
Challenges in Designing Domain-Specific Modeling 
Language for Educational Games 

Olga De Troyer and Elien Paret 
 

Vrije Universiteit Brussel, Research Group WISE, Pleinlaan 2  
1050 Brussel, Belgium 

{Olga.DeTroyer, Elien.Paret}@vub.ac.be  

Abstract. In this paper, we discuss the challenges related to the design of 
domain-specific modeling languages to design educational games. A domain-
specific modeling language uses the vocabulary of the application domain and 
provides abstractions that make the specifications of solutions easier and more 
accessible for domain experts and end users. Although such an approach looks 
promising for involving domain experts and end users in the design process of 
educational games, several research questions still need to be solved. 

Keywords: Domain-Specific Modeling Language, Educational Game, Domain 
Expert, End User. 

1   Introduction 

Educational games are games specifically designed to teach people about a specific 
subject or assist them in learning as they play. They include board and card games, as 
well as computer and video games. Our focus is on computer-based educational 
games. Computer-based (and especially video-based) educational games have 
historically received quite some criticism because they were often perceived as or 
associated with issues such as mindless entertainment, pre-school learning, or with 
violence (e.g., [1]). However, the educational value of computer-based educational 
games is now more and more recognized (e.g., [2, 3]). Children are growing up today 
in a society that is increasingly dependent and driven by digital technology. This has 
produced a new generation of learners (the so-called digital natives [4]) that are much 
more demanding than the previous generations. Games provide opportunities that 
traditional methods of teaching cannot offer, e.g., they can provide simulations that 
immerse the learner into different situations, or can incorporate social aspects. Games 
also allow incorporating implicit learning or learning-by-doing which entail that 
learners do not need to be consciously aware of their learning experiences in order to 
display learning behavior. Although the advantages of integrating games in education 
or use them for training have already been widely discussed in the literature, in 
practice, the design and development of an educational game is largely done in an ad 
hoc way and its success will mainly depend on the experience and insights of the 
developers involved. Therefore, it is important to think of design methods that could 
support the development of educational games. There are still a lot of open questions 

Elien Paret




with regards to the development of educational games. For instance, when, for what 
and for who can games actually lead to increased learning [3]. It is also not yet clear 
how to combine games and learning. Should the game and the learning be completely 
integrated rather than one being just an add-on of the other? Should there be a relation 
between the learning topic (e.g., mathematics) and the goal of the game (e.g., escape 
from a castle)? How to find the right balance between entertainment and the learning 
experience [5]? To answer these and other related questions, interdisciplinary research 
is needed, involving people from domains such as pedagogy, cognitive psychology, 
and computer science. Experiments need to be set up to investigate the research 
questions and validate hypotheses. In these experiments, we also need to involve 
people from the domain for which the educational game will be developed (e.g., for 
archeology or history, or for societal problems like poverty or bullying) because their 
domain knowledge is needed during the development process. Also end users are 
important actors in these research experiments to provide essential input about 
requirements and the necessary feedback regarding usability. This requires tools and 
methods that can be easily used and understood by non-technical users (i.e. domain-
experts and end users). Such tools are not only important in the context of research, 
but they will also be valuable (later on) in professional development environments, as 
it will always be essential to involve domain experts and end users in the development 
of a successful educational game.  

In this paper, we will focus on the use of a domain-specific modeling language to 
accommodate domain experts and end users in the design process of educational 
games. Domain-specific modeling languages use a dedicated vocabulary and provide 
abstractions that make the specifications of solutions easier and more accessible for 
domain experts. More in particular, we will explore the challenges related to the 
development of such a language for educational games. 

2   Educational Game Development 

Educational games can be developed in different ways. Many tools exist that can be 
used for this purpose. We can make a distinction between programming libraries and 
authoring tools. With (graphical-oriented) programming libraries a complete 
application can be programmed from scratch. Examples of such programming 
libraries are Microsoft DirectX [6], OpenGL [7], and Java3D [8]. These libraries deal 
with almost all needed low-level functions like access to the graphical devices, sound 
cards, and input devices. They allow abstracting from the low-level features, however 
the application still needs to be programmed manually and they also don’t provide 
abstraction mechanisms for features that are common to games, e.g., object behaviors 
or state transitions. Game engines can also be placed in the category of programming 
libraries, but compared to the generic libraries mentioned earlier they provide more 
game-oriented abstraction mechanisms (i.e. basic game functionality) for the 
programmer. Although they are used a lot for the development of game-oriented 
application, a major drawback is that the learning curve to master these tools is high 
and quite some programming skills are required. To be able to use them you need to 
understand the game architecture used, the interaction paradigm used, interfaces, etc.  



