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Abstract. Virtual Reality (VR) allows creating interactive three-dimen
sional computer worlds in which objects have a sense of spatial and phys-
ical presence and can be manipulated by the user as such. Different soft-
ware tools have been developed to build virtual worlds. However, most
tools require considerable background knowledge about VR and the vir-
tual world needs to be expressed in low-level VR primitives. This is one of
the reasons why developing a virtual world is complex, time-consuming
and expensive. Introducing a conceptual design phase in the development
process will reduce the complexity and provides an abstraction layer to
hide the VR implementation details. However, virtual worlds contain fea-
tures not present in classical software. Therefore, new modeling concepts,
currently not available in classical conceptual modeling languages, such
as ORM or UML, are required. Next to introducing these new modeling
concepts, it is also necessary to define their semantics to ensure unam-
biguousness and to allow code generation. In this paper, we introduce
conceptual modeling concepts to specify complex connected 3D objects.
Their semantics are defined using F-logic, a full-fledged logic following
the object-oriented paradigm. F-logic will allow applying reasoners to
check the consistency of the specifications and to investigate properties
before the application is actually built.

Keywords: Virtual Reality, F-logic, semantics, complex objects, con-
ceptual modeling, formal specifications, VR-WISE.

1 Introduction

Virtual Reality (VR) is a technology that allows creating interactive three-
dimensional (3D) computer worlds (virtual worlds, also called Virtual Environ-
ments or VE’s) in which objects have a sense of spatial and physical presence
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and can be manipulated by the user as such. VR has gained a lot of popular-
ity during the last decennia due to games and applications such as Second Life
1. A lot of different software tools have been developed which allow building
VE’s. However, most tools require considerable background knowledge about VR
technology. The development of a VE directly starts at the level of the imple-
mentation. A developer needs to specify the VE using the specialized vocabulary
of the VR implementation language or framework used. Therefore, when creat-
ing a VE the objects from the problem domain have to be translated into VR
building blocks (such as textures, shapes, sensors, interpolators, etc.), which re-
quires quite some expertise. This makes the gap between the application domain
and the level at which the VE needs to be specified very large, and makes the
translation from the concepts in the application domain into implementation
concepts a very difficult issue. This is one of the reasons why developing a VE
is complex, time-consuming and expensive.

In different domains such as Databases, Information Systems and Software
Engineering, conceptual modeling has been used with success to support and
improve the development process. The term conceptual modeling denotes the
activity of building a model of the application domain in terms of concepts that
are familiar to the application domain experts and free from any implementa-
tion details. Conceptual modeling has less been used in 3D modeling and VR.
However, like for these other domains, introducing a conceptual design phase
in the development process of a VR application could be useful to improve and
support the development of VE’s. It will reduce the complexity and can provide
an abstraction layer that hides the specific VR jargon used. In this way, no spe-
cial VR knowledge will be needed for making the conceptual design of a VE and
also non-technical people (like the customer or the end-user) can be involved in
the development process. A conceptual model will improve the communication
between the developers and the other stakeholders. In addition, by involving
the customer more closely in the design process of the VE, earlier detection of
design flaws is possible. All this could help in realizing more VR applications in
a shorter time.

However, conceptual modeling for VR poses a lot of challenges as VE’s involve
a number of aspects, not present in classical software or information systems.
VE’s are 3D worlds composed of 2D and 3D objects and often deal with 3D com-
plex objects for which the way the parts are connected will influence the way
the complex objects can behave (i.e. connected complex objects). Furthermore,
to realize dynamic and realistic worlds, objects may need complex (physical)
behaviors. This requires new modeling concepts, currently not available in clas-
sical conceptual modeling languages, such as ORM [3] [4] or UML [2]. Next to
introducing new modeling concepts, it is also necessary to define their seman-
tics. Defining the semantics of the modeling concepts will allow for unambiguous
specifications. Unambiguousness is important from two perspectives. Firstly, if
the semantics of the modeling concepts are clear, the models created with these
modeling concepts will be unambiguous and there will be no discussion between
different stakeholders about their meaning. Secondly, unambiguousness is also
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needed from the perspective of the code generation; otherwise it will not be
possible to automatically generate code.

In this paper, we introduce conceptual modeling concepts to specify connected
complex 3D objects, as well as their semantics. These modeling concepts are
part of the VR-WISE approach. VR-WISE (Virtual Reality - With Intuitive
Specifications Enabled) [5] [6] [7] [8] [9] is a conceptual model-based approach for
VR-application development. The semantics of the modeling concepts presented
here are defined formally using F-logic, a full-fledged logic following the object-
oriented paradigm.

The rest of this paper is structured as follows. Section 2 will provide the
background. It includes an introduction to VR (section 2.1), VR-WISE (section
2.2), and F-logic (section 2.3). In section 2.1, we will briefly discuss the different
components of a VR application as well as how VR applications are developed
these days. In section 2.2, we will discuss the limitations of current conceptual
modeling techniques with respect to the modeling of VR, and briefly introduce
VR-WISE, the conceptual modeling approach developed for VR. In section 3, we
discus the conceptual modeling of complex connected 3D objects and introduce
the related conceptual modeling concepts in an informal way. Next, in section
4, the semantics of these modeling concepts will be defined. In section 5 we will
discus related work. Section 6 concludes the paper and points out further work.

2 Background

In this section, we introduce some background material. In section 2.1, we briefly
discuss the different components of a VR application as well as how VR appli-
cations are developed these days. In section 2.2, we discuss the limitations of
current conceptual modeling techniques with respect to the modeling of VR,
and briefly introduce VR-WISE, the conceptual modeling approach developed
for VR. In section 2.3, F-logic is introduced.

2.1 VR

There are many definitions of Virtual Reality (VR) [10] [II]. For the context of
this research, VR is defined as a three-dimensional computer representation of a
space in which users can move their viewpoints freely in real time. We therefore
consider the following cases being VR: 3D multi-user chats (Active Worlds [12],
first person 3D videogames (Quake [13]) and Unreal tournament ([I4]), and 3D
virtual spaces on the Web (such as those created with VRML [15], and X3D
[16]). In this section, we will define the main components of a VR application
(VE) and then briefly review how a VE is developed today.

Main components of a VR application. A VE is made of different compo-
nents [10], which can be summarized as:
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1) The scene and the objects. The scene corresponds to the environment
(world) in which the objects are located. It contains lights, viewpoints and cam-
eras. Furthermore, it has also some properties that apply to all the objects lo-
cated inside the VE, e.g., gravity. The objects have a visual representation with
color and material properties. They have a size, a position, and an orientation.
2) Behaviors .The objects may have behaviors. For instance, they can move,
rotate, change size and so on.

3) Interaction. The user must be able to interact with the VE and its objects.
For instance, a user can pick up some objects or he can drag an object. This
may be achieved by means of a regular mouse and keyboard or through special
hardware such as a 3D mouse or data gloves [10].

4) Communication. Nowadays, more and more VE are also collaborative en-
vironments in which remote users can interact with each other. To achieve this,
network communication is important.

5) Sound. VR applications also involve sound. Some research has been done
over the last ten years in order to simulate sound in a VE.

Developing a VE. The developing of the different components of a VE is
not an easy task and during the last fifteen years, a number of software tools
have been created to ease the developer’s task. These tools can be classified into
authoring tools and software programming libraries.

Authoring tools. Authoring tools allow the developer to model the static scene
(objects and the scene) without having to program. Nevertheless, they assume
that the developer has some knowledge of VR and some programming skills to
program behaviors using scripting languages. Different authoring tools may use
different scripting languages. The most popular authoring tools are 3D Studio
Max [20], Maya [21], MilkShape 3D [22], various modelers such as AC3D [23]
and Blender [24]. If the developer is developing for a certain file format, he needs
to pay attention to the file formats supported by the authoring tool.

