
Applying Semantic Web Technology to Feature Modeling
Lamia Abo Zaid

Vrije Universiteit Brussel
Pleinlaan 2

1050 Brussels
 +32 2 629 3754

Lamia.Abo.Zaid@vub.ac.be

Frederic Kleinermann
Vrije Universiteit Brussel

Pleinlaan 2
1050 Brussels

+32 2 629 5713

Frederic.Kleinermann@vub.ac.be

Olga De Troyer
Vrije Universiteit Brussel

Pleinlaan 2
1050 Brussels

+32 2 629 3504

Olga.DeTroyer@vub.ac.be

ABSTRACT
Feature models are models used to capture differences and com-
monalities between software features, enabling the representation
of variability within software. There are many variations of fea-
ture models and different notations are often used to represent the
same information. Currently support for validating or integrating
feature models is missing. In this paper, we provide an ontology
framework for feature modeling which consists of an ontology
that formally provides a specification for feature models. In
addition, we provide means to integrate segmented feature models
and provide a rule based model consistency check and conflict
detection. We use SWRL rules to implement the rules and a DL
reasoner to evaluate the rules and infer extra interesting informa-
tion regarding the variability of the software.

Categories and Subject Descriptors
H.4.2 [Types of Systems]: knowledge and information
management of feature models.

Keywords
Feature models, software variability, ontologies, OWL, SWRL

1. INTRODUCTION
Introducing and managing variability in software products is

a non trivial task. The need for variable software is driven by the
increase of software demands, and the large similarity in software
delivered to different customers and/or for different platforms.
Variable software has a common architecture with a number of
reusable assets [1]. By combining these assets products with
different flavors can be created. These assets are called features.

A feature can be seen as an increment in the program’s
functionality [1]. Variability in software is specified by defining a
set of possible features that distinct products could hold. Some
features will be common to all products while others will differ
from product to product.

Feature models (also known as feature diagrams) are tree-
like structured models used to capture differences and
commonalities between software features, enabling the
representation of software variability [1]. Furthermore they define
the rules and constraints that make up a valid product.

Software systems have grown in terms of the number of

features they hold (which could be up to a few thousand), and the
complexity of relations and dependencies between these features
[2]. Thus the process of efficiently insuring the correctness of the
features models representing the system becomes difficult.
Furthermore the growth in size calls for distributing the process of
feature model creation. Two forms of distribution hold;
distribution in terms of functionality (i.e. different models are
created for different parts) and distribution due to the fact that
different people may be involved in the process. Ensuring that
the distributed feature models do not contain conflicting
information is not an easy task. To our knowledge there are
currently no tools to provide such support. Inconsistent and
conflicting feature models lead to buggy software. Incorrect
combinations of features would be made; furthermore possible
combinations of features could be missed.

Currently features modeling engineering is also facing a
number of other challenges, namely:

1. There exists no real agreed semantics or notation for feature
models: Many variations to the first feature model notation,
FODA [3] exist, such as FORM [4] and FeatuRSEB [5].
Different notations are used to represent the same
information. Different extensions are added to FODA such
as to include cardinality [6] and feature constraints [7]. For
more details we refer the reader to [8].

2. Lack of a formal common semantics for feature models: This
makes it difficult to exchange feature models in practical
applications. As a consequence, tool support for feature
model has become fragile, making transformations between
feature models a problematic issue. We report the work of
[9] on feature models, grammars, and propositional formulas
as one possibility of formal representation of feature models.

3. Dependencies between features are poorly represented:
There may be many relations between the features of one
single component; moreover, many interactions,
dependencies and conflicts may exist between the features of
different components. Many of these dependencies and
relations are not easily captured by current feature models.

