
A Personal Assistant for Web Database Caching

Beat Signer, Antonia Erni, and Moira C. Norrie
{signer, erni, norrie}@inf.ethz.ch

Institute for Information Systems
ETH Zurich, CH-8092 Zurich, Switzerland

Abstract. To improve the performance of web database access for reg-
ular users, we have developed a client caching agent, referred to as
a personal assistant. In addition to caching strategies based on data
characteristics and user specification, the personal assistant dynamically
prefetches information based on previously monitored user access pat-
terns. It is part of an overall multi-layered caching scheme where cache
coherency is ensured through cooperation with a server-side database
caching agent. The personal assistant has been implemented in Java and
integrated into the web architecture for the OMS Pro database manage-
ment system.

1 Introduction

Significant gains in performance for web access to databases can be achieved
with a shift away from server-side access architectures towards web-based client-
server database architectures. By moving components of the database system
to the web client, user access times can be improved by reducing both server
load and communication costs. Communication costs can be decreased through
a combination of using socket-based communication instead of the slower Hy-
pertext Transfer Protocol (HTTP) and eliminating some of the communication
through client-side caching mechanisms and processing. In addition, further re-
ductions in user response times can be achieved by predictive prefetching of data
into an active cache based on observed user access patterns.

We have implemented such a web-based architecture for the object-oriented
database management system OMS Pro [NW99,KNW98] in which client-side
DBMS components include a generic object browser, schema editor, presenta-
tion editor and also caching agents [ENK98,EN98]. The client-side caching frame-
work may optionally contain a personal assistant which provides registered users
with an adaptive, persistent cache on their local machine. The personal assis-
tant monitors a user’s access behaviour in order to dynamically prefetch data in
accordance with predicted access patterns. Cache coherency is ensured in coop-
eration with the server-side database agent where communication is established
through the use of persistent socket connections between the client-side agents
and the database agent. Changes to the database can therefore be propagated
to all client-side agents ensuring that only current information is stored in the
client agent’s caches. The resulting multi-level caching scheme, together with its



prefetching strategies, has enabled us to significantly improve performance while
keeping the caching overhead small.

The personal assistant’s cache provides benefits not only in terms of perfor-
mance, but also in terms of mobile computing in that it allows objects of interest
to be explicitly cached and then accessed without an active connection to the
server side. We note however that this is not the main purpose of the cache and
full, disconnected operation of OMS Pro databases with bi-directional, synchro-
nised updates is supported through a general database connectivity mechanism,
OMS Connect [NPW98].

Our architecture is specifically designed to cater for the requirements of web
databases and the access patterns of their users in contrast to other proposals
for advanced web caching schemes [Wes95,CDF+98,CZB98,BBM+97]. General
web caching strategies typically do not cache dynamically generated documents,
nor do they deal with the case of client-side applications retrieving query results
from a database on the server side. In contrast, we recognise the browsing-style
access patterns of many web-based information systems where users navigate
from single entry points and frequently issue the same or similar requests to a
database as is reflected by the heavy use of the “back”-button in web browsers.

Clearly, building client-server database systems on the web is similar in con-
cept to any form of client-server database architecture. However, the fact that we
access the database via a web browser with the client components implemented
as Java applets presents some special technical challenges including problems of
security restrictions, the general dynamic and temporary nature of the client-
server relationship, interaction with browsers and non-uniformity across different
browsers.

In Sect. 2, we present our general web-based client-server architecture in
terms of the various caches and the agents managing them. Section 3 goes on to
detail the functionality of the personal assistant and the active cache it main-
tains. The personal assistant’s user interface is outlined in Sect. 4 and some
implementation details are given in Sect. 5. Performance issues and preliminary
measurement results are presented in Sect. 6, while concluding remarks are given
in Sect. 7.

