
Cross-Media Document Linking and Navigation
Ahmed A.O. Tayeh, Payam Ebrahimi and Beat Signer

Web & Information Systems Engineering Lab
Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussels, Belgium
atayeh,pebrahim,bsigner@vub.be

ABSTRACT
Documents do often not exist in isolation but are implicitly
or explicitly linked to parts of other documents. However, due
to a multitude of proprietary document formats with rather
simple link models, today’s possibilities for creating hyper-
links between snippets of information in different document
formats are limited. In previous work, we have presented a dy-
namically extensible cross-document link service overcoming
the limitations of the simple link models supported by most
existing document formats. Based on a plug-in mechanism,
our link service enables the linking across different document
types. In this paper, we assess the extensibility of our link
service by integrating some document formats as well as
third-party document viewers. We illustrate the flexibility of
creating advanced hyperlinks across these document formats
and viewers that cannot be realised with existing linking
solutions or link models of existing document formats. A user
study further investigates the user experience when creating
and navigating cross-document hyperlinks.

CCS CONCEPTS
• Human-centered computing → User studies; User centered
design; • Applied computing → Hypertext / hypermedia cre-
ation; Document management;

KEYWORDS
Cross-document linking; information linking; link navigation;
user linking behaviour

ACM Reference Format:
Ahmed A.O. Tayeh, Payam Ebrahimi and Beat Signer. 2018. Cross-
Media Document Linking and Navigation. In DocEng ’18: ACM
Symposium on Document Engineering 2018, August 28–31, 2018,
Halifax, NS, Canada. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3209280.3209529

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the au-
thor(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
DocEng ’18, August 28–31, 2018, Halifax, NS, Canada
© 2018 Copyright held by the owner/author(s). Publication rights
licensed to the Association for Computing Machinery.
ACM ISBN 978-1-4503-5769-2/18/08. . . $15.00
https://doi.org/10.1145/3209280.3209529

1 INTRODUCTION
The fact that documents are often not used in isolation
has been confirmed by HCI research investigating the user
behaviour while reading and writing physical and digital
documents [21]. According to Adler et al. [1], cross-document
referencing tasks form a significant part of the entire reading
and writing activity. Furthermore, Marshal [13] stated that
users use highlights or underlines as anchors while reading, in
order to explicitly associate (link) information within a docu-
ment. Other research in the domain of Personal Information
Management (PIM) identified that users make use of digital
and physical folders for organising and relating (associating)
information across documents [10].

Associative hyperlinks are considered the basis for creating
and managing relations and associations between documents
as well as other information objects [9]. They were origi-
nally introduced by Bush [3] and according to Nelson [15]
they enable non-sequential reading and writing. Hyperlinks
were seminal for succeeding digital hypermedia models and
systems such as the oN-Line System (NLS) [5] and further in-
strumental in the success of the World Wide Web by enabling
the referencing and annotation of content.

Most recent digital document formats support simple forms
of linking (i.e. embedded and unidirectional associative hyper-
links) allowing users to associate information across different
documents. While many document formats offer the possi-
bility to link to third-party documents, it is normally not
possible to address parts of these documents [17]. For example,
a developer might create hyperlinks in an HTML document
targeting entire PDF or text documents but it is impossible
to address parts of these documents. Many solutions includ-
ing open hypermedia systems (e.g. Sun’s Link Service [16] or
Microcosm [8]), annotation systems (e.g. MADCOW [2]) or
the XLink standard1 have been proposed in order to address
the shortcomings of the link models of existing document
formats. Nevertheless, as explained in [22, 24], most exist-
ing linking solutions have two major shortcomings. First of
all, they only support the linking across a predefined set of
document formats that have to be visualised and authored
within the link service itself. Users therefore have to leave
their preferred third-party document viewers and editors
(e.g. Microsoft Word) in order to profit from the features
offered by a link service. Second, it is not evident how the
architectures of existing linking solutions can be extended in
order to support other document formats.

1https://www.w3.org/TR/xlink/

https://doi.org/10.1145/3209280.3209529
https://doi.org/10.1145/3209280.3209529
https://doi.org/10.1145/3209280.3209529

DocEng ’18, August 28–31, 2018, Halifax, NS, Canada Ahmed A.O. Tayeh, Payam Ebrahimi and Beat Signer

DocFormat 1 DocFormat 2

C R U D

Menu

Gateways

Link Model

DocFormat 1

Online Plug-in Repository
Gateways Data Plug-ins Visual Plug-ins Add-ins

DocFormat 2 DocFormat 3
Database

Add-in

Gateway

DocFormat 3

Third-party

document

viewer

DocFormat 3

Data plug-ins

Visual plug-in Visual plug-in

DeveloperEnd user

Link browser

write and upload

plug-ins and add-ins

search and download

plug-ins and add-ins

visualise documents, create,

navigate and edit hyperlinks

Link service

Communication

Channels

Plug-in tracking

Gateway ...

Gateway plug-ins

RESTful API

search and

retrieve plug-ins

Figure 1: Conceptual schema of the dynamically extensible cross-document link service

In order to overcome the shortcomings of link models in
existing document formats as well as to enable users in linking
pieces of information across different document types, we
have presented the dynamically extensible cross-document
link service [23, 24]. The link service enables users to create
external bi- and multidirectional hyperlinks within and across
documents. It is further dynamically extensible via plug-ins
to support existing as well as future document formats. In
this paper, we assess the extensibility of our link service by
integrating various document formats and viewers, including
plain text, PDF, XML, Microsoft Office and Google Chrome.
Moreover, we discuss the possibility of integrating other
document formats and viewers. We present a user study
investigating the user experience in creating and navigating
bi- and multidirectional hyperlinks across some document
formats and viewers as well as in extending our link service
to support other document formats or viewers.

We begin in Section 2 by giving a brief overview of our
link service and provide details about the advanced form
of hyperlinks supported by our link service in Section 3. In
Section 4 we discuss the integration of a number of document
formats and viewers into our link service which is followed by
an end-user evaluation in Section 5. After a critical discussion
of the presented approach and study results, we provide some
concluding remarks.

