
Conceptual Modeling for Virtual Reality

Olga De Troyer, Frederic Kleinermann, Bram Pellens, and Wesley Bille
WISE Research Lab

Vrije Universiteit Brussel
Pleinlaan 2, B-1050 Brussel, Belgium

{olga.detroyer,frederic.kleinermann,bram.pellens, Wesley.Bille}@vub.ac.be

Abstract
This paper explores the opportunities and challenges for
Conceptual Modeling in the domain of Virtual Reality
(VR). VR applications are becoming more feasible due to
better and faster hardware, and due to new technology and
faster network connections they also start to appear on the
Internet. However, the development of such applications
is still a specialized, time-consuming and expensive
process. By introducing a Conceptual Modeling phase
into the development process of VR applications, a
number of the obstacles preventing a quick spread of this
type of applications can be removed. However, existing
Conceptual Modeling techniques are too limited for
modeling a VR application in an appropriate way. The
paper will show how Conceptual Modeling can be done
for VR and how this may make VR more accessible to
non VR-specialists. Furthermore, the paper will explain
how Conceptual Modeling embedded in a semantic
framework can provide the basis for semantically rich VR
application, which may be essential for its success in the
future and its use in the context of the Semantic Web. The
paper will also point to some open research problems..

Keywords: Virtual Reality, Conceptual Modeling,
Semantics.

1 Introduction

Conceptual Modeling has been used with success in
different domains such as Information Systems, Web
Information Systems, User Interface Modeling, and
Software Engineering. It has less been used in domains
like 3D Modeling and Virtual Reality (VR). VR is a
technology to simulate environments and create the effect
of an interactive three-dimensional world in which
objects have a sense of spatial and physical presence and
can be manipulated by the user as such. VR has gained a
lot of popularity during the last decennia due to e.g.,
games and applications such as Second Life (Second Life
2007). Although a lot of tools are available for
developing VR applications, it is time-consuming,
expensive, complex and specialized. One of the reasons is

Copyright © 2007, Australian Computer Society, Inc. This
paper appeared at the Twenty-Sixth International Conference on
Conceptual Modeling - ER 2007 - Tutorials, Posters, Panels
and Industrial Contributions, Auckland, New Zealand.
Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 83. John Grundy, Sven Hartmann,
Alberto H. F. Laender, Leszek Maciaszek and John F. Roddick,
Eds. Reproduction for academic, not-for profit purposes
permitted provided this text is included.

that the development of VR applications directly starts at
the implementation level. The virtual world that needs to
be created must be expressed in terms of low level VR
building blocks, such as textures, shapes, sensors,
interpolators, etc. This requires a considerable amount of
background knowledge in VR. In addition, it makes the
gap between the application domain and the level at
which the virtual world needs to be specified very large,
and this makes the translation from the concepts in the
application domain into implementation concepts a very
difficult issue.
Like for other domains, introducing a Conceptual Design
phase in the development process of a VR application
may help the VR community in several ways. As
Conceptual Modeling will introduce a mechanism to
abstract from implementation details, it will reduce the
complexity of developing a VR application. In addition, if
well done, such an abstraction layer can also hide the
specific jargon used in VR and then no special VR
knowledge will be needed for making the conceptual
design. Therefore, also non-technical people (like the
customer or the end-user) can be involved in the
development and this will improve the communication
between the developers and the other stakeholders. In
addition, by involving the customer more closely in the
design process of the VR application, earlier detection of
design flaws is possible. All this could help in realising
more VR applications in a shorter time.

However, Conceptual Modeling for VR poses a lot of
challenges as in VR applications a number of aspects, not
present in classical software or information systems, are
very essential. For example, VR applications are 3D
worlds composed of 2D and 3D objects and often deal
with 3D complex objects, for which the way the parts are
connected will influence the way the complex objects can
behave. Furthermore, to realize dynamic and realistic
worlds, objects may need complex (physical) behaviors.
Therefore, new modeling concepts, not present in
classical conceptual modeling languages such as ER,
ORM and UML, are needed.

