
Feature Assembly: A New Feature Modeling Technique

 Lamia Abo Zaid1, Frederic Kleinermann1, and Olga De Troyer1

1 Vrije Universiteit Brussel (VUB)
Pleinlaan 2, 1050 Brussel

Belgium
{Lamia.Abo.Zaid, Frederic.Kleinermann, Olga.DeTroyer}@vub.ac.be, http://wise.vub.ac.be/

Abstract. In this paper we present a new feature modeling technique. This work
was motivated by the fact that although for over two decades feature modeling
techniques are used in software research for domain analysis and modeling of
Software Product Lines, it has not found its way to the industry. Feature
Assembly modeling overcomes some of the limitations of the current feature
modeling techniques. We use a multi-perspective approach to deal with the
complexity of large systems, we provide a simpler and easier to use modeling
language, and last but not least we separated the variability specifications from
the feature specifications which allow reusing features in different contexts.

Keywords: Feature, Variability Modeling, Feature Models, Domain Analysis

1. Introduction

Over the last decades software development has evolved into a complex task due to
the large number of features available in software, and secondly due to the many
(often implicit) dependencies between these features. In addition, there is an increased
demand to deliver similar software on different platforms and/or to different types of
customers. This has lead to the emergence of so-called Software Product Lines (SPL)
[1] or more generally variable software. SPLs tend to manufacture the software
development process. Instead of developing a single product the fundamental base is
to develop multiple closely related but different products. These different products
share some common features but each individual product has a distinguishable set of
features that gives each product a unique flavor. To be able to profit maximally from
the benefits of variability, but to keep the development of such software under
control, feature-oriented analysis is used to effectively identify and characterize the
SPL capabilities and functionalities. In feature-oriented analysis, features are
abstractions that different stakeholders can understand. Stakeholders usually speak of
product characteristics i.e. in terms of the features the product has or delivers [2].

Feature oriented domain analysis (FODA) [3] was first introduced in the 1990 for
domain modeling, and since then it has become an appealing technique for modeling
SPLs. It was applied in several case studies [2] and many extensions to the original
technique have been defined. However, these feature modeling techniques have not

gained much popularity outside the research community. Several explanations can be
given for this. Firstly, there are many different “dialects” of feature modeling
techniques (e.g. [4] [5] [6]), each focusing on different issues; there is no commonly
accepted model [7]. Secondly, feature models do not scale well, mainly because they
lack abstraction mechanisms. This makes them difficult to use in projects with a large
number of features [8]. Thirdly, little guidelines or methods exist on how to use the
modeling technique. This often results in feature models with little added value or of
discussable quality.

To overcome these limitations companies define their own notations and
techniques to represent and implement variability. Examples are Bosch [9], Philips
Medical Systems [10] and Nokia [11]. Yet the proposed notations are tailored to each
company’s specific needs for modeling variability in their product line. In [9] and [10]
a hierarchical structure of features, introducing new feature types was adopted. While
feature interaction and scalability issues were more important for [11], therefore they
adopted a separation of concern approach for devising higher level features. They
used documentation to specify the systems evolution using its features and relations.

In this paper we present a new feature modeling technique that is based on using
multiple perspectives (viewpoints) to model (variable) software in terms of its
composing features. We call it Feature Assembly Modeling (FAM). The presented
modeling technique is innovative from different perspectives. It separates the
information on variability (i.e. how features are used to come to variability) from the
features it selves. In FAM, how a feature contributes to the variability of a specific
piece of software (or product line) is not inextricably associated with the feature.
Rather this information is part of how the features are assembled together in the
feature assembly model that models the software (or product line). This yields more
flexibility and allows the reuse of these features in other contexts and even in other
software. The model is also based on a multi-perspective abstraction mechanism. It is
well known that focusing on one aspect at the time helps to deal with complexity (also
known as the separation of concerns paradigm). FAM provides better abstraction
mechanism by using perspectives to model large and complex software; and thus will
also increase scalability of the modeling process. Furthermore, we have reduced the
number of modeling primitives to simplify and ease the modeling process.