Authoring tools, on the other hand, are aimed to make the development process 
more accessible to a broader public (e.g., Thinking Worlds [9]). These tools try to 
avoid programming by providing a graphical and easy-to-use interface (e.g., clicking, 
dragging and dropping). In this way, they try to deal with the “semantic gap” between 
the author of the game and the implementers who each talk their own language and 
have their own concerns. Actual, authoring tools have the (ultimate) aim of removing 
the need for implementers: authors (i.e. designers) can build their applications 
themselves. Although this sounds very expressive, in practice these tools are often 
limited either in the type of application that can be specified or in the support that 
they provide (and often they need to be combined with scripting languages, which 
again requires programming skills).  

To try to overcome the “semantic gap” problem, some researchers [10, 11, 12, 13] 
propose to consider domain-specific modeling languages (DSML) to develop games. 
Also in our research, we follow this approach. However, DSMLs proposed for 
gaming are too limited for the purpose of educational games. A domain-specific 
modeling language for educational games should not only consider the gaming 
aspects but also take into consideration the learning aspects, as well as the (learning) 
domain of the educational game. It must be noted that the technique of domain-
specific modeling languages have also been considered in the domain of instructional 
design [14] but also these languages are too restricted to serve our purpose.  

3   Domain-Specific Modeling Languages 

A domain-specific modeling language (DSML) [15] is a domain-specific language for 
the purpose of modeling or designing systems. A DSML can be considered as a 
special kind of domain-specific language (DSL). A DSL is a, usually small, language 
dedicated to, and restricted to, a particular domain and a specific class of problems 
[16]. It provides appropriated abstractions that make the specifications of solutions for 
this particular class of problems easier and less time consuming. The abstractions are 
using the vocabulary of the problem domain and as such domain experts can 
understand, validate, and often even develop themselves specifications expressed in 
the DSL. In general, modeling languages (and as such also domain-specific modeling 
languages) are graphical (visual) languages because graphical specifications are easier 
for the communication with non-technical people; they are also helpful for conveying 
complex models and designs as they can help people to grasp large amounts of 
information more quickly than large listings of text. Domain-specific modeling 
languages have already been proposed for several domains, from insurance products 
to microcontroller-based voice systems [15]. Luoma et al. [15] performed a study 
based on data gathered from over 20 cases of DSML creation. They conclude “the 
task of defining a language seems to become considerably easier when the language 
needs only to work for one problem domain in one company”. The authors also found 
that “in all cases, DSM had a clear productivity influence due to its higher level of 
abstraction: it required less modeling work, which could often be carried out by 
personnel with little or no programming experience”. The authors also reported that 
there was no single approach to construct a DSML; they identified 4 different 



approaches. van Deursen et al. [16] gives a number of important steps to follow when 
developing a DSL. A distinction is made between the analysis and design of the 
language (step (1) to (4)) and the implementation of the language (step (5) to (6)). The 
steps are: (1) Identify the problem domain; (2) Gather all relevant knowledge in this 
domain; (3) Cluster this knowledge in a handful of semantic notions and operations 
on them; (4) Design a DSL that concisely describes applications in the domain; (5) 
Construct a library that implements the semantic notions; (6) Design and implement a 
compiler that translates DSL programs to a sequence of library calls. Elliott [17] also 
emphasizes the importance of tools for the DSL.  

4   DSMLs for Educational Games 

When we want to develop a (graphical) DSML for the domain of educational games, 
our language will need to provide high-level modeling concepts (and associated 
graphical representations) for expressing easily: (1) game aspects; (2) pedagogical 
aspects; and (3) (learning) domain aspects.  