Programming Libraries. With programming libraries a complete VE can be
programmed from scratch. Among the existing libraries, there is Performer [25],
Java3D [I7], X3D toolkit written in C++ [26] or Xj3D [27] written on top of
Java3D. To use such a library, good knowledge of programming and a good
knowledge of VR and computer graphics are required. It is also possible to use
a player that, at run-time, interprets a 3D format and build the VE. VRML [15]
and X3D [16] are 3D formats that can be interpreted by special players through
a Web browser. Examples of such players are the Octaga player [I§] and the
Flux player [19].

We will not discus here how the other components of a VE (behavior, interac-
tion, etc.) are development these days; it is not directly relevant for the rest of
the paper. In any case, we can conclude that although there are quite a number of
tools to help a developer to build the scene of a VE, until now, the general prob-
lem with these tools and formats is that they are made for VR specialists or at
least for people having programming skills and background in computer graphics
or VR. In addition, there is also no well-accepted development method for VR.
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Most of the time, a VR-expert meets the customer (often the application domain
expert) and tries to understand the customer’s requirements and the domain for
which the VE is going to be built. After a number of discussions, some sketches
are made and some scenarios are specified. Then, the VR-expert(s) start to im-
plement. In other words, the requirements are almost directly translated into an
implementation. This way of working usually result into several iterations before
the result reaches an acceptable level of satisfaction for the customer. Therefore,
the development process is time consuming, complex and expensive.

2.2 VR-WISE

Introducing a conceptual design phase in the development process of a VR, appli-
cation can help the VR community in several ways. As conceptual modeling will
introduce a mechanism to abstract from implementation details, it will reduce
the complexity of developing a VE and it avoids that people need a lot of specific
VR knowledge for such a conceptual design phase. Therefore, also non-technical
people (like the customer or the end-user) can be involved and this will improve
the communication between the developers and the other stakeholders. In ad-
dition, by involving the customer more closely in the design process of the VE,
earlier detection of design flaws is possible. And finally, if the conceptual models
describing the VR system are powerful enough, it may be possible to generate
the system (or at least large parts of it) automatically.

Several general-purpose conceptual modeling languages exist. Well-know lan-
guages are UML [2], ER [28] and ORM [3] [4]. ER and ORM were designed to
facilitate database design. Their main purpose is to support the data modeling
of the application domain and to conceal the more technical aspects associated
with databases. UML is broader and provides a set of notations that facilitates
the development of a complete software project. To a certain extend, UML,
ORM and ER could be used to model the static structure of a VR application
(i.e., the scene and the objects), however, all are lacking modeling concepts in
terms of expressiveness towards VR modeling. For example, they do not have
built-in modeling concepts for specifying the position and orientation of objects
in the scene or for modeling connected objects using different types of connec-
tions. Although, it is possible to model these issues using the existing modeling
primitives, this would be tedious. E.g., each time the modeler would need a
particular connection he would have to model it explicitly, resulting in a lot of
"redundancy” and waste of time. In addition, the models constructed in this
way would not be powerful enough to use them for code generation because the
necessary semantics for concepts like connections would be lacking. Furthermore,
neither ORM nor ER provides support for modeling behavior.

It could be possible to extend these general-purpose modeling languages with
new modeling concepts to enable VR modeling. However, another approach re-
garding this problem is the creation of a Domain Specific Modeling Language.
We have opted for this last approach because we want to have a modeling lan-
guage, as well as a modeling approach, that is easy and intuitive to use also for
non VR-experts. The modeling approach taken by a general-purpose language
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such as UML is very close to the way software is implemented by means of OO
programming languages. The use of (an extended) UML would also force the
use of its modeling paradigm. It is our opinion, that for certain aspects of VR,
this would not be the best solution. Therefore, we have developed VR-WISE, a
domain specific modeling approach for the development of VE’s.

VR-WISE includes a conceptual specification phase. During this conceptual
phase, conceptual specifications (so-called conceptual models) are created. Such
a conceptual specification is a high-level description of the VE, the objects in-
side the environment, the relations that hold between these objects and how
these objects behave and interact with each other and with the user. These
conceptual specifications must be free from any implementation details. There-
fore, the approach offers a set of high-level modeling concepts (i.e. a modeling
language) for building these conceptual specifications. As indicated, we require
that these modeling concepts are very intuitive, so that they can be used, or at
least be understood, by different stakeholders. This means that the vocabulary
used, should be familiar to most of its users. Because we also opted for a model-
driven approach, the expressive power of the different modeling concepts must
be sufficient to allow code generation from the models.

The conceptual specification consists of two levels since the approach follows
to some degree the object-oriented (OO) paradigm. The first level is the do-
main specification and describes the concepts of the application domain needed
for the VE (comparable to object types or classes in OO design methods), as
well as possible relations between these concepts. In the overall example that we
will use, we will consider a VE containing virtual mechanical robots. This VE
could be used to illustrate the working of those robots. For such an application,
the domain specification could contain concepts such as Robot, WeldingRobot,
LiftRobot, Controller, WorkPiece, Box, and relations such as ”a Robot is driven-
by a Controller”. Concepts may have properties (attributes). Next to properties
that may influence the visualization of the concepts (such as height, color, and
material) also non-visual properties, like the cost and the constructor of a robot,
can be specified. At this conceptual level, we only consider properties that are
conceptual relevant. Properties like shape and texture are not necessarily con-
ceptual relevant and may depend on how the object will be visualized in the
actual VE. The visualization of the objects is considered in a later phase in the
VR-WISE approach. For a VE, behavior is also an important feature. However,
the focus of this paper is on modeling concept for complex objects, therefore we
will not elaborate on behavior. Details on modeling concepts for behavior can
be found in [29] [30] [31] [32] [33] [34].

The second level of the conceptual specification is the world speci fication.
The world specification contains the conceptual description of the actual VE to
be built. This specification is created by instantiating the concepts given in the
domain specification. These instances actually represent the objects that will
populate the VE. In the robot example, there can be multiple Robot-instances
and multiple WorkPiece-instances. Behaviors specified at the domain level can
be assigned to objects.
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Objects in a VE have a position and an orientation in the scene (defined
in a three-dimensional coordinate system). Although it is possible to specify
the position of the instances in a scene by means of exact coordinates and the
orientation by means of angles, we also provide a more intuitive way to do this
(more suitable for non-technical persons). If you want to explain to somebody
how the robot room should look like, you will not do this in term of coordinates.
Instead you will say that: ”Two welding robots are in front of each other at a
distance of one meter. A lift robot is left of each welding robot, and a box is placed
on the platform of each lift robot”. In such an explanation, spatial relations are
used to describe the space. As spatial relations are also used in daily life, they
provide a good intuitive way to specify a scene. Therefore, they are available
as modeling concepts. Note that although the use of spatial relations may be
less exact than coordinates, they are exact enough for a lot of applications. A
spatial relation specifies the position of an object relative to some other object
in terms of a direction and a distance. The following directions may be used: left,
right, front, back, top, and bottom. These directions may be combined. However,
not all combinations make sense. For example, the combined direction left top
makes sense, but left right doesn’t. Spatial relations can be used in the domain
specification as well as in the world specification. In the domain specification, the
spatial relations are used between concepts and specify default positions for the
instances of a concept. The spatial relations currently supported are the most
common ones. It is also possible to consider others, like for instance an ”inside”
relation. Currently, ”inside” can be modeled by considering the object in which
another object has to be placed as a new scene.

In a similar way, orientation relations can be used to specify the orientation
of objects. For example, the orientation by side relation is used to specify the
orientation of an object relative to another object. It specifies which side of an
object is oriented towards which side of another object. E.g., one can specify
that the front of the instance WeldingRobotl1 is oriented towards the backside
of the instance WeldingRobot2.

As common for conceptual languages, the conceptual modeling concepts of
VR-WISE also have a graphical notation.