4. Feature modeling analysis versus variability analysis
mapping is required: a feature relates to variability via its
type. In variability analysis, often the term variation point is
used to refer to a variable feature. The options of that
variable feature are referred to as variants. A mapping from
feature modeling to the terminology of variation points and
variants is required to facilitate a common understanding
between different stakeholders regarding variability [1].
In this paper we present FMO, an ontology framework to

formally represent and define feature models. We have three main

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’09, March 8-12, 2009, Honolulu, Hawaii, U.S.A.
Copyright 2009 ACM 978-1-60558-166-8/09/03…$5.00.

contributions. First, we provide an OWL-based ontology to
capture and manage feature models. Secondly, we define a set of
rules that insure the logical consistency of the feature model
ontology. And thirdly, we provide a mapping between the feature
terminology which is most commonly used in feature oriented
domain analysis and the variation/variant terminology often used
when referring to variability. We show that employing an
ontology-based technique to capture feature models semantics
may solve some of the problems mentioned earlier in this
introduction, and allows for easy manipulation and validation of
the models.

The rest of this paper is organized as follows, in section 2 we
give a brief overview of the current state of the art of feature
models. In section 3, we discuss our feature model ontology,
FMO. In section 4, we demonstrate the use of our FMO ontology
with an example and show the use of reasoning to deal with the
feature model consistency. In section 5, we highlight some related
work. Next, in section 6 we summarize and provide an outlook
on our future work.

2. FEATURE MODELS
Feature models describe a hierarchical structure of features

with exactly one root node, which is further broken up to its
corresponding constructing features. Commonly, there are five
types of relations possible in a feature model [3] [9]; table 1
shows their graphical notation and meaning.

In addition to the feature types which show feature relations
based on their composition, additional constraints between
features may exist. Constraints describe how features interact with
each other. They control the way features can be put together to
form a product.

Table 1. Feature Type relations modified after [10]

And indicates that all subfeatures must be part of any product
of the product line

Alternative indicates that only one subfeature can be selected
in any product in the product line.

Or indicates that one or more subfeatures can be selected as
part of any product in the product line.

Mandatory indicates that this subfeature is required as part of
any product in the product line.
Optional indicates that this subfeature may or may not be part
of a product in the product line.

Figure. 1. Order Process Problem, modified after [7]

Figure 1 shows a sample feature model and feature
dependencies of the Order Process Problem introduced in [7]. The
feature model shows the order process’s composing features and

how they are composed based on the notation given in table 1.
The feature model shows for each feature, its name and type; a
feature’s contribution to variability is depicted via its type. A
feature that contributes to variability is called a variable feature.
In the above example, Shipping_Cost and Invoice are variable
features. Accompanied with additional feature dependency
constraints, a feature model gives information about the features
that should be part of a valid software product.

A valid composition of features is called a configuration [1]
[9]; a valid composition of features results in a valid product. A
valid product is one that meets all the type restrictions and feature
dependencies depicted by the feature model. A feasible feature
model is one that holds no contradictions or conflicts within the
different dependency constraints between features.

3. OUR FEATURE MODELING
ONTOLOGY FRAMEWORK

To deal with the challenges mentioned in the introduction,
we employ an ontology based approach for the representation of
the knowledge contained in feature models. We chose the web
ontology language (OWL) [11] to represent our ontology for a
number of reasons. First, OWL is the standard (semantic web)
language, which will allow making the ontology interoperable
among different applications. It will allow easily exchanging
different feature models between applications and users.
Secondly, OWL has constructs that allows the modeling of both
classes and individuals, along with constraints defined on them.
This provides a seamless transition from the real-world view of

the model to the ontological view of the model. Thirdly, OWL
(DL) was designed to support DL reasoning on top of the
ontology model. This enables using DL reasoners to infer
knowledge and using rules implemented in SWRL [12].

Our goal is not to provide a taxonomy for feature models but
rather to provide a knowledge representation mechanism for
feature models. We do so via providing an OWL representation
for the knowledge contained in feature models, and representing
all possible feature model semantics. Furthermore, we use SWRL
rules [12] to insure the consistency of the feature model and to
detect contradicting or conflicting knowledge in the model. Figure

Figure. 2. FMO: feature model ontology framework

2 shows the main components of the feature modeling ontology
framework. The feature model ontology defines the vocabulary to
represent the knowledge within feature models. The Feature
model logical satisfiability and correctness is captured by a set of
rules defining cases of error. The feature model knowledgebase
holds three types of knowledge namely: the Feature Model
Ontology, the feature model SWRL Rules, and the feature model
instances. We will discuss each into more detail.

