Tag-based Social Interest Discovery

Xin Li / Lei Guo / Yihong (Eric) Zhao

Yahoo!Inc – 2008

Presented by: Tuan Anh Le (aletuan@vub.ac.be)
Outline

- Introduction
- Data set collection & Pre-processing
- Architecture for (I) Social Interest Discovery
- Analysis of Tags
- Evaluation results
- Conclusions
Introduction

- Social network systems are becoming more successful popular, and generate challenges

- Discovering social interests shared by group of users is very important
 - Detecting and representing user’s interests

- Two types of existing approaches:
 - User-centric: based on social connections among users
 - Object-centric: based on the common objects fetched by users
Introduction

- Paper’s approach: discover social interests by utilizing user-generated tags
 - Statistical analyse the real-word traces of tags and web content (*delicious.com*)
 - User-generated tags are consistent with the content they are being attached
 - Develop the Social Interest Discovery system
 - Discovering the common user interests
 - Clustering users and their saved URLs by topic (set of tags)
Data set

- Data is collected from delicious.com database. Each post has form:
 \[p = \{ \text{user}, \text{URL}, \text{tags} \} \]
- How many data did they collect?
 - 4.3 millions bookmarks, 0.2 millions users, and 1.4m URLs
 - After pre-processing: ~ 0.3m tags and 4m keywords
- Data collection & pre-processing
 1. Crawl the URLs and download pages
 2. Discard all non-html objects
 3. Coding to UTF 8 & removing non English paper
 4. Stopword List (i.e. “a”, “an”, “the” etc…)
 5. Porter Stemming algorithm* (i.e. “fishing”, “fisher”, “fished” → “fish”)
 6. Analysis distributions of frequencies (Tags, URLs and User) over the Bookmarks
Data set

Statistical view
- Distributions follow power law* (linear graph in log-log scale)
- Distributions have long tails! (~ Pareto principle: 80/20 rule)

Remarks
- Most documents are unpopular
- Most users are inactive
- Top popular tags connect most of the users
Architecture of SID

- Discovery Social Interest by Tags
 - Idea: Set of tags are frequently used by many users can give a hint that such users may spontaneously from a community of an interest even though they may not have any physical connection or online connection.
 - SID is proposed based on “association rules algorithm”
 - Finding frequently co-occurring tags (topics of interest)
 - Building URLs and users clusters for such tag-based topic” (clustering)
 - Importing topics and clusters into indexing system for application queries (indexing)
Architecture of SID

Data Source

- Application data repository which store user’s post
- Data source provides SID a series of posts $p = (\text{user, URL, tags})$

Topic discovery

- Using association rule algorithms to discover “frequent item patterns” for a set of transactions and then derive the implication relationship among items set for transaction.
- Remove redundancy from item sets. For example:

100 posts contains tags “food” and “recipes” with support is 30, then $\{\text{food, recipes}\}, \{\text{food}\}, \{\text{recipes}\}$ are “hot” topic.

$\omega(\{\text{recipes, food}\}) = \omega(\{\text{food}\}) = \omega(\{\text{recipes}\}) \rightarrow$ remove $\{\text{food}\}, \{\text{recipes}\}$
Architecture of SID

- Clustering
 - For each topic and all the posts contain the tag set, insert URLs and uses into two clusters.
 - Naïve clustering algorithm:

```plaintext
1. for all topic t ∈ T do
2.   t.user ← ∅
3.   t.url ← ∅
4. end for
5. for all post p ∈ P do
6.   for all topic t ∈ p do
7.     t.user ← t.user ∪ {p.user}
8.     t.url ← t.url ∪ {p.url}
9.   end for
10. end for
```
Architecture of SID

- Indexing
 - Clusters types:
 - Url & user clusters are identified by topics.
 - Topic & url clusters are identified by users.
 - Indexing cluster supports some queries:
 - For a given topic, list all URLs contain this topic (have been tagged with all the tags in the topic).
 - For a given topic, list all users who are interest in that topic (have used all the tags in the topic).
 - For a given tag, list all topics contain that tag....
Analysis of Tags