2 CROSS-DOCUMENT LINK SERVICE
The simple linking features offered by most existing docu-
ment formats only allow users with editing permissions to the

source document (e.g. the owner of a document) to create new
hyperlinks. For example, the hyperlinks in an HTML web
page always have to be authored by its developer. Thereby,
users without write permissions who would like to associate
information across documents are not able to create hyper-
links based on the simple document linking features. The
unidirectional hyperlinks offered by most document formats
further imply that a linked document (target) as well as its
reader are not aware of hyperlinks pointing to it from other
source documents. As mentioned earlier, the linking solutions
that have been proposed to overcome the shortcomings of the
linking features of different document formats exposed some
shortcomings in terms of integrating other document formats
or viewers. For example, in order to support linking across
documents that are visualised in their own third-party docu-
ment viewers by using Sun’s Link Service [16], the third-party
document viewers have to be rewritten to take into account
Sun’s Link Service library that facilitates the communication
across different document viewers.

In earlier work [23, 24], we have presented a dynamically
extensible cross-document link service addressing the short-
comings of existing document link models and linking solu-
tions. Figure 1 illustrates the conceptual schema of our link
service offering a plug-in architecture to integrate different
document formats as well as third-party document viewers.
As discussed in [22], in most design decisions we took into ac-
count that our link service should be extensible by third-party
developers to support existing as well as emerging document
formats.

Cross-Media Document Linking and Navigation DocEng ’18, August 28–31, 2018, Halifax, NS, Canada

The link model of our link service is based on the RSL hy-
permedia metamodel [18] and its idea of linking arbitrary
entities, whereby an entity can either be a resource, a se-
lector or a link. A resource represents the base unit for a
given media type, such as an image, a video or a complete
document. A selector is always related to a resource and used
to address parts of the resource. Finally, a link can either be
a one-to-one, a one-to-many or a many-to-many bidirectional
association between arbitrary entities. In our link service,
new document formats are supported by implementing data
plug-ins extending the RSL resources (documents) as well as
selectors attached to documents in a given document format.
For example, in a data plug-in for the plain text document
format, a text resource (document) can be represented as
a URI pointing to the document and its selector might be
represented via a start and end index.

The visualisation component of our link service consists of
a link browser for visualising the supported document formats.
The user interface further offers the necessary GUI actions
to perform the basic create, read, update and delete (CRUD)
operations on hyperlinks. In this visualisation component,
we have defined a list of necessary functionality required to
visualise and interact with any document in a link service such
as the opening of a document, the highlighting of document
selectors, the creation of a selector or the navigation to a
hyperlink target. For each document format to be visualised
in the link browser, a visual plug-in has to be implemented [19,
20]. A visual plug-in for a given document format needs to
visualise documents as well as their selectors. Furthermore,
it has to provide the necessary functionality to create, delete
and update selectors.

Figure 2: A bidirectional hyperlink between a PDF document
visualised in the link browser and an HTML document visu-
alised in the Google Chrome web browser

The presented link service further addresses the challenge
of seamlessly integrating third-party document viewers in
order to enable users to continue using their preferred third-
party document viewers while being able to link different
documents. For example, Figure 2 shows a bidirectional hy-
perlink created between a PDF document visualised within
our link browser and an HTML document visualised in an

external web browser. We exploited extensibility features
offered by third-party document viewers (i.e. their SDKs or
APIs) in order to integrate them into our link service. For
every third-party document viewer to be integrated with our
link service, an add-in for the third-party document viewer
is required. The add-in should provide a user interface that
enables users to create, update as well as delete selectors.
Furthermore, an add-in needs to communicate with our link
service through any communication channel (e.g. TCP sock-
ets, WebSockets or RESTful API) provided by the extensible
communication module of our link service. Messages commu-
nicated between add-ins and our link service are represented
in JSON format. The fact that document formats of third-
party document viewers have different logical structures as
well as selectors implies that messages exchanged between
the link service and an add-in are different from messages
exchanged between the link service and another add-in.

In order to cope with this challenge, we decided that a
mediator component should form an integral part of the
link service in order to abstract the messages exchanged
between the link service and third-party document viewers.
This allows the link service to understand message types and
structures from any add-in and perform the required actions.
Add-ins further should be able to understand the type and
structure of any message sent by the link service in order to
perform the necessary task. The gateway component has been
proposed in order to facilitate the integration of third-party
document viewers. All the functionality necessary to translate
messages exchanged with a third-party document viewer add-
in has been abstracted in the gateway component. For every
third-party document viewer to be supported in our link
service, a gateway plug-in has to be introduced that extends
the gateway component in order to translate the messages
communicated between its corresponding document viewer
add-in and the link service. It is worth mentioning that each
message communicated between the link service and an add-in
must contain a command key with one of the predefined request
values that convey different types of interaction (e.g. creating
a selector, navigating to a hyperlink target or opening a
document). For more details about the message structure
and request values please refer to [22].

Our link service exploits the Dynamic Module System for
Java by OSGi [7] due to its dynamic extensibility as well as the
management and tracking of different plug-ins. Each data,
visual or gateway plug-in must contain specific key/value
metadata in order to be a valid extension for our link service.
The tracking component exploits the plug-in metadata in
order to identify them and correctly inject a plug-in in the
link service at run-time. Furthermore, the plug-in tracking
component avoids plug-ins with invalid metadata. Last but
not least, we proposed the online repository to store the
different plug-ins and add-ins of the link service. End users
should be able to support the different document formats or
third-party document viewers on demand by installing the
required plug-ins from the online repository. The link service
enables users to do so by communicating with the online
repository and shows the available plug-ins to be downloaded.

