
Considering Additional Adaptation Concerns in the
Design of Web Applications

Sven Casteleyn1, Zoltán Fiala2, Geert-Jan Houben1,3, and Kees van der Sluijs3

1 Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
{Sven.Casteleyn, Geert-Jan.Houben}@vub.ac.be

2 Dresden University of Technology, Chair for Multimedia Technology,
01062 Dresden, Germany

Zoltan.Fiala@inf.tu-dresden.de
3 Technische Universiteit Eindhoven, PO Box 513, 5600 MB Eindhoven, The Netherlands

{g.j.houben, k.a.m.sluijs}@tue.nl

Abstract. The design of Web applications traditionally relies heavily on the
navigation design. The Web as it evolves now brings additional design con-
cerns, such as omni-presence, device-dependence, privacy, accessibility, local-
ization etc. Many of these additional concerns are occurrences of user- or con-
text-dependency, and are typically realized by transformations of the applica-
tion (design) that embed adaptation in the navigation. In this paper we focus on
how to extend an application with new functionality without having to redesign
the entire application. If we can easily add functionality, we can separate addi-
tional design concerns and describe them independently. Using a component-
based implementation we show how to extend a Web application to support ad-
ditional design concerns at presentation generation level. Furthermore, we
demonstrate how an Aspect-Oriented approach can support the high-level
specification of these (additional) design concerns at a conceptual level.

1 Introduction

Part of the popularity of the Web is due to its omni-presence and accessibility: mobile
devices (mobile phones, PDA’s etc.) make the Web accessible ‘anywhere and any-
time’. A broad range of organizations, e.g. in e-government, e-health, e-commerce, e-
learning, currently offer (part of) their services through this omni-present WWW. In
this evolution, designing and creating a Web application has become an increasingly
complex task. Not only are the applications larger, they also have to take into account
various (design) issues which were previously irrelevant: device-dependence, privacy,
security, accessibility, localization, personalization etc. Many of these design issues
require exhibiting a certain user- or context-dependency: the application becomes
adaptive (to the user). When designing applications and taking into account all these
separate issues, ad-hoc design obviously becomes unfeasible.

Web application design methods (e.g. Hera [1], OOHDM [2], WebML[3],
WSDM[4], OO-H[5]), proposed in literature as a systematic and conceptual approach
to Web application design, offer design and implementation (generation) support for

engineering complex Web applications. Adaptation of data, navigation, and presenta-
tion that suits the current user/context is specified by incorporating conditions in the
relevant design models. This adaptation specification constitutes a significant part of
the design of the Web application. Furthermore, it is closely intertwined with the
(regular) design process, which complicates the Web engineering process and is in
sharp contrast with the desired separation of concerns.

In this paper we first illustrate how to add adaptation to an existing (Hera-based)
Web application, using a component-based implementation. We do so utilizing the
Generic Adaptation Components (GAC [6]) provided by the AMACONT project, and
exemplify this approach with a running example using Hera [1]. Furthermore, we
illustrate how this adaptation can be specified at a higher-level of abstraction (i.e. at
the design level), separately from the regular application, by applying aspect-oriented
techniques. Using aspect-oriented techniques allows us to tackle cross-cutting design
concerns, which adaptations typically are.

2 Implementing Additional Adaptation Concerns

Before explaining how to add adaptation to an existing Hera-based Web application, it
is wise to recall the general architectural model behind such a Web application: under
the direction of an application model (AM) it transforms domain content into a hy-
permedia presentation. When adding adaptation to such an application, each addi-
tional adaptation concern can be seen as a modification of the application, and thus, at
implementation level all these additional adaptation concerns have to be incorporated
into the overall hypermedia generation process (see Figure 1).

Figure 1: Implementing Additional Concerns at Presentation Generation

For this implementation of additional adaptation concerns we exploit the Generic
Adaptation Component (GAC), a transcoding tool for making Web applications adap-
tive. According to its rule-based configuration, it allows to perform instance-level
adaptation operations on XML-based content (in our case the original hypermedia
presentation underlying the initial application model) based on available user/context
information is stored in its adaptation context data repository. The GAC is thus a
particularly suitable solution for implementing adaptation for hypermedia presentation
generation, independent of the regular application design. To illustrate this approach,
consider the running example of (a part of) a research project’s Web application.

Figure 2 depicts the structure of the application according to the visual representation
of a Hera AM. The starting page is the project homepage showing the project's name,
its introductory project description and the project members' name and photos as
thumbnails. Clicking on a member, one can navigate to the corresponding member's
homepage containing the name, contacts, CV, image, as well as a link list showing the
publications (title, conference, year of publication). Note that in this basic application
model there is no adaptation embedded yet.

