /
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When integrating the angular velocity to calculate the next angle based upon a previous angle as
seen in Equation 2.2, the time measurement accuracy is as important as the gyroscope accuracy.
The consequences of the time measurement being off by 2% are as severe as if the angular
velocity accuracy would be off by 2%. This error margin can only be reduced through a fast

sensing rate and accurate time stamping.

Ons1 = O, + WAt (2.2)

Additional sensors like a magnetic sensor, an optical sensor or even an accelerometer can be

used to compensate for these errors and the drifting effect.

A foa
’?’ﬂ‘h ! 1 A el
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Figure 2.8: 100 gyroscope samples over a time span of 1.011243 seconds taken from a Samsung Galaxy

SII while holding the device as still as possible
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Figure 2.9: 100 gyroscope samples integrated showing drift taken from a Samsung Galaxy SII
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Figure 2.10: 200 gyroscope samples taken from a Wii Motion Plus, lying still on a table, integrated (by
the WiiGee), to illustrate drift

2.3.3 Magnetic Sensor

A magnetic sensor, commonly known as a compass, senses magnetic fields. Due to the principles
of the Hall effect!* the magnetic sensor will point to the North Magnetic Pole!®. A 2-axes
magnetic sensor is sufficient to find magnetic north if the axes are perpendicular to the earth’s
surface. If the user is allowed to rotate the device, a 3-axes magnetic sensor and an accelerometer
to calculate the tilt are needed to find Magnetic North. In order to find true North, a GPS sensor
is needed to provide a reference point for the device relative to the Magnetic North Pole. Note
that magnet sensors tend to fail when placed near strong magnetic fields or when the sensor is

close the north or south pole.

2.4 Sensor Related Issues

Besides the previously described sensor design limitations, we have investigated the most com-

mon techniques and problems using one or combining multiple sensors for 3D gesture recognition.

2.4.1 Tilt

When gesture recognition is performed by using an accelerometer only, gravity will not be
accurately compensated for. If the user would hold the accelerometer perfectly levelled and

perform the same gesture over and over again, more or less the same acceleration values would

Mhttp://en.wikipedia.org/wiki/Hall_effect
http:/ /en.wikipedia.org/wiki/North_Magnetic_Pole
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be output. There would be a strong resemblance between two accelerometer sequences. However,
while performing a gesture it is very difficult to hold the device perfectly levelled. Without any
intention, the user often holds the device with different orientations while performing gestures.
This difference in orientation might only be a few degrees but this can be enough to have a major
impact on the acceleration values. The readings of the accelerometer will not directly reflect
the external motions performed with the sensor. In real world situations, there will be small
orientations around the 3-axis (pitch, roll and yaw) influencing accelerometer reading in x,y,z
directions. Detecting tilt by using only an accelerometer is very challenging. Some algorithm

implementations try to compensate for tilt with limited results [12].

An orientation-independent system might be the solution for the tilt problem. However, when
developing such a system one needs to be aware of the consequences. It would no longer be
possible to distinguish a gesture sliding from the left to the right from another gesture sliding
from the right to the left. These two gestures only differ in the device orientation. When rotating

the device by 180 degrees around the y-axis (roll) the gestures are the same.

The best solution for the tilting problem is to use other sensors like gyroscopes and compasses

in order to compensate for tilt.

2.4.2 Sensor Fusion

Sensor fusion is a technique in which different sensors are combined to improve the data coming

from a single sensor. The following are examples of sensor fusion:

e An accelerometer senses linear motion and gravity. However the accelerometer is not
capable of distinguishing gravity from motion. Trough the help of other sensors, like
gyroscopes, magnetic sensors and/or optical sensors, it is possible to remove gravity from

the accelerometer values and to isolate the linear acceleration.

e A gyroscope senses angular velocity. The data from a gyroscope needs to be integrated
to get angular velocity which introduces drift. Over time this drift would render the
gyroscope data useless. Accelerometers, magnetic sensor, GPS and optical sensors can be
used to calculate the tilt and provide an absolute reference point. This data can then be

used to compensate for drifting.

Trough sensor fusion it is possible to obtain more accurate and more usable data.
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Sensor Fusion using Wii Motion plus

When using a Wii Motion Plus, gyroscope pitch and roll can be compensated using accelerometer
data in order to compensate for drifting. During the usage of the Wii Motion Plus, the user
will hold the Wii Remote still. In these moments, when the accelerometer and gyroscope are
not moving, it is advised to reset the current rotation, pitch and roll. Resetting pitch and roll
will remove drift for these two orientations. The accelerometer is gravity sensitive, providing an
absolute reference. This absolute reference can be used to reset the pitch and roll. Unfortunately,
yaw cannot benefit from the accelerometer estimate. After a major rotation, it is advised to
reset the yaw value. This is possible when the Wii Remote is pointed to the middle of the sensor

bar (horizontally).

By using sensor fusion from the accelerometer, gyroscope and sensor bar better sensor data can
be acquired. Once a good orientation is computed, one can use this data to calculate linear

acceleration.

Sensor Fusion on Android

In Android sensor fusion is performed automatically when calling the correct API functions'S.

When listening to the Sensor . TYPE_ACCELEROMETER, Sensor . TYPE_GYROSCOPE or Sensor.TYPE_
MAGNETIC_FIELD, raw sensor values are retrieved. On the other hand, when listening to Sensor.
TYPE_GRAVITY, Sensor.TYPE_LINEAR_ACCELERATION or Sensor.TYPE_ORIENTATION android tries
to use all available device sensors to improve the captured data. Best results will be obtained
when using an Android device with an accelerometer, magnetic sensor and a gyroscope. Compen-
sating the gyroscope with a magnetic sensor in combination with an accelerometer will provide
an absolute reference point and rotation to calculate the device’s orientation. The orientation
can then be used to improve the acceleration values by subtracting gravity resulting in linear

acceleration.

http://developer.android.com/reference/android /hardware/SensorEvent.html



CHAPTER 2. BACKGROUND AND RELATED WORK 16

2.4.3 Acceleration, Velocity and Position

In order to calculate a device position based on acceleration values, one needs to perform a double
integration over the acceleration values. The first integration will transform the acceleration

values into velocity (2.3). A second integration will convert velocity into position (2.4).

v = /at (2.3)
D= /Ut (2.4)

Linear acceleration is defined as acceleration minus gravity. The process to obtain linear accel-
eration is also called gravity compensation. The first thing one needs to do before integrating is
to subtract gravity from the acceleration values to obtain linear acceleration. The isolation of
gravity can only be performed after the device’s orientation is calculated. This will give us the
knowledge of the gravitational spread on the different axes so one can subtract it. A gyroscope
is an excellent sensor for calculating orientation. Once gravity is compensated, the acceleration
values can be double integrated. As explained earlier in section 2.3.2 when integrating noisy
data, low frequency jittering will be turned into drift. When double integrating noisy data, this
drift will ever increase. Therefore, if you double integrate acceleration values, significant drifting

is to be expected.

Drifting due to noise is not the biggest concern when double integrating acceleration values.
In order to compensate for gravity, gyroscopes are used to calculate the devices orientation.
This gyroscope data is not perfect. Suppose that the gyroscope data is off by one degree, this
bias adds a constant to the integration equation. Double integrating a constant will result in a
parabola (2.5). This parabola shows the exponential bias that is added to the devices estimated
position. Therefore, when working with accelerometers, it is important to work directly with

acceleration values and to avoid integration as much as possible.

1
z = —at?

. (2.5)



Chapter 3

3D Gesture Recognition in iGesture

The iGesture[20] development started in 2006. iGesture was developed due to the emerging need
of a general and extensible framework that provides an integrated platform for the design and
evaluation of gesture recognition algorithms, as well as for their deployment to a wide audience.
The iGesture framework is capable of defining, evaluating, optimising and recognising gesture
sets using different gesture recognition algorithms. iGesture also provides easy mechanisms for
integrating new input devices and new recognition algorithms. In the beginning of iGesture only
2D devices and 2D gestures were supported. iGesture was released to the public as an open

source, Java framework.

In 2009 the iGesture framework has been extended to support 3D gesture recognition [23]. In this
specific approach, the gesture representation in three-dimensional space is projected onto three
two-dimensional planes (xy, xz, yz). This technique enables iGesture to reuse the already

present 2D algorithms.

In 2010 multimodal gesture recognition was added to the iGesture framework [17]. Multimodal
gestures are gestures performed with multiple input devices by one or more users. Besides

1

combined gestures, multi-modal gesture support for TUIO devices® was added to iGesture.

In order to have a good knowledge of the iGesture framework and to better understand the
next chapters, we provide a short introduction to the design of the framework, its usage and

functionality.

Thttp://www.tuio.org/

17



CHAPTER 3. 3D GESTURE RECOGNITION IN IGESTURE 18

3.1 Existing iGesture framework

iGesture can be broken down into three major blocks. There is the recogniser, a management
console and tools for testing gesture sets and evaluating the algorithms used. These three

components all use the same common data structure.

3.1.1 iGesture

The most important data structure to understand when using iGesture is the gesture represen-
tation shown in Figure 3.1. The GestureClass represents one gesture a circle, a rectangle, a
punch when developing a boxing game. Multiple gesture classes are organised in a GestureSet.
A GestureSet represent the set of possible gestures when performing gesture recognition. The

GestureClass uses the Visitor pattern? [6] to separate the object structure from the recognition

algorithms.
Gestures ef GeslureClass

+addGesireC lassiGestureClass gestureClass): void +addD escriptorizesureClassD escriptor descriptor) | woid
+delGedureClassGedurellass gegdureClass) | woid +removelDescriptorDescriptorType name) © woid
+oetGestureClassint i): GestureClass ile————— +getDescriptors() : List=GestureClassDescrptor=
+getGestureC laszes]) | Ligt=GegtureClasss +getDes::riptor(D_ea-:r1 morType type): GestureClazsDescriptar
+gettlamel; String +iethlamen) | Sting
+getSize) ;int +zeth ameSting name) | waoid

G esfuresample P T .
+gettlamel; String Descrptor
+gethlotel) | Mote +getTypel): Class=7? extends Descriptors

D efaulD escriptor
Samplelescriptor TextD escriptor Digitdl escnpior

+addZamplelGestureSample sample) ; woid +oyetTexd() : String +etDigitd Object(int wichh, int height): Bufferedimage

+remaveSamplelGestureSample sample) | woid
+yetZamples(): Lig=GestureSamples=

Figure 3.1: iGesture Gesture datastructure

Different algorithms may require different gesture representations. Therefore, a Descriptor
interface has been introduced, each GestureClass must have at least one Descriptor. Different

gesture descriptors have been implemented:

e The SampleDescriptor describes a gesture based on a set of training samples. This

Zhttp://en.wikipedia.org/wiki/Visitor_pattern
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Descriptor is the most widely used descriptor for gesture recognition

e The TextDescriptor describes a gesture on a textual basis, for example a character String

representing directions between characteristic points of the gesture.

e The DigitalDescriptor represents a gesture trough a digital image. This Descriptor is
less suitable for the gesture recognition. It is meant to provide a digital image of a gesture
to be used in the graphical user interface. This allows developers to show an image of a

recognised gesture to the user.

The Recogniser component shown in Figure 3.2 is responsible for the actual gesture recognition
process. It acts as a facade® [6] meant to hide away the complexity of gesture recognition algo-
rithms. A recogniser is initialised with a configuration object containing information about the
used gesture set (1..%*), the algorithm(s) to be used (1..*), the parameters for the algorithms,
the minimal accuracy as well as the size of the result list in the result set. A recogniser con-
tains multiple methods for gesture recognition which behave differently. The recognise(Note
note) will evaluate the input gesture trough sequentially evaluating the chosen algorithms. This
process will stop as soon as one algorithm returns a valid match. The recognise (Gesture<?>
gesture, boolean recogniseAll) method on the other hand will continue to execute all the

selected algorithms and will return a combined result of all algorithms in form of a ResultSet.

