
CoDePA Studio: Adding Explicit Support for Behavior
Variants in Authoring Games

Bram Pellens
Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussels, Belgium
+32 2 629 11 03

Bram.Pellens@vub.ac.be

Frederic Kleinermann
Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussels, Belgium
+32 2 629 11 03

Frederic.Kleinermann@vub.ac.be

Olga De Troyer
Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussels, Belgium
+32 2 629 11 03

Olga.DeTroyer@vub.ac.be

ABSTRACT
The development of computer games is both complex and
technically challenging, especially when it comes to designing
complex behavior for computer games. Current development tools
do not provide any high-level design facilities for behavior and
require the designer to manually program the behavior. Therefore,
the <name> approach was introduced to facilitate the authoring of
behavior in computer games (and other interactive 3D
applications). This approach uses conceptual modeling techniques
to elevate the specification of behavior to a higher level. Code
generation from the conceptual specifications is supported.
Furthermore, Generative Design Patterns are used to allow
reusing existing solutions. In this paper, we explain how the
approach has been extended with techniques from the domain of
Software Variability, i.e. feature models and configuration
models, to support the specification and generation of different
flavors of a behavior. In this way, we effectively support a
common way of working in game development where one often
uses similar behavior scripts except for some variations. By
providing support for this at a conceptual level, we make this
practice explicit and elevate it to a higher level such that it can be
better controlled and exploited. The paper also introduces the
design tool developed to support the approach.

Keywords
Conceptual Modeling, Behavior Authoring, Software Variability,
Software Product Line, Feature Models, Graphical Specifications

1. INTRODUCTION
Computer games have grown from a niche market into a “multi-
billion dollar” industry with a very big economic impact. In 2009,
the turnover worldwide for the game industry was more than $50
billion and according to PriceWaterhouseCoopers, it will grow up
to $73.5 billion in 2013 [13]. This same report also mentions that
cost-effectively developing computer games remains one of the
biggest challenges in this field.
The majority of the effort in game development revolves around
content creation and many resources are spent on it. Game
companies use a set of content creation tools to aid the designers
in their work. However, these tools only focus on the artwork,

interfaces, game levels, and so on, but none of them really provide
support for developing the game story, i.e. the scripts for the
behavioral aspects of the computer game. For complex behaviors,
the developer still has to resort to manually writing code using
scripting languages such as Lua [12] and UnrealScript [4]. Having
better ways to support the behavior development for games may
lead to a higher productivity and reduce the development cost.

One of our research objectives is to investigate and develop
techniques and approaches to decrease the development cost of
games and more in particular the development of the behavioral
part of games. This research is performed in collaboration with a
<country> game development company specialized in Role
Playing Games (RPGs). After studying behavior scripts developed
by this company for one of their games, we came to the
conclusion that they actually reuse as much as possible the same
behaviors. For example, characters in an RPG game (and even
over games) can be of different species, can play different roles
and manage various skills, but a lot of their behaviors are similar.
This is reflected in the behavior scripts. We discovered that a lot
of scripts were actually very much alike, except from some
variations. Often these variations had to do with the characteristics
of the characters. This is a form of software variability [3].
However, in this case, the variability is hard-coded into the
scripts. This has several disadvantages: it is difficult to maintain
the common parts; there is no explicit overview of all possible
variants and of reusable parts; and dependencies are hidden in the
code. While the purpose of this practice is code reuse, the last two
disadvantages mentioned will actual hinder this reuse of code.
New or other developers may not be aware of what can be reused
without digging into the code. Therefore, we realized that the
company could benefit from having this variability knowledge
made explicit and by providing them tools to support variability
explicitly.

We have developed an approach and supporting tool based on
Software Product Lines (SPL) [5] to deal with variability in the
development of behaviors. SPL refers to engineering techniques
for creating a set of similar software systems from a shared set of
software assets. A common technique used to model the
differences and commonalities (features) in software are Feature
Models. Here, we use Feature Models to capture the
commonalities and variabilities of a “Behavior Family” (a
collection of similar behaviors). A concrete behavior is then
specified as a configuration (a valid combination of features). In
combination with a model-driven approach that allows for code
generation, many variations of the same behaviors can be
generated in this way.