This paper is organized as follows, in section 2, we review existing feature
modeling techniques. In section 3, we discuss the limitations of the mainstream
feature modeling techniques. In section 4, we explain our Feature Assembly Modeling
technique. Section 5 provides an example that illustrates the approach and its benefits.
Next, in section 6 we discuss how FAM offers solutions for the limitations identified
in section 3. Finally, section 7 provides a conclusion and future work.

2. Mainstream Feature Modeling techniques

Over the past few years, several variability modeling techniques have been
developed that aim supporting variability representation and modeling. Some of the
techniques extend feature models (e.g. [4], [5], [6], and [12]), while others tend to add
profiles for variability representation in UML (e.g. [13], [14], and [15]). In addition,

some work has been done on defining new modeling languages and frameworks to
model variability information (e.g. [16] and [17]). For the purpose of this paper we
restrict ourselves to the modeling methods extending Feature Oriented Domain
Analysis (FODA), commonly called feature models [3] [4]. For a detailed study
classifying the existing well known feature modeling techniques, methodologies and
implementation frameworks, we refer the reader to [18].

A feature model is a hierarchical domain model with a tree-like structure for
modeling features and their relations. It is a variability modeling (visual) language
indicating how the features contribute to variability. Over the past decade several
extensions to FODA (the first feature modeling language) have been defined to
compensate for some of its ambiguity and to introduce new concepts and semantics to
extend FODA’s expressiveness. Yet, all keep the hierarchical structure originally used
in FODA, accompanied with using some different notations.

Feature-Oriented Reuse Method (FORM) [4] extends FODA by adding a domain
architecture level which enables identifying reusable components. It starts with an
analysis of commonality among applications in a particular domain in terms of four
different categories (also called layers): capabilities, operating environments, domain
technologies, and implementation [2]. AND/OR nodes are used to build a hierarchical
tree structured feature model for the features belonging to each of the previously
mentioned categories. The excludes and requires feature dependencies originally
defined in FODA are still used; a new implemented by dependency was defined.

FeatureRSEB [5] aims at integrating feature modeling with the Reuse-Driven
Software Engineering Business (RSEB). It uses UML use case diagrams as a starting
point for defining features and their variability requirements. FeatureRSEB classifies
features to optional, mandatory (similar to FODA) and variant. Variant is used to
indicate alternative features. FeatureRSEB adds the concept of vp-features which
represents variation points. The excludes and requires dependencies originally defined
in FODA are used to represent constraints between features.

PLUSS [12], which is the Product Line Use case modeling for Systems and
Software engineering, introduced the notation of multiple adapter to overcome the
limitation of not being able to specify the at-least-one-out-of many relation in FODA.
PLUSS also renamed alternative features to single adaptor features following the
same naming scheme. The modeling notation was also slightly changed in PLUSS to
meet the needs of the modified model, yet it remained a hierarchical tree structure
based on the notation of FODA. Similar to FeatureRSEB, the excludes and requires
dependencies originally defined in FODA are used to represent feature dependencies.

Cardinality Based Feature Models (CBFS) [6] represent a hierarchy of features,
where each feature has a feature cardinality. Two types of cardinality are defined:
clone cardinality and group cardinality. A feature clone cardinality is an interval of
the form [m..n]. Where m and n are integers that denote how many clones of the
feature (with its entire subtree) can be included in a specified configuration. A group
cardinality is an interval of the form [m..n], where m and n are integers that denote
how many features of the group are allowed to be selected in a certain configuration.
Features still had one of four feature types AND, OR, Alternative, and Optional. In
addition, the notation of feature attribute was defined. A feature attribute indicates a
property or parameter of that feature; it could be a numeric or string value. CBFS kept

the original FODA feature dependencies. In addition, there are rational constraints
associated with the value of the feature attribute (i.e. >, <, =, >=, <=).