2 Web Client-Server Database Architecture

Currently, most architectures for web access to databases are server-based in
that the whole database functionality resides on the server side [ACPT99]. To
avoid the processing overheads associated with CGI architectures and provide
support for interactive user sessions, Java servlets provide a general means of
improving the efficiency and ease of development of server-based application
systems [HCF98]. In the case of database systems, several general and DBMS-
specific web servers tailored for database system access have been developed.
However, with all of these solutions, processing tends to remain on the server
side and communication is via the HTTP protocol with results presented as
Hypertext Markup Language (HTML) documents.



While Java applets are being used increasingly to move processing to web
clients, it tends to be the case in web information systems that there is a separa-
tion of application and database logic and all components of the DBMS remain
on the server side. For example, an application applet may use a JDBC database
server to retrieve information from a database [Ree97]. There are however disad-
vantages of this approach resulting from the fact that the applet and the database
are only loosely-coupled, meaning that the applet cannot exploit the full func-
tionality of the database system and has to do all the work of interpreting and
assembling query results and then generating their presentation.

We are instead interested in making a DBMS web-capable in the sense that
components of the DBMS can execute on the client side. Thus, it is not the case
of client applications connecting via the web to server database systems, but
rather adapting the DBMS to a dynamic client-server architecture in which the
clients run through a web browser. The client-server architecture is dynamically
generated when downloading the client as an applet over the Internet.

A major advantage of this approach is that database-specific caching strate-
gies can be implemented on the client machine. Other advantages come in terms
of the ease of providing clients with extended database functionality, eliminating
unnecessary mappings through intermediate standard interfaces and generally
providing the look and feel of a DBMS through the web for both developers and
end-users. To this end, we have developed web components for OMS Pro.

In addition to client-side components for browsing and caching, we also have
schema and object presentation editors which execute on the client side and en-
able databases to be designed and prototyped over the web. The general browser
and developer components are heavily used in teaching since they enable stu-
dents to browse, query, update and create databases via the web. Furthermore,
they are valuable in providing on-line demonstrations of our OMS Pro system.
The caching components with their own presentation layer are part of the In-
ternet OMS framework which can be used by any web application system based
on OMS Pro.

In Fig. 1, we show the web architecture of the resulting Internet OMS system
[EN98], with respect to the general querying and browsing interface and cache
management.

OMS Pro has an integrated server and we can therefore assume that the
database on the server side is ready to accept requests. We show that, although
the database is on the server side, it may be located on a machine other than
that of the web server.

Initial access to the system is through a normal web browser using the HTTP
protocol as indicated by step 1. An applet is returned and a front-end agent
started on the client side. This front-end agent is responsible for communication
with the server side, presentation of objects and the maintenance of a short-
term session cache. Thus, when query requests are issued, the front-end agent
checks whether they were previously requested in which case the results are
already stored in the local session cache. Therefore, if users browse a database,
going “back” to previous objects, no communication with the server is required.



Internet

Personal Assistant

Global CacheDatabase Agent

Front-End Agent Session Cache

Web Browser

OMS Pro

OMS Pro Server

HTTP Server

Active Cache

1 2 3

Fig. 1. Architecture overview of Internet OMS

A query result contains the required database data with additional metadata
information such that the front-end agent can generate the appropriate view of
the object and present it to the user.

The front-end agent sends requests to a database agent on the server side as
shown in step 2. The database agent manages a global cache and notifies client-
side caching agents of database updates that invalidate data objects in their
caches. This is possible since we use two-way communication over persistent
connections instead of HTTP. The global cache is beneficial across the user
community in caching query results already requested by other users or by the
same user in previous sessions. This proves to be extremely advantageous since
web information systems usually have only a few entry points and the queries
corresponding to points at the beginning of navigation paths tend to be repeated
frequently and are relatively stable in terms of their results.