Next to the normal top-down way of creating a software product
Line (i.e. first make the feature model, then develop the different

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CGAT Conference 2010, April 6–7, 2010, Singapore.
Copyright 2010 CGAT

features), we also provide a bottom-up approach in which the
feature model is extracted from the specification of individual
behaviors, i.e. we provide a kind a reverse engineering of feature
models. This last approach is provided because we don’t want the
company to completely change their way of working. This would
require an investment that is too high.
Although the technique of SPL can be applied to all aspects of a
game (i.e. also the static part, the game world), in this work, we
only focus on the behavioral aspects of the computer game.
The structure of this paper is as follows. Section 2 describes the
context in which the research has been carried out. Section 3
introduces the concept of Software Product Lines, Variability
Modeling, and Feature Modeling. Section 4 presents the case
study used to illustrate the approach. In section 5, the approach
proposed is explained as well as an overview of the tool
developed to support the approach. Section 6 relates our work to
other work and finally, a conclusion and future work is given in
section 7.

2. CONTEXT
The work presented here is an extension to the <name> approach,
which is developed to support the development of behavior of
interactive 3D/VR applications. The aim of the approach is to
facilitate the construction of behavior in interactive 3D/VR
applications by including an explicit conceptual modeling phase
for behavior into the overall development process.

Conceptual modeling is the activity that creates technology
independent models for the system to be constructed. During
conceptual modeling, there is no need to consider implementation
details; hence no technical background knowledge is needed to
create these conceptual models. Therefore, these models can be
used as a basis for discussing the design with different
stakeholders. However, they can also be used as input for the
implementation phase, and if they are precise and formal enough
(like in our case) even code generation is possible.

The approach follows a model-driven design paradigm [15]. So-
called Behavior Models (or Behavior Specifications) are
expressed in a graphical way. These models are then translated
into intermediate models. Ultimately, these intermediate models
will be transformed into the actual implementation code. To
obtain the final application, the code can either be directly loaded
or has to be compiled first, depending on the output platform.
Model-driven design elevates the specification of interactive
3D/VR applications to a higher level of abstraction than possible
with low-level description formats or scripting languages. This
makes it easier to create these kinds of applications but also to
maintain them.

In combination with this model-driven approach, <name> uses
generative design patterns [16], which allow a designer to specify
behaviors by using patterns and customize them to suit a
particular need. The design patterns are also specified at a
conceptual level, thus they act as conceptual models and our
approach allows generating code from them (hence the name
generative design patterns).

The approach offers a number of advantages for the specification
of behavior in computer games and other 3D/VR applications. On
one hand, it allows reducing the size and complexity of the
behavior specifications because the specifications are made at a

conceptual level where we abstract from implementation details.
On the other hand, the use of patterns provides a way to take
profit of existing knowledge and experience, which may also
contribute to a reduction of the development time and cost. In this
paper, we will not further elaborate on these issues of the
approach. We refer the reader to [18] and [19] for more
information.

To support the <name> approach, an integrated development
environment called <name> Studio (Figure 1Fout!
Verwijzingsbron niet gevonden.) has been developed. This
application enables a designer to create and maintain so-called
Behavior Specification projects that are used to specify the
behavior in a computer game. Based on these specifications,
<name> Studio is able to generate a number of script files
implementing the behavior of the computer game.

Figure 1. <name> Studio

An important part in our toolbox is the Conceptual Designer
(Figure 2). This is a graphical diagram editor that allows creating
the conceptual models in a graphical way. The tool has been
implemented using Microsoft Visio [17]. A number of stencils are
built containing the graphical representations of the different
modeling concepts available in our approach. Examples of
graphical elements can be found on the left side of Fout!
Verwijzingsbron niet gevonden.. A detailed discussion of the
different modeling concepts is beyond the scope of this paper. We
refer the reader to [20] for more details on this. The graphical
elements can be dragged from the stencils and dropped onto the
canvas and proper connections can be made. Properties can be
added, displayed and modified by the designer.