Recognizer

+RecogniseriConfiguraion c)
+RecognizeriConfigursion ¢, EvertManager em)
+RecogniseriConfigurdion c, GestureSet gz
+RecognizerFile cf) {

+RecognizerFile cf, File of, Eventhanager em)
+recognizeMote note) : Resultset
+recogniseSenallMote note) | Resutset
+recognise(ZestureS anple sample) | Result>et

Figure 3.2: Recogniser API

A Note is a data structure representing gestures captured from 2D input devices using Traces
defined by timestamped Points. The Note3D data structure represents gestures captured from

a 3D input device in the form of Point3D and AccelerationSamples.

The core of the gesture recognition functionality lies in the Algorithm. iGesture strives to
provide algorithm developers some flexibility in the design and usage of their algorithms. A

minimal interface is provided as shown Figure 3.3. There are three important factors when

3http://en.wikipedia.org/wiki/Facade_pattern/
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working with algorithms: the initialisation, the recognition and the registration of an event

manager.

When an algorithm is initialised, an instance of the Configuration class needs to be provided.
The Configuration contains gesture sets, event manager and algorithm-specific parameters.
The parameters are key/value pairs organised in a Collection. The configuration object can
be created in Java code or stored in an XML document. Examples are provided in Appendix B.
New algorithms need to implement the Algorithm interface. All Algorithms are responsible for
validating the configuration objects provided during initialisation. Algorithm implementations
need to make use of the minimal accuracy and the maximal result set size stored in the con-
figuration object. Algorithms need to notify the event manager in case of positive recognitions.
The AlgorithmFactory class provides static methods to create algorithms with a configuration

instance and uses dynamic class loading to instantiate the algorithms.

Configuration

+add G estureSet(GestureSet gestureSet) | void
+getGedureSets)) | Lit=GedureSet=

+removeGestureSet] GegureSet gestureSet) © woid Frteraces:
+add A gonthm=tring algorithm): waid Algorithm
+optalgorthms() ;- List=Sting= +init(Configuration conficuration : vaid
+remaovedlgarithm (Algorithm alga) ; waid t— +recfngnisgﬂ\lute note) :gl‘?JesultSLi

+eddd Al gorithmP arametenSting dgo, Sting name, String walue) © woid
+getalogrithm P aram eters(String name): Hashiap=String, Sting-
+getP arametenP arameter parameter) - Sthing

+gE verth arager() : Eventh anager
+setEventtanager Event anager eventtanager)  void
+gethlindocuracyt) double

+gadinResdt=etSizel) double DefadiAlgorithm

+addE vertt anaged i fenen Evertt anager em] ; woid
+getConfigP arameters) . Enum(]
+ijetD efaultP arameter(String name): String

+addE verft anagerLienen Everttanager em) © woid
+hireEvent(R esult=et resultSet) © wid
+getD efaultP arameter(String name): String

SigmnatureAlgorthm SanmpleBasedAlgonthm
+ getSamplesiGestureClass go): Ligt=GestureSam ple-

SigmnatureAlgorthm RubineAlgorithm

Figure 3.3: Algortihm API

iGesture supports different input devices. To support these different devices without relying
on their specific hardware specifications, the Device and GestureDevice interfaces have been
created. All new devices need to implement these interfaces before they can be used in iGesture
as shown in Figure 3.4. When an application wants to use a certain device, it must register itself
as a GestureEventListener with this device. If a gesture is performed with this device, the
listener will inform all registered applications, passing the captured gesture sample. The appli-
cation can then evaluate the gesture sample based on application-specific logic before passing it

to a Recogniser. When the Recogniser has evaluated a gesture sample, it notifies all registered
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EventManagers. An EventManager implements the GestureHandler interface to specify what

should happen when a certain gesture is recognised.

<<Device == AndroidReader3D
+recordedGesture : Note3D
- - +gesture(): GestureSample3D
+getDeviceID(): String +dientSocket : Socket
-IﬂetDeviceID(String): void +input: BufferedReader
+getilame(): String +accelerations: Accelerations
+setMame(String): void
+disconnect(): void +getBufferedreader(): BufferedReader
+connect(): void +AndroidReader 3D(Socket, Bufferedreader)
+HsConnectable(): boolean Hnit(): void
+isDisconnectable(): boolean +getGesture(): Gesture <MNote3D >
+HsConnected(): boolean +disconnect() : void()
+setldsConnected{boolean): void +oonnect() : void()
+getDeviceType(): int +getPanel(): Android3DPanel
+setDeviceType(int): void +getPanel(Dimension): AndroidReader 3DPanel
+getConnectionType(): int +dear(): void
+setConnectionType(int): void +dispose(): void
+HsDefaultDevice(): boolean +getChunks(): List<Point3D =)
+setDefaultDevice(boolean): void +startGesture(): void
+toString(): String +stopGesture(): void
+getDeviceClass(): String +addAccelerationValues (double, double, double, long)
< <GestureDevice<E, F>>> AbstractGestureDevice<E, F>
+gesturelisteners @ Set
— - +connectionType: int
HnitQ: void +deviceType: int
+dispose(): void +id: String
+getGesture(): Gesture<E= <<} ______________ +name: String
+dear(): void . +isDefault: boolean
+getChunks(): List<F> +connected: boolean
+addGestureHandler{GestureEventListener): void
+removeGestureHandler(GestureEventlistener): void +AbstractGestureDevice ()

+removeGestureHandler(GestureEventListener): void
+hreGesturebvent{Gesture <22 ) void
+removedllistener(): void
+removeAlGestureHandler (): void

Figure 3.4: Device implementation

3.1.2 iGesture Tools

The iGesture framework contains a tool to help users define and test gesture sets. These tools
are grouped in the iGesture Workbench. In the file menu, workbench projects can be created,
opened and saved. Once a project is opened or created, 5 tabs are added to the main window:
Gesture Set, Test Bench, Batch Processing, Test Set and Composite Test Bench. In the toolbar,
the Device Manager can be found under Devices. The Device Manager is used to connect and
disconnect new devices to the workbench. Currently, TUIO 3D, Bluetooth and Tuio 2D are

supported. The mouse is automatically added as a 2D input device.

As just explained earlier, there are different gesture descriptors in iGesture. Therefore, different
representations of these descriptors are available. In the left frame of Figure 3.8, it is shown

how to create a gesture set with different descriptors. In the right bottom screen, the user has
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an overview of all devices that can be used in combination with the selected descriptor. When
a device is selected, a gesture can be performed. Once the gesture is finished, it is visualised
in the bottom right corner. The top right frame shows all the gesture samples for the selected

descriptor.

The test bench shown in Figure 3.6 is used to test a gesture recognition with an arbitrary
sample. On the left-hand side, an overview of the available recognition algorithms is given. For
each algorithm, multiple configurations can be created. This allows developers to quickly test
configuration parameters when evaluating the training gesture set. A training gesture set can

be created in the bottom right frame

The test set tab shown in Figure 3.8 can be used to create different sets of gestures. These sets
of gestures are meant to be used during batch processing. An overview of the batch processing
settings can be seen in Figure 3.7. Batch processing is a function in iGesture used to optimise
different algorithm parameters to achieve optimum recognition rates. Batch processing permutes
all the algorithm’s parameters within predefined boundaries. These boundaries must be provided
in a batch processing configuration file. A batch processing configuration file must be created
manualy, an example can be found in Appendix B.12. The gesture set used during batch
processing, is a set of gestures created in the gesture set tab. This set of gestures is used to
recognise the test set that was created in the test set tab. The output will generate an HTML

result file containing the recognition rates for all the configuration permutations.

Finally, the composite test bench seen in Figure 3.9 can be used to test composite gestures.

Composite gestures are gestures performed using multiple devices.



CHAPTER 3. 3D GESTURE RECOGNITION IN IGESTURE

23

| TextDescriptor

v A uppercut g () B O
& sampleDescriptor3D
" [

Capture a 3D Gesture Sample:

Ghoose a caplure device:

X¥-Plane YZ-Plane
Desire HD (GRI40)
[ Add Gesture Sample |
DxPlane Accelerations Clear Sample

Er——
File Devices Help File Devices Help
[ Gesture set | TestBench | Baton Processing | Testset | Composite TestBench | [ Gesture set | TestBench | Batch Processing | Test Set | Gomposite Test sench |
¥ [ GestureSet: i = v ) Aigorithm List 5 i
eeresels SampleDescriptor3D: Hook e New Configuration
¥ 1 Boxing 4 RubineAlgorithm
v
A sy 42 Sigeralgoritim I
& sampleDescriptor3D ¢ SiGridAIgorithm
v A Hook
& SampleDescriptor

4% Rubine3DAlgorithm Name:

New Configuration
£ RubineAlgoritimBigDecimal

v 5 DynamicTimewarpingAlgorithm | | METRIC L
TRESHOLD 25
Choose a capture device: YZpjane
| Clear Sample |
Recognise
& (Boins [
EANE

Jab: 1.085159829235476

Figure 3.5: Workbench Gesture Set

Gesture Workbench - CAUsers\johan\Desklop\gsdfigz

File Devices Help

Figure 3.6: Workbench Test Bench

Lowsn oo | emmvr [ oo recerne | Teven [ onmtTenove |
BatchProcessingView Eile Devices Help

[ Gesture set | TestBench | Batch Processing [ Testset | Gomposite Testsench |
Configuration: haniD gDTW | [ Browse... J ey

7 [ Testsets Jab
Gesture Set Boxing v ¥ [ BoxingTestSet

TestClass Name: | Jab
Test Set BoxingTesiSet v = Hook
Output Directory CilUsers\onaniDesktop Browse. 1= Upperaut
Batch Run Batch Cancel
2l version="1.0" encading="UTF-8"2> 5
S

iGesture - Batch Process Report
Date: Sun Jul 31 17:4335 CEST 2011 -] [=|—]

e |
org.ximtec.igesture algorithm.dtw.Dynamic TimeWarpingAlgorithm =~ —
[Gamea[Exor [eeetCaret | efect o e ot [ e | I
L T o [ [ ]

Running Time Choose a capture device: XpPlane YZ-Rjane
NaN 00 NaN 220 SwingMouseReader (System Mouse) @
Configuration Parameter
[rrestoro]10 [ Add Gesture Sample |
METRIC | clearsample |
" \Y
[P—— [comect [errar [Reiect carrect [Retect Frrar | 5 A
Fi Workbench Batch P i Fi Workbench Test S
igure 3.7: Workbench Batch Processing igure 3.8: Workbench Test Set
File Devices Help
[ @esture Set | TestBench | Batch Processing | TestSet | Composite TestBench |
CompositeTestBenchView
Algorithms: Gesture Sets: Devices
SwinghouseReader (System Mouse)
e
RubineAlgorithm
SigerAlgorithm
RubineAlgorithmBigDecimal
Rubine3DAlgorithm
Create & Add Recogniser
‘Composite Gesture Set.  Selectasel © Recognise Reset
Results

Figure 3.9: Workbench Composite Test Bench




CHAPTER 3. 3D GESTURE RECOGNITION IN IGESTURE 24

3.2 A New Gesture Recognition Algorithm

As part of this thesis, a new gesture recognition algorithm has been developed. This algorithm is

a combination of the k-Nearest Neighbour algorithm and the Dynamic Time Warping algorithm.

3.2.1 k-Nearest Neighbour

A naive version of the k-nearest neighbour algorithm has been implemented to classify a sample
gesture. A sample gesture will be matched against all training samples to define its best match.
The best match will determine the sample’s classification (k=1). The metric used to define the

nearest neighbour is Dynamic Time Warping.

3.2.2 Dynamic Time Warping

Dynamic time warping (DTW) is a computer algorithm designed to measure the difference/sim-
ilarity between two sequences which may vary in time. DTW allows a computer to find a match
between two time series. DTW is a commonly used algorithm in speech [10], image [4, 16], hand-
writing [13] and accelerometer gesture recognition. The sequences are 'warped’ non-linearly in
the time dimension. This results in a measurement of the non-linear variations in the time
dimension. Intuitively, this means that it should not matter whether a person draws a square

fast or slow, the performed gesture should still be recognised as a square.

