
An Extensible Digital Ink Segmentation and
Classification Framework for Natural Notetaking

Adriana Ispas
Institute for Information

Systems, ETH Zurich
8092 Zurich, Switzerland

ispas@inf.ethz.ch

Beat Signer
Vrije Universiteit Brussel

Pleinlaan 2
1050 Brussels, Belgium

bsigner@vub.ac.be

Moira C. Norrie
Institute for Information

Systems, ETH Zurich
8092 Zurich, Switzerland

norrie@inf.ethz.ch

ABSTRACT
With the emergence of digital pen and paper technologies,
we have witnessed an increasing number of enhanced paper-
digital notetaking solutions. However, the natural notetak-
ing process includes a variety of individual work practices
that complicate the automatic processing of paper notes and
require user intervention for the classification of digital ink
data. We present an extensible digital ink processing frame-
work that simplifies the classification of digital ink data in
natural notetaking applications. Our solution deals with the
manual as well as automatic ink data segmentation and clas-
sification based on Delaunay triangulation and a strongest
link algorithm. We further highlight how our solution can
be extended with new digital ink classifiers and describe
a paper-digital reminder application that has been realised
based on the presented digital ink processing framework.

Author Keywords
digital pen and paper, digital ink, natural notetaking, digital
ink segmentation and classification framework

ACM Classification Keywords
H.5.m Information Interfaces and Presentation: Miscella-
neous

INTRODUCTION
Despite the availability of advanced digital information man-
agement tools, information workers often still rely on paper-
based notetaking for recording information. Unfortunately,
these paper-based work practices do not integrate well with
digital applications dealing with recorded information in a
post-capture phase [12, 19]. Recent technological innova-
tions, such as Anoto’s digital pen and paper technology1, en-
able the digitalisation of handwritten paper notes into digital
ink data without an intermediary transcription step. This cre-
ates opportunities for the integration of regular paper-based

1http://www.anoto.com/digital-pen-paper.aspx

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EICS’11, June 13–16, 2011, Pisa, Italy.
Copyright 2011 ACM 978-1-4503-0670-6/11/06...$10.00.

notetaking practices with information management tools and
services. However, a number of studies have revealed that
paper notebooks are an amalgam of notes destined for mul-
tiple tasks, activities and purposes [7, 25], parts of which
might not be required in digital applications [6]. Even with
remarkable advances in the digital ink parsing and process-
ing domain [16, 3, 26], digital systems are still not able to
classify different notes with the same accuracy that an infor-
mation worker would achieve [15].

Most existing frameworks for developing digital pen and pa-
per applications focus on the particular case where the iden-
tification of different paper notes as well as their integra-
tion with digital applications and services is achieved by in-
troducing specific notetaking conventions and guidelines for
this new type of interactive paper interface. Through specific
pen and paper interactions, such as gesture-based marks or
writing within special purpose capture areas, users have to
indicate which digital ink data corresponds to particular pa-
per notes. While this transformed pen and paper use may
be suitable for specific information tasks, it does not inte-
grate well with natural notetaking [4, 6]. There is a trade-off
between providing comprehensive and accurate support for
the digital integration of paper-captured information and the
preservation of natural notetaking practices.

We have developed a digital ink segmentation and classifi-
cation framework to address various requirements of digital
pen and paper-based notetaking applications. In addition to
user-driven approaches for segmenting and classifying dig-
ital ink data, our solution provides support for automatic
and semi-automatic digital ink data processing. Digital ink
data is separated into basic blocks of ink traces analogous
to blocks visually perceivable to users such as paragraphs
or bullet list structures. Moreover, heuristics for the high-
level processing and classification of digital ink data can be
implemented and incrementally added to the framework for
further processing of these basic ink data blocks. The user-
driven classification of digital ink data can be combined with
an automatic separation and classification process, thus pro-
viding developers further options for dealing with specific
limitations of both approaches, depending on specific needs
of information workers and domain-specific applications.

We start by discussing limitations of existing tools for devel-
oping notetaking applications with respect to their support
for natural notetaking. Further, we describe our approach



for separating digital ink data into blocks of ink data that re-
flect the visual representation of paper notes. After present-
ing our extensible framework for digital ink processing and
classification, we highlight how the digital ink processing
functionality has been integrated with an existing interactive
paper application development framework, before providing
some concluding remarks.

BACKGROUND
Various solutions have been proposed to offer information
workers the advantages of both paper and digital media for
notetaking. Early attempts range from paper notebooks with
a predefined page configuration where the content can be
extracted through an offline scanning process, such as in-
troduced in the Paper PDA [5], to solutions that proposed
the replacement of paper with pen-based computers, includ-
ing PDAs [8] or Tablet PCs [24, 25]. Anoto’s digital pen
and paper technology enabled new types of notetaking so-
lutions and these are commercially available for end users
in the form of Livescribe’s Desktop2 application, Oxford’s
Easybook3 or solutions integrated with Logitech’s io Pen4.
Information written on regular paper that is covered with a
special Anoto dot pattern is captured by the digital pen’s in-
tegrated infrared camera and transmitted to a computer via
a Bluetooth connection or when the pen is connected to a
computer via a docking station. Once transmitted to a com-
puter, the pen stroke data that is represented as timestamped
x and y coordinates can be further processed and integrated
with digital applications.