In addition, <name> Studio fully integrates the pattern oriented
design approach mentioned earlier. It is possible for a behavior
designer to easily search for a pattern in the existing collection of
patterns. As a pattern is expressed by means of a graphical
notation, the (generic) graphical representation of the selected
pattern will automatically be dropped on the drawing canvas of
the Conceptual Designer when selected. It is then possible for a
behavior designer to customize the pattern to the particular
context of use. It is also possible to construct new behavior
patterns and add them to the existing collection of behavior
patterns.

Figure 2. Conceptual Designer

3. VARIABILITY MODELING
Due to the large similarity in the software that companies
delivered to different customers and/or for different platforms, the
need for managing this variability arose. This has given rise to
different variability modeling techniques as described in for
example [8]. These techniques are typically used in Software
Product Line Engineering [5]. A Software Product Line (SPL) is a
family of similar software systems based on a shared set of
software assets (also called features). Each software system (or
product) is defined as a unique composition of features.
Variability modeling then is the activity of expressing the
common and variable parts, i.e. features, within the SPL and of
defining the relationships and dependencies between these
features. In this respect, variability modeling is also called feature
modeling.

Table 1. Possible Feature Types

And indicates that all subfeatures must be part of any product
of the product line

Alternative indicates that only one subfeature can be selected
in any product in the product line.

Or indicates that one or more subfeatures can be selected as
part of any product in the product line.

Mandatory indicates that this subfeature is required as part of
any product in the product line.

Optional indicates that this subfeature may or may not be part
of a product in the product line.

SPL approaches usually follow a two or three-step process. The
first step consists of the definition of the Feature Model. A feature
model is a compact representation of all possible products of the
SPL in terms of their features as well as their mutual relationships.
A feature model is mainly a hierarchical structure (i.e.
decomposition) of features. Commonly, there are five types of
decomposition relations possible in a feature model [14]; Table 1
shows their graphical notation and meaning. In addition to these
feature types, which define feature relations based on their
composition, additional constraints (or dependencies) between

features may exist. Constraints describe how features depend on
each other, e.g., the use of one feature may require and/or exclude
the use of another feature. Figure 3 shows a sample feature
diagram for the Order Process Problem introduced in [24]. The
feature model shows the order process’s composing features
(Basket, Fulfillment, and Transaction, which are on their turn
decomposed) and how they are related based on the notation given
in Table 1. A feature’s contribution to variability is given via its
feature type. A feature that contributes to variability is called a
variable feature. In the above example, Shipping_Cost and
Invoice are variable features because Shipping_Cost is an optional
feature and for Invoice there is the option to use a Printed_Invoice
or an Online_Display or both

.
Figure 3. Example Feature Diagram

Accompanied with additional feature dependency constraints, a
feature model gives information about the features that should be
part of a valid software product. For instance, in the example, the
use of the feature Credit_Card requires the use of the feature
Online_Display (given by the constraints expressed in the text box
at the left side of Figure 3).
To specify a specific product, the next step is the specification of
a Configuration Model. A configuration model is a representation
of a valid composition of features and is created by declaratively
selecting or deselecting features from the Feature Model
according to the product’s needs. A valid composition is a
composition that meets all the type restrictions and feature
dependencies imposed by the feature model. A valid composition
results in a valid software product. Such a particular
configuration, or software product, is also called an instance of the
SPL.

To come to an actual implementation for a configuration, the
features have to be realized, i.e. implemented by means of a set of
implementation artifacts (e.g., classes, methods, packages, …).
Since the feature models are typically used during design and the
implementation artifacts are created during implementation, some
sort of mapping is needed between features and the
implementation artifacts in order to link the two levels and to
enable the automatic generation of SPL instances. This mapping is
defined in what is typically called a Component Model. A
Component Model describes the internal structure of the
individual components, their parts as well as references to the
actual artifacts. A component is an abstract element which
corresponds to a possible variation point in the implementation. It
is further defined by at least one part. A part is a concrete element
which is further defined by an actual artifact. Constraints describe
how the parts are bound to features (i.e. through the hasFeature
constraint).