Figure 2: Example Application Model

Now imagine we would like to express, in the context of an additional adaptation
concern of device-dependency, that for pda-users no images will be shown, and on the
member page, no publication-list will be given. The corresponding GAC rule for fil-
tering images (which in this case will omit members’ thumbs on the project page, and
members’ pictures on each member’s page) looks as follows:

<gac:AppearanceRule gac:selector="//Slice/* [@mediatype = 'picture']">
 <gac:Condition gac:when="$device!=‘pda’"/>
</gac:AppearanceRule>

Figure 3 shows two versions of our running example’s project member homepage.
Based on the application model shown in Figure 2, the original (desktop) variant pro-
vides information of that member’s title, name, CV, contacts but also a link list point-
ing to his publications. According to the above GAC rule, no pictures are shown on
the PDA. Furthermore, the list of the member’s publications is only shown on the
desktop browser and filtered out on the handheld.

3 Specifying Additional Adaptation Concerns at Design Level

Using the GAC to specify additional adaptation concerns allows to specify adapta-
tion separately from the regular Web application. However, this solution operates at

the level of presentation generation, and requires detailed knowledge of the specific
XML formats of the Web design method’s implementation models (in our case, the
Hera implementation models). Furthermore, the richness of these models is a deter-
mining factor for the specificity or generality of the GAC rules. A higher-level solu-
tion, which allows the designer to specify additional adaptation concerns at the design
level exploiting their implementation independent semantics, yet still separate from
the regular design, is thus desirable. Therefore, we will apply aspect-oriented tech-
niques at design (model) level (see also [7] for a similar, yet lower level approach).
From such a higher-level specification, one or more GAC rules for the specific XML
(implementation) format can then be generated.

Figure 1: Generated Member Page
As our “omit all pictures” example suggests, adaptation is, in most cases, not fixed

to one particular element, yet distributed over the entire design. A similar observation
was made in the programming community, when considering different design con-
cerns of a software application: some concerns cannot be localized to a particular
class or module; instead they are inherently distributed over the whole application.
Such a concern is called a cross-cutting concern. To cleanly separate the programming
code addressing this concern from the regular application code, Aspect-Oriented Pro-
gramming [8] was introduced. An aspect captures the code originating from the cross-
cutting concern, and is split up in two parts: the advice (i.e. the programming code that
needs to be injected in the regular code) and the pointcut (i.e. the particular place(s) in
the regular code where the advice needs to be injected).

Returning to our running example, and applying aspect-oriented principles at the
design level of a Web Application, we can express the required adaptation “for pda-
users, remove all images from the application” as follows (using pseudo-code):

POINTCUT ALL ELEMENTS WITH mediatype = ‘picture’ PROPERTY
 ADVICE ADD CONDITION device != ‘pda’

This pointcut/advice pair specifies that, for all design elements which are pictures
(the pointcut), a condition is added which restricts visibility of these element to non-

pda users only. Such an aspect-oriented specification can subsequently be (automati-
cally) translated in one or more corresponding GAC rules, which perform the desired
adaptation at implementation level, as described in the previous section. Note that
both at design and implementation level, we strive for a separation of adaptation (con-
cerns), from the regular design/application.

4 Conclusion

In this paper, we demonstrated how to add (additional) adaptation concerns to an
existing (Hera-based) Web application, both at design and implementation (genera-
tion) level. Our approach is based on the observation that adaptation mostly boils
down to transformations that realize a certain user- or context dependency. We
showed how these transformations can be specified independently from the original
application at presentation generation level, by using a generic transcoding tool GAC.
We furthermore illustrated how higher-level support for this adaptation specification
can be realized applying aspect-oriented techniques. We are currently experimenting
with such aspect-oriented adaptation specifications, and with the required mapping to
GAC rules.

References

[1] Vdovjak, R., Frasincar, F., Houben, G.J., Barna, P.: Engineering Semantic Web Informa-
tion Systems in Hera. Journal of Web Engineering, Vol. 2, No. 1&2 (2003) 3-26.

[2] Schwabe, D., Rossi, G.: The Object-Oriented Hypermedia Design Model. In Communica-
tions of the ACM 38(8), ACM Press, ISSN 0001-0782 (1995) 45-46

[3] Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing Data-
Intensive Web Applications, Morgan Kaufmann (2003)

[4] De Troyer, O., Casteleyn, S.: Designing Localized Web Sites. In Proceedings of the 5th
International Conference on Web Information Systems Engineering (WISE 2004), Bris-
bane, Australia (2004) 547-558

[5] Gómez, J., Cachero, C., Pastor, O.: Conceptual Modeling of Device-Independent Web
Applications. In IEEE Multimedia Special Issue on Web Engineering, IEEE Computer
Society Press (2001) 26-39

[6] Fiala, Z., Houben G.J.: A Generic Transcoding Tool for Making Web Applications Adap-
tive. In Proceedings of the CAiSE'05 FORUM, Porto, Portugal (2005) 15-20

[7] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J., Irwin, J.:
Aspect-Oriented Programming. In Proceedings of the 11th European Conference on Ob-
ject Oriented Programming (ECOOP’97), Jyväskylä, Finland (1997) 220-242

[8] Bausmeister, H., Knapp, A., Koch, N., Zhang, G. Modelling Adaptivity with Aspects. In
Proceedings of the International Conference on Web Engineering (ICWE2005), Sydney,
Australia, 2005, 406-416