2.3 F-Logic

Frame-Logic (F-logic) is a full-fledged logic. It provides a logical foundation
for object-oriented languages for data and knowledge representation. F-logic is a
frame-based language; the central modeling primitives are classes with properties
(attributes). These attributes can be used to store primitive values or to relate
classes to other classes. Subclasses are supported. In this section, we provide
a brief introduction to F-logic in order to make the paper self-contained. This
introduction is based on [35] and [36] to which we refer the interested reader for
more details.

Class Signatures. A class signature specifies names of properties and the
methods of the class. To specify an attribute definition = is used, == is used to
express a multi-valued attribute.
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The following statement gives the class signature for the class professor :

professor|publications == article;
dep = department;
highestDegree = string;
highestDegree e— "phd”]

publications == article states that publications is a multi-valued property.
highestDegree = string states that highestDegree is a property of type string,
and highestDegree e#— ”phd” states that it is an inheritable property, which has
the effect that each member-object of the class professor inherits this property
and its value. E.g., a member bill will have the property highestDegree with
value phd by inheritance. An inheritable property is inherited by a subclass. The
inheritable property remains inheritable in this subclass while an inheritable
property inherited by a member of the class becomes non inheritable.

Class Membership. In F-Logic we use ”:” to represent class membership.

mary : professor
cs : department

Note that in F-logic classes are reified, which means that they belong to the
same domain as individual objects. This makes it possible to manipulate classes
and member-objects in the same language. This way a class can be a member of
another class. This gives a great deal of uniformity.

Method Signatures and Deductive Rules. Next to properties, classes can
have methods. Consider the following class:

professor[ publications == article;
dep = department;
highestDegree = string;
highestDegree e— phd;
boss = professor]

The property boss is actually a method without arguments. In F-Logic, there is
no essential difference between methods and properties. The method boss takes
no arguments as input and gives an object of type professor as output. The
following statement is the deductive rule defining the method boss for objects of
the class professor.

P[boss — B] < P : professor A
D : departement N\
P[dep — D[head — B : professor]]

The previous statement states that when a member B of type professor is
the head of a departement D for which a member P of type professor is working
then B is the boss of P.
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It is also possible to create methods that take one or more arguments as input.
Syntactically the arguments are included in parentheses and are separated from
the method name by the @-sign. However, when the method takes only one
argument the parentheses may be omitted. The following statement gives the
signature of a method papers for the class professor. It takes one argument of
type institution and returns a set-value of type article.

professor[papers@institution == article]
subclassess. ”::” is used to represent the subclass relationship. The following

statements denote that employee is a subclass of person and that professor is
a subclass of employee.

employee :: person
professor :: employee

Predicate. In F-logic, predicate symbols can be used in the same way as in
predicate logic, for example:

promotorOf(mary, bill)

Queries. Queries can be considered as a special kind of rules, i.e. rules with an
empty head. The following query requests all members of the class professor
working at the department cs:

?- X : professor A X[dep — cs]

3 Conceptual Modeling Concepts for Connected Complex
3D Objects

In section 2, we have presented an overview of VE’s and the VR-WISE approach.
As already indicated, complex 3D objects, and more in particular connected
complex objects, are important in the context of VE’s. In our robot example, a
welding robot is a complex connected object, composed of a rail, a base, a lower
arm, an upper arm, and a welding head (see figure 1). To enable the specification
of such concepts, we need dedicated conceptual modeling concepts.

Let’s first start with giving an informal definition of a ”complex object” in
the context of a VE.

Complex objects are built from other simple and/or complex objects. They are
composed by connecting two or more simple and/or complex objects. The con-
nected objects are called components. All components keep their own identity and
can be manipulated individually. However, manipulating a component may have
an impact on the other components of the complex object. The impact depends
on the type of connections used.

Looking to this description, the following issues seem to be important. (1)
Complex objects are composed of other objects (components), (2) components
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lower arm

welding head

upper arm

Fig. 1. An illustration of a welding robot

are connected by means of connections and there exist different types of connec-
tions, and (3) the motion of a component may be restricted by the connection
type used. Let’s explain this last issue. Normally an object has six degrees of
freedom, three translational and three rotational degrees of freedom. The trans-
lational degrees of freedom are translations along the three axes of the coordi-
nate system used while the three rotational degrees of freedom are the rotations
around these three axes. The way components of a complex object are connected
to each other may restrict the number of degrees of freedom in their displace-
ments with respect to each other. Here, we will discuss three possible connection
types, namely over a center of motion, over an axis of motion and over a sur-
face of motion. Other types of connections are possible and can be defined in a
similar way. In section 6 on future work, some examples of other types of con-
nections are given. The connection types that we consider here are abstractions
from specific connection types usually available in 3D modeling tools (such as
ODE [37], PhysX [38], MotionWork [39]). In our conceptual modeling approach,
we specify the type of connection between components by means of the so-called
connection relations. Note that these connection relations can also be used to
specify the connection between objects without the purpose of defining a com-
plex object. For example, we can define a connection between a boat and the
water surface, but we don’t want to consider the boat and the water surface as
one complex object.

To support the connection over a center of motion, respectively over an axis
of motion and over a surface of motion, we have defined the connection point
relation, respectively the connection azis relation and the connection surface
relation. We describe them in more detail in the following sections using the
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welding robot as an example. However, connection types on their own are not
sufficient to come to realistic behaviors. To further restrict the behaviors of the
connected components, constraints will be used. For instance when you want to
state that the components cannot be moved relative to each other. More details
on constraints are given in section 3.4. Note that we use the term ” components”
to refer to the objects involved in a connection relation. However, this does not
imply that the use of a connection relation implies defining a complex object.
The connection relations are only used to specify connections between objects.
Also note that we don’t consider here connecting and disconnecting objects at
runtime. This is part of the behavior specification, which is outside the scope of
this paper.

3.1 Connection Point Relation

A first way of connecting two objects to each other is over a center of motion. In
the real world we can find examples of objects connected over a center of motion,
e.g., the shoulder of the human body connecting the arm to the torso. In the
welding robot example, the welding head is connected to the upper arm over
a center of motion to allow the welding head to rotate in different directions.
A center of motion means that there is somewhere a point in both components
that needs to coincide during the complete lifetime of the connection. We call
this point the connection point. Connecting two objects over a center of mo-
tion removes all three translational degrees of freedom of the components with
respect to each other. Specifying a connection point relation implies specifying
the connection point for both components. This can be done by means of exact
coordinates, however we are looking for a method that is more intuitive for the
layman. Therefore, the position of the connection point is specified relative to
the position point of the object. This is a (default) point in the object that
is used to specify the position of the object in the VE, i.e. when an object is
positioned at the coordinates (x,y,z) this means that the position point of the
object is at position (x,y,z).

Figure 2 shows our graphical notation of the connection point relation. Boxes
represent the components; connection relations are represented by a rounded
rectangle connecting the two components by means of an arrow. The icon inside
the rounded rectangle denotes the type of connection, here a connection point
relation. The arrow indicates which component is the source and which is the
target. The source should be connected to the target, i.e. in figure 2 component
A is connected to component B. Hence, figure 2 can be read as ” A is connected
by means of a connection point to B”. Note that this is not necessarily the same
as connecting B to A using the same connection relation. When the composition
should be performed if the two composing objects already have a position (e.g.,
at runtime), it may be necessary to reposition one of the objects. The convention
is that the source will be repositioned.

Note that the graphical notation given in figure 2 does not specify the actual
connection points. This is done by means of a simple markup language and
using the expanded graphical notation (see figure 3). Allowing to hide or to omit
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Fig. 3. Extended Graphical notation for a connection point relation

the details of the connections relations is useful as abstraction mechanism in
different phases of the design and for different stakeholders. The expanded area
has three sub areas. The top area is used to specifying general properties of
the connection. Currently, the only possible attribute for the connection point
relation is the stiffness. Current values for the stiffness are ’soft’, ‘'medium’ or
’hard’. The second and third areas hold the definition of the connection point
for the source component respectively for the target component.