DocEng ’18, August 28–31, 2018, Halifax, NS, Canada Ahmed A.O. Tayeh, Payam Ebrahimi and Beat Signer

Hyperlink Sources

Selector start: 20, end: 50 [text1.txt]

Selector start: 100, end:200 [wordDoc.doc]

Create Link Delete Link

Hyperlink Targets

Selector xpointer(id (Brx)) [webpage.html]

Move to Targets >>

<< Move to Sources

Remove Selector

Cancel

Figure 3: The hyperlink overview menu for editing a hyperlink’s sources and targets

Upon a user request, the tracking module installs the different
plug-ins by downloading them from the online repository. This
feature is similar to the extensibility of the Eclipse2 IDE. In
the next section, we elaborate on how end users can use our
link service to create advanced hyperlinks across documents
to be visualised in the link browser or in third-party document
viewers.

3 CREATING ADVANCED HYPERLINKS
We present three different scenarios for creating bi- and mul-
tidirectional hyperlinks by using our link service. In the first
scenario, we explain the creation of a hyperlink across doc-
uments that are visualised in the link browser such as the
hyperlink illustrated in Figure 4. In the second scenario, we
explain the creation of the hyperlink depicted in Figure 2
where one document is visualised in our link browser and
the other document is visualised in its third-party document
viewer. In the last scenario, we explain the creation of a hyper-
link between two different documents visualised in different
third-party document viewers.

Figure 4: Bidirectional hyperlink between a PDF document
on the left and a JPEG image on the right

A user can easily create bi- and multidirectional hyper-
links between documents visualised in our link browser. After
opening a document in the link browser, they can select parts
of the document and choose the option Add Selector to
create a selection via the supported CRUD operations. The
link browser then allows the user to choose (open) another
document in order to create a target selector. The user might
either confirm the creation of a new bidirectional hyperlink
by pressing the Create Link button (i.e. provided in the link

2https://www.eclipse.org

browser) or open other documents to create additional selec-
tors resulting in the creation of a multidirectional hyperlink.
A user can always choose to edit a hyperlink’s sources and
targets before confirming its creation. The link browser pro-
vides the user with an overview about the created selectors,
offering them flexibility in editing the hyperlink sources and
targets. For instance, Figure 3 shows three different selectors
defined by a user; a selector in a text document (text1.txt), a
selector in a Word document (wordDoc.doc) and a selector in
an HTML document (webpage.html). A user can easily move
the Word document selector from the hyperlink sources to
the hyperlink targets leading to a multidirectional hyperlink
with one source and two targets.

Similar as in the previous scenario, the user can confirm
the creation of hyperlinks by using the Create Link button
provided by the link browser or use the hyperlink overview
menu shown in Figure 3 for editing and confirming the cre-
ation of hyperlinks. The hyperlink illustrated in Figure 2 can
be created in a few simple steps. Let us assume that the user
is working simultaneously with the PDF document visualised
in the link browser and the HTML document shown in the
Google Chrome web browser. The user selects the text frag-
ment “ETH Zurich” from the PDF document and chooses the
option to create a selector from the link browser’s supported
CRUD actions. The selected PDF selector will be listed under
the Hyperlink Sources in the hyperlink overview menu. As
illustrated in Figure 5, the user then selects ETH Zurich from

Figure 5: Creating a selector in an HTML document using a
Google Chrome add-in

Cross-Media Document Linking and Navigation DocEng ’18, August 28–31, 2018, Halifax, NS, Canada

the HTML document and chooses the option to create a
selector from the GUI actions supported by Google Chrome
add-in. The add-in sends a JSON request to the link ser-
vice with information about the document and the selector.
The link service asks the corresponding HTML gateway to
translate the received message. In other words, the HTML
gateway should transform the information about the HTML
document into an RSL resource representing the HTML doc-
ument. Further, the HTML gateway also has to transform the
information about the HTML selector into an RSL selector
representing the HTML selector. This means that the HTML
gateway communicates with the HTML data plug-in in order
to transform parts of the received message into an HTML
resource or selector. The link service then adds the HTML se-
lector to the active hyperlink under construction. The HTML
selector is automatically listed under the Hyperlink Targets
in the hyperlink overview menu. When the hyperlink is saved,
the link service asks both the PDF visual plug-in and the
Google Chrome add-in to update their documents in order
to visualise the new hyperlink.

In a similar way as described in the previous scenario, a
user can also create a hyperlink between documents visu-
alised in different document viewers. Suppose that apart from
Google Chrome also Adobe’s Acrobat Reader is supported by
the link service. The user wants to create a hyperlink between
a PDF document visualised in Acrobat Reader and an HTML
document rendered in Google Chrome. They select parts of
the PDF document and choose the option to create a selec-
tor from the GUI actions supported by the Acrobat Reader
add-in. The Acrobat Reader add-in then sends a request to
the link service with information about the document and
the selector, and the PDF gateway is asked to return the
PDF resource and selector from the received message. As a
result, the link service lists the returned selector under the
Hyperlink Sources in the hyperlink overview menu. The
user then selects parts of the HTML document and chooses
the option to create a selector from the GUI actions sup-
ported by the Google Chrome add-in. In a similar way, the
HTML gateway returns the HTML resource and selector
from the message coming from its corresponding add-in and
the HTML selector is listed under the Hyperlink Targets in
the hyperlink overview menu. Finally a hyperlink is created
between the two documents.