3.1 Feature Model Ontology
An ontology is a conceptualization of a domain. An ontology

expresses knowledge of a certain domain of discourse in terms of
classes, properties and restrictions. We have chosen the iterative
engineering approach described in [13] to model our ontology.
We model the feature model constructs as classes. To capture as
much as possible all possible semantics represented by feature
models, we have conducted a study of the state of the art of
feature models to explore the similarities and differences in
feature modeling methods. The basic source of our feature model
concepts come from FODA representation. We have also added
concepts from FORM [4] and FeatuRSEB [5]. We have added
semantics for cardinality and feature attributes following the
recommendations of [6].

One of the major benefits of having a feature model ontology
is that it allows representing features, as well as both feature
relations and features constraints in one model. Furthermore we
provide feature constraints that allow integrating multiple
distributed or segmented feature models. The integration aims at
creating one feature model representing the system while
detecting conflicts and contradictions. These constraints represent
another form of relation between features, and link together
different segments of features. We call these constraints feature to
feature constraints (FTFC). It is the case that features interact
together and thus influence the selection of other features within a
valid composition. The integration of segmented models must
insure the consistency and correctness of the overall model and
thus the correctness of configuration decisions based on it.
a) Feature Model Ontology Class Constructs
Following a top down approach to
define the key classes within the feature
models model, we have defined the
following class constructs (shown in
figure 3):

• Feature: This is the main ontology
construct; features can be of type:
external, functional, interface or
parameter.

• Composition: represents
alternative/or relations in a feature
model.

• Feature Attribute: defines a
variable associated with the feature,
the value of the variable is
specified during the composition of the product

• Feature Relation: represents the possible types: Mandatory,
Or, Optional, or Alternative for a feature.

b) Feature Model Ontology Properties
The relations between the classes in the ontology are defined via a
set of properties; we define the following main properties:

• Feature_to_Feature_Constraint (FTFC): property that has
Feature class both as domain and range. Providing FTFC as
part of the model using formal vocabulary to represent
relations between features removes ambiguity. The following
are subproperties of the FTFC: Excludes, Extends, Impacts,
Implies, Includes, Incompatible, Requires, Uses, Same.
It must be noted that Incompatible and Excludes are defined

as symmetric properties. Extends, requires and includes are
defined as transitive properties. Furthermore, for the sake of
logical consistency of the feature model, some properties are
mutual exclusive such as: (Requires, Excludes), (Requires,
Incompatible), (Uses, Excludes), (Extends, Incompatible).

• Feature Value constraint: Represents the value attached to
the feature if one exists. It has three disjoint subproperties:
Equal_to, Greater_than, Less_than. An example in the order
process problem is: Tax Greater_than 0

• Attribute value constraint: Represents the value attached to
the feature attribute, if one exists. It has three disjoint
subproperties: Equal, Greater, Lesser. An example in the
order process problem: the shipping_cost has an attribute
initial_cost equal 2.5

• Compositional properties: show how the features are
composed as parts of other features in the original feature
model tree-like notation. Properties which represent this are:
Composition_of and its inverse property Part_of; they show
the belonging of a feature to a composition. Is_Composed_of
and its inverse Decomposition_of, show the simple part of
relation between features.

c) Same/Different features
In our conceptualization, to explicitly say that two features
are the same, we use the Same construct, which is defined as
a property of Feature. Same construct is actually the
owl:sameAs construct in OWL. We use it to state that two
features are the same.