Custom digital pen and paper solutions can be developed
with the aid of a series of toolkits and SDKs, including the
Anoto SDK for PC applications [1], Livescribe’s Platform
and Desktop SDKs [2], PaperToolkit5 [28] and iPaper [14].
The focus of these solutions is on designing interactive pa-
per applications based on active page areas that can be as-
sociated with digital callback functions to be executed while
processing the pen data. Content written inside a predefined
page area is interpreted by the application logic assigned to
that particular part of the page. This approach is suitable for
applications such as Anoto’s form-based processing of in-
formation or the annotation of presentation slides based on
printed handouts as realised in the PaperPoint [18] solution.
However, the strict interaction conventions required by such
approaches may result in discarding the digital pen and pa-
per technology for more natural notetaking [6].

The use of dedicated page areas for semantic content identi-
fication can be replaced by the use of gesture-based content
classification. PapierCraft [10] proposed a set of gestures for
both the marking of excerpts of paper-captured information
and the specification of how the corresponding digital ink
data should be digitally processed. General gesture recog-
nition solutions, such as the iGesture [17] framework, pro-
vide support for defining custom gesture sets and integrating
gesture recognition functionality with digital pen and paper
2http://www.livescribe.com
3http://www.oxfordeasybook.com
4http://www.logitech.com
5http://hci.stanford.edu/research/paper/

applications. The drawback of a gesture-based classifica-
tion approach is that the digital ink processing step has to be
able to distinguish between the ink data representing the con-
tent and the ink data to be interpreted as gestures. Since the
most reliable solution is still to give control to the notetakers
themselves by providing them with some content marking
mechanism that they have to use, the process is currently
limited by the degree of change in natural notetaking be-
haviour. For example, NiCEBook [4] uses dedicated page
areas that have to be touched with a digital pen before per-
forming the pen-based gestures to mark and classify specific
handwritten notes. Furthermore, to support natural or quasi-
natural notetaking, the set of gestures has to be designed in
such a way that its use does not constrain the notetaking pro-
cess [6]. In ButterflyNet [27], even a single simple gesture
command used to mark specific paper content received neg-
ative feedback due to the increase in notetaking time.

Given the apparent correlation between the lack of interac-
tion rules and the preference for paper-based notetaking, it
seems obvious that an enhanced notetaking solution should
employ automatic approaches for digital ink data process-
ing as much as possible. A body of work has pointed out
that even natural notes contain an implicit organisation based
on spatial relations between pen strokes and systems have
been proposed that exploit these implicit note structures for
interactive whiteboard systems [13], “rough” document im-
age editors [15] and interactive notetaking systems [9, 21].
While these solutions do not always provide a correct inter-
pretation, the interactivity of these systems enables the user
to immediately observe the resulting interpretation of their
actions and to intervene in the case of misinterpretations.

Extensive work on automatic digital ink data processing ex-
ists. In particular, work on detecting lines of text and distin-
guishing between textual and graphical handwriting seems
to be relevant for a potential notetaking solution that exploits
implicit structures in paper notes [16, 3, 26]. However, to
the best of our knowledge, there are no solutions based on
digital pen and paper technology that integrate such auto-
matic approaches for digital ink data processing. One of the
reasons might be the fact that no direct feedback can be pro-
vided based on a paper interface. Possibilities for provid-
ing feedback about a user’s actions include digital pen feed-
back [11] or feedback via various other external devices such
as smart cameras as used in ButterflyNet [27]. Even if these
approaches reach a certain maturity, the continuous feedback
while taking notes might not be desirable. Solutions such as
PapierCraft, Paper PDA or PaperProof [23] propose a grace-
ful degradation approach where the interpretation of a user’s
actions is digitally reviewed in a post-processing phase.

It becomes apparent that a digital ink data processing so-
lution for paper-based notetaking can neither rely solely on
automatic processing nor on user-driven interpretation. We
think that developers should be provided with framework
support for both automatic and user-driven means of pro-
cessing paper-based notes and have the possibility to switch
between or combine the two approaches based on particular
application requirements. We will present our proposal for



such an extensible digital ink processing framework, show
how it has been integrated with an existing interactive paper
solution and present a paper-based notetaking application
that was implemented based on the presented framework.

DIGITAL INK DATA PROCESSING FRAMEWORK
Previous studies on natural notetaking have revealed that it
is unlikely to be able to automatically identify different note
categories and how they are meant to be used digitally unless
some form of user intervention is involved [6]. At the same
time, it was observed that notetakers are reluctant to adapt
their notetaking behaviour to include user-generated meta-
data about how paper notes should be digitally processed.
However, current framework support for developing digital
pen and paper applications relies heavily on approaches for
clustering and further processing digital ink data that intro-
duce changes in the natural notetaking behaviour. Users are
required to either write specific notes within designated page
areas or mark them with pen-based gestures chosen by the
developers based on certain observed notetaking patterns.
All notes written in a predefined area or delimited in some
way by one or more ink gestures will result in a digital ink
cluster that is processed in a unitary manner defined by the
developer in a digital callback function.

Works such as Ispas et al. [6], Wattenberg and Fisher [22] or
Li et al. [9] have pointed out that handwritten notes represent
a number of structured elements such as sketches or aggre-
gations of text lines in the form of paragraphs or bullet lists.
Such structured elements could potentially be automatically
identified and extracted by clustering digital ink data based
on spatial and temporal proximity. We propose that current
software support for developing digital pen and paper-based
applications should be extended to provide access to and
means of manipulating such automatically extracted struc-
tures. For particular application domains, this could relax
imposed notetaking conventions or even introduce an alter-
native to relying on multiple page areas or gestures and the
assumption that users will use defined rules while taking
notes. For example, a natural notetaking application that
only requires access to note structures at the granularity level
of paragraphs could rely on a paper-based interface with just
one page area defined for each page. However, this approach
requires more effort from developers since more sophisti-
cated functionality able to identify and handle the structures
within notes captured from a single page area needs to be
provided inside associated callback functions. Certain auto-
matic or semi-automatic approaches for the digital process-
ing of handwritten information at the level of basic struc-
tures may be useful even for application domains that might
require more refined access to the content of notes. Our
goal is to provide means to combine user-driven approaches
with automatically extracted structures to enable more flexi-
ble paper-based interfaces.