3. Limitations of Mainstream Feature Modeling techniques

Feature models relate features by means of a AND/OR hierarchical structure,
describing how features are broken up into more finer-grained ones. For small
applications this works fine, as features are perceived quite easily and often represent
the main system capabilities and components. Yet for practical cases there is usually
great doubt in how to apply the feature modeling technique. First, because there are
many alternatives to the original FODA, which all differ in their semantics as well as
their notations (in [19] a comparative survey on feature-based notations was done to
help companies decide which technique better suits their needs). Next, these
techniques are not associated with a concrete methodology or guidelines that
designers can use in order to create their feature models. Usually, it already starts with
the definition of the features. Very often, there are no guidelines or definitions that
can be used to decide what to consider as a feature and what not. This makes the
modeling process a difficult task. A recent study [20] reveals that there are very few
reports on the application of feature models in practice. Out of the available literature
of software variability only 16 cases were relevant. The study shows that only two of
the 16 cases claim success in applying feature models.

In addition, FODA and subsequent FODA based feature modeling techniques lack
explicit abstraction mechanisms. Usually, high level features are decomposed into
lower level features in the feature model, but it is not defined to which level of
granularity features should be defined. The original FODA defined four categories to
which features of the system belong [2] [3]: operating environments, capabilities,
domain technology, and implementation techniques. The Capabilities category is
further categorized into functional features, operational features, and presentation
features. However, we see this categorization process as very fragile and impractical
(more details in section 6). In reality, a feature may have many faces which make
categorizing features a difficult task.

 Being originally defined for domain modeling, feature modeling techniques miss
linking their notations of features with the notations of variation point and variant
which is preferred among stakeholders interested merely in variability [1]. UML
based variability modeling (e.g. [13], [14], and [15]) tried to address this issue. Yet
UML variability modeling techniques speak the language of class rather than feature.
This makes them more appropriate for architecture and/or class design rather than
domain analysis.

As already mentioned, not only do feature modeling techniques lack an associated
modeling method, also the main modeling concept, being feature, is not rigorously
defined. There are many different “definitions” that exist for defining “feature”.
Actually each technique is using its own definition. We list some of these definitions:

1. A feature is a prominent or distinctive user-visible aspect, quality, or
characteristic of a software system or systems [3]

2. A feature is a logical unit of behavior specified by a set of functional and non-
functional requirements [1]

3. A feature is an increment in program functionality [21]
4. A feature is a functional requirement; a reusable product line requirement or

characteristic [1].
It can be seen from these different definitions that features can be considered from

different perspectives. While the first definition takes the user’s perspective for
defining what a feature is, the second and fourth definitions take the requirements
perspective for defining what a feature is, and the third takes the functional
perspective for defining what a feature is. This observation has led us to base our
feature assembly approach (which will be introduced in section 4) on multi
perspectives as an abstraction mechanism.

The observation that feature modeling is not used by companies (probably due to
the limitations of feature modeling techniques (see above)) but confronted with the
many challenges related to variable software that companies face1, has triggered the
need to revise feature modeling. The following requirements were formulated:

1) A rigorous methodology for feature modeling is needed.
2) Abstraction mechanisms to better deal with complex and large systems are

necessary.
3) Separate the feature from how it contributes to variability; it must be possible to

use the same feature in different variability specifications.
 The next section will explain our feature assembly modeling technique. Note that

this technique is part of an overall Feature Assembly approach, which supports the
reuse of features between different software.

4. Feature Assembly Modeling Technique

Feature Assembly Modeling (FAM) is a feature-oriented modeling technique
intended to model the variability aspects of complex variable software. It does so by
using different perspectives. Often software can be considered from many different
viewpoints, called perspectives. Trying to deal with all the viewpoints at the same
point is very difficult and will usually result in badly structured designs. A more
scalable approach is to identify the different perspectives needed and model the
required capabilities of the software with respect to one perspective at the time. Not
only do perspectives help separation of concerns, but also provide an abstraction
mechanism which allows focusing on only related features. Based on this, our feature
assembly modeling technique allows specifying software based on a set of
perspectives. Each perspective describes the variability from a certain point of view
(e.g., the Users perspective, the Functional perspective), and together they describe
the variability of the required software. Furthermore, within a single perspective, we
represent how features are composed and related (assembled). The introduced model
is based on a few simple modeling concepts that allow modeling features, variability

1 This research is carried out in the context of a research project VariBru

(http://www.varibru.be) in which the needs and challenges regarding variability of industrial
companies in the Brussels Region are investigated.

relations, and feature dependencies. Next, we will discuss the approach in more detail.