The DTW algorithm generates an MxN matrix. N is the amount of values defining the test
sample. M is the amount of values defining the training sequence. Each data entry the matrix
shows the difference between two acceleration events. The entire matrix represents the difference

of all acceleration samples between the test sequence and the training sequence.
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Table 3.1: DTW example matrix

1 8 19 32 41 48 57 65 77 88

1019 2 9 22 31 38 47 55 67 78
20019 12 1 12 21 28 37 45 57 68
30029 22 11 2 11 18 27 35 47 358
40139 32 21 8 1 8 17 25 37 48
50 |49 42 31 18 9 2 7 15 27 38
60 |59 52 41 28 19 12 3 5 17 28
70169 62 51 38 29 22 13 &5 7 18
80|79 72 61 48 39 32 23 15 3 8

90 [ 89 82 71 58 49 42 33 25 13 2

Once the matrix is generated, the shortest path in the matrix is calculated with the following

constraints:

e The endpoints of the two time series must match. This means that the path goes from

[an yO] to [xna ym]

e The use of the Manhattan distance metric* is a valid option. However, the best path
probably lies near the diagonal. This can be reflected in the algorithm by applying a cost

of 0.5 for a diagonal move and a cost of 1 for a horizontal or vertical move.

e Time only moves forward. This implies that from the start point in the upper left corner,

one can only go right, down or down-and-right.

To compute the shortest path, a dynamic programming® algorithm is used. The start to end
path finding problem is subdivided into smaller problems, the shortest path from any point in
the matrix to the last point in the matrix. If one would start at the beginning, [z, yo] some
sort of brute force backtracking algorithm is needed. Instead, when starting from [z,,ym]| an
optimum distance measurement can be calculated for each element in the matrix. When looping

trough the matrix bottom up, all one needs to do is to evaluate the values one position down,

“http://en.wikipedia.org/wiki/Taxicab_geometry/
Shttp://en.wikipedia.org/wiki/Dynamic_programming,/
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one position tot the right and the value diagonal down/right. In this way, the computational

complexity of the shortest path is reduced to O(n?).

/%%

*

*

/

Listing 3.1: Dynamic Time Warping shortest path algorithm

Calculate shortest path in the matrix from 0;0 to i;]j

(top left —> down right)

The algorithm starts at i;j and works its way up to 0:0 with the
following constraints:

1. diagonal move counts as 0.5 whereas down or left move counts as 1
2. only go forward in time: down and right move is not allowed

(0:0 is up/left and i:j down/right)
3.

the path must go from 0:0 to i:]

@param matrix

Qreturn

private float calculateShortestPath (Float [][] matrix) {

int rowCount = matrix.length — 1;

int columnCount = matrix [rowCount|.length — 1;

// traverse the matrix from right—>left
for (int column = columnCount; column >= 0; column——) {
// down—>up

for (int row = rowCount; row >= 0; row——) {

if (column = columnCount && row = rowCount) {
// last point in path, the lowest remaining cost till the end is

// this cost

}

else if (column = columnCount) {
// last column, the lowest cost to the end is on down 1 position

matrix [row][column]| += matrix[row + 1][column |;

}

else if (row = rowCount) {
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// last rows, the lowest cost to the end is on it’s right side

matrix [row ][ column] 4= matrix [row][column + 1];

}
else {
// pick the lowest values down/right /(diagonal«0.5)
float down = matrix [row 4+ 1][column];
float right = matrix[row][column + 1];
float diagonal = (float)(matrix[row + 1][column + 1] % 0.5);
matrix [row | [ column] += min(down, right, diagonal);
}

return matrix [0][0];

If we calculate the shortest path for the given matrix shown in Figure 3.10 with the described

constraints, we get a shortest path measurement of: 2.7265625.

Figure 3.10 shows the recognition rates at different threshold values for a set of 225 gestures
performed by one user. The threshold value is the maximum path value for positive gesture
recognition. As one can see, the square and z gestures have lower threshold values for positive
classification then the roll and circle gestures. All gestures were classified at a threshold value
of 1.6. Figure 3.11 shows the same threshold calculation as in Figure 3.10, except that it
is performed with a different gesture set. This gesture set contains the same gesture types
as the previous set, however all gestures where performed at different speeds, gesture sizes
and orientations. The purpose of this gesture set is to train the algorithm to match gestures
performed by users with different interpretations of the gesture set. With this training set it
does not matter how fast or how large the user is performing the gestures or even at what angle
he is holding the device. The algorithm will still recognise the performed gestures. This explains
why gesture recognition is only complete at a threshold of 5.3 instead of a threshold around 1.6.
This gesture set is probably not useful in a real situation since application developers generally
only use an ideal gesture set for which the user goes through a learning curve to try to execute

it as close as possible to the original training set.
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Chapter 4

Implementation Details

In this chapter, we will give an overview of the changes that have been applied to the iGesture

framework.

4.1 Dynamic Time Warping Acceleration Metrics

The DTW algorithm relies on subtracting two acceleration events (x,y,z) in order to get a

number representing the difference between these two acceleration events. Different metrics! can

be defined to calculate this acceleration event subtraction. The following subsections describe

the different metrics used in combination with Dynamic Time Warping.

4.1.1 Euclidean Norm Metric

The Euclidean norm is defined by Equation 4.1. If the vector v is a 3-tuple, the Euclidean Norm

is defined as in Equation 4.2

|l = vV<wv,v> (4.1)

o]l = Vvr - o1 + vz - v2 03 - v3 (4.2)

Thttp://en.wikipedia.org/wiki/Metric_(mathematics)/
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Listing 4.1: Code for the Euclidean Norm metric
JET:
x Calculates AccelerationSample EuclideanNorm:
* sqrt (x" 24y 24+2"2)
*
* This technique eliminates device rotation and gravity
*
* @param challenge
* @return
f
private double euclideanNorm (AccelerationSample a, AccelerationSample b) {
return Math.sqrt ((a.getXAcceleration() x a.getXAcceleration ())
+ (a.getYAcceleration() * a.getYAcceleration())
+ (a.getZAcceleration () * a.getZAcceleration()))
— Math.sqrt ((b.getXAcceleration () * b.getXAcceleration())
+ (b.getYAcceleration () * b.getYAcceleration())
+ (b.getZAcceleration() * b.getZAcceleration ()));

The Euclidean Norm measurement has been designed to be orientation independent. This algo-
rithm should be a valid solution for the earlier described tilting problem. When the Euclidean
Norm is calculated, a graph can be drawn showing the gesture’s characteristic function. These
graphs in Figures 4.1, 4.2, 4.3, 4.4 represent the gesture for the number 1 performed with a
HTC Desire HD using only raw acceleration values. The fourth graph is drawn from values

captured from the device while holding it with approximately 45 degrees roll.

One can visually confirm that the functions in Figures 4.1, 4.2, 4.3 and 4.4 are good candidates

for Dynamic Time Warping.
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4.1.2 Plain x,y,z Metric

The plain x,y,z difference algorithm is the most simple algorithm. This algorithm’s formula is
defined as shown in Equation 4.3. Note that this metric is sensitive for the tilting problem
explained earlier in Section 2.4.1.

|z1 — x2| + (Y1 — y2| + |21 — 22 (4.3)

Listing 4.2: Code for plain xyz metric

JET:

x Calculate the most naive difference between two AccelerationSamples
*

| x1—x2| + |yl—y2| + |zl—2z1|

*

*

@param base
* @param challenge
% @Qreturn double plainDiff

*/

private double plainDiff(AccelerationSample base, AccelerationSample challenge) {

return Math.abs(base.getXAcceleration () — challenge.getXAcceleration ())
+ Math.abs(base.getYAcceleration () — challenge.getYAcceleration ())
+ Math.abs(base.getZAcceleration () — challenge.getZAcceleration ());

4.1.3 DTW for the x,y,z Axes Separately

The third version of the difference function is a full DTW calculation for each acceleration
plane. This algorithm is more CPU demanding due to the triple execution of the path finding
algorithm. The sum of these three warping distances is the DTW performance index. This
algorithm is also sensitive to the tilting problem, but not with the same magnitude as the plain

X,y,Zz metric.
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4.2 TP Communication

In this section, the specification and implementation of our IP based communication protocol is

explained.

4.2.1 Architecture

IP communication is possible on all devices supporting the standard IP stack. On most mobile
devices like smartphones, handhelds and tablets, a Wi-Fi connection is available. These Wi-Fi
capabilities can be used to set up a connection to a computer running iGesture as shown in
Figure 4.5. The only requirement is that a connection to the PC running iGesture can be opened
on port 80. IP support is implemented into iGesture and an Android application is developed
to make a connection to iGesture. The software running on the device decides whether it sends

its sensor data to the computer or not.

This Android application can be used to train and analyse iGesture recognisers using the iGesture
tools on a PC while using sensor data coming from an Android cellphone. The communication
with the Android application can also be integrated into a custom PC application. This PC
application can then be controlled using the Android device. If this is the case, it is advised to

redesign the Android application interface to match the PC application interface.

Figure 4.5: iGesture IP communication architecture
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4.2.2 Message protocol

One of the goals of this master’s thesis was to implement additional input devices. Due to
Android’s high market penetration and its low development requirements, we have chosen to
add Android support to iGesture. Android support extends the existing supported input devices
with all Android based devices. In order to use an Android device as input device, a messaging
system between an Android cellphone and a computer running iGesture had to be implemented.
Almost all computers and Android phones have IP support (Wi-Fi/cable network) making the IP
protocol an ideal candidate for sending and receiving messages. The default TP stack is used to
implement a socket connection listening on port 80. The first message sent to the host computer
is the devices unique identifier, android.os.Build.MODEL + ’:’ + android.os.Build.ID.

All the following commands must follow strict formatting guidelines:

Code | Value Meaning Example

S Start of Gesture! | indicating that the device will | S - Start of Gesture!

record and send a new gesture

Q End of Gesture! | indicating that the recorded | Q - End of Gesture!

gesture is finished

A x:y:z:timestamp | xyz values for the measured | A - 1.1727:-2.0887:
acceleration values 10.392:3193478543000

(gravity is filtered)

This messaging system can be used with any device supporting motion sensing and IP based
communication. An Android application has been developed to support this messaging system
on all Android-based devices. This Android application is responsible for transforming the
captured sensor data to comply with the massage format. If other users would like to support
other devices like iPhone, Windows phones, or other custom IP based hardware, it is sufficient

to implement the previously explained message commands.