4 SUPPORTED DOCUMENT FORMATS
AND VIEWERS

As discussed, in order to integrate a document format with
our link browser, a data as well as a visual plug-in need to
be provided for the corresponding document format. The
implementation of a data plug-in for a given document for-
mat is a relatively simple task since it only defines how to
identify a resource (e.g. URI) and how to address its selec-
tors (e.g. XPointer expression). Note that a data plug-in can
use any existing resource identifier schema to address its
resources. The implementation of a visual plug-in for a given
document format requires a Java-based visualisation library

for a given document format in order to correctly visualise
the document format within the link browser. In the case
that there is no available Java-based visualisation library for
a given document format, it is still possible to implement
the necessary functionality to visualise the document format
from scratch. With our proposed approach for integrating
third-party document viewers, a given third-party document
viewer can be integrated with our link service when four con-
ditions are met. First of all, the third-party document viewer
should be extensible via add-ins (sometimes called add-ons
or plug-ins). Second, the SDK of the third-party document
viewer must enable developers to manipulate documents in
order to create or get selectors within its supported docu-
ments. Third, the SDK of the third-party document viewer
must enable developers to extend and customise the third-
party document viewer’s user interface. This feature should
enable developers to provide visual handles in the developed
add-ins. For example, a developed add-in can customise the
context menu of the third-party document viewer by adding
a new item (icon) that enables end users to navigate to hy-
perlink sources or targets. In addition, this feature should
facilitate the highlighting of a document’s selectors. Finally,
the SDK of the third-party document viewer must support
the communication to other third-party applications (i.e. our
link service). Unfortunately, some existing document viewers
such as iBooks Author [14] and Sumatra PDF3 do not meet
those four conditions and can therefore not be integrated
with our link service.

The flexible and extensible plug-in architecture of our link
service allowed us to integrate a number of document formats
and document viewers as well as two multimedia content
types. Our link service currently supports the linking of PDF,
XML, plain text, HTML, Word and PowerPoint documents
as well as images and YouTube videos. The link browser is
further able to visualise PDF, XML, plain text documents
or images via visual plug-ins. The HTML document format
as well as YouTube videos are supported by two different
add-ins for Google Chrome. The integration of Microsoft
Word and Microsoft PowerPoint with the link service via two
different add-ins allows the linking to Word and PowerPoint
documents. In the remainder of this section, we elaborate on
the integration of the different document formats, document
viewers and multimedia content types.

4.1 Plain Text
The data plug-in for text documents defines its resources
via the path and name of the documents in the user’s local
storage. Thereby, a user should be able to create bi- and
multidirectional hyperlinks in text documents stored in their
local storage. The selector within a text document is defined
by a start and end index.

The visual plug-in for text documents relies on the Java
Swing library. It uses a TextPane component to visualise
arbitrary text documents. By using the TextPane API, the
text visual plug-in creates and retrieves selectors. It further
3http://www.sumatrapdfreader.org

DocEng ’18, August 28–31, 2018, Halifax, NS, Canada Ahmed A.O. Tayeh, Payam Ebrahimi and Beat Signer

Figure 6: A rich visualisation of a multidirectional hyperlink
by the plain text visual plug-in

uses the DefaultHighlighter component of the swing.text
package to highlight the selectors of text documents. Last but
not least, the visual plug-in provides the rich visualisation
enabling users to navigate to hyperlink sources and targets
as illustrated in Figure 6.

4.2 PDF Document Format
The data plug-in for PDF documents specifies its resource
via the path and name of the document in the user’s local
storage. The selector within a PDF document is defined by a
page index and a rectangular area within a page. The PDF
data plug-in defines its media type application/pdf in its
manifest file.

The visual plug-in for PDF documents relies on the exist-
ing ICEpdf4 open source Java library for visualising PDF
documents in the link browser. The visual plug-in further
uses the ICEpdf library API to get and create selections of
rectangular areas in PDF documents. It is worth mentioning
that we have customised some methods in the ICEpdf library
in order to be able to create interactive hyperlinks. The vi-
sual plug-in successfully implements all the abstract methods
provided by the link service visualisation component.

4.3 XML Document Format
Similar to the PDF data plug-in, the XML data plug-in
defines its resource via the path and name of the docu-
ment in the user’s local storage. A selector within an XML
document is defined via DOM ranges. Note that there are
also some libraries such as XInclude5 that use XPointer,
but these libraries are targeting XML inclusions (XInclude).
The XML visual plug-in extends the StyleEditorKit that
forms part of the javax.swing.text library for a better vi-
sualisation of XML documents. Furthermore, it uses the
javax.xml.parsers library for reading XML documents.
Last but not least, the XML visual plug-in applies the

4http://www.icesoft.org/java/projects/ICEpdf/overview.jsf
5https://www.w3.org/TR/xinclude

org.w3c.dom library to retrieve and highlight nodes and
ranges within an XML document.

4.4 Images
In order to illustrate the flexibility and extensibility of our
link service, we support the linking to areas within general
multimedia content types such as images or YouTube videos.
We enable the visualisation of images within our link browser
by using a visual plug-in. Figure 4 illustrates a bidirectional
hyperlink between a PDF document and a JPEG image. In
order to render images, the visual plug-in makes use of the
Java Swing library that supports a number of image formats.
The visual plug-in further extends the Swing JComponent
object in order to enable users to create rectangular shapes
within images. The data plug-in for images defines an image
resource via its path and name in a user’s local storage and
the image selector is defined as rectangular shape.

4.5 Microsoft Word
Microsoft office applications (e.g. Microsoft Word) are exten-
sible via add-ins. Add-ins can be developed by either using
a C# or JavaScript API. In contrast to the former C# API,
JavaScript-based add-ins are platform independent. In the be-
ginning, we have developed a JavaScript-based add-in. Even
though the add-in provides most of the required functionality,
at the time of our implementation it showed a number of
limitations (e.g. cannot customise Microsoft Word context
menu) due to restrictions of the JavaScript-based API. We
therefore developed another add-in based on the C# API
which is described in the following. For details about the
JavaScript-based add-in please refer to [22].

4.5.1 C# Add-in. The C# API enables add-ins to cus-
tomise most aspects of Microsoft Word. A developed add-in
can customise the context menu, create selections, highlight
selections, create toolbar menus and create multiple new
windows within Microsoft Word. By using the API, we were
able to develop a rich add-in that allows users to create and
navigate advanced hyperlinks. As illustrated in Figure 7, the
add-in provides a user interface on the right-hand side of a
visualised document. It enables users to connect to the link
service via a TCP socket connection as well as to highlight
or disable the highlighting of selectors. The add-in further
allows users to create selectors by customising the context
menu of Microsoft Word and by adding the Add Selector
command to it. In addition, users can navigate to hyperlink
sources or targets via the customised context menu.