Once these three models are specified, and the implementation
artifacts are created, the remaining part in the generation process
can be performed automatically [9]. Based on the Configuration

Model, defined as an instance of the Feature Model, the different
parts (i.e. implementation artifacts) can be selected, using the
mapping defined in the Component Model. This process is
displayed on Figure 4.

Figure 4. Feature Modeling Transformation Process

In this paper, we will use feature models to deal with variability in
behavior, i.e. to describe the variations of a behavior. Note, that
currently we do not use feature models and SPLs as a mechanism
to specify an entire “game family”.

4. CASE STUDY
To illustrate our approach, an example game is used, which is a
small online-based computer game. This game is called “Action
Heroes” and is written in JavaScript. In addition, it uses the
Open3D (O3D) engine and its API [10] to deal with rendering the
graphics. O3D is an open-source web API/engine which can be
used to create rich, interactive 3D applications in the browser. The
graphics themselves are made with Google SketchUp [11]. Figure
5 presents a screenshot of this game.

In the game, the player is controlling a little warrior. The mission
of this warrior is to reach the end of the level without getting hurt
and collect as many coins as possible in the process. In order to
make the game attractive, a number of static and moving pads
need to be used to cross some hurdles. The warrior has both a
sword that he can use as well as a crossbow with which he can
shoot arrows. The coins are typically rotating and can be picked
up by colliding with them. During the course of action, the
warrior is being hindered by so called spikems, yellow balls
covered with sharp spikes. These spikems can either spin or
charge, or both.

Although this is a small game, already some variability can be
recognized that may also be useful in similar games. Typically,
most avatars will move but there can be a difference in their
movement style. That is, the hero avatar can walk, run, jump, fly,
and so on. Different games might also use different algorithms for
executing these actions. In addition, a number of different types of
weapons can be used by an avatar and each weapon will be
associated with a different action that can be performed, for
example a sword can be used to slice; a crossbow can be used to
shoot. Different animations could be chosen to visualize these
actions. Also, usually, the non-player actors can also perform a
number of behaviors, such as moving and rotating. And,
depending on which weapon(s) is (are) chosen, a number of

“check functions” need to be performed, for example to check
when an actor is hit or sliced.

Figure 5. Screenshots "Action Heroes" game

5. SUPPORTING VARIABILITY IN
BEHAVIOR MODELING
5.1 Approach
In this section, we explain how the <name> approach and
associated software tool has been extended with supporting
capabilities for variability by using the concepts of SPL.

In our approach we provide support for variability in two ways. In
the top-down approach, a Behavior Family (i.e. a SPL for a
behavior specification) is being built from scratch by analyzing
the domain under consideration, trying to identify possible
commonalities and variabilities, and translating this into a proper
feature model. Then, based on the feature model, a behavior
specification (i.e. a conceptual model) can be developed for the
Behavior Family. In the reactive or bottom-up approach, the
Behavior Family is being built up from extracting the
commonalities and variabilities from a set of existing behavior
specifications and translating this into an initial feature model.
Next, this initial feature model can be adapted or extended to
allow for more variants. While the first approach is appropriate
when someone wants to start from scratch, the second approach is
more suitable for companies with existing behavior specifications
where variability was not considered when designing the
behaviors. In this paper, we will focus on the bottom-up approach.
This approach is also suitable to incorporate new developments
from the fast evolving computer gaming domain into existing
specifications, e.g., to introduce variants for new interaction
devices.
The starting point for this bottom-up approach is a single behavior
specification. The goal is to generalize this behavior into a
Behavior Family that can be used later on to easily generate a

number of variants (or different flavors) of the behavior (among
which the original behavior we started from). The principle is as
follows: From the original behavior specification we identify
possible sub behaviors that can be variable, i.e. which are specific
for this particular behavior but could be different in other
situations. These are candidate variation points in the feature
model to be created. Next, such a behavior is replaced in the
behavior specification by a variation point behavior and a feature
tree is constructed that reflects this variability. Initially the feature
tree consists of a feature with one mandatory subfeature. In later
steps, more “alternative” or “or” subfeatures can be added for this
feature to introduce the variability. In addition, also a component
models is constructed that maps these features onto the correct
behavior specifications.