Listing 4.3: Process data coming from an IP device according to the message protocol specifications

package org.ximtec.igesture.io.android;

import java.io.lOException;
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[ %%

*

* @author Johan Bas

*

*/

public class AndroidStreamer extends Thread {

private
private
private
private
private
private

private

static final String PARSE_ACCELERATION = "A”;
static final String PARSEIDLE = "17;

static final String PARSEQUIT = Q" ;

static final String PARSESTOP = 7§57 ;

static final String PARSEBYE = "Bye.”;
boolean recording = false;

AndroidReader3D device;

public AndroidStreamer (AndroidReader3D device) {

this.

device

@OQOverride

public void run() {

String inputLine;

try {

device;

while ((inputLine = device.getBufferedReader ().readLine()) != null) {

if (inputLine.equals (PARSEBYE)) {
System.out.println (PARSEBYE);
break;

}

else if (inputLine.startsWith (PARSESTOP)) {

this.device.startGesture ();

recording

}

= true;

else if (inputLine.startsWith (PARSE.QUIT)) {

// end gesture

this.device.stopGesture ();
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recording = false;

if (recording) {
if (inputLine.startsWith (PARSEIDLE)) {

// idle state

else if (inputLine.startsWith (PARSE.ACCELERATION)) {

inputLine = inputLine.substring (4);
String [| coordinated = inputLine.split(”:”);

1

double x = Double.parseDouble(coordinated [0]);
double y = Double. parseDouble (coordinated [1]);
2]);

double z = Double.parseDouble (coordinated [2])
long time = Long.parseLong(coordinated [3]);

this.device.addAccelerationValues(x, y, z, time);

catch (IOException e) {

e.printStackTrace ();

© 00 N O Ot e W N

Listing 4.4: Android application responsible for processing and sending acceleration sensor data
/%%
* Try to connect to given server IP
«f
private void connectToServer () {
try {
InetAddress serverAddr = InetAddress.getByName(serverIP );
Log.d(”IGesture”, ” Connecting ... 7 + serverAddr + ”7:” + serverPort);

socket = new Socket (serverAddr, serverPort);
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try {

Log.d(”IGesture”, ”Sending command.” );
socketWriter = new PrintWriter (new BufferedWriter (

new OutputStreamWriter (socket.getOutputStream ())), true);

connected = true;

socketWriter. println (android. os. Build .MODEL + 7 :”
+ android.os.Build.ID);

TextView msg = (TextView)findViewByld (R.id .Msg);

msg. set Text ("CONNECTED” ) ;

}
catch (Exception e) {
connected = false;
Log.e(”IGesture”, "Error: 7, e);
¥
}
catch (Exception e) {
connected = false;
Log.e(”IGesture”, "Error: 7, e);
}
}
@Override

public void onSensorChanged (SensorEvent event) {

switch (event.sensor.getType()) {

case Sensor .TYPELINEAR ACCELERATION: // sensor fusion
if (record)
socketWriter. println ("A — 7 4+ event.values[0] + 7:”
+ event.values|[1] + 7:” 4 event.values[2] + 7

+ event.timestamp );

break;

default:
break;
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Figure 4.6 shows the iGesture device manager with IP support. The code used to discover IP
based devices can be found in Appendix B.4. Figure 4.8 shows the initial screen of the Android
application. The IP address of the computer running iGesture needs to be entered. When
pressing connect, iGesture’s device manager will automatically proceed to the device discovered
screen as shown in Figure 4.7. The Android application will go to the connected screen as seen
in Figure 4.9. When tapping the capture button, the Android application will begin streaming
sensor data to iGesture starting with S - Start of Gesture!. When tapping this button
again, the Android application will stop sending data and the last command will be Q - End
of Gesture!. This will enable iGesture to automatically draw the received gesture. In order
to test the Android application, a small standalone Java application, the socket server shown in
Figure 4.10 has been created. This socket sever enables developers to debug the communication

protocol when implementing IP support on other devices.

The Android application uses sensor fusion (see Section 2.4.2) to optimise acceleration data. The
source code for the complete application can be found in Appendix B.5. The onSensorChanged
method only uses the Sensor. TYPE_LINEAR_ACCELERATION sensor. When using only this sensor,
sensor fusion is automatically performed by Android?. Android will perform sensor fusion on a
low, systems level. Processing sensor data at the kernel level will result in more accurate sensor

data.

http://developer.android.com /reference/android /hardware/SensorEvent.html#values
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B 1Gesture Android Server

Current IP: 10.10.10.3 -

Starting Androld Gesture Server on poit 80

Socket created

Listening to socket on port 80

[Diesire HD:GRIA0

- Start of Gesture!

--0.6189097,0.49774122-1.6593761,4351853760000

0.0019510686,0.37801378,0.323761,43518687 75000

- 0.6823725,0. 308128952 T685146,4351883576000

1.2445690,-0 052631453,5 361578,4251897919000

-1.9334944,-0.7T159276,7. 7604645,4351912903000

- 2 9245396-1. 5973073,9. 4196754351927 704000

A9164298-2 3545213,10.192196:435194 3299000

- 4.538755;-2 6043262-10.591169;4351960785000

-4 2065065 -2 3824854, 10 93767 4351977326000

- 3.6630294;-1.9305694,10.947493,4351992829000

- 2 6343033-1.6134245,10.051189;4352008362000
1.4793189-1.2787019,8.061673,4352024201000

- 0.3757925,-0 92684435 6514163;4352039032000

-0.500058;-0, 407400133, 1995206,4352054016000

--1.1742834,0 060990393,0 6965189,43520689008000

--1.5494148,0 5042778,-1.4424033,4352083802000
1.7581641:0.6486249,-3 30557 1, 4352098862000

--1.7753743,0.6483899;-5.3576155,4352115631000

--18461351,1.2896335 -7, 1802144,4352132080000

--1.4883004,1 9000604, -8 7928505,435214862 1000

--1.351341;2.1985521.-10.540806;4352165222000
1.1214466.1 9518899-11.951385,4352186T37000

--1.0415245:2 1602645;-12 661004;4352201508000

--1.0957376,3.0520847,-12 604564,4352216523000

-1.5527754,3.6284912,-11.538049,4352233277000

--1.7160816.2 9456341,-8. 554006;4352250946000
1.5589633.1.6279231,-7.063019,43522686 77000

- End of Gesture!
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Figure 4.10: Socket server developed to test the Android application showing gesture data from one

gesture

4.3 Proof of Concept Application

A proof of concept application has been developed (see Figure 4.11). This application is able
to recognise two distinct gestures. It can detect if the cellphone is moved sideways, or if the
cellphone is flipped over. When a gesture is recognised, it is printed at the bottom of the screen
together with the shortest path value. These gestures are recognised using Dynamic Time Warp-
ing and the plain difference metric as explained in Section 4.1.2. The DTW algorithm is trained
using ten gestures, six flip gestures and four sideways gestures. The flip gesture is recognised
when a threshold of four is reached, the sideways gesture is recognised when a threshold of five
is reached. The DTW algorithm is executed on the last twenty acceleration events every four
acceleration events. The sensors sampling rates are set to SensorManager.SENSOR_DELAY_GAME.
The high sensing rate in combination with the constant drawing of the three graphs uses a lot
of the cellphone CPU resources. It is due to these resource limitations that only ten training

samples are used.

This applications is an example of sensor fusion on Android. When performing the same move-
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ment under different device orientations, the graphs will show the same acceleration readings.
The cellphone accomplishes this using the magnetic sensor and, if available, the gyroscope.
When a gyroscope is not present, gravity is filtered out using high pass and low pass filters.

This explains small delays in the graph representation and gesture recognition.
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Figure 4.11: Proof of concept Android application
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Evaluation

Different gesture sets have been used to evaluate the implemented Dynamic Time Warping

algorithm. In this section, we will discuss the gesture sets together with the test results.

5.1 WiiGee Gestures

As reference gestures, the four gestures shown in Figure 5.1 will be used. These are the same
gestures that have been used in the WiiGee project, except for the tennis gesture due to its
ambiguous interpretation. These gestures have been executed by 8 persons, female and male
aged between 18 and 55. Test persons have average to no Wii gaming experience. The raw

values have been stored to simulate and test different algorithm configurations.

€=

(a) Square (b) Circle (c) Roll (d) Z

Figure 5.1: Sample Gestures

WiiGee uses a Hidden Markov Model-based algorithm [19] for its gesture recognition. We have
used the same gesture set and the same amount of gesture samples as WiiGee. Table 5.1 shows
the recognition results for Dynamic Time Warping using three classifications, one for each axis.

Table 5.2 shows the recognition results for the plain difference version of the Dynamic Time

42
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Warping algorithm. Finally, table 5.3 shows the recognition rates for the Euclidean Norm

version of the Dynamic Time Warping algorithm.

Table 5.1: Recognition rates for the 3 axes separated DTW algorithm

3-axes DTW | Circle Roll Square Z
Circle 92.5% 0% 5% 2.5%
Roll 0%  100% 0% 0%
Square 4.17% 0%  94.17%  0.83%
Z 3.33% 0%  3.33% 93.33%

Table 5.2: Recognition rates for the plain difference DTW algorithm

Plain Diff. DTW | Circle Roll Square Z
Circle 90% 0%  5.83%  4.17%
Roll 0%  100% 0% 0%
Square 583% 0%  92.5% 0.83%
Z 3.33% 0%  3.33% 93.33%

Table 5.3: Recognition rates for the Euclidean Norm DTW algorithm

Fuclidean Norm. DTW | Circle Roll Square Z
Circle 77.5%  3.33%  14.17% 5%
Roll 5.83% 80.83% 2.5%  10.83%
Square 15.83%  3.33% 75% 5.83%
Z 8.33% 5% 11.67%  75%

Figure 5.2 shows the recognition rates for these three versions of Dynamic Time Warping and
the test results of WiiGee. From these results, we can conclude that the Euclidean Norm is not
a good recogniser for the given test set. Furthermore, it can be seen that for circle, roll and
square, Dynamic Time Warping outperforms WiiGee’s Hidden Markov model algorithm. The

results for the z gesture are close to each other.
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Figure 5.2: WiiGee recognition rates

Figure 5.3 shows the recognition rates per user, three of them had litle or none experience with
the Wii Remote. However, five users show recognition rates of 95% and higher. Two users are
having recognition rates around 90%. Notice that for these two users the Euclidean Norm seems

to be a valid recognising algorithm. For one user, the recognition rates are around 85%.

100.00
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50.00 -
40.00 -
30.00 -
20.00 -
10.00 -
0.00 -

M 3-axes DTW
M Plain Diff.

Recognition rate (%)

W Euclidean Diff

Figure 5.3: WiiGee user recognition rates
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5.2 Boxing gestures

The gestures used to compare this algorithm to the WiiGee implementation are 2D gestures
performed with a 3D device. We therefore used a second set of gestures to test the Wii Remote.
This second set consists out of 5 different boxing gestures as used in Nintendo Wii Sport!:

1. A Jab, a straight forward punch to the head as shown in Figure 5.4.

2. A Jab to the body.

3. A Hook, a sideways punch to the head as shown in Figure 5.5.

4. A Hook, to the body.

5. An Uppercut, an upwards punch targeting the opponents chin, as shown showed in Fig-

ure 5.6

Figure 5.4: Jab Figure 5.5: Hook Figure 5.6: Uppercut

Three different people, one right handed female, age 24, one right handed male, age 29 and one
left-handed male, age 28 have performed these gestures 15 times for each hand. This gives a
total of 90 training samples for each gesture. The interesting question concerning this gesture
is, When do we classify a gesture as a false positive? If a Jab to the head is classified as a Jab
to the body, the algorithm is only partly wrong. Therefore, two sets of results are presented and
compared. One set where the five gestures are evaluated differently and one where the Jabs and

Hooks count as one gesture.

limages courtesy of http://www.talkboxing.co.uk/guides/boxing_moves.html
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Tables 5.4, 5.5 and 5.6 show the recognition results for the three versions of the Dynamic Time

Warping algorithm using five gesture classifications.

Table 5.4: Boxing, 3-axes DTW for 5 gestures

3-axes DTW | Face Jab Body Jab Face Hook Body Hook Uppercut
Face Jab 96.67% 3.33% 0% 0% 0%
Body Jab 7.78% 86.67% 1.11% 1.11% 3.33
Face Hook 1.11% 0% 78.89% 18.89% 1.11%
Body Hook 0% 1.11% 15.56% 77.78% 5.56
Uppercut 6.67% 4.44% 2.22% 4.44% 82.22

Table 5.5: Boxing, plain difference for 5 gestures

Plain Diff DTW | Face Jab Body Jab Face Hook Body Hook Uppercut
Face Jab 88.89% 6.67% 0% 0% 4.44%
Body Jab 5.56% 86.67% 1.11% 1.11% 5.56
Face Hook 0% 0% 78.89% 17.78% 3.33%
Body Hook 0% 1.11% 13.33% 80% 5.56%
Uppercut 7.78% 6.67% 1.11% 4.44% 80%

Table 5.6: Boxing, Euclidean Norm for 5 gestures

Euclidean Norm DTW | Face Jab Body Jab Face Hook Body Hook Uppercut

Face Jab 70% 15.56% 6.67% 3.33% 4.44%
Body Jab 18.89% 51.11% 16.67% 8.89% 4.44

Face Hook 10% 14.44% 45.56% 16.67% 13.33%
Body Hook 4.44% 13.33% 14.44% 60% 7.78%

Uppercut 4.44% 6.67% 14.44% 8.89% 65.56
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Tables 5.7, 5.8 and 5.9 show the recognition rates for the three versions of the Dynamic Time

Warping algorithm using only three gesture classifications.