To further improve the performance for regular users, it is possible to lo-
cally install an adaptive caching agent, referred to as a personal assistant, which
manages a client-side persistent cache. The personal assistant registers with the
database agent on the server side and its cache is maintained in cooperation with
the database agent. It manages a short-term session cache and long-term per-
sonal and prefetching caches. Separate caches are provided for image files. The
personal assistant maintains a user access profile which is used to dynamically
prefetch data during user sessions based on access predictions. In addition, users
can explicitly specify data of interest and the personal assistant ensures that
this data is always stored in the local cache and is current. The caches managed
by the personal assistant are persistent in that they are written to disk every
time the personal assistant is shut down (for security aspects see Sect. 5). In
the case that a personal assistant is running on a client machine, the database
agent informs the front-end agent and all communication is redirected through
the personal assistant as indicated by step 3 in Fig. 1.



Prefetching of information on the web is not a new idea. Several approaches
have already been proposed, such as proxy servers prefetching and storing pop-
ular pages based on the observation of client access patterns, thereby allowing
sharing of retrieved results among clients [CY97]. A proxy-side pre-push tech-
nique by [JC98] relies on proxies sending (pushing) predicted documents from
the proxies to the browsers. The term speculative service used by [Bes95] defines
prefetching in terms of server-side statistics and actions, as opposed to clients
controlling what and when documents are prefetched. Our approach goes more
in the direction of cooperative caching, having client and server agents cooperate
with each other to prefetch the correct data. A similar prefetching approach for
general web caching is described in [SW97]. These approaches all concentrate
on prefetching HTML documents from proxies or web servers to web browsers
and neither proxies nor browsers cache dynamically generated pages. Since we
are interested in prefetching dynamically generated query results, we provide
cooperating agents which prefetch such results, not by using proxy or browser
caches, but rather by providing our own caching hierarchy as shown in the dy-
namic client-server architecture in Fig. 1.

The partitioning of the local active cache and combination of various caching
and prefetching mechanisms has enabled us to significantly improve performance
while keeping the caching overhead in terms of space, processing and commu-
nication costs to an acceptable level. In the following sections, we describe the
operation of these various cooperative agents and their caches in detail.

3 Personal Assistant and its Active Cache

There are three different “subcaches” building up the active cache managed by
the personal assistant: The session cache, the personal cache and a prefetching
cache (see Fig. 2). These three caches are disjoint, i.e. the same information will
be cached in at most one of the caches. They differ from the front-end agent’s
session cache in that their content is made persistent and is available in future
sessions.

query resultsquery results images images query results images

Session Cache Personal Cache Prefetching Cache

Personal Assistant’s Active Cache

disjoint

Fig. 2. Personal assistant’s caching framework

In recognition that multimedia files, especially images, form a vital part of
most web-based information systems, we provide special support for the caching
of images. Each of the three subcaches is divided into a part for caching query
results and a part for caching images. We have chosen this approach because
the image sizes are large relative to the query results and often the same image



is required by different queries. Due to this separation, an image will always be
cached at most once, even if it is needed by more than one query. The caching
space saved by this strategy, i.e. by eliminating image redundancy, is used to
cache additional query results. Every time a query result is removed from a
cache, we check if an associated image is still required by any other queries
before removing it from the cache. This was done by introducing a reference
counter indicating the number of queries using the image and implementing a
garbage collector.

Note that the personal assistant will not cache any referenced HTML docu-
ments or multimedia files other than images, e.g. sound and movies.

3.1 Session Cache

The session cache, as its name suggests, acts as a short-term cache and will
only cache query results recently used. Therefore the caching strategy used by
the session cache is a simple least recently used (LRU) strategy (for further
information about caching strategies see [Tan92,SG94,Fra96]). By using an LRU
replacement strategy, the session cache will profit from the locality of a single
session.