The position of a connection point is specified relative to the position point
of the component. This is done in terms of zero or more translations of this
position point. If no translations are given the connection points coincides with
the position point of the object. A translation is specified by a distance and a
direction. The distance is expressed by an arithmetic expression and a unit (if
no unit is given the default unit will be used). Note that inside the arithmetic
expression, object properties can be used. They allow referring to properties of
the components, e.g., its width. The direction is given by means of keywords: left,
right, front, back, top or bottom. These directions may be combined. However,
not all combinations make sense. A combined direction exists of minimal two
and maximal three simple directions. For example, we may use the combined
direction left top, but left right is meaningless. In this way ’translated 2 cm to
left’ specifies that the connection point is defined as a translation of the position
point 2 cm towards the left side. Please note that the position point itself is not
changed. The syntax is as follows:

< CPAttributes> ::= [<stiffness>|

<stiffness> ::= ‘connection stiffness is’ <stiffnessType>
<stiffnessType> ::= ’soft’ | 'medium’ | ’hard’

< CPDefinition> ::= ’connection point is position point’< translation >*

<translation> ::= ’translated’ <distance> ’to’ <direction>
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<direction> ::= <A> [<B>][<C>] | <B> [<C>] | <C>

<A> ::= ’front’ | ‘back’

<B> ::=left’| ’right’

<C> = ’top’ | ’bottom’

<distance> ::= <arithmetic expression>

<arithmetic expression> ::=
<constant> | <object property> |
( < arithmetic expression > ) |
<arithmetic expression> <operator> <arithmetic expression>

<operator> ::= + | - | *|

Figure 4 gives an example of a connection point relation. It is used to connect
the welding head to the upper arm of the welding robot. The welding head is the
source and the upper arm is the target. Since, the position point of the upper
arm is defined in the middle of the upper arm (by default the position point is
the centre of the bounding box of the object), the connection point for the upper
arm is specified as a translation of the position point over half of the length of
the upper arm towards the top. In this way the connection point is exactly on
the top of the upper arm. Similar, for the welding head, the connection point
(which should be at the bottom of the welding head) is specified as a translation
of the position point over half of the length of the welding head towards the
bottom.

WeldingHead —@ - UpperArm

| Connection point is position po_int i

Lt_@_nslated WeldingHead.Length/2 to bottom

|
|
iConnection point is position point @i
I translated UpperArm.Length/2 to top |

N 1

Fig. 4. Example connection point relation

3.2 The Connection Axis Relation

A second way to connect two components is over an axis of motion. A lot of
examples of this connection type can be found in the real world. For example:
a wheel that turns around an axis, a door connected to a wall, the slider of an
old-fashioned typing machine. Actually, an axis of motion means that there is
an axis that restricts the displacements of the components with respect to each
other in such a way that the connected objects may only move along this axis or
around this axis. The axis of motion is called the connection azis. A connection
by means of a connection axis removes four degrees of freedom leaving only one
translational and one rotational degree of freedom.
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To specify a connection axis relation between two components, we actually
have to specify the connection axis for each of the two components. These two
axes need to coincide during the complete lifetime of the connection. Looking
for an easy way to specify these axes, we decided to allow a designer to specify
an axis as the intersection between two planes. Therefore, three planes through
each object are predefined. These are the horizontal plane, the vertical plane and
the perpendicular plane. These planes are illustrated in figure 5.

top

top top

right right right

7 /

front front

(@) (b) (©

front

Fig. 5. (a) the horizontal plane; (b) the vertical plane; (c) the perpendicular plane

A connection axis is defined as the intersection between two of these planes.
To allow more flexibility, the predefined planes can also be translated or rotated.
Each plane may rotate over two possible axes. The horizontal plane may rotate
over the left-to-right axis or the front-to-back axis; the vertical plane may rotate
over the front-to-back or the top-to-bottom axis; and the perpendicular plane
over the top-to-bottom or the left-to-right axis.

Next to define the connection axes it is also necessary to give the initial posi-
tions of both components. This is done by specifying for each component a point
on its connection axis. These points should coincide. By default this connection
point is the orthogonal projection of the position point of the component onto
the connection axis. However, our approach also allows the designer to change
this default by translating this default point along the connection axis.

The graphical representation of the connection axis relation is similar to that
of the connection point relation (see figure 6).

Also in this case, the graphical notation is expandable (see figure 7). The
second and third areas are now used for the definition of the connection axis for
the source, respectively the target. The syntax is as follows:

< CAAttributes> ::= [<stiffness>]

<stiffness> ::= ‘connection stiffness is’ <stiffnessType>
<stiffnessType> ::= “soft’ | 'medium’ | "hard’

< CADefinition> ::= ’connection axis is intersection of: ’

<planeDefinition>
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Fig. 7. Expanded graphical representation of the connection axis relation

<planeDefinition>
[ <translationPoint> ]

<planeDefinition> ::= <horizontal> | <vertical> | <perpendicular>

<horizontal> ::=

‘horizontal plane’ [ <horizontalTrans> | [<horizontalRot>]
<wertical> ::=

wertical plane ’ | <wverticalTrans> | | <verticalRot> |
<perpendicular> ::=

‘perpendicular plane ’ [ <perpendTrans> | [ <perpendRot> |

<horizontalTrans> ::= ’translated ’ <distance> to ’
(’top’ | "bottom’)

<wertical Trans> ::= ’translated ’° <distance> ’to ’
(’left’” | right’)

<perpendTrans> ::= ’translated ’ <distance> ’to ’

(’front’ | ’back’)

<horizontalRot> ::=

rotated over ~ (’frontToBack’ | leftToRight’)
‘axis with * <angle>
<wertical Rot> ::=

rotated over’ (’frontToBack’ | topToBottom’)
‘axis with ~ <angle>
<perpendRot> ::=

‘rotated over’ (‘left ToRight’ | "top ToBottom’)
‘axis with * <angle>

15
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<angle> ::= <arithmetic expression>

<translationPoint> ::=
translation point translated * <distance> ’to ’ <direction>

As an example we show how the base of the welding robot is connected to
the rail by means of a connection axis relation to allow the base and the rail
to move along this axis. The specification is given in figure 8. For the rail,
the connection axis is specified as the intersection of the perpendicular plane
with the horizontal plane translated over half of the height of the rail towards
the top of the rail. This is illustrated in figure 9. The connection axis on the
base is defined as the intersection of the perpendicular plane with the horizon-
tal plane translated to the bottom of the base over half of the height of the

base.

Base

. A

Lo - - -
Connection axis is intersection of:
horizontal plane tranlated Base.Height/2 to bottom
p

erpendicular plane
[ —

Connection axis is intersection of:
horizontal plane translated Rail.Height/2 to top
perpendicular plane

|
|
|
|
|
|
|
\

Fig. 8. Example connection axis relation

horizontal plane

perpendicular plane

connection axis

Rail

Fig. 9. Illustration of the definition of a connection axis
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Fig. 10. Degrees of freedom for the connection surface relation

3.3 The Connection Surface Relation

The last way to connect two components to each other that we want to discuss
here is over a surface of motion. A real world example of this type of connection
is a boat able of floating over a water surface. A surface of motion means that
there is a surface that allows the components to move along the directions of this
surface. This connection type removes three degrees of freedom. The only degrees
of freedom left with respect to each other are the two translational degrees of
freedom in the directions of the surface and one rotational degree of freedom
around the axis perpendicular to the surface. This is illustrated in figure 10. The
surface of motion is called the connection surface.