Figure 1 shows the paper-based user interface of a sample
notetaking application. Except for a timeline positioned at
the bottom, the page has the appearance of a regular note-
book page with a writing area covering the remaining part.
In the writing area, notetakers can take freehand notes. In ad-

dition, they can use the timeline to indicate that they want to
be reminded by the digital notetaking application about par-
ticular notes within a certain period of time. The approach to
mark handwritten notes implemented by the developer could
for example consist of requiring notetakers to first mark the
timeframe by touching the corresponding part of the time-
line with the pen (1) and then select the notes by drawing a
vertical line (2). As a result, all note structures located ad-
jacent to the vertical pen stroke are combined into a higher
level structure which is associated with the corresponding
temporal metadata.

Figure 1. Notetaking application interface

Given that the support for extracting note structures is in
place, developers may deal with handwritten notes at the
level of the concepts shown in Figure 2. For a writing area
represented by a NotebookPage, a developer can access
its structural elements represented as PageElement in-
stances. The BasicElement specialisation of the Page-
Element class represents the most basic entity that can be
generated by a given digital ink data segmentation algorithm.
Therefore, BasicElement instances aggregate low level
ink data that has been assigned to single structures by the
segmentation algorithm.

Figure 2. Notebook page class diagram

Typical representations for the digital ink data consist of pro-
viding a model for the handwritten strokes. We use here a
representation based on Traces of timestamped Points
which is the representation introduced by the iPaper frame-
work [14]. The digital ink representations used by other dig-
ital pen and paper frameworks can easily be transformed to
the iPaper format, for example, by using the InkML6 repre-
sentation as an intermediary format.
6http://www.w3.org/2002/mmi/ink



Multiple BasicElements positioned close to each other
can be grouped forming BasicBlocks that represent col-
lections of note elements. By default, page elements are
grouped based on containment and intersection relationships
between their bounding boxes. Custom heuristics for the
grouping of note structures can furthermore be specified by
overriding the protected cluster() method. For exam-
ple, two BasicElements corresponding to two lines of
handwritten notes could be grouped into a single block if
the temporal gap between their last and respectively first
digital ink data strokes fits into a certain interval identified
as the time for a notetaker to switch to the next line. The
method is invoked by default after the note segmentation
step. A BasicBlock can be further specialised into var-
ious semantic structures such as the TextualElement,
Sketch or Reminder classes. For this purpose, various
heuristics for processing digital ink data at block level have
to be implemented. For example, blocks that can be parsed
into digital text can be classified as TextualElement. On
the other hand, a BasicBlock consisting of one or sev-
eral PageElements for which the handwriting recognition
does not produce any accurate results might be classified as
Sketch.

In addition to automatic approaches for detecting note struc-
tures, notetakers are also given the possibility to mark blocks
of notes to be treated as a single semantic structure dur-
ing the processing step as explained earlier when describ-
ing the paper interface in Figure 1. As opposed to auto-
matically generated blocks of notes, user-specified blocks
are associated with different Metadata classes such as the
Temporal class in Figure 2 that could be used for our ex-
ample to represent information about notes that users need
to be reminded about at a specific time in the future.

Automatic Digital Ink Data Segmentation
In a previous study of notetaking practices [6], we identi-
fied three major types of note structures: paragraphs, bullet
lists and sketches. For the first two types of structures, API
support for manipulating individual lines of text may be use-
ful and therefore we decided to take a bottom-up approach
consisting of first extracting lines from the handwritten in-
formation and then grouping individual lines into blocks of
notes according to their spatial relationships. As mentioned
before, several approaches have been proposed for the clus-
tering problem. Our implementation is based on the work of
Ao et al. [3]. The authors present a technique for identifying
textual lines based on the notion of a link model. Further-
more, they propose a solution for distinguishing between
textual and graphical information. Inspired by their sug-
gestions, we have chosen to identify sketch classes of note
blocks based on the fact that the handwriting recognition en-
gine does not return valid results.

According to the link model, a set of blocks composed of
tightly connected pen strokes belong to the same textual line
if their corresponding bounding boxes are located close to
each other in a linear way and have comparable sizes. The
three criteria are translated into measures applied to all seg-
ments formed between the centre points of all adjacent boun-

ding boxes, called links. The links between the bounding
boxes are identified by applying Delaunay triangulation.

In our digital ink data segmentation, we start with a set of
note traces represented by the set of coordinates between
successive pen down and pen up actions. As described in
Ao et al., traces are first merged into blocks based on the
timestamp information associated with each trace. Further,
the minimum bounding boxes of the constructed blocks are
computed. The minimum bounding box provides additional
information about its associated trace such as the rotation
with respect to the x-axis. Our computation of the minimum
bounding boxes is based on rotating calipers [20] that are
applied to the convex hull of a trace’s points. For the Delau-
nay triangulation, we use the implementation of Paul Chew7.
The three text line criteria µ1, µ2 and µ3 for the closeness,
linearity and similarity in size are implemented as follows:

Closeness
We consider that the measure µ1 of the closeness of two
bounding boxes is inversely proportional to the length l of
the link between them:

µ1 =
1

l + 1
(1)

This results in 0 ≤ µ1 ≤ 1. Note that we add 1 to the
denominator to avoid division by zero in the situation where
the two bounding boxes have the same centre point. In this
case, we get the maximum value of 1 whereas a value of 0
results for l→∞.