The paper will show how Conceptual Modeling can be
realized for VR applications. Furthermore, the paper will
explain how semantically based Conceptual Modeling
can provide the basis for semantically rich VR
applications. The rest of this paper is structured as
follows. Section 2 will provide an introduction to VR. We
will discuss the different components of a VR application
as well as how VR applications are developed these days.
In section 3, we will discuss the limitations of current
conceptual modeling techniques with respect to the

modeling of VR. Then, section 4 will introduce a
conceptual modeling approach developed for VR and
section 5 will explain into more detail some of its
modeling concepts. Section 6 will point out the benefits
of using an approach that is grounded into ontologies. In
section 7 we will discus related work. Section 8 points
out some open research problems. Finally, section 9
concludes the paper.

2 Virtual Reality (VR)

There are many definitions of Virtual Reality (VR)
(Vince 2004 and Burdea 2003). Usually, the restrictive
approaches define VR as three-dimensional (3D), multi-
sensorial, immersive, real time, and interactive
simulations of a space that can be experienced by users
via three-dimensional input and output devices. For the
context of this research, VR is defined as a three-
dimensional computer representation of a space in which
users can move their viewpoints freely in real time. We
therefore consider the following cases being VR: 3D
multi-user chats (Active Worlds (ActiveWorld 2007),
first person 3D videogames (Quake (Quake 2007) and
Unreal tournament (Unreal 2007)) and 3D virtual spaces
on the Web (such as those created with VRML (Hartman
and Wernecke 1998), X3D (Walsh and Sevenier 2005)).

In this section we will first define the main components
of a VR application and then we will review how these
main components are being modeled today.

2.1 Main components of a VR application

A VR application is made of different components (Vince
2004), which can be summarized as:

1) The scene and the objects. The scene corresponds to
the world in which the objects are located. It contains
lights, viewpoints and cameras. Furthermore, it has also
some properties that apply to all the objects being located
inside the virtual world. For instance, gravity can be a
property of the world that applies to all its objects. The
objects have a visual representation with color and
material properties. They have a size, a position and an
orientation.

2) Behaviors. The objects may have behaviors. For
instance, they can move, rotate, change size and so on.

3) Interaction. The user must be able to interact with the
virtual world and its objects. For instance, a user can pick
up some objects or he can drag an object. This may be
achieved by means of a regular mouse and keyboard or
through special hardware such as a 3D mouse or data
gloves (Vince 2004).

4) Communication. Nowadays, more and more VR
applications are also collaborative environments in which
remote users can interact with each other. To achieve this,
network communications is important. We will not
elaborate on this aspect, as we will not consider it in this
paper.

5) Sound. VR applications also involve sound. Some
research has been done over the last ten years in order to

simulate sound in VR application. In this paper, the
modeling of the sound will also not be addressed.

2.2 Developing a VR application
The developing of the different components of a VR
application is not an easy task and during the last fifteen
years, a number of software tools have been created to
ease the developer’s task. These tools can be classified
into authoring tools and software programming libraries.

Authoring tools. Authoring tools allow the developer to
model the static scene (objects and the scene) at a level
that is higher than the implementation level.
Nevertheless, they assume that the developer has some
knowledge on VR and some programming skills to
program behaviors using scripting languages. The
scripting languages used by these authoring tools can
change from one authoring tool to another.

Software Programming Libraries. With programming
libraries a complete VR application can be programmed
from scratch. An example of such a programming library
for VR is Java3D (Palmer 2001). To use such a library,
good knowledge about programming and a good
knowledge about VR and computer graphics are required.
The code needs to be compiled and linked before it can
be executed. It is also possible to use a player which can,
at run-time, interpret a 3D format and build the VR
application. VRML (Hartman and Wernecke 1998) and
X3D (Walsh and Sevenier 2005) are 3D formats that can
be interpreted by special player through a Web browser.
Examples of such players are the Octaga player (Octaga
2007) and the Flux player (Flux 2007).

We will know review how the first three components
mentioned in section 2.1 are developed nowadays and
which authoring tool and software programming libraries
are used for each of these components.