Figure 6. Extraction Process

Figure 6 depicts this process. The top half of Figure 6 displays the
initial situation, an existing behavior specification (left) with a
number of actions (a rectangular box divided in two), behaviors (a
rectangular box divided into three parts) and conditions (a
rounded rectangle) as well as a feature model containing no
features (just a root) (right above) and a component model
containing no components/parts (also just a root) (right below).
The behavior “Behavior 1” has been identified as a possible
candidate for being variable; hence it is extracted from the overall
behavior specification and replaced by a variation point behavior.
The bottom half displays the result of this process. Behavior 1 is
now a stand-alone behavior or a variant behavior. In the overall
behavior specification, “Behavior 1” is replaced by a variation
point behavior “Behavior”. It is a kind of abstract behavior and
serves as a placeholder for the actual behavior that will be used

when a configuration is created. This element is represented in a
similar way as a regular behavior, i.e. a rectangular box, divided
into three parts, but is color is grey and the top compartment has
the text “«Variation Point»”.

The newly created feature model is shown in the lower part of
Figure 6. This model consists (currently) of a single mandatory
feature, called “F_Behavior 1”. The feature “F_Behavior 1”
represents the variant behavior “Behavior 1”. Therefore, a link is
needed between the feature and the actual behavior specification.
This is done through a component in the component model. The
newly created component model is also shown in the lower part of
Figure 6. Note that for both models the notation from the Feature
Modeling DSL, a plugin for Visual Studio, is used. It shows that a
new component has been created, called “C_Behavior” implicitly
referring to the variation point behavior “Behavior”. It is
consisting of a part “P_Behavior 1” that corresponds to the feature
“F_Behavior 1” through the hasFeature relationship. This part
also refers to the behavior “Behavior 1” in the behavior
specification.

Both the component model and the feature model are very simple
at this moment since we just extracted a single behavior. Actually,
no variability is possible at this moment. However, as we iterate
the process, extracting more behaviors, the models will grow and
evolve over time. The developer can also explicitly add new
behaviors (and respectively features and components), for
example to define another variant of an already extracted
behavior. It is also possible to apply this extraction process on
extracted (isolated) behaviors themselves, i.e. variable
subbehaviors can be extracted from such an extracted behavior as
well, giving rise to a sub tree of an existing feature in the feature
tree and subcomponents of existing components in the component
model. Note, that since we are supporting the top-down approach
as well, both the feature model and the component model can be
further refined after the extraction process has been finished. At
that moment, any (additional) dependencies can be added.

Once the feature model has been created completely, either from
scratch or through the extraction process, a concrete behavior can
be specified by means of a configuration model representing a
concrete instance of the behavior family. The configuration model
shows the features selected from the feature model (not shown
here).

5.2 Example
In order to illustrate the approach, we show how we can create a
behavior family from the behavior specification for the “Action
Heroes” game introduced in section 4. As this is a simple game,
we only have a few behavior specifications. This is used as the
starting point. First, we should identify and extract the
subbehaviors that could be variable. This can be done through our
<name> Conceptual Designer by using the menu-option “Extract
Behavior as Variability Candidate”. This starts the extraction
process, which is presented to the user by means of a wizard
interface, which guides the user through the process.

Figure 7. "GameLogic" Specification Extract

The main behavior is the “GameLogic”, which represents the
actual game loop. Figure 7 displays a simplified extract from its
behavior specification. This behavior begins with checking the
platform (only when the avatar is able to jump). Then, the overall
progress of the avatar in the game world is checked. This needs to
be executed in every game of this kind. When this is done, the
input from the user is handled. Depending on the keys that the
user has pressed, a certain animation (for the different movement
types or skills) is being set. Next, some handling functions are
executed for dealing with the movement such as falling and
jumping. Obviously, these only need to be executed when the
avatar is able to jump and/or to fall. Afterwards, the collision
detection is handled which is always executed. This is followed
by the execution of the actual skill animation set by the handling
of the input. Finally, the correct pose of the avatar is updated as
well as that of the camera. The behaviors for the other objects (i.e.
spikems, coins and platforms) are dealing with a particular
standard movement or playing a particular sound. Also there is
some subbehavior that in every loop of the game checks whether
it is hit or not.