Table 5.7: Boxing, 3-axes DTW for 3 gestures

3-axes DTW Jab Hook  Uppercut
Jab 97.22% 1.11% 1.67%
Hook 1.11%  95.56% 3.33%
Uppercut 11.11%  6.67%  82.22%

Table 5.8: Boxing, plain difference for 3 gestures

Plain Diff DTW Jab Hook Uppercut
Jab 93.89% 1.11% 5%
Hook 0.56%  95% 4.44%
Uppercut 14.44%  5.56% 80%

Table 5.9: Boxing, Euclidean Norm for 3 gestures

Euclidean Norm DTW Jab Hook  Uppercut
Jab 77.78% 17.78% 4.44%
Hook 21.11% 68.33%  10.56%
Uppercut 11.11% 23.33%  65.56%
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Figure 5.7 shows a good overview of gesture recognition using the 5 different gesture sets. One
can see that the Euclidean Norm is not a good recogniser for the boxing gesture set. The highest

recognition rate is only 70% and the hook to the face even drops below 50%. The two other

recognition algorithms have more or less the same recognition rates.

100.00
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20.00
10.00

0.00

Recognition Rate

H 3-axes DTW
M Euclidean Norm
i Plain diff DTW

Face Jab Body Jab Face Hook Body Uppercut
Hook

Gestures

Figure 5.7: Recognition rates for Head Jab, Body Jab, Head Hook, Body Hook and Uppercut

Figure 5.8 shows the gesture recognition rates using 3 gesture sets. Here we can see that the
recognition rates are much higher than the previous results. Again, the Euclidean Norm is the
worst recogniser for this gesture set. The two other recognisers manage to get recognition results

around 95% for the Jab and the Hook. The uppercut scores around 80%, mostly due to false

classifications of Jabs.
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Figure 5.8: Recognition rates for Jab, Hook and Uppercut
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Finally, Figure 5.9 shows the recognition rates for our three users. The user results indicated

with (2) are the recognition results using only three gestures.

% positive recognition

100.00
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10.00 -
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Dorein Dorein (2) Johan Johan (2

Users

—

Maarten Maarten
(2)

M 3-axes DTW
M Euclidean Norm

W Plain diff DTW

Figure 5.9: Recognition rates for each user for the boxing gesture set



CHAPTER 5. EVALUATION 50

5.3 Cellphone Gestures

In order to test Android gestures preformed with a cellphone, another set of gestures, shown in

Figures 5.10 to 5.15, have been defined (Figures courtesy of Alp [1]).

Figure 5.11: Turn the phone upside down to un-

mute

Figure 5.14: Movement to the left Figure 5.15: Movement to the right
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When training the recogniser, it is important to clearly define the start and end of a gesture.
The iGesture training application shown in Figure 4.9 requires the user to touch the screen when
the gesture is started and the user needs to touch the screen again when the gesture is finished.
When training the flip gesture, this can be a challenge. We therefore decided to generate the
training samples only ourselves. The cellphone gestures where performed by one male, 28 years

old and each gesture was executed ten times.

Tables 5.10, 5.11 and 5.12 show the results for the three versions of the Dynamic Time Warping

algorithm.

Table 5.10: Cellphone results for three times DTW

3-axes DTW | Flip Flop Jiggle Pickup Left to Right Right to Left
Flip 10 0 0 0 0 0
Flop 0 10 0 0 0 0
Jiggle 0 0 10 0 0 0
Pickup 0 0 0 10 0 0
Left to Right | 0 0 0 0 9 1
Right to Left | 0 0 0 0 1 9

Table 5.11: Cellphone results for Plain Difference

Plain Diff. Flip Flop Jiggle Pickup Left to Right Right to Left
Flip 10 0 0 0 0 0
Flop 0 10 0 0 0 0
Jiggle 0 0 10 0 0 0
Pickup 0 0 0 10 0 0
Left to Right 0 0 0 0 9 1
Right to Left | 0 0 0 0 1 9
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Table 5.12: Cellphone results for Euclidean Norm

Euclidean Norm

Flip Flop Jiggle

Pickup Left to Right

Right to Left

Flip

Flop

Jiggle
Pickup

Left to Right
Right to Left

10 0
1 8
0 0
0 0
0 0
0 0

0
1

—_

o O

0
0

o O ©

0

NSO O O O

0

_ o O O

Qo
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Chapter 6

Future Work

6.1 Sensor Fusion Using the Wii Motion Plus

iGesture currently uses the WiiGee library for the communication with the Wii Remote. Besides
communication, WiiGee encapsulates the low level Wii Mote memory registry readings one has
to preform in order to get the data. In the beginning of the WiiGee development, only the Wii
Remote was supported. Afterwards, the sensor bar and Wii Motion Plus was added. WiiGee
does not do a good job in processing WiiMotion Plus data. The continuous integration that is
preformed to turn the angular velocity into a angle is drifting. The data coming from the other
sensors should be used to correct this. It would be best if this sensor fusion is added to the

WiiGee library.

We only use WiiGee to communicate with the Wii Remote. The gesture recognition capabilities
of WiiGee are not used. It could be worth it to implement the Wii Remote communication
directly in iGesture without using the WiiGee library. It would then be possible to implement

Wii Motion Plus sensor fusion in iGesture.

When implementing sensor fusion, Kalmann filters [11] are widely used. Complementary filters

which are a simpler version of Kalmann filters could be an interesting alternative to this problem.

6.2 Extending and Adding Recognition Algorithms

We have implemented a version of the Dynamic Time Warping algorithm. This is a very flex-

ible algorithm for which numerous variations exist [18, 9, 21]. Some of these variations would
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probably result in better recognition rates and lower resource usage.

Besides Dynamic Time Warping, other algorithms should be implemented. Hidden Markov
Models are another technique used in gesture recognition [3, 5, 22]. It is even possible to

combine Dynamic Time Warping with Hidden Markov Models [15].

6.3 Processing of Data Streams

When using 2D input devices, the start and stop values of the performed gesture are clearly
defined. For instance, when performing a gesture with a mouse, the gesture starts when pressing

the left mouse button and stops when releasing the button.

When using motion sensing input devices, this is no longer the case. They provide an endless
stream of sensor data which could contain preformed gestures that should be classified. How
does one find these gestures in an efficient way and can this be optimised based on training
gesture analysis? The process of finding gestures in a stream of sensor data is called gesture

spotting. Possible solutions to this problem can be found in [7, 24]



Chapter 7

Conclusion

We began this thesis with an in depth investigation of common sensors and devices. We explained
how to handle certain sensor data and how sensors can be combined to improve sensor accuracy.
We identified the common pitfalls of double integration and tilt, and we explained why this will
result in inaccurate data. This background study enabled us, and should help future developers

to process sensor data from 3D motion sensing devices in the most optimal way.

Secondly, we introduced a new IP-based communication protocol for iGesture. This message
protocol enables developers to easily integrate new motion sensing devices with iGesture. The
protocol can be used one all devices with a built-in WiFi connection. We have implemented
an application that can be installed on Android devices, augmenting them with iGesture IP

support. This application turns Android devices into iGesture input devices

Finally, using our initial research and our Android implementation, we have been able to develop
a new 3D recognition algorithm. This new algorithm, which is based on the k-nearest neighbour
and Dynamic Time Warping algorithms, will help iGesture users to record, test and deploy 3D
gesture recognition in their own applications. We have performed multiple tests with different
datasets to measure the performance of our algorithm. These tests have proven that Dynamic

Time Warping is a good choice for 3D gesture recognition in iGesture.
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Appendix A

Wii Remote

A.1 BlueCove

To communicate with a WiiMote, a JSR82 compatible library is needed in combination with a
L2CAP compatible Bluetooth stack. WiiGee relies on the BlueCove JSR82 implementation to
handle this. iGesture uses the WiiGee library to communicate with the Wii Remote. BlueCove is
freely available for Windows, Mac OSX and Linux. BlueCove 2.1 released 2008-12-26 is currently

L In

the latest stable BlueCove version. This version has no support for x64 windows systems
windows 7 (x32 and x64), Microsoft did a redesign of its Bluetooth stack. BlueCove does claim
to support x64 operation systems. In the 2.1.1 BlueCove SNAPSHOT release, a x64 DLL is
included which should be able to communicate with Bluetooth devices on x64 based windows
systems. A Wii Remote needs the L2CAP protocol to communicate which is only present on
WIDCOMM? (nowadays broadcom) devices. Unfortunately, in the 2.1.1 version of BlueCove the
Bluetooth module registers as a Microsoft generic Bluetooth adapter disabling L2CAP support.

BlueCove does support x64 windows systems, but does not support L2CAP on x64 windows

systems eliminating the support to connect a Wii Remote on a x64 windows system.

"http://code.google.com/p/bluecove/issues/detail?id=109
2http://www.broadcom.com /support/bluetooth /update.php

o6
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A.2 WiiGee

The WiiGee library is used to communicate with a Wii Remote and Wii Motion Plus. Support
for the Wii Motion Plus was added to WiiGee at a later stage. The latest version available for
download on the WiiGee website?, is not the latest SVN version. A Wii Motion Plus bug is

present in this prebuilt version of the WiiGee library. When experiencing the following error:

Listing A.1: Wii motion plus error

Unknown data retrieved.

Al 30 00 00 00 00 00 00 00 00 0O 00O 00 00O 00O 00 00 00 00 00 0O 00 00

Try checking out the latest WiiGee development version from SVN and build your own custom

version of WiiGee.

3http://www.wiigee.org/
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Appendix B

Source Code

Listing B.1: Dynamic Time Warping shortest path algorithm
/%%
x Calculate shortest path in the matrix from 0;0 to i;]

* (top left —> down right)

* The algorithm starts at i;j and works its way up to 0:0 with the

x following constraints:

x 1. diagonal move counts as 0.5 whereas down or left move counts as 1
2. only go forward in time: down and right move is not allowed

* (0:0 is up/left and i:j down/right)
3

. the path must go from 0:0 to 1i:]

e e e e e
S Ot e W N

*

*

*/

@param matrix

private float calculateShortestPath (Float [][] matrix) {
int rowCount = matrix.length — 1;

int columnCount = matrix [rowCount|.length — 1;

// traverse the matrix from right-—>left
for (int column = columnCount; column >= 0; column——) {
// down—>up

for (int row = rowCount; row >= 0; row——) {

if (column = columnCount && row =— rowCount) {

o8
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*

*

*/

// last point in path, the lowest remaining cost till the end is

// this cost

}

else if (column = columnCount) {
// last column, the lowest cost to the end is on down 1 position

matrix [row | [ column]| 4= matrix [row + 1][column |;

}

else if (row = rowCount) {
// last rows, the lowest cost to the end is on it’s right side

matrix [row ][ column] 4= matrix [row][column + 1];

}

else {
// pick the lowest values down/right/(diagonal*0.5)
float down = matrix [row + 1][column];
float right = matrix[row]|[column + 1];

float diagonal = (float)(matrix[row + 1][column + 1] x 0.5);

matrix [row][column] += min(down, right, diagonal);

return matrix [0][0];

Listing B.2: Dynamic Time Warping Euclidean Norm algorithm

Calculates AccelerationSample EuclideanNorm:

sqrt (x 24y 242z °2)

This technique eliminates device rotation and gravity

@param challenge

Qreturn

10 private double euclideanNorm (AccelerationSample a, AccelerationSample b) {
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return Math.sqrt ((a.getXAcceleration() x a.getXAcceleration ())

JET:

+ (a.getYAcceleration() * a.getYAcceleration())
+ (a.getZAcceleration() * a.getZAcceleration ()))

— Math.sqrt ((b.getXAcceleration() % b.getXAcceleration ())

+ (b.getYAcceleration() * b.getYAcceleration())
+ (b.getZAcceleration() * b.getZAcceleration ()));

Listing B.3: Dynamic Time Warping difference algorithm

x Calculate the most naive difference between two AccelerationSamples

*

*

*

|x1—x2| + |yl—y2| + |zl—z1]

@param base

x @param challenge

% @Qreturn double plainDiff

*/

private double plainDiff(AccelerationSample base, AccelerationSample challenge) {

return Math.abs(base.getXAcceleration() — challenge.getXAcceleration ())

package org.

import
import
import
import
import
import
import
import
import
import
import

import

60

+ Math.abs(base.getYAcceleration () — challenge.getYAcceleration ())

+ Math.abs(base.getZAcceleration () — challenge.getZAcceleration ());

java.
java.
java.
java.
java.
java.
java.
java.
java.
java.
java.

java.