Linearity
Given the two angles α1 and α2 representing the rotation of
the two bounding boxes relative to their link, we define the
linearity µ2 of two bounding boxes as follows:

µ2 =
1

| α1 − α2 | +1
(2)

For α1 = α2 the corresponding traces are positioned lin-
early.

Comparable sizes
To verify that two bounding boxes have similar sizes, we
compute the value µ3 based on their corresponding areas:

µ3 =
1

| A1 −A2 | +1
(3)

The areas of the two bounding boxes are represented by A1

and A2, respectively.
7http://www.cs.cornell.edu/info/people/chew/Delaunay.html



(a) Original notes (b) Delauney triangulation (c) Strongest links (d) Line segmentation

Figure 3. Successive line segmentation steps

Link strength
The link strength µ is computed based on the three criteria
µ1, µ2 and µ3 and is used in the detection of textual lines:

µ = µ1 + µ2 + µ3 (4)

Given the original note page shown in Figure 3(a), the final
result of the line segmentation is highlighted in Figure 3(d).
In an intermediary step, we first apply Delaunay triangula-
tion for the minimum bounding box computation shown in
Figure 3(b) and then identify the strongest links shown in
Figure 3(c).

The separation into basic page elements, which is equiva-
lent to extracting lines in the case of the algorithm proposed
by Ao et al., is provided by the separate() method of
the Separator class shown in Figure 4. Every time some
digital ink data is provided, for example by the iPaper frame-
work in the form of a Note containing a number of traces
in combination with information about the page number and
the document and pen identifiers, this data is added to the
Separator class. The invocation of the separate()
method results in a list of BasicElements introduced ear-
lier in Figure 1. The cluster()method that is invoked af-
ter the segmentation step generates a list of BasicBlock
instances for each NotebookPage.

addNote(Note n, int page, int docID, String penID)
separate(): List<BasicElement>

Separator

Trace

Figure 4. Class diagram for separation into basic elements

Listing 1 shows how the segmentation process was integrated
with the iPaper framework for the sample notetaking appli-
cation. iPaper provides support for defining active page ar-

eas and associating active components to be invoked when
ink written within an area needs to be processed. The Draw-
AreaStub active component’s handleNote() method
contains the code to be invoked when processing notes cap-
tured from the main writing area of the application. When
the user triggers the explicit synchronisation of their notes
with the computer by touching the printed Synch button
shown at the bottom right of Figure 1, the SynchButton-
Stub active component is instantiated. As illustrated in the
listing, the addNote() method of the Separator class
is invoked every time a new note has been captured. At syn-
chronisation time, the separate()method of a Separa-
tor class is invoked. Existing NotebookPage instances
are then refreshed via the update() method to reflect the
new document structure after the last separation step.

Listing 1. iPaper active components for the sample application
1 public class DrawAreaStub extends CaptureNoteStub {
2 public void handleNote(String docID, int page, Note n) {
3 String penID = getDeviceAddress();
4 Separator s = Separator.getInstance();
5 s.addNote(n, page, docID, penID);
6 }
7 }
8
9 public class SynchButtonStub extends SingleEventStub {

10 public void finish() {
11 Separator s = Separator.getInstance();
12 // redo the separation and clustering for all pages
13 List<BasicElement> basicElements = s.separate();
14 List<BasicBlock> blocks = notebookPage.cluster();
15 // add all blocks and basic elements into an update list
16 List<PageElement> elements = ...
17 notebookPage.update(elements);
18 }
19 }

User-Driven Segmentation
In the case of the notetaking application interface described
in Figure 1, we proposed an interaction model consisting of
two successive pen-based interactions through which note-



takers could provide guidelines for processing specific notes
subsets. The first interaction step consists of pointing with
the pen to a specific part of the printed timeline. This action
is interpreted as an upper bound value for the lifetime of the
reminder notes which are about to be selected in a second
step. The system will interpret the selected notes as forming
part of a single block structure containing one or several ba-
sic elements according to the length of the vertical line used
to mark notes. The functionality is an example where tradi-
tional note processing support provided by a digital pen and
paper application is used for manual user-driven segmenta-
tion and classification of a page’s structural elements. For
the classification, various metadata specified at the design
time of the paper interface and associated with specific active
page areas will generate the corresponding block metadata.

To support developers in designing paper-based interfaces
with a user-driven classification of free-form notes, we pro-
pose a framework for the description of paper-based interac-
tion models based on finite state machines (FSM). Figure 5
shows the class diagram of our solution for the specifica-
tion of interaction models based on an FSM. The framework
provides an extensible set of States, each of which has a
unique name. Based on a given Action of type GESTURE,
TEXT, MESSAGE or TRACE, the FSM gets into a new state
via the transition() method. Each state can be con-
figured with a method to be invoked and executed whenever
the state is reached by using the setInvokeMethod()
method. For each Action, an optional data value repre-
sented by the data field of a parametric type T can be con-
figured. This allows the configuration of each action type
with custom values such as the gesture class that has been
recognised in combination with an action of type GESTURE
or the text associated with an action of type TEXT.