3.2 Personal Cache

A user may explicitly specify data of interest by defining query results to be
permanently cached. These query results are then managed by the personal
cache. To ensure that the data in the personal cache is always up to date, every
time a new entry is added to the cache, the personal assistant registers it with
the database agent on the server side. Whenever data changes in the database,
the database agent checks whether registered queries are affected. If so, the
database agent sends a cache invalidation message to the corresponding personal
assistants, forcing them to update their caches to maintain cache consistency.
Removal of a query result from the personal cache will cause the query to be
unregistered with the database agent. Further, every time a personal assistant
is started, the entire contents of its persistent caches are registered with the
database agent.

The personal cache does not have a caching strategy, i.e. if there is no more
place in the cache, the cache manager will not select a victim and replace it
by the new entry to be added. If a user tries to add a new query result to the
personal cache and there is no more space, the caching agent informs him that
he either has to manually remove some entries from the cache or to increase the
personal cache size at runtime. This “caching strategy” makes sense because the
user wants to be sure that all the query results added to the personal cache will
be present in the future and not be deleted by the cache manager without his
knowledge.

Of the three subcaches, the personal cache has the highest priority since the
user explicitly defined the query results to be permanently cached. Therefore,
if an entry is added to the personal cache and is already part of either the



session or prefetching cache, it will be removed from these caches to avoid cache
redundancy. Further, a query result will not be added to the session or the
prefetching cache if it is already present in the personal cache.

3.3 Prefetching Cache

In addition to the short-time session cache and the user defined personal cache,
the prefetching cache will analyse user behaviour and try to predict the infor-
mation the user will need in the near future. It dynamically adapts to a user’s
preferences without any interaction.

LRUB-Cache
(fixed size)

query 1 query 3query 2

LRUB-Cache (fixed size)

query n-1 query n

next query 1

next query 2

next query 3

next query n-1

next query n

next query 1

next query 2

next query 3

next query n-1

next query n

next query 1

next query 2

next query 3

next query n-1

next query n

next query 1

next query 2

next query 3

next query n-1

next query n

next query 1

next query 2

next query 3

next query n-1

next query n

statistic statistic statistic statistic statistic

Fig. 3. Structure of the prefetching statistic

For each query requested by the user (query 1 to query n in Fig. 3), the
prefetching cache maintains a statistic of the succeeding queries and the number
of times they were requested immediately after the current query (next query 1 to
next query n in Fig. 3). The statistic is in turn represented by a cache of limited
size. So for each query, only a limited amount of possible succeeding queries –
the queries which will most likely follow the current query – are considered in
the statistic. The simplest replacement strategy for these statistic caches would
be an LRU strategy. The problem is that these caches should act as long-term
caches, i.e. the statistic will grow over a long period. Therefore we also have to
consider the number of accesses for each cache entry when selecting a victim
for removal. As a result, the LRU strategy is extended by the number of times
a cache entry was requested resulting in an LRUB caching strategy where the
number of cache hits acts as a bonus for entries which where often used in the
past but have not been accessed recently. Considering these facts, we use the
following weighting formula for cache entry i

weighti =
α+ (1− α)Hi

Ti
0 ≤ α ≤ 1 (1)



where Hi is the number of hits for entry i and Ti is the time since the last access
of entry i. Each time an element has to be added to a full cache, the cache
entry with the smallest weight will be removed from the cache. The influence of
earlier cache hits can be adjusted by changing the value of α in (1). The smaller
the value of α, the greater the weighting given to the number of cache hits (by
setting α = 1 we have a simple LRU cache).

The queries with their statistic are themselves maintained in a cache of lim-
ited size using the same LRUB caching strategy. Therefore, only for the queries
most likely to be requested in the future will a statistic of the succeeding queries
be present in the prefetching statistic. Each time a user requests a new query,
the personal assistant checks whether there exists a statistic for it. If a corre-
sponding statistic is present, the queries with the highest weights (the queries
which will most likely succeed the current query) are selected. The corresponding
query results will then be prefetched into the prefetching cache. The maximal
number of query results to be prefetched is defined by the prefetching width.
By increasing the prefetching width, the cache hit rate can be slightly improved
but, as a negative effect, the database agent will have to handle an additional
amount of queries.