4.1. Multi-Perspective Approach

A perspective is used to model the variability of the software from a certain
viewpoint. The perspectives used for the modeling can be freely chosen depending on
the application under consideration. To help the analysis, a set of possible
perspectives have been identified. Possible perspectives include: System perspective,
Users perspective, Functional perspective, Non-functional perspective, User Interface
perspective, and Localization perspective. As already mentioned, it is not required to
consider all these perspectives. For instance, the Localization perspective is only
useful for software that needs to be localized for different markets. The above-defined
set of perspectives can be further extended based on the needs of the application under
consideration. For example, a Task perspective could be used for modeling task-based
applications or a Hardware perspective may be considered for embedded applications

The exact definition of the concept of feature depends on the perspective taken. In
general, a feature can be considered as a physical or logical unit that acts as a
building block for meeting the specifications of the perspective it belongs to. A feature
belonging to one perspective may relate to other features (via dependencies).

Note that the idea of using software perspectives or viewpoints is not new in
software development; it was first introduced in [22] to show how adopting
perspectives helps in efficient modeling of the software system. In [23] [24] [25]
abstraction via viewpoints was introduced for software architecture modeling.

4.2. Basic Modeling Primitives

To model the features of one perspective, we have revised the existing feature
modeling techniques and came up with a new and simplified technique. In
mainstream feature modeling, the feature type is used to express how a feature
contributes to the variability. However, because a feature can contribute differently to
variability in different situations, we have removed how the feature contributes to
variability from its definition. Therefore, we only consider two types of features:
Feature and Abstract Feature. A Feature represents a concrete logical or physical
unit or characteristic of the system. A feature is represented by a solid line rectangle
holding the feature’s name. An Abstract Feature is a feature which is not concrete;
rather it is a generalization of more specific features (concrete or abstract ones). An
abstract feature is represented by a dotted line rectangle holding the abstract feature’s
name. Figure 1.a shows the two feature notations. To illustrate the difference between
the two types of features, consider a Quiz Product Line application (see also section
5), Operation Mode is an abstract feature, while Quiz and Exam are examples of
concrete features. In addition, Operation Mode is the generalization of the concrete
features Quiz and Exam.

How the features are assembled together to model the system is specified via
feature relations. We have defined two types of feature relations: composition
relation and generalization/specification relation. The composition relation is used to

express the whole-part relation; i.e. a feature is
composed of one or more fine-grained features.
The composition can be mandatory or optional. A
mandatory composition indicates a compulsory
whole-part relation. An optional composition
indicates an elective whole-part relation. Figure
1.b shows the notations used to represent the
composition relation. The
generalization/specification relation is used in
combination with an abstract feature and allows
specifying possible (concrete or abstract) Option
Features of this abstract feature. Figure 1.c shows
the notations used to represent the
generalization/specification. Only abstract
features are allowed to have
generalization/specification relations. In terms of
variability, an abstract feature represents a
variation point. Its available option features
represent variants. The number of option features allowed to be selected in a certain
product is expressed via a cardinality constraint. The cardinality constraint specifies
the minimum and maximum number of features allowed to be selected. A dash is used
to specify “any”.