3.2 Feature Model Ontology Rules
The need to introduce rules in our ontology is driven by the

fact that we need a mechanism to detect the inconsistencies in a
single feature model, as well as in a set of integrated feature
models. By inconsistency we refer to the term defined by [14], “A
state in which two or more overlapping elements of different
software models make assertions about aspects of the system they
describe which are not jointly satisfiable”. Some contradictions
cannot be represented in OWL DL, such as mutual exclusive
properties. Therefore, this type of inconsistency cannot be
detected by DL reasoners which try to identify sources of
inconsistencies by searching for contradictory facts. Therefore,,
we need to define the rules that represent all these invalid states in
order to assure that the underlying feature model is logically
consistent. By logical consistency we mean that the facts in the
ontology are not contradictory or violate rules governing the real
case problem. We refer to this type of consistency as Variability
Model Consistency.

For the sake of inconsistency detection, we have added to
our ontology a class named Inconsistency, which has one property
called Problem. Problem has Inconsistency as both a domain and
range. The situations that cause inconsistencies are defined by a
set of SWRL rules. A rule has a body (antecedent) defining an
inconsistent situation and a head (consequent) that marks the
individuals causing this inconsistent situation. Marking is done by

Figure. 3. FMO
class hierarchy

asserting them to have a problem relation between them. The
rules assign inconsistent individuals to the Inconsistency class via
the problem property. We capture two types of inconsistency
problems. The first type of inconsistency emerges from using two
properties that are mutually exclusive for the same features. An
example rule is: Requires(?x, ?y) ˄ Excludes(?x, ?y) →
problem(?x, ?y). The rule captures a problem when a feature x
requires feature y and yet in another part of the model x excludes
y. A second type of inconsistency is when a two-way direction of
using an asymmetric property is detected. An example rule is:
Requires(?x, ?y) ˄ Requires(?y, ?x) → problem(?x,
?y). This rule captures a problem when two features x, y have a
two-way requires relation, as this is an indication of a cycle in the
feature model.

We also use rules to provide information of particular
importance for stakeholders interested in variability opportunities.
We define SWRL rules that capture all the possibilities to classify
features as either a (prospective) Variation Point or a
(prospective) Variant. An example rule is: Composition(?x) ˄
Composition_Of(?x, ?y) ˄ Decomposition_of(?y,

?z) ˄ type(?y, OR_F) → Variation_Point(?z). This
rule defines a variation point as a feature that has a child which is
part of a composition and has type OR. While the rule:
Composition(?x) ˄ Composition_Of(?x, ?y) ˄
Decomposition_of(?y, ?z) ˄ type(?y, OR_F) →
Variant(?y) defines that child as a variant.

3.3 Ontology implementation issues
The Meta model of our feature models ontology (as shown

by figure 2 section 3) is fixed and thus there will be no changes in
the TBox of the knowledgebase. Rather the changes will occur in
the ABox where we constantly add /delete or update existing
knowledge while creating and maintaining feature models. Our
feature models ontology was implemented using protégé OWL
[15] and using Pellet [16] as a DL reasoner.

4. APPLICATION TO AN EXAMPLE
In this section we provide an example that demonstrates how

our framework can be used to first model and then integrate
segmented feature modes and feature constraint information while
detecting model inconsistency. Figure 4 shows an example of
feature models and feature dependencies of an Order Process
Problem. The order process problem has three consistent
segments namely: Order Process Segment, Fulfilment Segment,
and Payment Segment. When putting together the three segments
there is a clear inconsistency between the features and the
constraints of the integrated model (shown in bold in figure 4).

We represent knowledge in figure 4 with the appropriate
semantics from the FM ontology. This yields that features are
mapped to individuals and the relations between features are
defined via their properties. Furthermore constraints between the
features represent semantic links for the integration, such as the
uses relation between Shipping and Shipping_Cost. We also link
Features that are semantically the same using the same property.
Such as Fulfilment in figure 4.a which is semantically the same
feature as Order_Fulfilment, in figure 4.b.