The prefetching cache will profit from the fact that, in web interfaces to
databases, users often browse in a similar way, i.e. as users navigate through
the database, there exist “chains of queries” often requested in the same order.
While a user analyses the result of one query, the personal assistant prefetches
the predicted next query results. Over slower network connections, this active
prefetching leads to better usage of the available bandwidth and may employ
otherwise paid for, but idle, modem connection time.

The great advantage of the proposed dynamic prefetching mechanism over
a “static” strategy of globally caching the most frequently used query results is
that the prefetching cache, like a sliding window, always focuses on the current
query. As a result, it only contains the data most likely required in the near
future and therefore needs much less memory than a global strategy trying to
achieve the same hit rate.

4 Agent User Interfaces

As can be seen from the description of the active cache in the previous section and
the general client-server architecture in section 2, the overall system comprises
many levels of caches and associated agents. It is therefore essential that tools be
provided to facilitate system installation, administration and tuning. For each
agent – database, front-end and personal assistant – a graphical user interface is
provided that enables both the agent and associated cache parameters to be set
and the operation of both the agent and the cache to be monitored. An example
of such an interface is given in Fig. 4 which shows the graphical user interface
of the personal assistant.

The parameters option enables the agent’s associated properties, such as
server host name and port numbers for communication with other agents, to be



Fig. 4. Personal assistant’s prefetching cache

specified. It also provides methods to start and stop the agent. The log option
enables a log of agent activities to be inspected. Further it shows additional
information about processed queries, clients connecting to the agent and other
network specific details. All information presented in the log view is stored in a
log file and therefore also can be inspected by means of a standard text editor
after the agent has been terminated. The statistics option displays information
such as the number of queries processed, their execution time (with or without
images), the average execution time and the percentage cache hit rate.

Options are also available for each of the caches managed by the agent – in
the case of the personal assistant these are the personal, prefetching and session
caches. The graphical user interface shows information about the usage and size
of both query and image caches. As shown in Fig. 4, it is possible to view, resize
or delete the contents of the different caches.

In Fig. 5, a view of the query part of the prefetching cache is presented. As
presented, the cache consists of a number of query results with the associated
number of hits shown on the right hand side.

Fig. 5. Prefetching query cache content

The personal cache is the only cache the content of which can be directly
manipulated by the user. To make it easy for a user to specify query results
to be permanently cached, the general object browser of Internet OMS was



extended by the facility to add a query result to the personal cache by simple
menu selection as shown in Fig. 6. To remove a query result from the personal
cache, the user may either browse the currently cached query result and select
the corresponding menu entry or directly view the personal cache and delete the
query entry through the personal assistant’s graphical user interface.

Fig. 6. Personal cache menu

When resizing the personal cache, there is a different behaviour than with
the other caches. If the user tries to resize either the personal query or image
cache to a size smaller than the total size of all entries currently in the cache, he
will be informed that the new size is too small. Query results would have to be
manually removed from the cache until the space used is less than the desired
new cache size.

Note that, in the case of the prefetching cache, deletion of either the prefetch-
ing query or image cache causes only the cache entries to be deleted and not the
statistics on which the actual prefetching is based.

5 Implementation

All web client components of Internet OMS and also the server-side database
agent are implemented in Java. The front-end agent is implemented as a Java



applet accessed via a web browser. Optionally a personal assistant may be down-
loaded and installed as a local Java application.

By default, Java applets have several security restrictions including the fact
that they can only open network connections to the host machine from which
they were downloaded. In the case of our architecture, this presents a problem
as it is necessary for the front-end agent applet to be able to communicate with
a locally installed personal assistant.