addState(State s)
setStartState(State s)
transition(Action<?> a)
lastAction(): Action<?>
reset()
importXML(String name): FSMachine

FSMachine

Action(Type t, T data): Action
getType(): Type
getData(): T

enum Type {GESTURE, TEXT, MESSAGE, TRACE}

Action <T>

getType(): Type
transition(Action<?> a): State
getStateName(): String
setInvokeMethod(Method m)
invoke()

enum Type {FINAL, NONFINAL}

<<interface>>
State

setNext(State s)

BridgeState FinalState

addCase(String key, State s)

SwitchState

setTrueTransition(State s)
setFalseTransition(State s)
checkTransitionCondition(Action<?> a): boolean

<<abstract>>
BooleanState

GestureState TextState

Figure 5. Class diagram for the finite state machine framework

Particular FSMs can be defined by a developer via an XML
specification. Listing 2 shows the XML definition of a series
of state types that are already provided by our framework.

Listing 2. XML representation of predefined state types
1 <machine>
2 <state type=”bridge” name=”...”>

3 <next state=”...” />
4 </state>
5 <state type=”final” name=”...” />
6 <state type=”gesture” name=”...” />
7 <condition className=”...” />
8 <true state=”...” />
9 <false state=”...” />

10 </state>
11 <state type=”text” name=”...” />
12 <condition text=”...” />
13 <true state=”...” />
14 <false state=”...” />
15 </state>
16 <state type=”switch” name=”...” />
17 <case key=”default” state=”...” />
18 <case key=”...” state=”...” />
19 ...
20 </state>
21 </machine>

- Bridge state: From this type of node, the FSM will always
transition to the state specified as next, regardless of the
input action.

- Final state: When the FSM reaches a final node, it will
continue its execution at the node that was marked as a
start node as soon as the FSM receives a new input action.

- Gesture state: The FSM will transition from a gesture
node to the state denoted by truewhen the condition
is met. In all other cases, it will transition to the state de-
noted by false. The condition is met when the type
of the input action is GESTURE and if the action’s data
field contains the value denoted by the className at-
tribute.

- Text state: The text node is similar to a gesture node, with
the difference that the input action type must be TEXT.
In this case, the data field must contain the string value
defined in the text attribute.

- Switch state: A switch state may have several possible
outgoing transitions. It requires an input action of type
MESSAGE and the data field must be assigned a value
equal to one of the key attributes of the case elements.
When none of the keys match the passed value, the tran-
sition marked by the default key is followed.

The FSM for our sample notetaking application is shown
in Figure 6 and the corresponding XML code in Listing 3.
The code for the iPaper active components presented previ-
ously has to be adapted to account for controlling the FSM
as shown in Listing 4. Note that a third active component
is associated with the different parts of the timeline. Every
time the user touches the timeline with the pen, an instance
of the active component will infer the temporal metadata
value associated with the page area and create an Action
of type MESSAGE configured with a “temporal” string value
for its data field. Similarly, the SynchButtonStub ac-
tive component creates an Action of type MESSAGE, but
configured with a specific “synch” string value. No addi-
tional data is required in the data field of an Action of
type Trace, an instance of which is created by the Draw-
AreaStub active component.



Start
Select
Notes

Wait For
Timeframe

Timeframe
Selected

1 3

2 4

Figure 6. Finite state machine for sample notetaking application

In this case, the separation is managed through method calls
specified in the XML description of the FSM. As long as
a user takes notes in the main writing area, the FSM re-
mains in the Wait For Timeframe state as shown by tran-
sition (2) and notes have to be added to the buffer main-
tained by the Separator class as shown by the invoke
XML element. The addNote() method defined in a cus-
tom class, represented by the Logic class in Listing 3, is re-
sponsible for forwarding the call to the previously mentioned
addNote() method of the Separator class. When the
user selects a timeframe with the pen, transition (1) into the
Timeframe Selected state is triggered. From this state, tran-
sition (3) is taken only if a user selects a group of notes
by marking them with the digital pen. Otherwise, the FSM
does not leave the state as indicated by transition (4). The
selectNotes() method invoked after transition (3) is re-
sponsible for creating a new BasicBlock associated with
the corresponding temporal metadata. Since new content has
been added after the last segmentation, a new page separa-
tion into basic page elements is done before updating the
block structure of the page. Further, BasicElements lo-
cated next to the selecting vertical pen stroke (a single trace)
will be grouped into a new block.

Listing 3. XML representation of a sample FSM
1 <machine>
2 <state type=”switch” name=”WaitForTimeframe”
3 start=”true”>
4 <case key=”default” state=”WaitForTimeframe” />
5 <case key=”temporal” state=”TimeframeSelected” />
6 <invoke class=”org.paperNotesManager.Logic”
7 method=”addNote” />
8 </state>
9 <state type=”switch” name=”TimeframeSelected”>

10 <case key=”default” state=”SelectNotes” />
11 <case key=”temporal” state=”TimeframeSelected” />
12 <invoke class=”org.paperNotesManager.Logic”
13 method=”addNote” />
14 </state>
15 <state type=”final” name=”SelectNotes”>
16 <invoke class=”org.paperNotesManager.Logic”
17 method=”selectNotes” />
18 </state>
19 </machine>

In this particular case, the last pen stroke written in the main
writing area will be used for the selection of the page el-
ements that have to be associated with specific metadata,
independently of their content or shape. Another possibil-
ity would be to perform the selection only if users draw a

specific gesture or write a specific keyword immediately af-
ter defining the timeframe. For this purpose, a gesture or a
text state could be introduced in the specified FSM after the
Timeframe Selected state.