4.3. Feature Dependencies

Feature Dependencies allow expressing dependencies between features. A Feature
Dependency specifies how a feature may affect other feature(s). Dependencies can be
expressed between features from a single perspective as well as between features from
different perspectives. We will explain below the types of dependencies supported.
a) Feature dependencies within the same perspective (inter-perspective

dependencies):
In our previous work we defined a set of (binary) feature dependencies [26]. The

same set still holds for defining feature dependencies within the same perspective and
corresponds with the dependencies usually considered in feature modeling (i.e.
requires and excludes). Figure 2 shows the graphical representation and the associated
semantics of the feature dependencies supported by the feature assembly model. It
should be noted that some of these dependencies are symmetric (such as: excludes,
incompatible, same) while others are asymmetric (such as: extends, impacts, includes,
requires, uses), thus a direction (i.e. arrow) is associated with these dependency
relations (Section 5 contains an example demonstrating their use).
b) Feature dependencies between different perspectives (intra-perspective

dependencies)
It is often the case that two or more features constrain a feature belonging to a

different perspective. Furthermore, a dependency may hold between features all
belonging to different perspectives. Dependencies among features of different
perspectives we call intra-perspective dependencies, the same dependencies shown in

Fig. 1. Feature Assembly Model
Notation (a) Feature types, (b)
Composition relation, (c)
Generalization/Specification relation.

figure 2 are valid, but now features from different perspectives can be combined with
AND and OR. The form is: <virtual_feature><dependency><virtual_feature>,
where <virtual feature> is one or more features connected with AND/OR, and
<dependency> is one of the keywords: excludes, incompatible, same, extends,
impacts, includes, requires, uses. Here a feature must be identified by both the name
of its perspective and its feature name. An example intra perspective dependency
representing interdependencies in an e-shop application is: user_interface.checkout
AND user_interface.credit_card AND users.customer requires
user_interface.discount, which states that if the user interface contains a checkout
feature and a credit card payment feature and there is a user category called customer
then this requires that there is a discount feature in the user interface. Similarly
user_interface.discount uses functional.discount_rate, states an operational
dependency between the user-interface perspective and the functional perspective.

5. Example

In this section we provide an example to demonstrate the FAM technique. Figure 3
shows the System perspective of a Quiz Product Line (QPL) application for making
Quizzes, designed to meet the needs of multiple customers and markets. The QPL is
mandatory composed of a set of features namely: Questions, Layout, License, Report
Generator, Operation Mode and Question Editor. In addition, the following features
are optional part of the quiz application: Quiz Question Generator, Quiz Utilities, and
Publish. The Questions feature is an abstract feature (i.e. variation point), which has
five concrete option features (i.e. variants). In any valid product at least two and at
most four of these options should exist; as specified by the cardinality 2:4. Moreover,

Dependency Notation Description

Extends Feature A extends feature B if A adds to the functionality of B

Includes Indicates that feature A has feature B inside of it.

Impacts If feature A has an impact on feature B, it means that the existence
of A affects the existence of B. This is typically used as a less rigid
relation than the requires relation.

Incompatible
If feature A is incompatible with feature B, then A and B are
mutual exclusive due to some conflict. From a configuration point
of view, it is the same as the excludes constraint.

Same

Constraint used to indicate that two features are equivalent

Requires Feature A requires feature B if A is functionally dependent on B.

Uses Feature A uses feature B then there is a uses dependency relation

Excludes
Feature A excludes feature B indicates that A and B cannot occur
together (exclusive OR)

Fig. 2. Feature Assembly Technique Feature Dependency Notations

the abstract feature Operation Mode has four option features; at least one has to be
selected, the number of available option features is the upper limit as indicated by the
cardinality 1:-. The Quiz Question Generator feature is further composed of a
Randomize Questions feature that is responsible for making the questions random.
The feature Randomize Questions is composed of a Fixed Options feature and an
optional Branching Path feature. Figure 3 also shows some features part of the quiz
application (Quiz Utilities and Publish) for which no details are specified (yet). This is
an important aspect of FAM; it allows identifying abstract features or variation points
while the concrete options (or variants) may not yet be known. This allows adopting
an incremental design approach. When the concrete options are known, then they can
be added to the model along with the associated cardinality constraints.