Actually, it will not be possible to come up with one single DSML for educational 
games. First of all there are different types (genres) of games with different 
characteristics [18]: action and adventure games, strategy games, role-playing games, 
real world simulations, puzzle games…. According to Dobbe [11], the game genres 
do not influence the general structure of the DSL and he proposed a single DSL for all 
game genres. However, we think that it is better to provide some specific modeling 
concepts for the different genres as these may be easier to understand by the non-
technical people than more generic modeling concepts like object, event, interaction. 
In addition, by using specific modeling concept for specific genres we may also 
provide better guidance to the designers, as the modeling concepts available will 
already suggest the type of information that need to be specified. The fact that all 
game genres have some common vocabulary can be solved by having a layered set of 
modeling concepts (e.g., modeled as a concept hierarchy), where layers are turned on 
and off depending on the game genre selected at design time.  

Secondly, there exist different learning and teaching styles and strategies. A 
discussion on different learning and teaching styles is outside the scope of the paper 
(see e.g., [20, 21]) but it should be clear that understanding the learning style of the 
target audience and choosing the most appropriated teaching style is beneficial for the 
effectiveness of the learning process. Also the teaching style should fit the domain as 
well as the game genre. In addition, the educational goals (e.g., drilling, practicing 
skills, understanding…) need to be taken into consideration. Different models of 
instructions [22] can be used (e.g., direct instruction, role playing). The different 
choices made in this respect will also have an impact of the modeling concepts that 
should be provided to the designer. Similar as for the game modeling concepts, we 
could opt to provide a layered set of modeling concepts. 

Thirdly, as we may want to specify educational games for different learning 
domains, it will be necessary to also provide modeling concepts for the learning 
domain (e.g., mathematics, social skills). This means that this part of the DSML 
should be open; it should be possible to plugin different sets of modeling concepts for 

Elien Paret


Elien Paret


Elien Paret


Elien Paret


Elien Paret


Elien Paret


Elien Paret


Elien Paret


Elien Paret
Think of some terms for each of them



different learning domains. Unlike for the two other aspects (gaming concepts and 
pedagogical concepts), this part of the language cannot be pre-engineered.  

Furthermore, we need to consider how all these different modeling concepts can be 
combined to come to the specification of an attractive educational game. A question 
that needs to be answered is for instance: Is it possible to specify the game aspect and 
the learning aspect independently and weave them together in a later stage (and if so, 
how should this be done) or will this only complicate the modeling process? In any 
case, the two aspects need to be related somehow and how this could be done needs to 
be investigated. 

Other issues that need to be considered when designing a DSML for educational 
games is the level of detail we want to consider. We can opt for a very detailed level, 
such that in principle all information is available to generate the actual code for the 
educational game (Model Driven Engineering principle [23]). However, from 
experience in the field of Virtual Reality ([24]), we known that this is not feasible and 
also not desirable because the (graphical) models will become so large and 
complicated that they loose their benefit. End users and domain experts cannot 
develop them anymore and even have trouble to understand them. Also, the time 
needed to create (and verify) them tends to become equal to the time of an actual 
implementation, and developers will then prefer to do the implementation manually, 
as they will have more control on the result. If our purpose is to actively involve 
domain experts in the design process, the focus should be on the overall design of the 
educational game, which can be used as input for the actual implementation but still 
need to be complemented with all kind of information, e.g., graphical design. Related 
and other pitfalls when creating a DSML can be found in [25]. 

5   Conclusions and Future Work 

In this paper, we discussed the use of a domain-specific modeling language for the 
design of educational games. Domain-specific modeling languages use the vocabulary 
of the target domain and provide abstractions that make the specifications of solutions 
easier and more accessible for domain experts. Although such an approach looks 
promising, several research questions still need to be solved. Many of the research 
questions have to do with the lack of fundamental knowledge on how to design 
educational games that are successful and effective from a learning point of view. In 
current research projects we are investigating different of these research questions. 
We are also working on the development of a particular DSML, where we will limit 
the language to one particular learning domain, one particular game genre, and one 
particular instructional method. Later on, we will try to generalize the language to 
different game genres and instructional methods. 

References 

1. Anderson, C. A., and Bushman, B. J. (2002): Media violence and societal violence. 
Science, 295, pp. 2377-2378 (2002) 

Elien Paret


Elien Paret


Elien Paret


Elien Paret




2. Klopfer, E., Osterweil, S., and Salen. K.: Moving Learning Games Forwards. The 
Education Arcade (2009). 

3. Van Eck, R.: Digital game-based learning: It’s not just the digital natives who are resless…. 
Educause Review, 41(2), pp. 16-30 (2006). 