The process of turning this behavior specification into a behavior
family happens as follows. Starting with the “CheckPlatform”
behavior, we know that this only needs to be executed when the
avatar is able to jump. So, this behavior will not be necessary in
all games of this kind (i.e. not in games where jumping is not
allowed). Therefore, it is extracted and mapped onto a feature
called “F_CheckPlatform”. The CheckProgress and HandleInput
behaviors is needed in all games and therefore can remain
untouched. Next, the following behaviors in the sequence deal
with the movement. Here, we will again perform some
extractions. For example, the “HandleFalling” behavior can be
extracted and replace by a more general type of movement
handling behavior. We will now show into more details how this
extraction is done.

Figure 8. Step 1: Feature Model

In the first step, a tree-structure is presented showing the current
feature model (see Figure 8) in the project. Here, the designer
should associate the selected behavior with one or more features.
There is also the option to add new features to the feature model.
In this way, he can already add new subfeatures to a feature. A
new feature is added by giving it a name and indicating its
variability type (i.e. And, Mandatory, Optional, Or, Alternative).
In our example, we have inserted a new feature called
“F_Movement Type” with a subfeature called “F_Fall”. This is an
optional feature, meaning that it is not required for the designer to
select this feature in an actual configuration. At this moment, the
feature is not yet linked to the actual behavior. This is specified in
the second step.

Figure 9. Step 2: Component Model

In the second step, the user is presented with a tree-structure
showing the current component model (see Figure 9) in the
project. Here, he needs to associate the feature (from step 1) with
some component. Next, the name of the part itself has to be given.
At this stage, also an option is provided to create a new
component and insert it directly into the component model.
Adding a new component will be reflected in the behavior
specification by replacing the behavior by a variation point
behavior.

In this example, we have created a new component called
“C_HandleMovement”. The part that is introduced is called
“P_HandleFalling”. This part is now linked to the selected feature
“F_Fall” from the first step. The part will also refer to the
extracted behavior, in this case “HandleFalling”.

Various other movement type features can now be added as well
(e.g., for HandleRunning and for HandleRunning) by extracting
those behaviors, creating subfeatures of F_Movement Types in
the feature model and by creating parts below the

C_HandleMovement in the component model. Once the designer
has completed the two steps of the wizard, the <name> Studio
makes sure that the necessary changes are made on the behavior
specification (i.e. replacing the behavior with a variant point
behavior) and that the correct updates are done in both the feature
model and the component model (i.e. features and
components/parts are added and the links are created).

Next, the “HandleCollisionDetection” behavior is also required in
every game and therefore can remain. However, the following
behaviors in the GameLogic sequence deal with the different
skills that an avatar has (or can have). The same approach as for
the movement types can be followed here. Following this same
process all the way through the behavior specification allows us to
come to our behavior family.

Figure 10. Feature Model of a 2D Adventure Game’s Behavior
The resulting feature model is given in Figure 10. The feature
model has a F_CheckPlatform feature to check whether or not an
avatar is positioned on one of the moving platforms. The
F_Movement Types feature contains a number of subfeatures,
each providing a different movement for the avatar. In the same
way, the F_Skills feature provides various skill features that an
avatar may have. The F_AvatarBehaviors feature contains a
F_WeaponBehavior feature. The F_WeaponBehavior feature can
either be a F_SwordBehavior or a F_CrossbowBehavior. Finally,
there is the F_ActorBehaviors feature that is further specified as
having a F_PlayAnimation, a F_PlaySound and a F_HitCheck
feature.

Several constraints exist between the features. For example, if the
F_Slice feature is selected, the avatar will need to have the
F_SwordBehavior. The same accounts for the F_Shoot and
F_CrossbowBehavior. Furthermore, if the F_Jump feature is
selected, the F_CheckPlatform needs to be there as well.