Listing 4. Adapted iPaper active components specification
1 public class DrawAreaStub extends CaptureNoteStub {
2 public void handleNote(String docID, int page, Note n) {
3 Action<String> action = new Action<String>(
4 Action.Type.TRACE, null);
5 Logic.getFSM().transistion(action);
6 }
7 }
8
9 public class TemporalMarkerStub extends SingleEventStub {

10 public void finish() {
11 Date date = getTemporalMarker();
12 Logic.addMetadata(new TemporalMetadata(date));
13 Action<String> action = new Action<String>(
14 Action.Type.MESSAGE, ”temporal”);
15 Logic.getFSM().transistion(action);
16 }
17 }
18
19 public class SynchButtonStub extends SingleEventStub {
20 public void finish() {
21 Action<String> action = new Action<String>(
22 Action.Type.MESSAGE, ”synch”);
23 Logic.getFSM().transistion(action);
24 }
25 }

Custom Classification
The segmentation into basic page elements and the subse-
quent clustering into basic blocks reveals some details about
the high-level structure of handwritten notes. However, this
grouping into basic blocks only reflects spatial and temporal
properties of the different notes and content is not taken into
consideration. In this section, we therefore highlight how
developers can further process the existing basic structures
based on the classification components shown in Figure 7.

classify(List<PageElement> e,
ClassifierConfiguration: c):
List<PageElement>

Classifier

setClasses(List<PageElementClass> c)
setFallback(PageElementClass c)

ClassifierConfiguration

TextClass

classify(List<PageElement> e):ClassResult

PageElementClass

ListClass Sketch
Class

score: Double
element: PageElement

ClassResult

Indentation
Class

Figure 7. Classifier

Given a set of PageElementClasses, the classify()
method defined in the Classifier class will analyse a
collection of PageElement instances provided as input
and create more specific PageElement subclasses. Each
classification class returns a ClassResult instance con-
sisting of a confidence score (0 ≤ score ≤ 1) for the mem-
bership of a given PageElement in a specific classifica-
tion. The classifier generates this score for each of the classes



configured in the ClassifierConfiguration and rec-
ommends the classification result with the highest score. The
score has to be higher than a certain threshold, which in
our implementation was set to 0.5. If there is no possi-
ble classification with a score higher than the threshold, the
Classifier will return a fallback classification class as
specified in a classifier’s configuration. The basic configura-
tion of a classifier is presented in Listing 5.

Listing 5. Basic configuration for the classification
1 List<PageElement> originalElements = ...
2
3 // set up the classes to be checked against
4 List<PageElementClass> classes =
5 new LinkedList<PageElementClass>();
6 classes.add(new ExampleClass());
7
8 // set the fallback class to SketchClass
9 PageElementClass fallback = new SketchClass();

10 ClassifierConfiguration config =
11 new ClassifierConfiguration(classes, fallback);
12
13 // classify the input elements
14 Classifier c = new Classifier();
15 List<PageElement> classifiedElements =
16 c.classify(originalElements, config);

Our digital ink processing framework offers an implementa-
tion for some default classifiers:

Text Class
The TextClass is based on the output of a handwriting
recognition algorithm and the score is directly related to the
confidence value of the used handwriting recognition en-
gine. In our implementation, we used the MyScript Intel-
ligent Character Recognition from VisionObjects8 for the
handwriting recognition.

Sketch Class
The SketchClass is meant to be used as a fallback class
with a classification score of 1. Typically, the classifier will
generate a Sketch element if every other configured clas-
sification fails.

Indentation Class
The IdentationClass verifies whether a BasicBlock
that contains several PageElement instances represents a
multi-level bullet list structure. In a first step, the indentation
level of each basic element contained within a block is deter-
mined. Page elements are sorted in ascending order based on
the upper left corner of their bounding box. The ordering is
done first for the x coordinate and then for the y coordinate.
After the ordering, the corner points are iterated over and
it is checked whether the difference to the previous anchor
point is greater than some threshold. The threshold value is
used to define what is to be interpreted as simple white space
and what has to be considered list item indentation. Depend-
ing on the result of the comparison, an element’s indentation
level is set to the same value as the indentation level of the
previous element or to a level increased by 1. Figure 8 shows
8http://www.visionobjects.com/

the result of such a procedure. Finally, the score of the clas-
sification is set to a value equal to the average computed for
the confidence levels returned by the handwriting recogni-
tion engine for each of the structural elements.

Figure 8. Determining the indentation of a set of lines

List Class
The ListClass can be seen as a specialisation of the in-
dentation class where the subelements represent an item list
on a single indentation level, each of them starting with a
given token.

To give an idea about the effort required for implementing
classification classes, we refer to Listing 6. Given a set
of PageElements, the class creates a block classified as
Title if all page elements can be parsed into text with a
certain confidence and the element placed below all other
elements is a straight line having a length comparable to or
bigger than the length of all other elements placed above.
An example of such a title element is shown at the top of
the page in Figure 3(a). The score of the class can be com-
puted, for example, by averaging the score of the handwrit-
ing recognition with the score from the straight line detector,
the score of the straightness being given a higher importance.

Listing 6. Custom title classification
1 public class TitleClass implements PageElementClass {
2 ...
3 @override
4 public ClassResult classify(List<PageElements> e) {
5 double score = 0.0;
6 // get the lowest element
7 PageElement last = getLowestElement(e);
8
9 // is the last element long?