Fortunately, recent browsers have provisions to give trusted applets the abil-
ity to work outside the usual restrictions. For this power to be granted to an
applet, additional code has to be added to the applet requesting permission to
do any “dangerous” actions and it has to be digitally signed with an unforgeable
digital ID (private key). Each time a user runs a signed applet requesting some
form of access to the local system, the browser checks its granted privileges for
the corresponding signer. If the user already granted the requested additional
power to the signer during an earlier session, the browser allows the access with-
out interrupting the user’s activities; otherwise the browser will show a Java
security dialog box asking if the user will trust the developer the applet was
signed by.

Every time a personal assistant is started, it automatically sends its IP-
address and listening port number to the database agent. When a new front-end
agent is executed on that client machine, it first connects to the database agent,
sending it the IP-address of the user’s machine and asking for the IP-address and
port to which it should connect. The database agent will check if there exists a
registered personal assistant with the same IP-address as the address received
from the front-end agent. If a personal assistant is registered on the client, the
database agent will send the IP-address and port of the personal assistant to the
front-end agent. Otherwise the database agent will send its own IP-address and
port so that the front-end agent connects directly to the database agent. For a
user starting the front-end applet, the process will be the same whether he has
installed a personal assistant or not.

6 Performance

To prove the efficiency of our agent architecture, we have built performance pre-
dictive models for the caching hierarchies of our system as described in [MA98].
We provide a formal way of dealing with performance problems of our architec-
ture based on the theory of queuing networks. Performance models have been
developed for the case where no caches are used at all, where only a global cache
on the server side is used and also for the system taking advantage of the per-
sonal assistant’s and front-end agent’s caches [Ern00]. In this paper, we present
first measurement results showing the advantages of using our personal assistant
to reduce user response times over the case of accessing the database directly.

For the measurements, we queried the City Database which was developed
to teach object-oriented database concepts in various lecture courses using the



OMS Pro system. The database contains information about cities and their
places of interest such as hotels, museums, sightseeing tours etc.

The public web-interface for the City Database allowed us to collect query
traces from a large amount of users. Since we are interested in testing perfor-
mance improvements while using a personal assistant on the client side, we were
in need of user traces of single persons to simulate their browsing behaviour. To
build a realistic test environment for our simulations, we stressed the server and
the network with a moderate workload consisting of our own collected traces.

We tested the system for a number of individual user traces. It is obvious
that the personal assistant will achieve the best results when the browsing style
of a specific user has been studied over a long period. We refer to this as the
best case. If the personal assistant instead does not know anything about the
browsing behaviour of a user, it is likely that the predicted queries will not be
the next ones requested by the user and therefore the wrong data is prefetched
into the personal assistant’s cache. This is the worst case that can occur. The
querying behaviour of every user lies somewhere between these two boundaries.

How can these two cases be analysed? For the best case, we provide the per-
sonal assistant with history data of user behaviour studied in previous sessions.
In addition, we run the simulation feeding the system with one query after the
other as provided by the query trace reproducing exactly the browsing behaviour
of an individual user. The worst case can be simulated by providing no history
data to the personal assistant and selecting queries from the query trace file at
random. By randomly selecting the queries, the prefetching of the personal assis-
tant is of little or no benefit. The two scenarios were simulated for several users
without and with a personal assistant installed. The average response times are
shown in Fig. 7.

Without Personal Assistant

5000
4500
4000
3500

Average Time Worst Case

4500

3000
2500
2000
1500
1000

0

time [ms]

Query Time Image Time

5000

1500

With Personal Assistant

Total Time

500

2500
3000
3500
4000

2000

1000

0

time [ms]

Without Personal Assistant

Average Time Best Case

With Personal Assistant

Total Time Query Time Image Time

500

Fig. 7. Average response times

The left bar chart shows the results for the worst case where no history
data is delivered to the personal assistant and the queries are randomly selected
from the query trace. The total time represents the average time to query the
database, receiving not only the data but also all images a query result contains.
The query time is the average time required to retrieve data only (without any



images). Finally, the image time represents the mean time necessary to fetch
images. As shown, the total response time is reduced by the personal assistant
even in the worst case scenario where absolutely no information about the user’s
browsing behaviour is available. The reduced response times result from the fact
that the front-end agent’s session cache size is increased by the overall cache size
of the personal assistant.