Note that editing and even creating a new behavior family is also
possible using the dedicated model editors within the <name>
Studio. Inside the tool, the models can be opened (see Figure 1),
new elements can be added, and existing elements can be deleted.
Furthermore, from each of the elements, the attributes, the

dependencies as well as the restrictions can be edited. This allows,
in a later phase of the development process, to improve the
models created using the top-down approach

6. RELATED WORK
The problem of variability in software and product line
architectures have been discussed in many papers [2][19]. More
specifically, the concept of feature model was first introduced by
Kang et al. [14] in the Feature Oriented Domain Analysis (FODA)
method, to help the identification of important or domain specific
properties during the analysis phase. Others notations have also
been proposed to expand the feature model representativeness and
to provide support to different types of structural relationships.
For example, Czarnecki and Eisenecker [7] use XOR and OR
relationships to represent alternative and mutually exclusive
features, and in [6], they propose a feature cardinality-based
notation. Others have used ontology to represent and verify
features. More details on this type of work can be found in [23]
and in [21].

There is not a lot of research done on feature models for Game
development. We came across two major researches. The first was
done by Zhang and Jarzabek [25]. They proposed a Role-Playing
Game (RPG) product line architecture (RPG-PLA) for mobile
phone. In their approach, they capture and group similarities as
well as differences among four RPGs. As from there, they can
develop a RPG feature model. Although, they use feature diagram
for doing this, they only did it from an architecture point of view
i.e. according to the type of mobile phone and display resolution
and platform. They did not use feature diagrams on the aesthetics
part of the game itself. Our approach is different as it focuses
more on the aesthetics of the game and more specifically on the
behaviors.
The second major work was done by Alves [1]. He presented a
method for managing a SPL for mobile games. Like Zhang and
Jarzabek [25], his approach also uses feature models. His
approach focuses more on how to manage a SPL and it is also
oriented towards the architecture being used (platform, mobile
phones) and less on the aesthetics of the game.

7. CONCLUSIONS AND FUTURE WORK
In this paper, an approach to support variability in behavior
specifications has been presented. The approach is an extension to
the existing <name> approach that aims to facilitate the authoring
of behavior in computer games and other interactive 3D
applications. The approach utilizes techniques from Software
Product Line engineering.

We have described how software variability techniques can be
used to cope with different flavors of behaviors. A feature model
is used to describe the commonalities and variabilities for a set of
similar behaviors. A component model is used to describe the link
between the feature model and the actual artifacts (small behavior
specifications). We also have described an approach to extract a
feature model from existing behavior specifications. This bottom-
up approach does not require creating a feature model from
scratch, which can be difficult for a developer because the
required variability may not yet be clear when one starts to design
a game. In addition, this bottom-up approach is also more suitable
when different similar behaviors already exist. The feature model
and component model are gradually extracted and constructed. A
configuration model can then be used to specify a particular
instance (flavor) of the behavior. The approach is supported by an

authoring tool that supports the extraction process as well as the
editing and creating variability models. In addition, code can be
automatically generated from the behavior specifications.
Currently, we generate LuaScript and JavaScript.

Other work which has been performed in the area of variability
modeling and computer games also address features such as
screen size, platform, memory, computer power, connectivity and
so on. In this work, we have only focused on behavioral features.
Nonetheless, it would also be interesting to apply the approach on
these kinds of features.

8. ACKNOWLEDGMENTS
This research is carried out in the context of the <name> project
(<project>) which is directly funded by the <organization>. The
research is performed in close cooperation with <company>, a
<country> game developing company.

9. REFERENCES

[1] Alves, V., Matos, P.Jr., Cole, L., Borba, P. and Ramalho, G.
2005. Extracting and Evolving Mobile Games Product Lines.
In 9th International Software Product Line Conference
(SPLC-EUROPE 2005), Rennes, France.

[2] Bosch,	 J.,	 2002.	 Maturity	 and	 Evolution	 in	 Software	
Product	 Lines:	 Approaches,	 Artefacts	 and	 Organization.	
In:	 Proceedings	 of	 the	 Second	 Conference	 Software	
Product	Line	Conference	(SPLC2),	pp.	257-271.

[3] Bosch,	 J.	2000.	Design	and	Use	of	Software	Architectures	
–	 Adopting	 and	 Evolving	 a	 Product	 Line	 Approach,	
Addison-Welsey

[4] Busby, J., Parrish, Z., VanEenwyk, J. 2004 Mastering Unreal
Technology: The Art of Level Design. Sams Publishing.