10 if (isStraightLineLong(e, last)) {
11 // is the last element a straight line?
12 score = scoreStraightLine(last);
13 }
14
15 // get text representation without the line
16 e.remove(last);
17 Result hwrResult = parseText(e);
18
19 // construct the classification result
20 ClassResult r = new ClassResult();
21 r.score = (score∗2 + hwrResult.getConfidence()) / 3.0;
22
23 // create a new title page element
24 e.add(last);
25 r.element = new Title(e, hwrResult.getText());
26 return r;
27 }
28 }



It can be seen that developers are provided with the possibil-
ity of working at block level and simple computations such
as determining relationships between the bounding boxes of
the various elements already provide relatively powerful re-
sults. Furthermore, digital ink processing operations at page
element level, as in the case of the list class presented ear-
lier, can reveal further classification possibilities. However,
the ink processing effort is restricted to parts of the notes.

Framework-based Application Development
Existing frameworks for digital pen and paper application
development focus on the design of the paper-based inter-
face of a particular solution in terms of active page areas and
marking gestures. In addition to imposing changes on natu-
ral notetaking practices, this also leads to less flexibility in
developing the digital counterpart of the solution since the
latter becomes bound to the first. The structure of the paper
interface determines the segmentation of the digital ink data
and, subsequently, the level of granularity at which develop-
ers can access and handle digitally handwritten information.
In the case that access at lower granularity levels is needed,
developers are required to implement the segmentation of
digital ink data. Furthermore, changing the paper interface
leads to the necessity to also implement changes in the digi-
tal counterpart of the application.

Our framework provides access to basic note structures cap-
tured from a single page area and supports the further group-
ing of elementary structures based on custom heuristics. The
basic or composed structures can be further classified based
on an extensible set of heuristics. The benefits of our so-
lution are twofold. First, the framework facilitates the han-
dling of digital ink data, which reduces the amount of re-
quired low level digital ink processing by developers and
enables them to focus on the GUI of an information manage-
ment application and the rendering of digital ink data repre-
sented as PageElements. Second, rather than relying on
complicated paper interfaces to enforce the digital ink data
processing, parts of the processing can be shifted to the post-
capture phase. In addition to improving the flexibility of the
development process, applications may rely on less compli-
cated paper interfaces, further relaxing changes imposed on
natural notetaking.

Figure 9 highlights two applications that have been realised
based on our digital ink processing framework and integrated
with the paper interface described in Figure 1. Paragraphs
and bullet lists of notes written in the main writing area of a
page are extracted through an automatic segmentation pro-
cess and integrated with a to-do list application or presented
as post-it notes on the digital desktop. Notes can be pre-
sented in handwritten form or users can also switch to a ver-
sion processed by a handwriting recognition engine. If some
of the notes are associated with temporal metadata through
user-driven segmentation, the corresponding post-its or to-
do list items will have their due date automatically set based
on the value selected by the user via the paper interface. In-
stead of having to deal with the low level processing of ink
data, the main task of the developer of these applications was
to implement the appropriate set of functionalities required

Figure 9. Paper notes as to-do list and post-it reminders

by the end user, such as support for updating the captured
information or configuring user interface elements.

CONCLUSIONS
We have presented a digital ink segmentation and classifica-
tion framework that significantly simplifies the development
of digital pen and paper-based notetaking applications. The
framework provides access to the main structural elements
of handwritten notes made available after a segmentation
process, support to further group such elementary structures
and an extensible set of classification heuristics for digital
ink data. This allows an application developer to focus on
the aspects of presenting different classes of notes as part of
digital applications rather than having to deal with the low
level processing of digital ink data. In addition, we have
presented a solution for the definition of paper-based inter-
action models based on finite state machines, simplifying the
complex note processing and interactive paper interface defi-
nition. Last but not least, we have introduced two digital pen
and paper-based notetaking solutions that have been realised
based on the presented digital ink processing framework.

REFERENCES
1. Anoto SDK for PC Applications, June 2010. V 3.3.2.0.

2. Livescribe Desktop SDK, June 2010. V 0.7.0.

3. X. Ao, J. Li, X. Wang, and G. Dai. Structuralizing
Digital Ink for Efficient Selection. In Proc. of Conf. on
Intelligent User Interfaces (IUI ’06), Sydney, Australia,
January 2006.

4. P. Brandl, C. Richter, and M. Haller. NiCEBook -
Supporting Natural Note Taking. In Proc. of Conf. on
Human Factors in Computing Systems (CHI ’10),
Atlanta, USA, April 2010.

5. J. M. Heiner, S. E. Hudson, and K. Tanaka. Linking and
Messaging from Real Paper in the Paper PDA. In Proc.
of Symposium on User Interface Software and
Technology (UIST ’99), Asheville, USA, November
1999.



6. A. Ispas, B. Signer, and M. C. Norrie. A Study and
Design Implications for Incidental Notetaking with
Digital Pen and Paper Technologies. In Proc. of BCS
Conf. on Human Computer Interaction (HCI ’10),
Dundee, Scotland, September 2010.

7. F. Khan. A Survey of Note-Taking Practices. Technical
Report HPL-93-107, HP Laboratories Bristol,
December 1993.

8. J. A. Landay and R. C. Davis. Making Sharing
Pervasive: Ubiquitous Computing for Shared Note
Taking. IBM Systems Journal, 38(4):531–550, 1999.

9. Y. Li, Z. Guan, H. Wang, G. Dai, and X. Ren.
Structuralizing Freeform Notes by Implicit Sketch
Understanding. In AAAI Spring Symposium on Sketch
Understanding SS-02-08, Palo Alto, USA, March 2002.