- Statistical model:
 - Use vector space model (VSM) to describe a URL (i.e. book index)
 - Each URL: two vectors
 - One in the space of all tags, one in the space of all document keywords
 - In VSM, matrix with t terms and d documents:
 - Term-document matrix $A = (a_{ij}) R^{t \times d}$
 - Column vector a_j is a set of terms belong to document j
 - a_{ij}: importance of term i in document j (or “weight”)

\[D1 = "I like databases" \]
\[D2 = "I hate hate databases" \]
Analysis of Tags

- Statistical model
 - Weight (a_{ij}) measurement
 - Tf-based (term frequency based)
 \[
 a_{ij}^{tf} = \frac{f_{ij}}{\sqrt{\sum_{k=1}^{t} f_{kj}^2}}. \\
 \]
 \(a_{ij} \) : importance of term i in document j
 \(f_{ij} \) : frequency of term i in document j
 - Tf-Idf based (term frequency – inverse document frequency)
 \[
 a_{ij}^{tf-idf} = \frac{b_{ij}}{\sqrt{\sum_{k=1}^{t} b_{kj}^2}}. \\
 \]
 \(b_{ij} \) : inverse document frequency
 \[
 b_{ij} = f_{ij} \cdot \log\left(\frac{d}{D_i}\right). \\
 \]
 \(D_i \) : number of documents contains term i
 \(d \) : total number of documents
Analysis of Tags

- Tags vs. document keywords
 - An intuitive example:

<table>
<thead>
<tr>
<th>URL</th>
<th>http://ka1fsb.home.att.net/resolve.html</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top Tf keywords</td>
<td>domain,name,file,resolver,server,conf,network,nameserver,ip,org,ampr</td>
</tr>
<tr>
<td>Top Tf idf keyword</td>
<td>ampr,domain,jnos,nameserver,conf,ka1fsb,resolver,ip,file,name,server</td>
</tr>
<tr>
<td>All tags</td>
<td>linux,howto,network,sysadmin,dns</td>
</tr>
</tbody>
</table>

- Tags & keywords reflect the content, and differ only *literally*
- Tags are closer to people’s understanding of content than keywords
- Some keywords are unrelated to the content / replaced without changing meaning
Analysis of Tags

- Tags vs. document keywords
 - Vocabulary of tags and keywords:
 - Is vocabulary of important Keywords covered by Tags ? (YES)
 - Statistical method:
 - 7000 randomly English web document
 - Plot cumulative distribution function:
 \[x \mapsto F_X(x) = P(X \leq x) \]
 (\(x \) is percentages Keywords missed by Tags)
Analysis of Tags

- Convergence of User’s Tag Selection
 - Proportions of tags in the bookmarks are quite stable for popular URLs
 - Measure the concentration & convergence of distinct tags used by different user

\[Y = F(X) \]

- Y: Number of distinct tags
- X: Popularity of URLs (#saves of URLs)
Analysis of Tags

- Tags matched by documents
 - How well do user’s tags capture the main concepts of documents?
- Solutions
 - Human reviews
 - Statistical analysis about correlation between the tags of a URL and the content of its document.

\[e(T, U) = \frac{\sum_{k \mid t_k \in U} w(t_k)}{\sum_i w(t_i)} \]

- \(T = \{ t_i \} \): set of tags attached to an URL U
- \(w(t) \): weight of tag t (frequency of tag in data)
- \(e(T, U) \): tag match ratio

Numerator is total weight of tags which also appear in document keyword.
Evaluation results

- Effectiveness of SID URL clusters by computing URL similarity within & cross the clusters.
 - Compute the similarity between pair of documents with inner product (cosine similarity) of their \(tf \times idf \) keywords vectors.
 - Select 500 interest topics, each contains > 30 bookmarked URLs that share 5-6 co-occurring user tags.
 - Each topic: compute average cosine similarity of all URL pairs in its cluster (intra-topic)
 - Randomly select 10,000 topic pairs, compute average pairwise document similarity between every two topics (inter-topic)

Figure 10: Tag-based cosine similarity of interest topics (support number = 30)
Evaluation results

- Evaluate how the topic discovered by SID cover the individual interests of users.
 - The more frequently an user uses a tag, the higher interests he has on the corresponding topic represented by the tags.
 - Checking if top used tags of each users are in any topic discover can be discovered by SID

- 80% users has 100% top 5 tags
- 10% user has 90% top 5 tags
- Over 90% user has at least 90% top 5 tags
- SID has correctly identified & cluster over 90% interest for more than 90% users
Evaluation results

- General properties of topic clusters.
 - The number of clusters with a given cluster size (threshold is 30) follows a power-law distribution.
 - Users tend to use a small number of words to summarize the contents for themselves.
 - Distributions of the number of topics as the functions of number of users & number of URLs are also follow power law.
Conclusion

- **Advance**
 - Propose new approach for interest discovery base on user’s tags with cost effective*
 - User tags is closer with human understanding, and capture precisely web contents.
 - Applicable system to discover common interest topic in social networks.
 - Don’t require online or physical connection between users

- **Disadvantage**
 - Depend on user / group of user’s characteristics. (talk about same thing in # ways)
 - Community culture
 - Users understand about something in different levels
 - Should combine with another approach (user-centric) to give flexibility (users can self-organize their group / or get connection’s recommendation)