[5] Clements,	P.,	Northrop,	L.	2001.	Software	Product	Lines:	
Practices	and	Patterns,	Addison-Wesley.

[6] Czarnecki,	K.,	Kim,	C.H.P.	2005.	Cardinality-Based	Feature	
Modeling	 and	 Constraints:	 A	 Progress	 Report.	 In:	
OOPSLA’05	 International	 Workshop	 on	 Software	
Factories	

[7] Czarnecki,	K.,	Eisenecker,	U.W.	2000.	Generative	
Programming:	Methods,	Tools,	and	Applications.	Addison	
Wesley

[8] Deelstra,	S.,	Sinnema,	M.	and	Bosch,	J.	2004.	Experiences	
in	Software	Product	Families:	Problems	and	Issues	during	
Product	Derivation,		Proceedings	of	SPLC2004,	Boston,	
Aug.	2004,	LNCS3154,	Springer-Verlag,	pp.	165-182

[9] Dollard,K., 2004. Code Generation in Microsoft .NET :
Apress.

[10] Google,	2009.	Open3D	Application	Programming	
Interface.	[Online:	http://code.google.com/apis/o3d]

[11] Google,	2009.	Google	Sketchup	Reference	Guide.	[Online:	
http://sketchup.google.com]

[12] Ierusalimschy, R. 2003. Programming in Lua. Lua.Org. 1
edition.

[13] Instituut Samenleving & Technology (IST). 2009.
Jaarmagazine 2009.

[14] Kang,	K.,	Cohen,	S.,	Hess,	J.,	Novak,	W.	and	Peterson,	S.	
1990.	Feature-Oriented	Domain	Analysis	(FODA):	
feasibility	Study.	CMU/SEI-90-TR-21,	SEI,	USA.

[15] Kleppe, A., Warmer, J., Bast, W. 2003. MDA Explained:
The Model Driven Architecture(TM): Practice and Promise,
Addison-Wesley.

[16] MacDonald, S., Szafron, D., Schaefier, J., Anvik, J.,
Bromling, S. and Tan, K. 2002. Generative design patterns.
In Proceedings of the 17th IEEE International Conference on
Automated software engineering. Edinburgh, Scotland. pp.
23-33.

[17] Parker, D.J. 2007. Visualizing Information with Microsoft
Office Visio 2007, McGraw-Hill Osborne Media.

[18] xxx
[19] xxx
[20] xxx

[21] Peng,	 X.,	 Zhao,	W.,	 Xue,	 Y.,	Wu,	 Y.	 2006.	 Ontology-Based	
Feature	Modeling	and	Application-Oriented	Tailoring.	In:	
ICSR	2006,	pp.	87-100

[22] Thiel	 S.	 and	 Hein	 A.	 2002.	 Systematic	 Integration	 of	
Variability	 into	 Product	 Line	 Architecture	 Design.	
Proceedings	 of	 SPLC2002;	 LNCS	 2379,	 San	 Diego,	
California,	pp.	130-153

[23] Wang,	H.,	Li,	Y.,	Sun,	J.,	Zhang,	H.,	Pan,	J.	2005.	A	semantic	
web	 approach	 to	 feature	 modeling	 and	 verification.	 In:	
Workshop	 on	 Semantic	 Web	 Enabled	 Software	
Engineering	(SWESE’05)		

[24] Ye,	 H.,	 Liu,	 H.	 2005.	 Approach	 to	 modelling	 feature	
variability	 and	 dependencies	 in	 software	 product	 lines.	
In:	 Software, IEEE Proceedings - Volume 152, Issue 3,	
Page(s):	101	–	109

[25] Zhang,	 W.	 and	 Jarzabek,	 S.	 2005.	 Reuse	 without	
Compromising	 Performance:	 Experience	 from	 RPG	
Software	Product	Line	for	Mobile	Devices.	In:Proceedings	
of	the	9th	Int.	Software	Product	Line	Conf.,	SPLC'05,	Sept.	
2005,	Rennes,	France,	pp.	57-69.