4.5.2 Word Document Format Plug-ins. Two different plug-
ins are installed in the link service for the Word document
format; a data and a gateway plug-in. The data plug-in de-
fines its resources via the document name and path in the
user’s local storage. The selector within a Word document is
defined as an XPointer-like expression. On the other hand,
the gateway plug-in implements all the methods of the gate-
way interface and creates JSON messages to be sent to the
corresponding add-in. It also unmarshals the JSON messages

Cross-Media Document Linking and Navigation DocEng ’18, August 28–31, 2018, Halifax, NS, Canada

Figure 7: Microsoft Word user interface of the C# add-in

coming from the corresponding add-in to Word resources and
selectors (i.e. Java objects). Note that we will not discuss
the gateways for the other document viewers since they all
implement the same gateway interface with similar tasks.

4.6 Microsoft PowerPoint
4.6.1 Microsoft PowerPoint Add-in. We have integrated

Microsoft PowerPoint only via a JavaScript-based add-in.
The add-in makes use of the WebSocket JavaScript object in
order to connect to the link service. Once the connection with
the link service is successfully established, the selectors of the
visualised document are retrieved, enabling the user to up-
date, navigate and delete them. The selector of a PowerPoint
document is defined as slide ranges, meaning that a user can
link to a specific slide or a range of slides (e.g. from slide 1
to slide 4).

4.6.2 PowerPoint Document Format Plug-ins. The data
plug-in for PowerPoint identifies a PowerPoint resource via
its path and name. It further defines a PowerPoint selector
through an XPointer-like expression.

4.7 Google Chrome
Google Chrome is extensible via add-ins. It provides a pow-
erful API for developing add-ins by using HTML5, CSS and
JavaScript. A Google Chrome add-in is a zipped file contain-
ing JavaScript, HTML, CSS, images and any other essential
files needed to add extra functionality to the Google Chrome
web browser. An add-in must contain a manifest file provid-
ing information about the extension such as its name, version
and the Google Chrome browser capabilities (e.g. permissions
to access specific websites) that it might use.

4.7.1 Google Chrome Add-in: HTML. The add-in user in-
terface is visualised on the right hand-side of the Google
Chrome web browser previously illustrated in Figure 5. The

add-in makes use of the WebSocket JavaScript object in or-
der to connect to our link service. It further uses Rangy6, a
cross-browser JavaScript library, to create, get and highlight
selectors within web pages. The add-in customises the Google
Chrome context menu by adding new commands for creating
selectors and navigating to hyperlink sources and targets.

4.7.2 HTML Document Format Plug-ins. Two different
plug-ins, a data and a gateway plug-in, have been developed
for the HTML document format. The HTML data plug-in
defines its resources via URIs. The selector within an HTML
document is defined via an XPointer-like expression as offered
by the Rangy library.

4.7.3 Google Chrome Add-in: YouTube. The add-in com-
municates with our link service via WebSockets. The devel-
oped add-in only works if the YouTube website is completely
loaded. After a YouTube page is loaded, the add-in calls the
YouTube player which is embedded in an HTML div element
called player-api. After grabbing the YouTube player, the
add-in can access the HTML5 <video> object offering several
functions and attributes to create and play timespans within
YouTube videos.

4.7.4 YouTube Video Plug-ins. As mentioned earlier, we
have developed two different plug-ins for YouTube videos;
a data and a gateway plug-in. The data plug-in defines a
YouTube resource via its URI while the selector is defined
using a start and end time.

5 END-USER EVALUATION
5.1 Methodology
We evaluated the usability of our link service in terms of
the ease of use, satisfaction and the quality of interactions
by means of both qualitative and quantitative evaluations
in order to get a better understanding of the end-users ex-
perience and gain some insights [4]. According to previous
research [6, 12], using a mixed-method approach is more ef-
fective than using a single-method approach. Our qualitative
evaluation consists of semi-structured interviews with the par-
ticipants of the evaluation. On the other hand, in the quanti-
tative evaluation we have used the well-known Computer Sys-
tem Usability Questionnaire (CSUQ) [11] which measures the
end-user satisfaction with the usability of computer systems.
CSUQ contains 19 different questions relying on a 7 point
Likert scale (1 = strongly disagree, 7 = strongly agree). The
19 questions evaluate four different usability aspects. Eight
questions evaluate the ease of use (SYSUSE). Seven other
questions evaluate the information quality (INFOQUAL)
such as error messages or the documentation on how to
use the system. Three other questions evaluate the interface
quality (INTERQUAL), while the last question evaluates
the overall satisfaction (OVERALL). We have chosen the
CSUQ questionnaire for our usability evaluation due of its
accepted reliability. An alpha coefficient exceeding 0.89 has
been proven for all four different parts [11].
6https://github.com/timdown/rangy/

DocEng ’18, August 28–31, 2018, Halifax, NS, Canada Ahmed A.O. Tayeh, Payam Ebrahimi and Beat Signer

5.2 Population
We were mainly interested in knowledge workers’ point of
view and their experience when using our link service. There-
fore, we choose to recruit participants among a population
of researchers as they represent a group of knowledge work-
ers who frequently use documents and can be expected to
engage in document linking (e.g. via annotations or by using
bibliography reference managers such as Zotero7). Fourteen
researchers working either on their Master’s or PhD theses
participated in our usability evaluation. Their age ranged
from 23 to 37 years (M=27) and we recruited seven male and
seven female participants for gender balance. We have inten-
tionally selected all participants from non-Computer Science
specialisations in order to avoid any biased results. All partic-
ipants are studying at the Vrije Universiteit Brussel (VUB)
and were recruited through the “VUB experiment participant
pool”8 Facebook page which allows students to participate in
research experiments and evaluations conducted at the VUB.