To specify a connection surface relation we actually need to specify the con-
nection surface for each of the components. The connection surfaces of both
components need to coincide during the complete lifetime of the connection. To
specify these connection surfaces, again we apply the three predefined planes
(the horizontal plane, the vertical plane, and the perpendicular plane). For each
of the components, the designer selects an initial plane to work with. This plane
can be translated and rotated. Similar as for the connection axis relation we also
need a connection point to specify the initial position of both components on
the connection surface. By default, this point will be the orthogonal projection
of the position point of the component on the corresponding connection surface.
Also for the connection surface relation, this point can be translated to specify
other positions. The graphical representation of the connection surface relation
is similar as that of the other connection relations (see figure 11).

Fig. 11. Graphical representation of the connection surface relation
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i <CSAttributes> |
I_ ___________________ 1

|
' <CSDefinition> ®;
I_ ___________________ 1
| <CSDefinition> W)

Fig. 12. Extended graphical representation of the connection surface relation

The expanded graphical notation has again three areas: one for specifying the
properties of the relation, one area for the specification of the connection surface
for the source and one for target. The extended graphical notation is illustrated
in figure 12.

The syntax is as follows:

< CSDefinition> ::= ‘connection surface is: ’
<planeDefinition> [ < CSConnectionPoint>]

< CSConnectionPoint> ::= ’comnection point is positioning point ’
<distance> to ’ <direction>
[ Jand ’ <distance> to ’ <direction>]

In figure 13 a connection surface relation is used to specify that a box placed
on the platform of a lift robot should only be able to move over this platform.
The connection surface for the box is defined as the default horizontal plane of
the box translated towards the bottom of the box; the connection surface for
the platform is also the horizontal plane (but this time it is the horizontal plane
of the platform itself because the platform is a plane itself and therefore it will
coincide with its horizontal plane).

Box @ { Platform }

| Connection stiffness is medium !

| Connection surface is: |
| horizontal plane translated BoxHeight/2 to bottom f

| Connection surface is: @
| horizontal plane |

Fig. 13. Connection Surface for lift robot with a platform
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3.4 Constraints on Connections

So far we are able to specify connection relations between components. As dis-
cussed, these relations impose a limitation on the degrees of freedom of the
components with respect to each other. However, this is not always sufficient to
come to realistic behaviors. For example, by means of the connection axis rela-
tion used to connect a base to its rail, it is still possible to rotate the base and
the rail around the connection axis. This is not what we want. We would like to
be able to specify that the base should only be able to move along its connection
axis. Instead of defining this as yet another special kind of connection relation,
we have opted to specify these kinds of restrictions by means of constraints that
can be specified on top of the connection relations. For our base-example, a
constraint can be attached to the connection axis relation stating that the base
may only move over a given distance along its connection axis. A number of
constraints are predefined, e.g., the hinge constraint, the slider constraint and
the joystick constraint. The names of the constraints are metaphor-based which
should make it easier for non-technical persons to understand and remember
their meaning. For example, the restriction of the base motion can be expressed
by a slider constraint.

A slider constraint can be defined on top of a connection axis relation to
restrict the motion to a move along the connection axis. Furthermore, the move
can be limited by indicating how much the components may move along the
connection axis. Figure 14 illustrates the specification of a slider constraint for
the welding robot. The constraint is defined on top of the connection axis relation
that connects the base to the rail. The base can move 2,5 units to the left and
to the right.

A hinge constraint is also specified on top of a connection axis constraint
and restricts the motion to a rotation around the connection axis. It is also
possible to indicate limits for this movement. The joystick constraint restricts

Components can move along the ™~ _
connection axis:

2.5 to left

2.5 to right /.

R

Base Rail

| . e .
;Connectlon axis is intersection of:

'horizontal plane tranlated Base.Height/2 to bottom

I

|

|

|

|

i
| -

Lperpendu:ular plane !
!
|
|
|
|
|

! - - - . -
| Connection axis is intersection of:

| horizontal plane translated Rail.Height/2 to top
l\perpendicular plane

Fig. 14. An example of a slider constraint
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the motion of two components connected by means of a connection point relation
to a rotation around two perpendicular axes through the connection point. A
joystick constraint can also have limits indicating how much the components may
rotate around the axes in the clockwise and in the counterclockwise direction.
More information on these constraints can be found in [5].

4 Formal Specification of the Modeling Concepts

In this section we will illustrate how the semantics of the modeling concepts
introduced in the previous section can be defined rigorously. Due to space lim-
itations, it is not possible to give the complete formalization of the modeling
concepts introduced in this paper. For the complete formalization we refer to
[5]. We will focus on the principles used and give a representative number of
formalizations.

4.1 Principles

To define the semantics of a modeling concept, we will express what its use means
for the actual VE. E.g., if we state that two objects are connected by means of
a connection axis relation then the semantics of this relation should define the
implication for the position and orientation of the components in the VE. To be
able to do this, we need a formalism that is able to deal with the instance level.
However, because the instance level is defined through the concept level, we also
have to deal with the concept level. This means that defining the semantics of
the modeling concepts (i.e. the meta-level) requires access to the concept level
and to the instance level (see figure 15).

Modeling concepts
(meta-level)

Il
Conceptual Domain
Specification

1
Conceptual World
Specification

Fig. 15. The three levels involved in the formalization

In F-logic, classes can be treated as objects, which allows the meta modeling
that we need here.
4.2 Formalization of the Basic Modeling Concepts

In this section, we formally define some of the basic modeling concepts used in
the VR-WISE approach.
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Point. A point in a three dimensional space can be given by means of an x, y
and z coordinate. Using the F-logic formalism, a point is defined as a class with
x, y and z properties of type float.

point[x = float;
y = float;
z = float]

Orientation. Each object in a VE has an orientation. In the VR-WISE
approach, each object specified in the world specifications will have a default
orientation. This default orientation is illustrated in figure 16. The default ori-
entation of an object can be changed by rotating the object around on or more
of the axes of the reference frame used. In order to be able of expressing the
orientation of objects, we define the class orientation with properties frontAngle,
rightAngle and topAngle, each representing a rotation angle around respectively
the front, left and top axis of the global reference frame. In the default situation
all rotation angles are 0.

orientation[frontAngle & 0;
rightAngle e~ 0;
topAngle e~ 0]

top
Right
front

Fig. 16. Default orientation on an object

Line. We have formally defined a line with the following parametric equations:

xr=x9+ ta
y=1yo+1b
z=2zy+tc

as follows in F-logic:

line [ xo = float;
yo = float;
zo = float;
a = float;
b = float;
¢ = float |
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4.3 Formalization of Concept and Complex Concept

Concept. A concept is the main modeling concept in the domain specification.
We have defined a concept in F-logic as a class. So domain concepts are rep-
resented as classes in F-logic. Each class representing a domain concept needs
to be defined as a subclass of the predefined class concept. The class concept is
defined as follows:

concept[position = point;
internalOrientation = orientation;
externalOrientation = orientation]

The properties position, internalOrientation, and externalOrientation are
methods. The instances of the concepts are the actual objects in the VE. Ob-
jects in a VE have a position and an orientation. In VR-WISE we make use of
an internal orientation and an external orientation (explained further on). The
corresponding methods in the class concept are inheritable properties and there-
fore each instance of any subclass will inherit them. These methods can therefore
be used to return the position, respectively internal and external orientation of
an object. The definitions of these methods are rather elaborated (and therefore
omitted), as they need to take into account whether the object is a component
of some other object and how its position and orientation has been specified.
Le., as explained earlier, objects can be positioned using exact coordinates but
also relative to other objects using spatial relations. Therefore, the position can
either be exact or relative. When the designer specifies the position by means
of coordinates (a point), the exact position is known and there is no need to
calculate the position. However, when the position is given by means of some
spatial relations or connection relations, only relative positions are given and
the actual coordinates need to be calculated. Also the orientation can be exact
(given by means of angles) or relative (given by means of orientation relations).