Listing B.4: iGesture IP device discovery

ximtec.igesture.tool.view.devicemanager.discoveryservice

io.BufferedReader;
io.IOException;
io.InputStreamReader;
lang . reflect . Constructor;
lang . reflect .InvocationTargetException;
net.InetAddress;
net.ServerSocket ;

net . Socket ;

net . UnknownHostException;
util . HashSet ;

util. Set;

util.logging . Level;
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import java.util.logging.Logger;

import
import
import

import

JET:

* An IP 3D

x {@link org.ximtec.igesture.tool.view.devicemanager.discoveryservice.

org.
org
org.

org.

ximtec .

.Ximtec.

ximtec.

ximtec .

device

igesture.io.AbstractGestureDevice;
igesture.io.DeviceDiscoveryService;
igesture.io.android.AndroidReader3D ;

igesture.util.Constant;

discovery service. It extends

* AbstractTuioDeviceDiscoveryService}

* @author

*

*/

public class Android3DDeviceDiscoveryService implements DeviceDiscoveryService {

Johan Bas

private static final Logger LOGGER = Logger

.getLogger (Android3DDeviceDiscoveryService. class.getName ());

private Set<AbstractGestureDevice< 7 |, ? >> devices;

/%%

x Constructor

/

public Android3DDeviceDiscoveryService () {

devices = new HashSet<AbstractGestureDevice< 7

@Override

7 >>();

public Set<AbstractGestureDevice< ? , ? >> discover () {

LOGGER. log (Level .INFO, 7 Android Device discovery started!”)

try {

InetAddress addr = InetAddress.getLocalHost ();
String ipAddr = addr.getHostAddress ();

3
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LOGGER. log (Level .INFO, ”Connect to: 7 4 ipAddr.toString ());
LOGGER. log (Level .INFO, ”Starting Android Gesture Server on port 807 );

ServerSocket serverSocket = null;
try {

serverSocket = new ServerSocket (80);
¥

catch (IOException e) {
System.out.println (”Could not listen on port: 807);

System . exit (1);

LOGGER. log (Level .INFO, ”Socket created.”);
LOGGER. log (Level .INFO, ”Listening to socket on port 80" );

Socket clientSocket = null;

try {
clientSocket = serverSocket.accept ();
@SuppressWarnings (" rawtypes”)
Constructor ctor;
try {
ctor = AndroidReader3D.class.getConstructor (Socket.class,
BufferedReader. class);
try {
BufferedReader in = null;

String name = "7

try {
in = new BufferedReader (new InputStreamReader (
clientSocket . getInputStream ()));
name = in.readLine ();
}

catch (IOException el) {
System.out.println (" Error:” + el);

AbstractGestureDevice< ? |, 7 > device = (AbstractGestureDevice< 7 | ?
.newlnstance (clientSocket , in);

String H temp — name. Split (77 . )’
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93 device .setName (temp [0]);

94 device.setDeviceType (Constant . TYPE3D);
95 device.setConnectionType ( Constant . CONNECTIONIP ) ;
96 device.setIsConnected (true);

97 device.setDevicelD (temp [1]);

98 devices.add(device );

99 }

100 catch (IllegalArgumentException e) {
101 e.printStackTrace ();

102 }

103 catch (InstantiationException e) {
104 e.printStackTrace ();

105 }

106 catch (IllegalAccessException e) {
107 e.printStackTrace ();

108 }

109 catch (InvocationTargetException e) {
110 e.printStackTrace ();

111 }

112 }

113 catch (SecurityException e) {

114 e.printStackTrace ();

115 }

116 catch (NoSuchMethodException e) {

117 e.printStackTrace ();

118 }

119 }

120 catch (IOException e) {

121 System . exit (1);

122 }

123 }

124 catch (UnknownHostException e) {

125 }

126

127 return devices;

128 }

129

130

131 @OQOverride
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public void dispose () {

devices.clear ();

Listing B.5: Android application used to send data to iGesture

package org.ximtec.igesture;

import java.io.BufferedWriter;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;

import java.net.InetAddress;
import java.net.Socket;

import java.util.List;

import android.app.Activity;

import android.content.Context;

import android.hardware. Sensor ;

import android.hardware. SensorEvent;
import android.hardware.SensorEventListener;
import android.hardware.SensorManager ;
import android.os.Bundle;

import android. util.Log;

import android.view . View;

import android.view.View.OnClickListener;
import android.widget.Button;

import android.widget . TextView;

x When loaded, the Activity will try to connect to the given server IP. The
x button click listener will enable and disable recording mode. Sensor changes
x* will be sent to the server if the connection is alive and the app is in

* recording mode.

%+ @author Johan Bas
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o

public class Application extends Activity implements SensorEventListener {

private static final String ANDGESTURESTOP = ") — End of Gesture!”;
private static final String ANDGESTUREOFF = "OFF” ;

private static final String ANDGESTURESTART = ”S — Start of Gesture!”;
private static final String ANDGESTUREON = "ON”;

private String serverIP = 7127.0.0.17;

private final static int serverPort = 80;

private Socket socket = null;

private boolean connected = false;

private PrintWriter socketWriter = null;

private SensorManager mgr;
private List<Sensor> sensorList;

private Sensor sensor = null;

private boolean record = false;

private final static double TRESHOLD = 0.1;

/%%

x Called when the activity is first created.

o/

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState );
setContentView (R.layout.application );
serverIP = getIntent (). getExtras (). getString ("serverIP”);

connectToServer ();

mgr = (SensorManager)getApplicationContext (). getSystemService (
Context .SENSOR_-SERVICE ) ;
for (Sensor semnsor : mgr.getSensorList (Sensor.TYPEACCELEROMETER)) {
if (sensor.getType() = Sensor.TYPEACCELEROMETER) {

this.sensor = sensor;
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73 mgr.registerListener (this, sensor, SensorManager.SENSOR DELAY FASTEST);
74

75 final Button capture = (Button)findViewByld(R.id.Capture);

76

7 capture.setOnClickListener (clickListenerForCaptureButton (capture));
78

79 }

80

81

82 /%%

83 * Try to connect to a given server IP

84 * /

85 private void connectToServer () {

86 try {

87 InetAddress serverAddr = InetAddress.getByName(serverIP );

88 Log.d(”IGesture”, ”Connecting ... 7 + serverAddr + ”7:” + serverPort);
89 socket = new Socket (serverAddr, serverPort);

90

91 try {

92 Log.d(”IGesture”, ”Sending command.” );

93 socketWriter = new PrintWriter (new BufferedWriter (

94 new OutputStreamWriter (socket.getOutputStream ())), true);
95

96 connected = true;

97 socketWriter. println (android. os. Build .MODEL + 7 :”

98 + android.os.Build.ID);

99 TextView msg = (TextView)findViewByld (R.id .Msg);

100 msg. setText ("CONNECTED” ) ;

101 }

102 catch (Exception e) {

103 connected = false;

104 Log.e("IGesture”, "Error: 7, e);

105 }

106 }

107 catch (Exception e) {

108 connected = false;

109 Log.e(”IGesture”, "Error: 7, e);

110 }

111 }
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112

113

114 [

115 x Handle the button clicks —> enable and disable recording state of the
116 * application

117 *

118 x @param Button The capture button on the activity

119 * @Qreturn OnClickListener

120 %/

121 private OnClickListener clickListenerForCaptureButton (final Button capture) {
122 return new View.OnClickListener () {

123

124 @Override

125 public void onClick (View v) {

126 record = !record;

127 TextView msg = (TextView)findViewByld (R.id.Msg);

128 msg.setText (” Connected:” + connected + 7 — recording:” + record);
129

130 if (record) {

131 capture . setText (ANDGESTURE.ON) ;

132 socketWriter . println (ANDGESTURESTART) ;

133 }

134 else {

135 capture . setText (ANDGESTURE.OFF ) ;

136 socketWriter . println (ANDGESTURESTOP ) ;

137 }

138 }

139 s

140 }

141

142

143 @Override

144 public void onSensorChanged(SensorEvent event) {

145 // http://developer.android.com/reference/android/hardware/SensorEvent.html#values
146 switch (event.sensor.getType()) {

147

148 case Sensor.TYPELINEAR ACCELERATION: // sensor fusion

149 if (record)

150 socketWriter. println ("A — 7 4 event.values[0] + 7:”



151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

APPENDIX B. SOURCE CODE

+ event.values[1] + 7:7 4+ event.values[2] + 7:7

+ event.timestamp );

break;

default:
break;

/%%

x Idle filter

*

x @param event

x @Qreturn true if idle, false if in motion

o/

private boolean idle (SensorEvent event) {
if (event.values[0] < TRESHOLD && event.values[0] < TRESHOLD

&& event.values [0] < TRESHOLD)
return true;

else

return false;

@Override
protected void onResume() {

super .onResume () ;

sensorList = mgr. getSensorList (Sensor . TYPE_ALL);
for (Sensor sensor : sensorList) {
if (sensor.getType() = Sensor.TYPELINEAR ACCELERATION
|| sensor.getType() = Sensor.TYPEACCELEROMETER
|| sensor.getType() = Sensor .TYPE.GYROSCOPE) {
mgr.registerListener (this, sensor,

SensorManager . SENSOR_ DELAY FASTEST) ;
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@Override
protected void onPause() {
super .onPause ();
// Stop updates to save power while the app is paused

mgr. unregisterListener (this);

@Override
public void onAccuracyChanged(Sensor sensor, int accuracy) {
if (sensor.getType() = Sensor.TYPEACCELEROMETER) {
if (accuracy = SensorManager.SENSOR.STATUS_ ACCURACY_HIGH)
Log.d(” accuracy”, "ACCELEROMETER Accuracy is high”);

else if (accuracy = SensorManager .SENSORSTATUS_ ACCURACY_LOW)
Log.d(”accuracy”, "ACCELEROMETER Accuracy is low”);

else if (accuracy = SensorManager .SENSOR STATUS_ ACCURACY MEDIUM)
Log.d(”accuracy”, "ACCELEROMETER Accuracy is medium”);

}

Listing B.6: Android application used to send data to iGesture connection screen code

package org.ximtec.igesture;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;

import android. util . Log;

import android.view.Menu;

import android.view.Menulnflater;
import android.view.Menultem;
import android.view. View;

import android.widget.Button;
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import android.widget.TextView;

JET:

*

* @author Johan Bas

*

*/

public class Connection extends Activity {

/%%

x Called when the activity is first created.

«/
@OQOverride

public void onCreate(Bundle savedInstanceState) {

super.onCreate (savedInstanceState);

setContentView (R.layout.connection);

Log.d(”IGesture”, ”Start app.”);

final Button random = (Button)findViewByld (R.id.Connect);

random . setOnClickListener (new View.OnClickListener () {

public void onClick (View v) {
TextView ipv = (TextView)findViewBylId(R.id.ip);

Intent intent = new Intent (v.getContext(), Application.class);

intent . putExtra(”serverIP” , ipv.getText ().toString());

startActivity (intent );

/%%

* Add menu to main view. Menu has a quit button.