Using Pellet for reasoning on the ontology and evaluating the
SWRL rules described earlier we obtained the following results:
from constraints (4.b.2, 4.c.1) in figure 4 there is a problem
relation between Shipping and Pay_on_Delivery. Similarly
constraints (4.b.4, 4.a.4) results in a problem relation between

Shipping and Credit_Card. The reasoner then infers Shipping,
Pay_on_Delivery, and Credit_Card as members of the
Inconsistency class. Furthermore, by evaluating the SWRL rules,
variation points and variants are inferred. Order_ Fulfilment,
Order_Payment, Invoice, Shipping, Payment, and Fulfilment are
identified as Variation Points. Credit_Card, Electronic_Delivery,
Frequent_Flyer, Pay_On_Delivery, Shipping, Online_Display,
Package_Slip, Pay_By_Bill Package_Tracking_Number,
Printed_Invoice, and Service_Delivery are identified as Variants.

Figure. 4. Order process problem, modified after [7] a) order
process segment b) fulfilment segment c) payment segment

The above example illustrates the efficiency of our feature
modeling framework. However, we need to apply it to a real
world case.

5. RELATED WORK
Related work falls into two main categories, the first being

representation of feature models, the second about analyzing
feature models to find feasible configurations and detecting dead
or problematic features. We first cite work from the former
category. In [10], an OWL-based approach was used to represent
and verify feature models. OWL constraints are used to model
feature relations and constraints defined by the feature model.
Given a certain feature composition their approach can detect
whether it is valid or not. Furthermore it can also present the
axioms that caused it to be invalid. Opposed to our approach, the
authors focus more on using OWL and DL reasoning as a
technique for verifying the configuration after transforming the
problem to an OWL representation. In [17], an OWL ontology for
feature modeling is provided. The ontology provides aid in
application oriented tailoring. The ontology classifies features
based on several categories depending on the underlying business
model. The basis is ‘action’, which represents the business
operation. Dependencies between features are identified based on
their action requirements. Although very related to our work, the
work presented in [17] takes a business prospective to represent
feature models which we think limits the use of their technique to
business applications which are highly function oriented.

 Research in the latter category includes the following work:
In [9], the authors attempt to use a Logic based Truth

Maintenance System (LTMS) and Boolean Satisfiability Problem
Solver (SAT solver) to propagate constraints. LTMS also
provides automatic selections for a possible configuration, and
provide justification for automatically selected/deselected
features. In [18] feature models are transformed into a Constraint
Satisfaction Problem where a Constraint Solver is used to
determine the feasible configurations of a feature model. In [19],
the authors use Higher Order Logic (HOL) to formulate feature
models: Prototype Verification System (PVS), a HOL solver, is
then used to find feasible configurations

Although in these techniques configurations (i.e. possible
products) are automatically found, debugging in case of a design
error is a hard task. Neglecting the fact that a contradiction in the
model may be blocking feasible or expected feature combinations
is a major drawback for such feature analysis techniques [20].

6. DISCUSSION AND FUTURE WORK
In this paper we have presented a framework for

representing, integrating and validating feature models by using
OWL and SWRL. We have also applied it to a small example that
demonstrates its use. Although OWL was initially proposed for
the semantic web, its expressive power and formal semantics
made it usable in many other different domains. We provided an
ontology for feature models that captures a large category of the
semantics in existing feature modeling techniques. We have also
added feature-based integration semantics to our ontology
enabling integration of distributed feature models. Furthermore
we have formulated a list of SWRL rules that define conflicts or
inconsistencies in the model as well as rules that infer information
regarding variability.

For our future work towards a complete framework to model
and manage feature models, we aim to enrich the ontology by
applying more examples.

From a usability point of view, it is not only important to
detect inconsistencies but it is also very important to be able to
explain to users the reason(s) for the inconsistency. Currently,
Pellet provides some support for debugging possibilities, but in a
very non-user-friendly format. Feature modeling is an
accumulative process with many changes; therefore we plan to
explore more the possibilities of reasoning with changing
ontologies. In our case changes only happens in the Abox which
should not complicate the process.

 As a second stage, an easy to use user interface to query the
features model ontology is required to allow users to query about
features and their relations within the ontology.