5.3 Study Setup
Before conducting our study, we have prepared the link ser-
vice and only added support for one document format (plain
text) and one third-party document viewer (Microsoft Word).
We further populated the online repository with plug-ins for
the PDF document format as well as plug-ins and an add-in
for Google Chrome. Note that the Google Chrome add-in was
not uploaded (published) to the Google Chrome Web Store9

since it requires special validation from Google. We have
further prepared some documents (two plain texts, two PDFs
and two Word documents) to be used by the participants
for creating and editing hyperlinks. Each of these documents
contained at least two pages. Moreover, the set of available
documents was supplemented by two online Wikipedia arti-
cles (HTML documents). We started our evaluation by briefly
explaining the context of our research and the objectives of
the study to the participants, including the concept of a
hyperlink, hyperlink sources and targets and the integration
of document formats and third-party document viewers with
our link service. We further explained the different function-
ality supported by the link service. After these explanations,
participants were asked to use the link service and to perform
a number of tasks. Each participant had to create, navigate
and delete a number of bi- and multidirectional hyperlinks
between plain text and Word documents. Further, they had
to enable and disable the highlighting of document selectors.
The participants also needed to extend the link browser to
support the PDF document format and to integrate Google
Chrome. They then have been asked to create and navigate
a number of bi- and multidirectional hyperlinks between all
the supported document formats. The average time for com-
pleting their tasks was 15 minutes. After finishing their tasks,
the participants had to answer some demographic questions
and to fill in the CSUQ questionnaire. This was followed by
7https://www.zotero.org
8https://www.facebook.com/groups/VUB.participant.pool
9https://chrome.google.com/webstore/

Statistical IndicesSubscale Mean Median SD
SYSUSE 5.37 5.5 1.11
INFOQUAL 5.03 5 1.18
INTERQUAL 5.07 5 1.24
OVERALL 5.79 6 0.70

Table 1: Summary of overall sample CSUQ

a semi-structured interview focusing on their perception and
subjective satisfaction.

5.4 Results
In general, we received promising feedback about the usability
of our link service as illustrated in Table 1 summarising the
overall sample CSUQ. It further shows that the overall user
satisfaction (OVERALL) was assessed very positively with a
high mean and a small standard deviation (SD). Nine of the
participants provided us some encouraging comments about
our link service such as: “It is very easy to use”, “This appli-
cation will definitely help me in doing my literature review”
and “I do not know how it [the link service user interface]
could be simpler”.

Despite the fact that most participants had no knowledge
about the concept of bi- and multidirectional hyperlinks in
advance, the collected data from both the questionnaires and
the interviews confirms the ease of creating and navigating
both types of hyperlinks. Nevertheless, six participants were
confused about the concept of navigating to a hyperlink’s
sources and targets. For them, if they want to navigate a
hyperlink that exists in a document then all other documents
participating in the hyperlink (regardless of being in the
hyperlink’s sources or targets) are targets of that hyperlink.
Out of these six participants, four participants suggested
to remove the Navigate to Source button from the sup-
ported actions in the link browser and from the different
add-ins of third-party document viewers. According to their
suggestions, all hyperlink sources and targets have then to
be listed under Navigate to Target. Out of the total pop-
ulation, four of the participants were not satisfied with the
hyperlink overview menu illustrated earlier in Figure 3 when
editing their hyperlinks. All four participants mentioned that
the used descriptions of the different selectors (e.g. XPointer-
like expressions or start and end indices) are too technical.
Instead of using an XPointer-like expressions for selectors
within web pages they for example suggested to show (parts
of) the selected paragraph or statement.

One participant complained about installing the Google
Chrome add-in. Given that this participant was not a Google
Chrome user, they were not aware that Google Chrome
can be extended via add-ins. Moreover, for this participant
it was not easy to see the main menu in Google Chrome
and to perform the necessary steps for installing the add-
in. The remaining thirteen participants confirmed that it
was very easy to extend the link service to support a new

Cross-Media Document Linking and Navigation DocEng ’18, August 28–31, 2018, Halifax, NS, Canada

document format (PDF) and a new third-party document
viewer (Google Chrome). “It was only one single click to
support the PDF document format; it is very easy to do it”,
one participant mentioned. All these thirteen participants
emphasised the ease of extending Google Chrome with its
add-in by following the provided guidelines illustrated in
Figure 8. It is worth mentioning, that all of these thirteen
participants had prior knowledge on how to extend Google
Chrome with new add-ins from its online repository.

Figure 8: Guidelines for Google Chrome add-in extension

Out of the fourteen participants, ten participants have
confirmed that the link service functionality is very intuitive
and that they managed to become experts in using it after
the creation of the first few hyperlinks. All the participants
indicated that the interactions provided by the link service
are simple, easy to use and effectively helped them to perform
all the required tasks. Moreover, most of the participants
(twelve participants) have confirmed that the naming of the
interactions were consistent across the different user interfaces
including the link browser, the Google Chrome add-in and
the Microsoft Word add-in. One thing to note is that we
noticed that some users (four participants) were confused
while using the context menu of Microsoft Word to search for
our add-in’s command for creating a new selector in Word
documents. By default, the Microsoft Word context menu
has a command named Hyperlink which enables user to
establish hyperlinks to external third-party documents. Some
of the users initially thought that the Hyperlink command
is the one that they should use to create the selector. After
using the Hyperlink command, they noticed that the link
service did not react by adding the intended selector to the
hyperlink sources or targets and therefore they tried again to
create the selector by searching for the correct Add Selector
command.

Most participants (eleven participants) confirmed that the
information provided by the system—explanations for but-
tons on mouseover events or the detailed examples provided
in the Help menu—was clear and helpful. Three participants
who prefer explanations via videos suggested to provide a
short demo video explaining the different link service features.
Two of the four participants who were confused about the
command for creating selectors in Microsoft Word suggested
to add some extra information to the Microsoft Word add-in,
guiding users when creating their first Word selectors.