Because of the use of orientation relations in VR-WISE, each object has been
given an internal and an external orientation. The internal orientation of an
object is used to specify which side of the object is defined as the front, back,
left, right, top and bottom side. The external orientation of an object is used
to specify the orientation of the object in the VE. This works as follows.

By default each object has an own reference frame. This is the coordinate
system local to the object where the origin of the coordinate system is the origin
of the object (which is also the position point). Figure 17(a) illustrates the default
internal orientation for an object. By default, the top/bottom, front/back, and
right /left side of an object are defined as in Figure 17(a). It is possible to change
this default by means of a rotation of the local reference frame of the object
around some of the axes of the global reference frame. (The global reference
frame refers to the coordinate system of the VE itself. The origin of the global
reference frame is the origin of the VE.) Figure 17(b) illustrates a non-default
definition of top/bottom, front/back, and right/left. This is done by specifying
an internal orientation which is a 45 degrees counterclockwise rotation of the
default internal orientation around the front direction. Note that the object
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top
top Right
=2
front front
(@) (b}

Fig.17. (a)default internal orientation; (b) internal orientation 45 degrees counter-
clockwise around front axis

itself is not rotated. Actually, changing the internal orientation only redefined
the left-right and top-bottom sides of the object.

An object also has a default external orientation. Figure 18(a) illustrates the
default external orientation for an object. The external orientation of an object
can be used to change the orientation of the object in the VE. This is done by
a rotation of the object around some of the axes of the object’s local reference
frame, which will result in a rotation of the object itself. This is illustrated in
figure 18(b) where the default external orientation is changed by means of a
rotation of 45 degrees counterclockwise around the front axis. As you can see,
the complete object has been rotated and as such its orientation in the VE is
changed.

top
top Right
Right \9/
front front
(a) (b)

Fig.18. (a) default external orientation; (b) external orientation 45 degrees counter-
clockwise around front axis

Example. The following F-logic statement defines the concept WeldingRobot:

WeldingRobot :: concept

The concept WeldingRobot may have one or more properties. Suppose it has a
weight property with default value 1500 and a color property with default value
'red’. All properties of a concept should be defined as inheritable properties. This
way, all subclasses and instances of a concept will inherit the default values. They
can be overwritten if necessary for a specific subclass or instance. Let’s go back
to our example. The properties for WeldingRobot should be defined as follows:

WeldingRobot[weight e~ 1500;

color e~ red]
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An instance of a domain concept will be represented in the F-logic as an in-
stance of the corresponding F-logic class.

Example. The following F-logic statement defines an instance WeldingRobot1
of the domain concept WeldingRobot:

WeldingRobot1 : WeldingRobot

To overwrite the default value for color, we use the following statement: Weld-
ingRobot1[color — green]

Complex Concept. Remember that a complex concept consists of a number
of components. Components can be simple concepts or complex concepts. To
specify that a concept is a component of some other concept, a partOf property
is used.

Let a and b be two concepts, thus a::concept and b::concept. The fact that a is
part of b is expressed by adding a property partOf to the concept definition of a:
a[partOf = b]

Each complex concept also has a reference component. The reference com-
ponent is used for the positioning and orientation of the complex concept. The
position and orientation of the reference component will also be the position
and orientation of the complex concept. In addition, all other components of the
complex concept will be positioned and oriented relative to this reference com-
ponent (according to the specifications given by the connection relations). This
does not imply that the components cannot be moved anymore. If it is not for-
bidden by constraints and/or connections, the components can still be moved. In
this case, the relative position and the orientation of the components will change.

Let a and b be two concepts, thus a::concept and b::concept. The fact that a is
the reference part of b is expressed by adding a property referencePartOf to the
concept definition of a:
a[referencePartOf = b

Note that when a concept is the reference component of a complex concept,
then this concept should also be a component of this complex concept.
Let a and b be two concepts, thus a::concept and b::concept, where a is the ref-
erence part of b. Then the following deductive Tule holds:
alpartOf = b] «— a[referencePartOf = b]

The partO f property and the referencePartO f property are used to define
the modeling concept complexConcept. It is defined as a subclass of the concept
class (since a complex concept is also a concept) with properties (methods)
allParts and referencePart

complexConcept :: concept
complexConcept|allParts == concept;
referencePart = concept]
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allParts and referencePart are methods defined using the following deduc-
tive rules:

ClallParts — A] «— C : complexConcept N
A : concept A
AlpartOf — (]

ClreferencePart — A] «— C : complexConcept N
A : concept N
AlreferencePartOf — (]

The position (method) for a complex object is defined as follows:

Alposition — P] «— A:complexzConcept A C:concept A P:point A
ClreferencePartOf — A] A
Clposition — P

Example. The following F-logic statements define a WeldingRobot as a com-
plex concept composed of a Rail, a Base, a LowerArm, an UpperArm, and a
WeldingHead. The Rail is used as reference component.

WeldingRobot :: complexConcept

Rail :: concept

Base :: concept

LowerArm :: concept

UpperArm :: concept

WeldingHead :: concept
Rail[partOf = WeldingRobot]
Base[partOf = WeldingRobot]
LowerArm[partOf = WeldingRobot]
Upper Arm[partOf = WeldingRobot]
WeldingHead[partOf = WeldingRobot]
Rail[referencePartOf = WeldingRobot]

To create an instance of the complex concept, the following F-logic statements
could be used:

WeldingRobot1 : WeldingRobot

Raill : Rail

Basel : Base

LowerArm1 : LowerArm

UpperArm1 : UpperArm
WeldingHead1 : WeldingHead

Raill [partOf — WeldingRobot1]

Basel [partOf — WeldingRobot1]
LowerArm1[partOf — WeldingRobot1]
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UpperArm1[partOf — WeldingRobot1]
WeldingHead1 [partOf — WeldingRobot1]
Raill [reference PartOf — WeldingRobot1]

If we would now like to know the position of the instance WeldingRobot1 in
the VE, we could use the position method from the concept class (using tools
like OntoBroker [35] or Flora-2 [36]).

In a similar way, we can define the external and internal orientation of a
complex concept. Details are omitted.

So far we have shown how complex concepts are formalized. Note that all
methods are working on instances of complex concepts. However, it may also
be useful to be able to query the concept level and ask the system about the
concepts that are part of some complex concept. Therefore we have overloaded
the methods allParts and referencePart so that they also work on classes:

ClallParts — A] «— C :: complexConcept A
A :: concept A
AlpartOf = (]

ClreferencePart — A] — C :: complexConcept N
A :: concept N
AlreferencePartOf = ]

Concepts themselves don’t appear in the VE (only the instances), therefore they
don’t have a position and neither an orientation. Therefore, there is no need to
overload the methods position, externalOrientation and InternalOrientation.

4.4 Formalization of the Connection Relations

In this section we will explain how the connection relations are formalized. Note
that the semantics of the connection relations can be considered from two dif-
ferent viewpoints. We can consider the aziomatic semantics, which only defines
the specific properties (expressed as assertions) of the effect of using the connec-
tion relation. However, it is also possible to consider the operational semantics,
which defines the meaning of the connection relation by the computation it in-
duces when it is used. Expressing the axiomatic semantics is easier as the aspects
of the execution are ignored. For example, for a connection axis relation it would
be sufficient to state that the two connection axes need to coincide. For the op-
erational semantics, it is also necessary to specify how this should be realized.
This makes it much more complex, however, such a semantics has the advantage
that the formal specifications can also be used to calculate actual positions and
orientations and to reason about this when objects are actual moved or manip-
ulate inside the VE. As we have plans to use our formalization for this purpose,
we decided to use the operational semantics.

Using the operational semantics, we also had to distinguish between what we
call the initial semantics and the simulation semantics. On the one hand, a
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connection relation expresses how two components should be actually connected
and in this way defines what this means in terms of the position and orientation
of the two components. This is what we will call the initial semantics of the
connection relation, as it defines the semantics of the connection relation at the
time it is used to connect two components. On the other hand, a connection
relation also expresses constraints on the possible motions of the components
during the rest of the lifetime of the connection. This is what we will call the
simulation semantics.