Our final goal is to provide a tool that will allow
collaborative analysis and modeling of feature models while
pinpointing conflicts and inconsistencies on the spot allowing for
accurate decisions and error free configurations. Furthermore our
tool should allow for evolutionary development and act as a
repository for feature models.

7. ACKNOWLEDGEMENT
This research is sponsored by ISRIB through the VariBru project.

8. REFERENCES
[1] Bosch,J.: Design & Use of Software Architectures: Adopting

and Evolving a Product-Line Approach, Addison-Wesley,
2000.

[2] Bosch J.: Software Product Families in Nokia. In: 9th
International Conference SPLC 2005 (2005).

[3] Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.:
Feature-oriented domain analysis (FODA) feasibility study.
Technical Report CMU/SEI-90-TR-021, Software
Engineering Institute, Carnegie-Mellon University (1990)

[4] Kang, K., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.:
FORM: A Feature-Oriented Reuse Method with Domain-
Specific Reference Architectures. In: J. Annals of Software
Engineering. vol. 5, pp. 143-168 (1998)

[5] Griss, M., Favaro, J., d’Alessandro, M.: Integrating Feature
Modeling with the RSEB. In: Fifth International Conference
on Software Reuse, pages 76–85 (1998)

[6] Czarnecki, K., Kim, C. H. P.: Cardinality-Based Feature
Modeling and Constraints: A Progress Report. In:
OOPSLA’05 International Workshop on Software Factories
(2005)

[7] Ye, H.; Liu, H.: Approach to modelling feature variability
and dependencies in software product lines. In: Software,
IEE Proceedings -Volume 152, Issue 3, Page(s): 101 – 109,
(2005)

[8] Schobbens, P.-Y., Heymans, P., Trigaux, J.-C., Bontemps,
Y.: Generic Semantics of Feature Diagrams. In: Computer
Networks, volume 51, issue 2, pp. 456-479, 2007

[9] Batory, D.: Feature models, grammars, and propositional
formulas. In: Obbink, H., Pohl, K. (eds.) SPLC 2005. LNCS,
vol. 3714 (2005)

[10] Wang, H., Li, Y., Sun, J., Zhang, H., Pan, J.: Verifying
Feature Models using OWL. In: Journal of Web Semantics:
Science, Services and Agents on the World Wide Web.
Volume 5, Issue 2, Pages 117-129, Elsevier, June 2007

[11] OWL, http://www.w3.org/TR/owl-features/
[12] Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S.,

Grosof, B., Dean, M.: SWRL: A Semantic Web Rule
Language Combining OWL and RuleML,
http://www.w3.org/Submission/SWRL

[13] Noy, N. F., McGuinness, D. L.: Ontology Development 101:
A Guide to Creating Your First Ontology. Stanford
Knowledge Systems Laboratory Technical Report KSL-01-
05 and Stanford Medical Informatics, Technical Report SMI-
2001-0880 (2001)

[14] Spanoudakis, G., Zisman, A.: Inconsistency management in
software engineering: Survey and open research issues. In:
Handbook of Software Engineering and Knowledge
Engineering, 1, pp. 329-380, 2001.

[15] Stanford Protégé OWL,
http://protege.stanford.edu/overview/protege-owl.html

[16] Pellet DL Reasoner, http://pellet.owldl.com/
[17] Peng, X., Zhao, W., Xue, Y., Wu, Y.: Ontology-Based

Feature Modeling and Application-Oriented Tailoring. In:
ICSR 2006: 87-100

[18] Benavides, D., Trinidad, P., Ruiz-Cortés, A.: Automated
Reasoning on Feature Models. In: 17th Conference on
Advanced Information Systems Engineering (CAiSE'05)

[19] Mikoláš, J., Kiniry, J.: Reasoning about Feature Models in
Higher-Order Logic. In: 11th International Software
Product Lines Conference (SPLC 2007).

[20] Batory, D., Benavides, D., Ruiz-Cortés, A.: Automated
Analyses of Feature Models: Challenges Ahead. In:
Communications of the ACM (Special Section on Software
Product Lines) (2006)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