The right part of Fig. 7 shows the results for the best case where the personal
assistant’s prefetching cache reduces user response times significantly. These re-
sults were achieved with a relatively small caching overhead in terms of space.
For the database agent, a global cache of 20 kBytes is used while no image cache
is necessary, since all images are already stored on the web server. The per-
sonal assistant has an image cache of 512 kBytes and a data cache of 40 kBytes
counting the personal, prefetching and session cache together. In addition, we
also have the session cache of the front-end agent, storing 20 kBytes of data
and 512 kBytes of images. The query caches can be kept so small since the re-
sults contain data as well as metadata only in textual form. For images, only
the references are listed within the query results, whereas the related pictures
are stored in the image cache. The number of query results to be prefetched
(prefetching width) is set to three, i.e. for each query at most three queries will
be executed and the results prefetched. Of course, using larger caches would
provide additional advantages in performance since more objects and pictures
could be stored, but already with relatively small caches significant performance
gains were achieved.

An interesting phenomenon occurs with the average image response times in
the worst case scenario (left bar chart of Fig. 7). A more detailed version of the
image response times with four different user sessions is shown in the left part
of Fig. 8.

User 4User 3User 2

2000
1500
1000

0

time [ms]

Without Personal With Personal
Assistant Assistant

User 1

Average Image Time Worst Case

500

2500
3000
3500
4000
4500
5000

1000
1500
2000

User 2 User 3 User 4

0
Without Personal With Personal

5000
4500
4000
3500
3000

time [ms]

Assistant Assistant

User 1

Average Image Time Best Case

500

2500

Fig. 8. Image response times

For all four users more time is required to download the images with a per-
sonal assistant installed. If the front-end agent requests an image and the image
is not in the personal assistant’s cache, it first has to be downloaded into the
personal assistant’s image cache and then forwarded to the front-end agent. This



overhead becomes significant if the personal assistant’s image hit rate is low (the
average cache hit rates are shown in Table 1). Otherwise when correct data is
prefetched as shown in the right part of Fig. 8, time for accessing images is
drastically reduced.

Table 1. Average cache hit rates

Worst Case Best Case
queries images queries images

Front-End Agent 13% 4% 33% 29%

Personal Assistant 29% 28% 75% 68%

The results shown by these preliminary experiments are promising. Addi-
tional future simulations are planned for heavy workloads and larger data and
query sets. For the basis of these experiments, we first want to record typical
querying patterns for other operational web-based application systems based on
the OMS Pro database.

7 Concluding Remarks

In this paper, we presented our web-based agent architecture for accessing data-
bases over the Internet. Cooperating agents on the client and server sides are
responsible for managing local and global caches and ensuring cache coherency.
In addition, a personal assistant can be installed on the client side to further
improve user response times. The personal assistant monitors user behaviour and
assists the user by prefetching the most frequently requested data into a local
prefetching cache. Users may further explicitly declare data of interest to ensure
that this data is permanently stored in the personal assistant’s local cache.

Our architecture has been tested by simulating user sessions and comparing
the results achieved with and without a personal assistant. First results show
that significant gains in performance are achieved through the installation of
a personal assistant on the client side. Even in the worst case scenario where
the personal assistant cannot take advantage of learnt query access patterns for
predictive prefetching of data, faster access to the data was achieved resulting
from the increased overall cache size. Further, the multi-level caching scheme,
together with its prefetching strategies, has enabled us to achieve significant
performance improvements while keeping caching space to an acceptable level.

References

[ACPT99] P. Atzeni, S. Ceri, S. Paraboschi, and R. Torlone. Database Systems: Con-
cepts, Languages and Architectures. McGraw-Hill, 1999.