Because of the complexity introduced by the operational semantics, we will
only give the formalization for the connection axis relation and also not com-
pletely elaborate all details. Details can be found in [5].

Formalization of the connection relations. Remember that the connection
axes are defined using 3 predefined planes: the horizontal plane, the vertical
plane and the perpendicular plane. These planes are defined as subclasses of
plane, a class without properties. The definition of the horizontal plane is given
below. As we have seen earlier, the default horizontal plane can be rotated over
the left-to-right axis and over the front-to-back axis. This is expressed by the
properties leftToRight Angle and frontToBackAngle (with default value 0).
The position is given by the properties x0, y0 and z0 (default value 0). Translat-
ing the horizontal plane along the top-to-bottom axis is expressed by overwriting
the z0 property. The vertical plane and the perpendicular plane are defined in a
similar way.

horizontal :: plane

horizontal | left ToRightAngle & 0;
frontToBackAngle &~ 0;
Ty &~ 0,'
Yo &= 0;
zo & 0]

Now we are ready to formalize the connection axis relation. First we will for-
malize the initial semantics of the connection axis relation. The connectionAxis
Relation class contains a number of properties to identify for each component
the two planes used to define the connection axis (source Planel, source Plane2,
targetPlanel, and targetPlane2). There are also a number of properties that
specify the connection point for the source and the target component (sourceT' P
Dist, sourceT PDir, targetT PDist, tragetT PDir). Remember that a connec-
tion point is specified by a distance and a direction. The connection AzisRelation
class also has two properties source Azxis and target Axis which are methods that
return the actual axis (a line) which is the connection axis for the source, re-
spectively the target component.

connectionAzisRelation [ sourcePlanel = plane;
sourcePlane2 = plane;
targetPlanel = plane;
targetPlane2 = plane;
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sourceAzxis = line;
targetAzis = line;
source TPDist = float;
sourceTPDir = string;
targetTPDist = float;
target TPDir = string |

The fact that two components are connected by means of a connection axis
relation is given by means of the connectTo property:

Let a and b be two concepts (a:: concept and b:: concept). The fact that a
is connected to b by means of a connection axis relation r (r : connectionAxis
Relation) is expressed as follows:

a [ connectedTo@b e— r ]
The method sourceAxis is defined as follows:

ClsourceAxis — L] «— C' : connectionAxisRelation A L : line A

AlconnectedTo@B e~ C] A
Alposition — p] A
intersectionLine(C.sourcePlanel,
C.sourcePlane2, M) N
L : linelrg — M.xg + p.x;

Yo — M.yo + p.y;

20 — M.z + p.z;

a— M.a; b— Mb; ¢ — M.c]

The predicate intersectionLine is used to state that a line M is the intersection
of two planes. The definition of this predicate is omitted. p is the position of the
source component. L (the connection axis) express a line through the point p
and parallel with M (given by parametric equations).

The method targetAzis is defined in a similar way as sourceAzis (source
should be replaced by target).

Now, we can define the initial semantics of a connection axis relation in terms
of the position and orientation of the source component. This is done by means
of the predicates connectedPosition(A, C, P) and connectionAzxisPos(A, C, P).

The predicate connectedPosition(A, C, P) states that P is the position of a
concept A connected via a connection relation to a concept C. The predicate
works for A being the source of a connection relation as well as for A being the
target. Note that the predicate can be defined in such a way that it applies for
whatever type of connection relation used to make the connection between A and
C'. However, to keep it simple, the definition given here only takes a connection
axis relation into account.

connectedPosition(A, C, P) — A : concept A C : concept A
P : point A (A | connectedTo@C e~ R] A
R : connectionAzisRelation N
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connectionAzisPos(A, C, P)) Vv
(C [connectedTo@A e~ R] A R : connectionAzxisRelation A
TPPos(A, R, P))

The predicate connectionAxzisPos(A, C, P) states that P is the position of
A when it is connected via a connection axis relation to C, while the predi-
cate T PPos states that P is the position of A when it is playing the role of
target object in the connection axis relation R. Details of this predicate are
omitted.

The predicate connectedOrientation(A, C, F) is defined to state that FE is the
external orientation for A connected via a connection relation to a concept C.

connectedOrientation(A, C, E) —
A : concept N C : concept N E : orientation A
A [ connectedTo@QC — R] A
R : connectionAzisRelation N\ connectionAzisOrient(A, C, E)

The predicate connectionAxisOrient(A, C, E) states that E is the external
orientation of A when it is connected via a connection axis relation to C'. Details
of this predicate are omitted.

So far we have formalized the initial semantics of the connection axis relation.
However, we also need to define the meaning of the connection axis relation for
the rest of the simulation, the so-called in simulation semantics. In the initial
semantics, the source needs to be positioned and oriented according to the tar-
get’s position and orientation, taking into account the connection axis relation.
During the simulation, the difference between source and target is not relevant
anymore. When one of the objects moves or changes orientation, the other one
has to move with it in such a way that their connection axis relations still
coincide.

If two concepts a and b (thus a :: concept and b :: concept) are connected over
a connection axis relation R, then for their simulation semantics the position
and orientation of a and b must be so that:

caPosConstraint(a, b, P,) N\ a[position — P,]
caPosConstraint(b, a, Py) A b[position — P|

connectionAzxisOrient(a, b, E,) N a[externalOrientation — E,]
connectionAzisOrient(b, a, Ey) A a[externalOrientation — Ep)

The predicate caPosConstraint(A, C, P) states that P is the position of A
when it is connected via a connection axis relation to C'. Note that this predicate
is very similar to the predicate connection AxisPos. However, for the predicate
connection AxisPos the source is positioned along the connection axis according
to the specified translation point. Now for the simulation semantics, the transla-
tion points are not relevant anymore. Therefore a different predicate was needed.
We omit the details of caPosConstraint.
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5 Related Work

This section will discuss related work. The first subsection reviews a number
of academic modeling approaches. The second subsection reviews a number of
languages that supports the modeling of rigid-body and the third subsection
reviews a number of commercial modeling approaches.

5.1 Academic Modeling Approaches

Kim et al. propose a structural approach for developing VR applications [40].
The approach is called ASADAL/PROTO and it uses Visual Object Specifica-
tion (VOS). The primary purpose of VOS is to describe physical properties and
configuration of physical entities. Spatial constraints can be used to define a
structure that is similar to a scene graph. However, there is no support in VOS
to describe physical connections and constraints between different objects.

The CODY Virtual Constructor [41] [42] [43] is a system which enables an in-
teractive simulation of assembly processes with construction kits in a virtual en-
vironment. The assembly process happens either by means of direct manipulation
or by means of natural language. Connections happen by means of predefined
points on the graphical objects. These predefined points are called connection
ports. When a moved object is in a position so that one of its connection ports
is close enough to the connection port of another object, a snapping mechanism
will fit the objects together. The core of the CODY architecture is based on a
knowledge processing component that maintains two levels of knowledge, namely
a geometric level and a conceptual level. For the representation of the knowledge
inside the knowledge bases a framebased representation language COAR, (Con-
cepts for Objects, Assemblies and Roles) has been developed. The use of natural
language offers a very intuitive way of describing an assembly. However, natural
language is often ambiguous and incomplete. This means that the outcome of
some natural language assembly modeling might not be what the designer wants.
Another disadvantage is that the connection ports must be defined in advance.
A third disadvantage might occur with very large assemblies where it can be
difficult for the designer to find his way through all the connection ports.