6 DISCUSSION
The integration of a number of document formats and third-
party document viewers served as a technical assessment of
our link service’s extensibility. The flexibility of RSL enabled
us to define a wide range of different resource-specific selectors
such as timespans, XPointer-like expressions or rectangular
shapes. The Java Swing library further allowed us to integrate
some document formats and multimedia content types such
as XML and images. We believe that by using the Java Swing
as well as other Java libraries, we could also integrate other
document formats, such as the HTML document format, in
the link browser. In contrast to XML and plain text, which
have been integrated based on the Java Swing library, the
integration of the PDF document format was achieved by
using the ICEpdf open source Java library. Even though the
used library was not sufficient to integrate the PDF document
format and support the required functionality, we were able
to extend the library in order to develop a rich visual plug-in
for the PDF document format.

Our proposed approach for integrating third-party doc-
ument viewers has proven its flexibility and extensibility.
For example, the flexible communication channels of our
link service allowed Google Chrome to communicate via the
WebSocket communication channel. On the other hand, it en-
abled the C# add-in for Microsoft Word to communicate with
the link service via TCP sockets. The development of add-ins
for the different third-party document viewers depends on
the available SDKs for these third-party document viewers.
For instance, we managed to develop two different add-ins
for Microsoft Word by using two different available APIs.

Besides the aforementioned document formats and viewers,
we are confident that various other document formats and
viewers can also be integrated into our link service. The
OOXML document format [25] has many available Java-based
libraries such as Apache POI10 and doxc4j11. Even though
both libraries currently do not support the creation and
highlighting of selectors, they can be extended to support this
feature. Epublib12 is a well-known open source Java library
for reading and creating EPUB documents. The current
version of the library does not support the manipulation of
EPUB documents (i.e. adding selectors) or adding custom
GUI actions. Nevertheless, we believe that the library can be
extended to support the missing features and potentially be
used to create a visual plug-in for the EPUB document format.
Similar to Google Chrome, most web browsers such as Opera
and Firefox are extensible via add-ins and can be integrated
into our link service. Furthermore, the Adobe Acrobat Reader
is extensible via plug-ins using the available Acrobat SDK13.
The Acrobat SDK allows the communication with other third-
party applications (e.g. our link service) via TCP sockets
or WebSockets when C++ is used or via WebSockets when
using JavaScript. Finally, Apache OpenOffice can easily be

10https://poi.apache.org
11https://www.docx4java.org/trac/docx4j/
12https://github.com/psiegman/epublib/
13https://www.adobe.com/devnet/acrobat/

DocEng ’18, August 28–31, 2018, Halifax, NS, Canada Ahmed A.O. Tayeh, Payam Ebrahimi and Beat Signer

extended via an add-in that communicates with our link
service using TCP sockets or WebSockets.

The manageability and maintainability of hyperlinks has
always been an issue in any hypermedia system. This in-
cludes broken hyperlinks, the consistency of hyperlinks when
the linked documents evolve or the management of hyper-
link metadata in collaborative environments such as Google
Docs. Since these issues were not a major goal of our work,
we have adopted a simple document archiving solution of
linked documents which also helps to address the broken
hyperlink problem in the case of missing documents. Another
important issue that should always be taken into account
is the scalability of any hypermedia solution. The use of a
document archiving solution might affect the scalability of
our link service.

The presented user study revealed that end users are sat-
isfied with our link service. However, we should take into
account their valuable remarks regarding the sometimes too
technical naming used in our link service. In a future revision
of the link service, we consider listing the hyperlink sources
under the hyperlink targets as suggested by some of the
participants. Moreover, we plan to create a demo to help be-
ginners in using our link service. We conducted the presented
user study in order to get some general feedback helping us
in enhancing the usability of our link service. In the future we
might conduct additional studies to evaluate other aspects
of the link service such as the usefulness of our link service
as well as the efficiency of the hyperlink management using
our link service. Furthermore, we are planning to integrate
other document formats and viewers into our link service.

7 CONCLUSION
We have presented a technical evaluation for verifying the
extensibility of our cross-document link service by integrating
a number of document formats and viewers. Furthermore, we
have presented an initial end-user evaluation of the presented
link service revealing that participants are satisfied with the
usability of our link service. The various constructive remarks
might help us in enhancing the usability of our dynamically
extensible cross-document link service.

ACKNOWLEDGEMENTS
We would like to thank all the study participants for their
valuable feedback.

REFERENCES
[1] Annette Adler, Anuj Gujar, Beverly L. Harrison, Kenton O’Hara,

and Abigail Sellen. 1998. A Diary Study of Work-related Reading:
Design Implications for Digital Reading Devices. In Proceedings
of CHI 1998. Los Angeles, USA. https://doi.org/10.1145/274644.
274679

[2] Paolo Bottoni, Roberta Civica, Stefano Levialdi, Laura Orso,
Emanuele Panizzi, and Rosa Trinchese. 2004. MADCOW: A
Multimedia Digital Annotation System. In Proceedings of AVI
2004. Gallipoli, Italy. https://doi.org/10.1145/989863.989870

[3] Vannevar Bush. 1945. As We May Think. Atlantic Monthly 176,
1 (1945).

[4] Valerie J. Caracelli and Jennifer Greene. 1997. Crafting Mixed-
Method Evaluation Design. New Directions for Evaluation 74,
19 (1997). https://doi.org/10.1002/ev.1069

[5] Douglas C. Engelbart and William K. English. 1968. A Research
Center for Augmenting Human Intellect. In Proceedings of AFIPS
1968. San Francisco, USA. https://doi.org/10.1145/1476589.
1476645

[6] Jennifer Greene, Valerie J. Caracelli, and Wendy F. Graham.
1989. Toward a Conceptual Framework Mixed-Method Evaluation
Design. Educational Evaluation and Policy Analysis 11, 3 (1989).
https://doi.org/10.2307/1163620

[7] Richard Hall, Karl Pauls, Sturat McCulloch, and David Savage.
2011. OSGi in Action. Manning Publications.

[8] Wendy Hall, Hugh Davis, and Gerard Hutchings. 1996. Rethink-
ing Hypermedia: The Microcosm Approach. Kluwer Academic
Publishers.