[BBM+97] M. Baentsch, L. Baum, G. Molter, S. Rothkugel, and P. Sturm. Enhanc-
ing the web infrastructure — from caching to replication. IEEE Internet
Computing, 1(2):18–27, March/April 1997.



[Bes95] A. Bestavros. Using speculation to reduce server load and service time on
the www. In Proceedings of the International Conference on Information
and Knowledge Management, CIKM’95, Baltimore, MD, November 1995.

[CDF+98] R. Cáceres, F. Douglis, A. Feldmann, G. Glass, and M. Rabinovich. Web
proxy caching: the devil is in the details. In Proceedings of Workshop on
Internet Server Performance (WISP’98), Madison, WI, June 1998.

[CY97] K. Chinen and S. Yamaguchi. An interactive prefetching proxy server for
improvement of WWW latency. In Proceedings of the Seventh Annual Con-
ference of the Internet Society (INET’97), Kuala Lumpur, June 1997.

[CZB98] P. Cao, J. Zhang, and K. Beach. Active cache: Caching dynamic contents
on the web. In Proceedings of IFIP International Conference on Distributed
Systems Platforms and Open Distributed Processing (Middleware ’98), 1998.

[EN98] A. Erni and M. C. Norrie. Approaches to Accessing Databases through
Web Browsers. INFORMATIK, Journal of the Swiss Informaticians Society,
October 1998.

[ENK98] A. Erni, M. C. Norrie, and A. Kobler. Generic Agent Framework for In-
ternet Information Systems. In Proceedings of IFIP WG 8.1 Conference on
Information Systems in the WWW Environment, Beijing, China, July 1998.

[Ern00] A. Erni. A Generic Agent Framework for Internet Information Systems.
PhD thesis, ETH Zurich, to be published 2000.

[Fra96] M. J. Franklin. Client Data Caching: A Foundation for High Performance
Object Database Systems. Kluwer Academic Publishers, 1996.

[HCF98] J. Hunter, W. Crawford, and P. Ferguson. Java Servlet Programming.
O’Reilly & Associates, 1998.

[JC98] Q. Jacobson and P. Cao. Potential and limits of web prefetching between
low-bandwidth clients and proxies. In Proceedings of the 3rd International
WWW Caching Workshop, Manchester, England, June 1998.

[KNW98] A. Kobler, M. C. Norrie, and A. Würgler. OMS Approach to Database De-
velopment through Rapid Prototyping. In Proceedings of the 8th Workshop
on Information Technologies and Systems (WITS’98), Helsinki, Finland,
December 1998.

[MA98] D. A. Menascé and V. A. F. Almeida. Capacity Planing for Web Perfor-
mance: Metrics, Models and Methods. Prentice Hall, 1998.

[NPW98] M. C. Norrie, A. Palinginis, and A. Würgler. OMS Connect: Supporting
Multidatabase and Mobile Working through Database Connectivity. In
Proceedings of Conference on Cooperative Information Systems, New York,
USA, 1998.

[NW99] M. C. Norrie and A. Würgler. OMS Pro: Introductory Tutorial. Technical
report, Institute for Information Systems, ETH Zurich, CH-8092 Zurich,
Switzerland, March 1999.

[Ree97] G. Reese. Database Programming with JDBC and Java. O’Reilly & Asso-
ciates, 1997.

[SG94] A. Silberschatz and P. Galvin. Operating System Concepts. Addison-Wesley,
1994.

[SW97] J. Sommers and C. E. Wills. Prefetching on the web using client and server
profiles. Technical report, Worcester Polytechnic Institute, June 1997.

[Tan92] A. S. Tanenbaum. Modern Operating Systems. Prentice-Hall, 1992.
[Wes95] D. Wessels. Intelligent caching for world-wide web objects. In Proceedings

of INET’95, Hawaii, 1995.