Fig. 3. Quiz product line system perspective.

Figure 3 also shows the inter-perspective
dependencies, for example there is a requires
dependency between Exam and Report
Generator. Figure 4 shows features of the
Users perspective and their dependencies.
Figure 5 gives the User Interface perspective,
showing the features that make up the user
interface and their dependencies (due to space
limitation only a subset of the features is
shown). Furthermore, the three different
perspectives shown in figures 3, 4, and 5 hold
intra-perspective dependencies that specify how the different features relate. Listing 1
shows a sample of the intra-perspective dependencies for the perspectives given for
the Quiz application.

Fig. 4. QPL Users Perspective

Fig. 5. Quiz product line user interface perspective.

Users.Higher_Education AND User_Interface.Template_Based requires
System.Publish

User_Interface.Dutch AND User.Cooperate_Bussiness requires System.Custom

(User_Interface.Dutch OR User_Interface.French) AND
Users.Cooperate_Bussiness requires User_Interface.English

Users.Cooperate_Bussiness requires (System.Custom AND User_Interface.English)

Listing 1. Sample Intra-perspective dependencies.

6. Discussion

In this section we demonstrate how FAM has solved some of the limitations of the
mainstream feature modeling techniques (mentioned in section 3).
a) Ambiguity in modeling concepts
Traditional feature models do not make an explicit distinction between a composition
and a specialization. This may introduce problems, e.g. figure 6 shows the GPL
problem introduced in [27], where two sets of alternative features are identified for
the feature Graph Type, being Directed/Undirected and Weighted/Unweighted. This
introduces two problems: Firstly, the model holds implicit information (by not naming
the two concepts for which the two sets provide alternatives) leaving it to the intuition
of the user to understand there are two concepts that makeup graph type (i.e. direction
and weight). Secondly, Graph Type is a mandatory feature, while its succors are
alternative features. Therefore, it is not clear whether at least one feature of one
alternative group should be selected, or one feature of each group should be selected.
Figure 7 shows another example of ambiguity by combining different types of
variability: F is optionally composed of F1,
and at the same time F1, F2, and F3 are
alternative descendant features of F. Although
this ambiguity can be resolved by normalizing
the feature model [28] (i.e. allowing each
feature to have only one type), the modeling
method does not prevent such situations.

Fig. 6. Feature Model of GPL

The above-mentioned ambiguities are mainly
due to the fact that FODA mixes the variability
information of a feature with its composition
information. This problem is solved in FAM by
introducing abstract features that are intended for
representing variation points (variability
information), and by explicitly distinguishing
between composition relations and specialization
relations (where the last type can only be used for abstract concepts and thus for
specifying variability information).
b) Missing Reuse Opportunities

In current feature models, a feature is given a type that indicates how the feature
contributes to the variability of the system. This limits the possibilities to reuse a
feature in a different context. For example, a bank transfer payment feature may be
mandatory in one setting while optional in another. As the type (e.g. mandatory) is
inextricably associated with the feature, it is not possible to reuse the feature as it is.
In addition, it is quite difficult to add new features or change (the variability type of)
an existing feature. For example, a Language feature may have initially two
alternative features English and French. When targeting new markets, this feature
may need to be extended with other languages (e.g., Dutch, Spanish, and German).
Furthermore, suppose that the English feature needs to become mandatory, while
there is a need to select one or more of the other language features (OR features). In
mainstream feature modeling, such a change requires deleting the old Alternative
group, creating a new OR group, and assigning the English feature the type
mandatory. Note that adding and removing branches may not always be a
straightforward task. In FAM, this change is easily done by adding more option
features to the abstract feature Language and assigning a requires dependency
between the features Language and English.
c) Lack of Abstraction Mechanisms
As previously mentioned, separation of concerns helps in designing complex and
large systems. FAM uses a perspective-based approach to separate concerns and allow
in this way to focus on one aspect at the time. Furthermore the intra dependencies
between the different perspectives allow linking the different perspectives. In
addition, the modeler may opt for an arbitrary number of perspectives. This is
opposed to the technique of categorizing features adopted in FODA that groups
features using predefined categories. First of all it is not always easy to decide on the
category of a feature and secondly it is not an abstraction mechanism but rather a
grouping mechanism. Figure 8 illustrates the difference between the two approaches
using the Private Branch Exchange (PBX) system [2]. Using FODA (figure 8.a), one
model is created to represent the overall system. Such a model can become very large
and difficult to understand. Features are grouped together by means of a predefined
set of categories: capabilities, operating environments, domain technology, and
implementation techniques. Using FAM (figure 8.b), different models are used to
model the system. Here we opted for a system, a hardware interface, a functional, and
non-functional perspective. Each of those models is smaller, easier to understand, and
easier to create as one only has to focus on one aspect of the system. Note that
features common between two or more perspectives are shaded.