10. C. Liao, F. Guimbretière, and K. Hinckley. PapierCraft:
A Command System for Interactive Paper. In Proc. of
Symposium on User Interface Software and Technology
(UIST ’05), Seattle, USA, October 2005.

11. C. Liao, F. Guimbretière, and C. E. Loeckenhoff.
Pen-top Feedback for Paper-based Interfaces. In Proc.
of Symposium on User Interface Software and
Technology (UIST ’06), Montreux, Switzerland,
October 2006.

12. M. Lin, W. G. Lutters, and T. S. Kim. Understanding
the Micronote Lifecycle: Improving Mobile Support
for Informal Note Taking. In Proc. of Conf. on Human
Factors in Computing Systems (CHI ’04), Vienna,
Austria, April 2004.

13. T. P. Moran, P. Chiu, W. van Melle, and G. Kurtenbach.
Implicit Structure for Pen-based Systems within a
Freeform Interaction Paradigm. In Proc. of Conf. on
Human Factors in Computing Systems (CHI ’95),
Denver, USA, May 1995.

14. M. C. Norrie, B. Signer, and N. Weibel. General
Framework for the Rapid Development of Interactive
Paper Applications. In Proc. of Workshop on
Collaborating over Paper and Digital Documents
(CoPADD ’06), Banff, Canada, November 2006.

15. E. Saund, D. Fleet, D. Larner, and J. Mahoney.
Perceptually-supported Image Editing of Text and
Graphics. In Proc. of Symposium on User Interface
Software and Technology (UIST ’03), Vancouver,
Canada, November 2003.

16. M. Shilman, Z. Wei, S. Raghupathy, P. Simard, and
D. Jones. Discerning Structure from Freeform
Handwritten Notes. In Proc. of Conf. on Document
Analysis and Recognition (ICDAR ’03), Edinburgh,
Scotland, August 2003.

17. B. Signer, U. Kurmann, and M. C. Norrie. iGesture: A
General Gesture Recognition Framework. In Proc. of
Conf. on Document Analysis and Recognition
(ICDAR ’07), Curitiba, Brazil, September 2007.

18. B. Signer and M. C. Norrie. PaperPoint: A Paper-based
Presentation and Interactive Paper Prototyping Tool. In
Proc. of Conf. on Tangible, Embedded and Embodied
Interaction (TEI ’07), Baton Rouge, USA, February
2007.

19. A. Tabard, W. E. Mackay, and E. Eastmond. From
Individual to Collaborative: The Evolution of Prism, a
Hybrid Laboratory Notebook. In Proc. of Conf. on
Computer Supported Cooperative Work (CSCW ’08),
San Diego, USA, November 2008.

20. G. Toussaint. Solving Geometric Problems with the
Rotating Calipers. In Proc. of Mediterranean
Electrotechnical Conf. (MELECON ’83), Athens,
Greece, May 1983.

21. T. Wang and B. Plimmer. SmartList: Exploring
Intelligent Hand-written List Support. In Proc. of Conf.
of NZ ACM Special Interest Group on
Human-Computer Interaction (CHINZ ’09), Auckland,
New Zealand, July 2009.

22. M. Wattenberg and D. Fisher. A Model of Multi-scale
Perceptual Organization in Information Graphics. In
Proc. of Symposium on Information Visualization
(INFOVIS ’03), Seattle, USA, October 2003.

23. N. Weibel, A. Ispas, B. Signer, and M. C. Norrie.
PaperProof: A Paper-digital Proof-editing System. In
Proc. of Conf on Human Factors in Computing Systems
(Extended Abstracts) (CHI ’08), Florence, Italy, April
2008.

24. S. Whittaker, P. Hyland, and M. Wiley. FILOCHAT:
Handwritten Notes Provide Access to Recorded
Conversations. In Proc. of Conf. on Human Factors in
Computing Systems (CHI ’94), Boston, USA, April
1994.

25. L. D. Wilcox, B. N. Schilit, and N. Sawhney.
Dynomite: A Dynamically Organized Ink and Audio
Notebook. In Proc. of Conf. on Human Factors in
Computing Systems (CHI ’97), Atlanta, USA, March
1997.

26. M. Ye, , P. Viola, S. Raghupathy, H. Sutanto, and C. Li.
Learning to Group Text Lines and Regions in Freeform
Handwritten Notes. In Proc. of Conf. on Document
Analysis and Recognition (ICDAR ’07), Curitiba,
Brazil, September 2007.

27. R. Yeh, C. Liao, S. Klemmer, F. Guimbretière, B. Lee,
B. Kakaradov, J. Stamberger, and A. Paepcke.
ButterflyNet: a Mobile Capture and Access System for
Field Biology Research. In Proc. of Conf. on Human
Factors in Computing Systems (CHI ’06), Montréal,
Canada, April 2006.

28. R. B. Yeh, A. Paepcke, and S. R. Klemmer. Iterative
Design and Evaluation of an Event Architecture for
Pen-and-paper Interfaces. In Proc. of Symposium on
User Interface Software and Technology (UIST ’08),
Monterey, USA, October 2008.


	Introduction
	Background
	Digital Ink Data Processing Framework
	Automatic Digital Ink Data Segmentation
	Closeness
	Linearity
	Comparable sizes
	Link strength

	User-Driven Segmentation
	Custom Classification
	Text Class
	Sketch Class
	Indentation Class
	List Class

	Framework-based Application Development

	Conclusions
	REFERENCES 