[9] Tomás Isakowitz, Edward A. Stohr, and P. Balasubramanian.
1995. RMM: A Methodology for Structured Hypermedia Design.
Communication of the ACM 38, 8 (1995). https://doi.org/10.
1145/208344.208346

[10] William Jones, Ammy Jiranida Phuwanartnurak, Rajdeep Gill,
and Harry Bruce. 2005. Don’t Take My Folders Away! Organizing
Personal Information to Get Things Done. In Proceedings of CHI
2005. Portland, USA. https://doi.org/10.1145/1056808.1056952

[11] James R. Lewis. 1995. IBM Computer Usability Satisfaction
Questionnaires: Psychometric Evaluation and Instructions for
Use. International Journal of Human-Computer Interaction 7,
1 (1995). https://doi.org/10.1080/10447319509526110

[12] Ellen B Mandinach. 2005. The Development of Effective Eval-
uation Methods for E-Learning: A Concept Paper and Action
Plan. The Teachers College Record 107, 8 (2005). https:
//doi.org/10.1111/j.1467-9620.2005.00543.x

[13] Catherine C. Marshall. 1998. Toward an Ecology of Hypertext
Annotation. In Proceedings of Hypertext 1998. Pittsburgh, USA.
https://doi.org/10.1145/276627.276632

[14] Nellie McKesson and Adam Witwer. 2012. Publishing with
iBook Author: An Introduction to Creating Ebooks for the iPad.
O’Reilly.

[15] Ted H. Nelson. 1982. Literary Machines. Mindful Press.
[16] Amy Pearl. 1989. Sun’s Link Service: A Protocol for Open Linking.

In Proceedings of Hypertext 1989. Pittsburgh, USA. https:
//doi.org/10.1145/74224.74236

[17] Beat Signer. 2010. What is Wrong with Digital Documents? A
Conceptual Model for Structural Cross-Media Content Composi-
tion and Reuse. In Proceedings of ER 2010. Vancouver, Canada.
https://doi.org/10.1007/978-3-642-16373-9_28

[18] Beat Signer and Moira C. Norrie. 2007. As We May Link: A
General Metamodel for Hypermedia Systems. In Proceedings of
ER 2007. Auckland, New Zealand. https://doi.org/10.1007/
978-3-540-75563-0_25

[19] Beat Signer and Moira C. Norrie. 2009. An Architecture for Open
Cross-Media Annotation Services. In Proceedings of WISE 2009.
Poznan, Poland. https://doi.org/10.1007/978-3-642-04409-0

[20] Beat Signer and Moira C. Norrie. 2011. A Model and Architecture
for Open Cross-Media Annotation and Link Services. Information
Systems 36, 6 (May 2011). https://doi.org/10.1016/j.is.2010.08.
002

[21] Ahmed A.O. Tayeh and Beat Signer. 2018. An Analysis of Cross-
Document Linking Mechanisms. In Proceedings of JCDL 2018.
Fort Wort, USA. https://doi.org/10.1145/3197026.3197053

[22] Ahmed A.O Tayeh. 2016. A Dynamically Extensible Cross-
Document Link Service. Ph.D. Dissertation. Vrije Universiteit
Brussel.

[23] Ahmed A.O Tayeh and Beat Signer. 2014. Open Cross-Document
Linking and Browsing based on A Visual Plug-in Architecture.
In Proceedings of WISE 2014. Thessaloniki, Greece. https:
//doi.org/10.1007/978-3-319-11746-1_17

[24] Ahmed A.O Tayeh and Beat Signer. 2015. A Dynamically
Extensible Open Cross-Document Link Service. In Proceed-
ing of WISE 2015. Miami, USA. https://doi.org/10.1007/
978-3-319-26190-4_5

[25] R. Weir, M. Brauer, and P. Durusau. 2011. Open Document
Format for Office Applications (OpenDocument) Version 1.2.
Technical Report. Organization for the Advancement of Structured
Information Standards (OASIS).

https://doi.org/10.1145/274644.274679
https://doi.org/10.1145/274644.274679
https://doi.org/10.1145/989863.989870
https://doi.org/10.1002/ev.1069
https://doi.org/10.1145/1476589.1476645
https://doi.org/10.1145/1476589.1476645
https://doi.org/10.2307/1163620
https://doi.org/10.1145/208344.208346
https://doi.org/10.1145/208344.208346
https://doi.org/10.1145/1056808.1056952
https://doi.org/10.1080/10447319509526110
https://doi.org/10.1111/j.1467-9620.2005.00543.x
https://doi.org/10.1111/j.1467-9620.2005.00543.x
https://doi.org/10.1145/276627.276632
https://doi.org/10.1145/74224.74236
https://doi.org/10.1145/74224.74236
https://doi.org/10.1007/978-3-642-16373-9_28
https://doi.org/10.1007/978-3-540-75563-0_25
https://doi.org/10.1007/978-3-540-75563-0_25
https://doi.org/10.1007/978-3-642-04409-0
https://doi.org/10.1016/j.is.2010.08.002
https://doi.org/10.1016/j.is.2010.08.002
https://doi.org/10.1145/3197026.3197053
https://doi.org/10.1007/978-3-319-11746-1_17
https://doi.org/10.1007/978-3-319-11746-1_17
https://doi.org/10.1007/978-3-319-26190-4_5
https://doi.org/10.1007/978-3-319-26190-4_5

	Abstract
	1 Introduction
	2 Cross-Document Link Service
	3 Creating Advanced Hyperlinks
	4 Supported Document Formats and Viewers
	4.1 Plain Text
	4.2 PDF Document Format
	4.3 XML Document Format
	4.4 Images
	4.5 Microsoft Word
	4.6 Microsoft PowerPoint
	4.7 Google Chrome

	5 End-User Evaluation
	5.1 Methodology
	5.2 Population
	5.3 Study Setup
	5.4 Results

	6 Discussion
	7 Conclusion
	References