Fig. 7. Example showing the need for
normalizing FMs, after [28]

(a)

(b)

Fig. 8. (a) FODA model of PBX problem (b) FAM model of PBX problem

7. Conclusion and Future Work

In this paper we have presented a new multi-perspective feature-oriented technique
for modeling variability, called Feature Assembly Modeling (FAM). FAM tried to
address some of the limitations of mainstream feature modeling techniques such as
lack of abstraction mechanisms, weak support (if any) for complex and large
software, and the complexity of the technique for non-experience modelers. We have
shown with some examples how FAM eliminates some of the limitations of FODA
based feature modeling techniques. The modeling technique presented in this paper is
part of the Feature Assembly approach, which also addressed some of the challenges
that were not perceived by FODA such as the need for feature reusability.

FAM uses a multi-perspective approach for modeling the variability of a system.
Perspectives act as abstraction mechanism enabling better separation of concerns
when modeling software. Furthermore, by expressing the dependencies between
features of the different perspectives, the different perspectives are interconnected,
which provide a more complete picture of the system modeled. In addition, we have
reduced the number of modeling primitives used and more importantly, the
specification of the information about the variability is separated from the definition
of the features, which should improve reusability. Adopting a perspective-based
approach for defining features helps identifying the features that are relevant for a
particular aspect or viewpoint, thus acting as an abstraction mechanism that helps
dealing with complexity.

The next step in the research is to apply the technique to a large industrial case to
validate its usability and expressivity. We are also working on a method to collect and
document features in a so-called Feature Pool and provide mechanisms for feature
reuse (the actual Feature Assembly approach, out of the scope of this paper).

8. Acknowledgement

This research is sponsored by the Institute for the encouragement of Scientific
Research and Innovation of Brussels. The authors also like to thank Wim Codenie,
Nicolás González-Deleito, and Tom Tourwé from Sirris for their valuable discussions
regarding the industry needs, which highly contributed to the topic of this paper.

9. References

1. Bosch, J.: Design and Use of Software Architectures: Adapting and Evolving a Product-Line
Approach. Addison-Wesley, Boston (2000)

2. Kang, K.C., Lee, J., Donohoe, P.: Feature-Oriented Product Line Engineering, IEEE
Software, vol. 19, no. 4, pp. 58-65 (2002)

3. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-oriented domain analysis
(FODA) feasibility study. Technical Report CMU/SEI-90-TR-021, SEI (1990)

4. Kang, K., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: FORM: A Feature-Oriented Reuse
Method with Domain-Specific Reference Architectures. In: J. Annals of Software
Engineering. vol. 5, pp. 143-168 (1998)

5. Griss, M., Favaro, J., d’Alessandro, M.: Integrating Feature Modeling with the RSEB. In:
Fifth International Conference on Software Reuse, pp. 76–85 (1998)

6. Czarnecki, K., Kim, C. H. P.: Cardinality-Based Feature Modeling and Constraints: A
Progress Report. In: OOPSLA’05 International Workshop on Software Factories (2005)