4. Prensky, M.: Digital Natives, Digital Immigrants, Part II: Do they really think differently? 
On the Horizon, 9(5), pp. 1-6, MCB University Press. Online: 
http://www.marcprensky.com/writing/ (2001) 

5. Salen, K., and Zimmerman, E.: Rules of play: Game design fundamentals. MIT Press, 
Cambridge, MA, USA (2003). 

6. Microsoft Corp., http://www.gamesforwindows.com/en-US/directx/ 
7. OpenGL, http://www.opengl.org/ 
8. Java 3D Graphics, http://www.java3d.org/ 
9. Thinking Worlds, http://www.thinkingworlds.com 
10. Furtado, A. W. B., and Santos, A. L. M.: Using Domain-Specific Modeling towards 

Computer Games Development Industrialization. In: Jeff Gray, Juha-Pekka Tolvanen, 
Jonathan Sprinkle (eds.) 6th OOPSLA Workshop on Domain-Specific Modeling 
(DSM’06), Computer Science and Information Systems Reports Technical Reports TR-37, 
Jyväskylä University Printing House, Jyväskylä, Finland, pp. 1-14 (2006) 

11. Dobbe, J.: A Domain-Specific Language for Computer Games. Master Thesis, TU Delft 
(2004)  

12. Guerreiro, R., Rosa, A., Sousa, V., Amaral, V., and Correia, N. : UbiLang: Towards a 
Domain Specific Modeling Language for Specification of Ubiquitos Games. In: Luís S. 
Barbosa, Miguel P. Correia (eds) INForum 2010 - II Simpósio de Informática, pp. 449–460 
(2010) 

13. Marchiori, E.J., Torrente, J., del Blanco, A., Moreno-Ger, P., and Fernández-Manjón, B.: A 
Visual Domain Specific Language for the Creation of Educational Video Games.  Learning 
Technology, Vol 12 Issue 1, IEEE Computer Society’s (2010) 

14. Laforcade, P.: A Domain-Specific Modeling approach for supporting the specification of 
Visual Instructional Design Languages and the building of dedicated editors. Journal of 
Visual Languages and Computing 21, pp. 347-358 (2010) 

15. Luoma, J., Kelly, S., and Tolvanen, J.-P.: Defining Domain-Specific Modeling Languages: 
Collected Experiences. In: Proceedings of the 4th OOPSLA Workshop on Domain-Specific 
Modeling (DSM’04), Vancouver, British Columbia, Canada (2004) 

16. van Deursen, A., Klint, P., and Visser, J.: Domain-specific languages: an annotated 
bibliography, ACM SIGPLAN Notices, Volume 35 Issue 6, (2000) 

17. Elliott, C.: An Embedded Modeling Language Approach to Interactive 3D and Multimedia 
Animation”, IEEE Transactions on Software Engineering, Volume 25 Issue 3 (1999) 

18. Rollings, A., and Adams, E.: On Game Design. New Riders (2003) 
19. Felder, R.M., and Henriques, E.R.: Learning and Teaching Styles in Foreign and Second 

Language Education. In: Foreign Language Annals, vol. 28, pp. 21--31 (1995) 
20. Felder, R.M., Silverman, L.K.: Learning and Teaching Styles in Engineering Education. In: 

Engr. Education, vol. 78, pp. 674-681 (1988) 
21. Coffield, F., Moseley, D., Hall, E., Ecclestone, K.: Learning Styles and Pedagogy in Post-

16 Learning: A Systematic and Critical Review. Learning and Skills Centre, LSRC, U.K 
(2004) 

22. Joyce, B., and Weil, M.: Models of teaching (5th edition). Englewood Cliffs, NJ: Prentice-
Hall (1996) 

23. Schmidt, D.C.: Model-driven Engineering. IEEE Computer 39 (2) (2006). 
24. WISE Research Group – VR-WISE research, http://vr-wise.vub.ac.be/ 
25. Kelly, S., and Pohjonen, R.: Worst Practices for Domain-Specific Modeling. IEEE 

Software Vol.26, No.4 (2009) 
 

Elien Paret


Elien Paret


Elien Paret


Elien Paret


Elien Paret


Elien Paret


Elien Paret


Elien Paret