The aim of the Open Assembly Model (OAM) [44] is to provide a standard rep-
resentation and exchange protocol for assembly information. In fact it is defined
as an extension to the NIST Core Product Model (CPM) which was presented in
[45]. The class Artifact (which comes from the CPM) refers to a product or one
of its components. It has two subclasses, namely Assembly and Part. An Assem-
bly is a composition of its subassemblies or parts. OAM has been designed to
represent information used or generated inside CAD3-like tools. This enhances
the product development across different companies or even within one company.
However, OAM is not targeting the modeling of assemblies on a conceptual level.
It is targeting an underlying representation of assemblies inside the domain of
engineering.

The Virtual Assembly Design Environment (VADE) [46] [47] is a VR-based
engineering application that allows engineers to evaluate, analyze, and plan the
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assembly of mechanical systems. The system utilizes an immersive virtual envi-
ronment coupled with commercial CAD systems. VADE translates data from the
CAD system to the virtual environment. Once the designer has designed the sys-
tem inside a CAD system, VADE automatically exports the data into the virtual
environment. Then, the VR user can perform the assembly. During the assembly
process the virtual environment keeps a link with the CAD system. At the end
of a VADE session, the design information from the virtual environment is made
available in the CAD system. The VADE system is intended for engineers and it
is far from high-level.

The Multi-user Intuitive Virtual Environment (MIVE) [48] [49] [50] provides
a simple way for objects to constrain to each other without having to use a
complete constraint solver. MIVE uses the concept of virtual constraints. Each
object in the scene is given predefined constraint areas. These areas can then be
used to define so-called offer areas and binding areas. One major disadvantage of
the MIVE approach is that for example for the virtual constraints each object in
the scene needs predefined areas. Therefore it is difficult to reuse existing virtual
objects without adapting them to the MIVE approach.

5.2 Languages Supporting Rigid-Body

Recently, a revision of the X3D architecture [51] and base components specifi-
cation includes a rigid body physics component (clause 37 of part 1 of the X3D
specification). This part describes how to model rigid bodies and their interac-
tions by means of applying basic physics principles to effect motion. It offers
various forms of joints that can be used to connect bodies and allow one body’s
motion to effect another. Examples of joints offered are BallJoint, SingleAx-
isHingeJoint, SliderJoint or UniversalJoint. Although X3D is sometimes entitled
as being high-level, it is still focussed only on what to render in a scene instead
of how to render the scene. X3D is still not intuitive for a non-VR expert as
for example, he still needs to specify a hinge constraint by means of points and
vectors. Furthermore, reasing over X3D specifications is far from easy.

Collada [52] also has a rigid body specification in the same way as X3D. But
Collada has been created as an independent format to describe the 3D content
that can be read by any software. Therefore, Collada is a format for machine and
not really for human and certainly not for describing the modeling of complex
objects from a high-level point of view.

5.3 Commercial Modeling Approaches

SimMechanics [53] is a set of block libraries and special simulation features to
be used in the Simulink environment. Simulink is a platform for simulation in
different domains and model-based design for dynamic systems. It provides an in-
teractive graphical environment that can be used for building models. It contains
the elements for modeling mechanical systems consisting of a number of rigid
bodies connected by means of joints representing the translational and rotational
degrees of freedom of the bodies relative to one another. Although SimMechanics
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is already on a higher-level of abstraction (than for example physics engine pro-
gramming), it is still too low-level to be generally usable for application domain
experts. Another disadvantage of the approach is that there is no possibility to
do some reasoning.

SolidWorks [54] is a 3D computer-aided design (CAD) program in which 3D
parts can be created. These 3D parts are made by using several features. Fea-
tures can be for example shapes and operations like chamfers or fillets. Most of
the features are created from a 2D sketch. This is a cut-through of the object
which can for example be extruded for creating the shape feature. MotionWorks
makes it possible to define mechanical joints between the parts of an assembly
inside SolidWorks. MotionWorks contains different families of joints. It is fully
integrated into Solid-Works. These tools are not suited for non-experts. The
vocabulary used in SolidWorks is really meant for the expert.

3D Studio Max (3ds max) [20] is a 3D modeling software in the category of
authoring tools. There are also other tools ([24], Maya|21]) similar to 3ds max
and therefore this paper will review 3ds max as a representative of this category.
3ds max provides grouping features which enable the user to organize all the
objects with which he is dealing. 3ds max has also another way of organizing
objects, namely by building a linked hierarchy. 3ds max provides a number of
constraints that can be used to force objects to stay attached to another object.
Although 3ds max is intended to create virtual environments without the need
for detailed programming, one needs to be an expert in the domain of VR to be
able to use an authoring tool like 3ds max. The vocabulary used in the menus
and dialogs of such an authoring system is very domain specific. Terms like
NURBS, splines or morph are more or less meaningless for a layman.

6 Conclusions and Further Work

In this paper, we have described why conceptual modeling can be important
for the field of VR. We also explained the shortcomings of current conceptual
modeling languages with respect to VR. Next, we have presented a conceptual
modeling approach for VR and we have introduced conceptual modeling con-
cepts to specify complex connected 3D objects. The semantics of the modeling
concepts presented are defined formally using F-logic, a full-fledged logic fol-
lowing the object-oriented paradigm. Operational semantics have been defined
for the modeling concepts. The use of operational semantics has the advantage
of being able to actually calculate positions and orientations of objects and to
reason about the specifications. The use of F-logic also allows using a single lan-
guage for specifying the three different levels involved in our approach, i.e. the
meta-level, the concept-level and the instance-level, as well as for querying.

We do not claim that the conceptual modeling concepts presented here are
a complete set of modeling primitives for 3D complex objects. One limitation
concerning the modeling of connections is that it is not yet possible to define a
connection between two components that is a combination of connections, or to
combine constraints on connections. This is needed to allow for more powerful
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connections such as e.g., a car wheel. For this we need actually a combination of
two hinge constraints. The problem however is that the motion allowed by one
hinge constraint may be in contradiction with the motion allowed by the second
hinge constraint, and therefore a simple combination is not sufficient. Next, we
also need modeling concepts for specifying so-called contact joints. This type of
joints does not really describe a connection but rather a contact between two
objects like the gearwheels of a watch that need to roll against each other.

Another limitation is that the approach presented here is only usable for mod-
eling VE’s up to a certain level of complexity. E.g., the approach is difficult to use
for modeling detailed mechanical assemblies. This is due to the fact that these
types of virtual objects require a very high level of detail and also because of the
fact that domain specific concepts are needed. However, a layer can be built on
top of our approach that pre-defines these necessary domain specific modeling
concepts. Such an extension can be made for different domains. However, our
approach can always be used for fast prototyping. Prototype tools [55] are devel-
oped that allow generating code from the (graphical) conceptual specifications.
Afterwards, VR experts using other tools such as VR toolkits may refine the
prototype generated from the conceptual specifications.

The formalization given, unambiguously defines the modeling concepts. How-
ever, in order to use it for reasoning and consistency checking, an implemen-
tation needs to be built. I.e. the conceptual specifications, which are given by
a designer using the graphical notation, need to be translated into their corre-
sponding F-logic representation and added to some knowledge bases. Having all
the information in F-Logic knowledge bases, we can then use existing F-logic
systems (possibly extended with extra features), such as Flora-2, to query the
conceptual specifications and to do some reasoning and consistency checking.
Currently, we are working on such a reasoning system. It allows specifying a
number of domain-independent as well as domain-dependent rules. Examples of
domain-independent rules are: a rule to ensure that the partOf relation is anti-
symmetric, a rule to detect complex objects that don’t has a reference object,
or a rule that detects objects that are placed at the same location. Examples
of domain-specific rules are: a rule that specifies that all robot-instances should
be positioned on the ground, or a rule that each robot should have a controller.
More on this can be found in [56].

For future work we plan to extend the implementation to be able to dynam-
ically update the conceptual specifications at run-time. Therefore we need to
implement a mechanism so that changes in the actual VE are directly reflected
in the logical representation. Such an extension would also allow querying VE’s
in real time.
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