7. Nestor, D., Thiel, S., Botterweck, G., Cawley, C., Healy, P.: Applying visualisation
techniques in software product lines. In: SOFTVIS 2008, pp. 175-184 (2008)

8. Bosch J.: Software Product Families in Nokia. In: SPLC 2005, pp. 2-6 (2005).
9. MacGregor, J.: Bosch Experience Report,

http://www.conipf.org/download/BoschExperienceReport.pdf
10. Jaring, M., Krikhaar, R. L., Bosch, J.: Representing variability in a family of MRI

scanners, Software—Practice & Experience, Volume 34 , Issue 1 , P: 69 - 100, 2004
11. Maccari, A., Heie, A.: Managing infinite variability in mobile terminal software. Softw.,

Pract. Exper. 35(6): pp. 513-537 (2005)
12. Eriksson, M., Bo¨ rstler, J., Borg, K.: The PLUSS Approach - Domain Modeling with

Features, Use Cases and Use Case Realizations. In Obbink and Pohl [24], pages 33- 44
13. Clauss ,M.: Generic Modeling using UML extensions for variability. In Workshop on

Workshop on Domain-Specific Visual Languages, OOPSLA 2001, pp. 11-18 (2001)
14. Ziadi, T., Hélouët, L., Jézéquel ,J.-M.: Towards a UML Profile for Software Product Lines",

In 5th International Workshop Software Product-Family Engineering, pp. 129-139, (2003)
15. Gomaa, H.: Designing Software Product Lines with UML: From Use Cases to Pattern-Based

Software Architectures, Addison-Wesley (2005)
16. Asikainen, T., Männistö, T., Soininen, T.: Kumbang: A Domain Ontology for Modeling

Variability in Software Product Families. Advanced Engineering Informatics, 21(1), pp. 23-
40 (2007)

17. M. Sinnema, S. Deelstra, J. Nijhuis, J. Bosch, COVAMOF: A Framework for Modeling
Variability in Software Product Families, In: SPLC 2004, pp. 197-213 (2004)

18. Sinnema M., Deelstra, S.: Classifying Variability Modeling Techniques, Elsevier Journal on
Information and Software Technology, Volume 49, Issue 7, pp. 717-739, July 2007

19. Djebbi, O. Salinesi, C.: Criteria for Comparing Requirements Variability Modeling
Notations for Product Lines, In: CERE '06. pp: 20-35, (2006)

20. Hubaux, A., Classen, A., Mendonca, M., Heymans, P.: A Preliminary Review on the
Application of Feature Diagrams in Practice. In: VaMoS 2010, pp. 53-59 (2010)

21. Batory, D.: Feature models, grammars, and propositional formulas. SPLC 2005: pp.7-20
(2005)

22. Finkelstein, A., Kramer, J., Nuseibeh, B., Finkelstein, L., Goedicke, M.: Viewpoints: A
Framework for Integrating Multiple Perspectives in System Development. Intl. J. of
Software Engineering and Knowledge Engineering 2(1), pp. 31–57 (1992)

23. Nicholas Graham, T.C.: Viewpoints Supporting the Development of Interactive Software. In
Viewpoints 96, ACM Press, pp. 263-267 (1996)

24. Woods, E.: Experiences Using Viewpoints for Information Systems Architecture: An
Industrial Experience Report. EWSA 2004: pp. 182-193 (2004)

25. B. Nuseibeh, J. Kramer, and A. Finkelstein, ViewPoints: Meaningful Relationships Are
Difficult! , ICSE 2003, pp. 676-683 (2003)

26. Abo Zaid, L., Kleinermann, F., De Troyer, O.: Applying Semantic Web Technology to
Feature Modeling. In: SAC 2009, pp. 1252-1256 (2009)

27. Lopez-Herrejon, R.E., Batory, D.: A Standard Problem for Evaluating Product-Line
Methodologies. In: Bosch, J. (ed.) GCSE 2001. LNCS, vol. 2186, pp. 9–13 (2001)

28. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and
Applications. Addison Wesley (2000)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