/
@OQOverride

public boolean onCreateOptionsMenu(Menu menu) {

Menulnflater inflater = getMenulnflater ();

inflater

.inflate (R.menu.menu, menu);

70



53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

© 00 N O Ot e W N

e e e e T e e T
© o0 N O Ut ks W N = O

APPENDIX B. SOURCE CODE

return true;

EE

*+ Handle quit

/

@OQOverride

public boolean onOptionsItemSelected (Menultem item) {

button

if pressed.

switch (item.getItemId()) {

case R.id.quit:

this. finish ();

return true;

default :

Listing B.7: Process data coming from an IP device according to the protocol

return super.onOptionsItemSelected (item );

package org.ximtec.igesture.io.android;

import java.io.IOException;

JET:

*
* @author

*

*/

Johan Bas

public class AndroidStreamer extends Thread {

private
private
private
private

private

static
static
static
static

static

final
final
final
final

final

String
String
String
String
String

PARSE_ACCELERATION = "A” ;
PARSEIDLE = "1”;
PARSE.QUIT = Q" ;
PARSE.STOP = "S”;
PARSEBYE = "Bye.” ;
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private boolean recording = false;

private AndroidReader3D device;

public AndroidStreamer (AndroidReader3D device) {

this.device = device;

@Override

public void run() {

String inputLine;

try {

while ((inputLine = device.getBufferedReader ().readLine()) != null) {

if (inputLine.equals(PARSEBYE)) {
System.out.println (PARSEBYE);

break;

}

else if (inputLine.startsWith (PARSESTOP)) {

this.device.startGesture ();

recording = true;

}

else if (inputLine.startsWith (PARSE.QUIT)) {

// end gesture

this.device.stopGesture ();

recording = false;

}

else {

if (recording) {
if (inputLine.startsWith (PARSEIDLE)) {

}

else if (inputLine.startsWith (PARSE_.ACCELERATION)) {

// idle state

inputLine = inputLine.substring (4);
String [] coordinated = inputLine.split(”:”);

double x = Double.parseDouble(coordinated [0]);
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}

double y = Double. parseDouble (coordinated [1]);
double z = Double. parseDouble(coordinated [2]);

long time = Long.parseLong(coordinated [3]);

this.device.addAccelerationValues(x, y, z, time);

catch (IOException e) {

e.printStackTrace ();

Listing B.8: Proof of concept application

package be.johanbas;

import
import
import
import
import

import

import
import
import
import
import
import
import
import
import

import

java.
java.
java.
java.
java.

java.

io.BufferedReader;
io.FileNotFoundException;
io.FileReader;
io.IOException;
util.LinkedList;

util . List ;

android .app. Activity;

android.content . Context ;

android . graphics. Color;

android . hardware. Sensor ;

android . hardware. SensorEvent ;

android . hardware. SensorEventListener;

android . hardware . SensorManager ;

android . os.Bundle;

android . os.PowerManager;

android . view . Menu;
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import android.view.Menulnflater;

import
import

import

import
import
import
import

import

JET:

*

android . view . Menultem ;

android . widget . ScrollView ;

android . widget . TextView;

com. androidplot .
com. androidplot
com. androidplot
com.androidplot

com. androidplot

* @author Johan Bas

*

*/

public class Main extends Activity implements SensorEventListener {

private

private

private XYPlot xPlot

private XYPlot yPlot

private XYPlot zPlot

Plot;

.xy . BoundaryMode ;
.xXy.LineAndPointFormatter
.xy.SimpleXYSeries;

.xy . XYPlot;

SensorManager sensorMgr = null;

List <Sensor> sensorList;

= null;
= null;

= null;

private SimpleXYSeries xSeries = new SimpleXYSeries(”X Levels”);
private SimpleXYSeries ySeries = new SimpleXYSeries(”Y Levels” );
private SimpleXYSeries zSeries = new SimpleXYSeries(”Z Levels” );
private LinkedList<Number> xHistory = new LinkedList<Number>();
private LinkedList<Number> yHistory = new LinkedList<Number>();
private LinkedList<Number> zHistory = new LinkedList<Number>();
private Sensor sensor = null;

private static final

private static final

private static final

private static final

private static final

private static final

int HISTORY_SIZE = 20;

double RECOGNITION.TRESHOLD_FLIP = 4;
double RECOGNITION.TRESHOLD_SIDEWAYS = 5;
int ACCELERATION_LISTSIZE = 20;

double IDLE.TRESHOLD = 0.3;

int DTWINTERVAL = 4;

74



61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

APPENDIX B. SOURCE CODE 75

private
private
private
private
private

private

private

private

private

TextView textView;

static List<Gesture> flip = new LinkedList<Gesture >();

static List<Gesture> flop = new LinkedList<Gesture >();

static List<Gesture> right = new LinkedList<Gesture >();

static List<Gesture> left = new LinkedList<Gesture >();

static List<Gesture> fullList = new LinkedList<Gesture >();

DIW dtw;

List<Acceleration> accelerations = new LinkedList<Acceleration >();
PowerManager . WakeLock wl;

@OQOverride

public void onCreate(Bundle savedInstanceState) {

super.onCreate (savedInstanceState );

setContentView (R.layout . main);

PowerManager pm = (PowerManager)getSystemService (Context .POWERSERVICE);

wl =

xPlot
yPlot
zPlot

setup
setup

setup

Senso

for (

pm. newWakeLock (PowerManager . FULL WAKE LOCK, ”DoNotDimScreen” );

(XYPlot) findViewById (R.id . xPlot );
(XYPlot) findViewByld (R. id . yPlot );
— (XYPlot) findViewByld (R. id . zPlot );

Chart (xPlot, xSeries);
Chart (yPlot, ySeries);
Chart (zPlot , zSeries);

rMgr = (SensorManager)getApplicationContext (). getSystemService (
Context .SENSOR_SERVICE ) ;
Sensor sensor : sensorMgr

.getSensorList (Sensor . TYPE LINEAR_ ACCELERATION)) {

if (sensor.getType() == Sensor.TYPELINEAR ACCELERATION) {

this.sensor = sensor;
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sensorMgr.registerListener (this, sensor, SensorManager.SENSORDELAY GAME);
setupText ();
readAccelerations ();

if (fullList.size( 0) {
1

fullList .addAl ;

) =
(flip);
fullList .addAll(flop);
( );
( t

fullList .addAll(left );
fullList .addAll(right );
textView .append (” Gestures loaded 7 + fullList.size () + "\n”);

dtw = new DIW(0);

private static void readAccelerations () {

flip = getContents(”/sdcard/gestures/androidflip.txt”, "Flip”);

flop = getContents(”/sdcard/gestures/androidflop.txt”, "Flip”);

right = getContents(”/sdcard/gestures/androidright.txt”, ”Sideways” );
left = getContents(”/sdcard/gestures/androidleft.txt”, ”Sideways”);

static public List<Gesture> getContents(String filepath , String type) {
BufferedReader input = null;
try {
input = new BufferedReader (new FileReader(filepath));

}

catch (FileNotFoundException e) {

e.printStackTrace ();

List <Gesture> gestures = new LinkedList<Gesture >();

List<Acceleration> accelerations = new LinkedList<Acceleration >();
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try {

String line = input.readLine ();

while (line != null) {

if (line.trim().equals(””)) {
Gesture gesture = new Gesture ();
gesture.setAccelerations (accelerations );
gesture.setType(type);
gestures.add(gesture );

accelerations = new LinkedList<Acceleration >();
}
else {
Acceleration acc = new Acceleration ();
String [] split = line.split (7:7);
acc.setX (Float.parseFloat (split [0]));
acc.setY (Float.parseFloat (split [1]));
acc.setZ (Float.parseFloat (split [2]));
acc.setTimestamp (Long. parseLong (split [3]));
accelerations .add(acc);
}
line = input.readLine ();
}
Gesture gesture = new Gesture ();
gesture.setAccelerations (accelerations);
gestures.add(gesture);
gesture .setType(type);
accelerations = new LinkedList<Acceleration >();

}

catch (IOException ex) {

ex.printStackTrace ();

return gestures;

7
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private

void setupText () {

textView = (TextView)findViewBylId (R.id.textViewl);
textView .setTextColor (Color .WHITE) ;

textView.setSelected (true);

textView.setText (77 );

}
private void scroll () {
final ScrollView sv = (ScrollView)findViewById(R.id.start_scroller );
sv.post (new Runnable() {
public void run() {
sv.fullScroll (ScrollView .FOCUSDOWN) ;
}
Ik
}
private void setupChart (XYPlot plot, SimpleXYSeries series) {
plot.addSeries (
series ,
new LineAndPointFormatter (Color.arghb (100, 255, 255, 255), Color.rgb(
255, 255, 255), Color.argb(0, 0, 0, 0)));
plot .setBackgroundColor ( Color .BLACK);
plot.setBorderStyle (Plot.BorderStyle .NONE, 0f, 0f);
plot.setRangeBoundaries(—15, 15, BoundaryMode.FIXED);
plot.setBorderPaint (null);
plot . disableAllMarkup ();
plot.setPlotMargins (0, 0, 0, 0);
plot.setPlotPadding (0, 0, 0, 0);
plot .getLegendWidget ().setVisible (false);
plot.setDomainLabel (77 );
}
@Override
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public void onAccuracyChanged (Sensor arg0, int argl) {
// TODO Auto—generated method stub

@Override
public void onSensorChanged(SensorEvent sensorEvent) {

if (sensorEvent.sensor.getType() = Sensor.TYPELINEAR ACCELERATION) {

xHistory .addLast (sensorEvent . values [0]);
yHistory .addLast (sensorEvent.values [1]);

zHistory .addLast (sensorEvent . values [2]);

// get rid the oldest sample in history:
if (xHistory.size () > HISTORY.SIZE) {
xHistory .removeFirst ();
yHistory .removeFirst ();

zHistory .removeFirst ();

xSeries.setModel (xHistory , SimpleXYSeries.ArrayFormat.Y_VALS ONLY);
ySeries.setModel (yHistory , SimpleXYSeries.ArrayFormat.Y_VALS ONLY );
zSeries .setModel (zHistory , SimpleXYSeries. ArrayFormat.Y_VALS.ONLY );

xPlot .redraw ();
yPlot .redraw ();

zPlot .redraw ();

processAcceleration (sensorEvent );

private int count = 0;

private void processAcceleration (SensorEvent sensorEvent) {

count++4;
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Acceleration acc = new Acceleration ();
acc.setX (sensorEvent.values [0]);
acc.setY (sensorEvent.values [1]);

acc.setZ (sensorEvent.values [2]);

accelerations .add(acc);

if (accelerations.size () > ACCELERATION_LIST_SIZE) {

accelerations.remove (0);

if (count % DTWINTERVAL — 0) {
Gesture g = new Gesture ();
g.setAccelerations (accelerations );

g = dtw.findBestMatch(g, fullList );

if (g.getType().equals(”Flip”)
&& g.getMaxDistanceToOtherGestures () < RECOGNITION_TRESHOLD FLIP) {
textView.setText (g.getType() + 7:”
+ g.getMaxDistanceToOtherGestures () );
}
else if (g.getType().equals(”Sideways”)
&& g.getMaxDistanceToOtherGestures () < RECOGNITION.TRESHOLD_SIDEWAYS) {
textView.setText (g.getType() + 7
+ g.getMaxDistanceToOtherGestures ());

private boolean idle (SensorEvent sensorEvent) {
if (sensorEvent.values[0] > IDLE.-TRESHOLD
|| sensorEvent.values[1] > IDLE.TRESHOLD
|| sensorEvent.values[2] > IDLE.TRESHOLD)
return false;
else

return true;
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295

296 @Override

297 protected void onResume() {

298 super .onResume () ;

299 wl.acquire ();

300

301 sensorList = sensorMgr. getSensorList (Sensor . TYPE_ALL);
302 for (Sensor sensor : sensorList) {

303 if (sensor.getType() = Sensor.TYPELINEAR ACCELERATION) {
304 sensorMgr.registerListener (this, sensor,
305 SensorManager .SENSOR.DELAY GAME ) ;
306 }

307 }

308 }

309

310

311 @Override

312 protected void onPause() {

313 super.onPause ();

314 // Stop updates to save power while the app is paused
315 sensorMgr. unregisterListener (this);

316 wl.release ();

317 }

318

319

320 IET;

321 * Add menu to main view. Menu has a quit button.
322 * /

323 @OQOverride

324 public boolean onCreateOptionsMenu(Menu menu) {
325 Menulnflater inflater = getMenulnflater ();

326 inflater.inflate (R.menu.menu, menu);

327 return true;

328 }

329

330

331 o

332 x Handle quit button if pressed.

333 %/
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@Override
public boolean onOptionsItemSelected (Menultem item) {
switch (item.getItemId()) {
case R.id.quit:
this. finish ();

sensorMgr . unregisterListener (this);

return true;
default:

return super.onOptionsItemSelected (item);

Listing B.9: Proof of concept application Dynamic Time Warping algorithm used

package be.johanbas;

import java.util.LinkedList;

import java.util.List;

JET:

*
* @author Johan Bas
*

*/
public class DIW {

private double treashold;

public DIW(double treashold) {
this.treashold = treashold;

public Gesture findBestMatch(Gesture challenge , List<Gesture> bases) {
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*

*

/

Gesture g = new Gesture ();
g.setMaxDistanceToOtherGestures (50);
for (Gesture base : bases) {
double path = warpInTimeDynamicallyPlainDiff(challenge , base);
if (path < g.getMaxDistanceToOtherGestures()) {
g = base;

g.setMaxDistanceToOtherGestures (path);

return g;

Dynamic Time Warping algorithm to calculate the difference between two

gestures

@param sampleAccelerations

@param challengeGesture

@return boolean if the shortest path is beneath the threshold

public boolean warpInTimeDynamically (Gesture challenge, Gesture base) {

Float [][] matrix = generateMatrixPlainDiff (challenge , base);

return calculateShortestPath (matrix) < treashold;

Dynamic Time Warping algorithm to calculate the difference between two

gestures

@param sampleAccelerations

@param challengeGesture

@return shortest path
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64 public double warpInTimeDynamicallyEuclideanNorm ( Gesture challenge ,

65 Gesture base) {

66 Float [][] matrix = generateMatrixEuclideanNorm (challenge , base);

67 return calculateShortestPath (matrix);

68 }

69

70

71 /%

72 * Dynamic Time Warping algorithm to calculate the difference between two
73 x gestures

74 *

75 x @param sampleAccelerations

76 x @param challengeGesture

77 *

78 * Qreturn shortest path

79 */

80 public double warpInTimeDynamicallyPlainDiff ( Gesture challenge , Gesture base) {
81 Float [][] matrix = generateMatrixPlainDiff (challenge , base);

82 return calculateShortestPath (matrix);

83 }

84

85

86 EE

87 x Dynamic Time Warping algorithm to calculate the difference between two
88 * gestures 3 times for each axis

89 *

90 x @param challenge

91 x @param base

92 * @Qreturn Shortest path (3 warpes combined)

93 */

94 public double warpInTimeDynamicallyThreeTimes(Gesture challenge , Gesture base) {
95 List<Float> baseValuesX = new LinkedList<Float >();

96 for (Acceleration acc : base.getAccelerations()) {

97 baseValuesX .add (acc.getX ());

98 }

99

100 List<Float> baseValuesY = new LinkedList<Float >();

101 for (Acceleration acc : base.getAccelerations()) {

102 baseValuesY .add (acc.getY ());
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/%%

*
*
*
*

*

/

List<Float> baseValuesZ = new LinkedList<Float >();

for (Acceleration acc : base.getAccelerations()) {

baseValuesZ.add (acc.getZ ());

List<Float> challengeValuesX = new LinkedList<Float >();
for (Acceleration acc : challenge.getAccelerations()) {

challengeValuesX .add (acc.getX ());

List<Float> challengeValuesY = new LinkedList<Float >();
for (Acceleration acc : challenge.getAccelerations ()) {

challengeValuesY .add(acc.getY ());

List<Float> challengeValuesZ = new LinkedList<Float >();
for (Acceleration acc : challenge.getAccelerations()) {

challengeValuesZ .add(acc.getZ ());

85

}

Float [][] matrixx = generateMatrix (baseValuesX , challengeValuesX);
Float [][] matrixy = generateMatrix (baseValuesY , challengeValuesY );
Float [][] matrixz = generateMatrix (baseValuesZ , challengeValuesZ);

return calculateShortestPath (matrixx) + calculateShortestPath (matrixy)

+ calculateShortestPath (matrixz);

Most basic way to generate a matrix: between two Lists

@param baseValues
@param challengeValues

@Qreturn matrix

private Float [][] generateMatrix (List<Float> baseValues,

of

double wvalues
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142 List<Float> challengeValues) {

143

144 Float [][] matrix = new Float |[baseValues.size ()][challengeValues.size ()];
145 for (int i = 0; i < baseValues.size (); i++) {

146 for (int j = 0; j < challengeValues.size (); j++) {

147 matrix[1][j] = Math.abs(baseValues.get(i) — challengeValues.get(j));
148 }

149 }

150

151 return matrix;

152 }

153

154

155 JET

156 * Generate a matrix with the differences between two gestures:

157 *

158  sqrt (x1724y17°242172) — sqrt(x2°24y2°2+22°2) for all acceleration values
159 *

160 x @param sampleAccelerations

161 x @param challengeGesture

162 * Qreturn

163 * /

164 private Float [][] generateMatrixEuclideanNorm (Gesture a, Gesture b) {
165 Float [][] matrix = new Float[a.getAccelerations ().size ()][b

166 .getAccelerations ().size ()];

167

168 for (int i = 0; i < a.getAccelerations ().size (); i++) {

169 for (int j = 0; j < b.getAccelerations ().size (); j++) {

170 double temp = euclideanNorm(a.getAccelerations ().get(i))

171 — euclideanNorm (b. get Accelerations ().get(j));

172 matrix[i][j] = (float)Math.sqrt (temp * temp);

173 }

174 }

175

176 return matrix;

177 }

178

179

180 private Float [][] generateMatrixPlainDiff(Gesture a, Gesture b) {
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181 Float [][] matrix = new Float[a.getAccelerations ().size ()][b
182 .getAccelerations (). size ()];

183

184 for (int i = 0; i < a.getAccelerations ().size (); i++) {

185 for (int j = 0; j < b.getAccelerations ().size (); j++) {
186 double temp = plainDiff(a.getAccelerations ().get(i), b
187 .getAccelerations ().get(j));

188 matrix[1][j] = (float)Math.sqrt (temp * temp);

189 }

190 }

191

192 return matrix;

193 }

194

195

196 /%%

197 x Calculate AccelerationSample eigen value: sqrt(x"24+y"2+z72)
198 *

199 * This techniques eliminates device rotation and gravity

200 *

201 x @param challenge

202 * @return

203 * /

204 private double euclideanNorm (Acceleration a) {

205 return Math.sqrt ((a.getX () * a.getX()) + (a.getY() * a.getY())
206 + (a.getZ () = a.getZ()));

207 }

208

209

210 private double plainDiff(Acceleration a, Acceleration b) {

211 return Math.abs(a.getX () — b.getX()) + Math.abs(a.getY () — b.getY ())
212 + Math.abs(a.getZ () — b.getZ ());

213 }

214

215

216 o

217 x Calculate shortest path in the matrix from 0;0 to i;j (top left — down
218 « right)

219 *
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* The algorithm starts at i;j and works its way down to 0:0 with the

x following constraints:

1. diagonal move counts as 0.5 whereas down or left move counts as 1
2. only go forward in time: down and right move is not allowed

* (0:0 is up/left and i:j down/right)
3.

the path must go from 0:0 to i:]

x @param matrix

x @Qreturn

*/

private float calculateShortestPath (Float[][] matrix) {
int rowCount = matrix.length — 1;

int columnCount = matrix [rowCount|. length — 1;

// traverse the matrix from right—left
for (int column = columnCount; column >= 0; column——) {
// down—>up

for (int row = rowCount; row >= 0; row——) {

if (column = columnCount && row = rowCount) {
// last point in path, the lowest remaining cost till the end is

// this cost

}

else if (column = columnCount) {
// last column, the lowest cost to the end is on down 1 position

matrix [row ] [column]| += matrix[row + 1][column |;

}

else if (row = rowCount) {
// last rows, the lowest cost to the end is on it’s right side

matrix [row ][ column] 4= matrix [row][column + 1];

}

else {
// pick the lowest values down/right /(diagonal=0.5)
float down = matrix [row + 1][column];

float right = matrix[row][column + 1];



259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

© 00 N O Ut s W N

N N N = e = e e e s e
N = O © 0 O Ut e W Ny = O

APPENDIX B. SOURCE CODE 89

float diagonal = (float)(matrix[row + 1][column + 1] x 0.5);

matrix [row ][ column] += min(down, right, diagonal);

return matrix [0][0];

private Float min(float down, float right, float diagonal) {
return Math.min(Math.min(down, right), diagonal);

Listing B.10: Proof of concept application Gesture class

package be.johanbas;

import java.util.LinkedList;

import java.util.List;

[ %%
*
* @author Johan Bas
*
f

public class Gesture implements Cloneable {

List<Acceleration> accelerations = new LinkedList<Acceleration >();
private double maxDistanceToOtherGestures;

private String type = 77 ;

public String getType() {

return type;
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public void setType(String type) {
this.type = type;

public List<Acceleration> getAccelerations () {

return accelerations;

public void setAccelerations (List<Acceleration> accelerations) {

this.accelerations = accelerations;

@Override
public String toString () {

return ” Gesture [accelerations=" + accelerations + 7]7;

public boolean equals(Gesture gesture) {
return gesture.getAccelerations ().get (0).getTimestamp() = this.accelerations

.get (0).getTimestamp ();

public double getMaxDistanceToOtherGestures () {

return maxDistanceToOtherGestures;

public void setMaxDistanceToOtherGestures(double maxDistanceToOtherGestures) {

this.maxDistanceToOtherGestures = maxDistanceToOtherGestures;
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public Object clone() throws CloneNotSupportedException {

Gesture gesture = new Gesture ();

List<Acceleration> accs = new LinkedList<Acceleration >();
for (Acceleration acceleration : accelerations) {
Acceleration acc = (Acceleration)acceleration.clone ();

accs.add (acc);

}

gesture.setAccelerations (accs);

return gesture;

Listing B.11: Proof of concept application Acceleration class

package be.johanbas;

JET:
*
* @author Johan Bas
*
*/

public class Acceleration implements Cloneable {

private float x;
private float y;
private float z;

private float timestamp;

public float getX () {

return x;

public void setX(float x) {
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this.x = x;

public float getY () {

return y;

public void setY (float y) {
this.y = y;

public float getZ () {

return z;

public void setZ(float z) {

this.z = z;

)

public float getTimestamp () {

return timestamp;

public void setTimestamp (float values) {

this.timestamp = values;

@Override
public String toString () {

return " Acceleration [x= + x4+ 7, ¥

+ timestamp + 7]7;

T+ y + 7, 2= timestamp="
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public Object clone() throws CloneNotSupportedException {
return super.clone ();
}
}
Listing B.12: Example of a batch processing configuration File
<?xml version="1.0" encoding="UTF-8"7>
<iGestureBatch>
<algorithm name="org.ximtec.igesture.algorithm .dtw.DynamicTimeWarpingAlgorithm”>
<parameter name="TRESHOLD” >
<for start="1" end="10" step="1" />
</parameter>
<parameter name="METRIC">
<for start="1" end="3" step="1" />
</parameter>
</algorithm>

</iGestureBatch>
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