2.2.1 The Scene and the Objects
Nowadays, a number of authoring tools exist for
modeling the objects and the scene without having to
program them. Each of these tools comes with their own
features and GUI. Therefore, as a developer, it is
important to know what features these tools support and
how they are used via the GUI. The developer also needs
to know which file formats are supported. According to
the player (or APIs) that will be used and the cost of these
authoring tools, the developer can decide which authoring
tools to use. The most popular authoring tools are 3D
Studio Max (Murdock 2002), Maya (Maya 2006),
MilkShape 3D (Milkshape3D 2006), various Modelers at
PlanIt 3D (PlantID 2006), AC3D (AC3D 2006), and
Blender (Blender 2006). If the developer is developing
the VR application for a certain file format, he needs to
pay attention to the file formats supported by the
authoring tool. For instance in the case of the
VRML/X3D file format, not all of the tools allow
exporting the objects into this format. Furthermore, they
do not always export them correctly when behaviors are
embedded. Beside the authoring tools, software
programming libraries can be used to model the scene.
But for this, the developer needs to have programming

skill. Among the existing libraries, there is Performer
(Performer 2007), Java3D (Palmer 2001), X3D toolkit
written in C++ (X3D toolkit 2007) or Xj3D (Xj3D 2007)
written on top of Java3D. To create the materials (texture
and color) of the objects, the authoring tools can be used
to add this to the object being created. However, it is
sometimes not sufficient, as the developer may need to be
able to modify them to suit his/her VR application.

2.2.2 Behavior

Developing the behaviors is usually the most difficult
task. Often, behaviors are specified using scripting
languages (Flanagan 2001 and Gutschmidt 2003) or
programmed by means of traditional languages like Java
or C/C++. Nevertheless, some authoring tools allow
modeling the behavior directly using scripting languages.
This means that the developer still needs to know these
scripting languages. Furthermore to create realistic
behaviors, physics engines need to be used. This also
increases the complexity of a VR application.

2.2.3 Interaction
Interaction can happen in two different ways. The first
way concerns the interaction between objects. When an
interaction happens, the objects can then perform certain
behaviors triggered by the interaction. For instance, after
an object has collided with another object, its shape (or its
color) could change. For this, it is important to have
collision detection. As the supported collision detection
algorithm is not always very accurate, the developer may
need to extend it or find ways to improve it. The second
way of interaction concerns the interaction between the
end-user and the objects. The software programming
libraries usually support programming user interactions.

2.2.4 Navigation

Nowadays, virtual worlds can be very large. Therefore, it
is important to consider how the user can navigate inside
the virtual world without being lost in the virtual world.
There are different ways to deal with navigation (e.g.,
tour guides), but to realize them the developer usually
needs to have good programming skills and VR
knowledge.

2.2.5 Conclusion and Reflections

Although there are quite a number of tools to help a
developer to build a VR application, until now, the
general problem with these tools and formats is that they
are made for VR specialists or at least for people having
programming skills and background in computer graphics
or VR. The problem is that the VR application one wants
to create must be expressed in terms of (combinations of)
low-level building blocks of the VR technology. In
addition, there is also no well-accepted development
method for VR. Most of the time, a VR-expert meets the
customer (often the application domain expert), and tries
to understand the customer’s requirements and the
domain for which the VR application is going to be built.
After a number of discussions, some sketches are made
and some scenarios are specified. Then, the VR-expert(s)

start to implement. In other words, the requirements are
almost directly translated into an implementation. This
way of working may result into a number of problems
due to the VR-expert being not familiar with the
application domain. The VR-expert may lose a lot of time
to get acquainted with the domain. Usually, the first
implementation of the VR application often presents
many shortcomings and usually does not match all the
expectations and requirements of the customer. For this
reason, several iterations are usually needed before the
result reaches an acceptable level of satisfaction for the
customer. Therefore, the development process is time
consuming, complex and expensive. In fact, the process
of building a VR application can be compared to the
situation in the domain of databases in the early 70s when
developing a database was also not an easy task and
required technically skilled people. It was only after the
introduction of the Relational Model as an abstraction
layer on top of the physical database structures, and the
introduction of Conceptual Modeling techniques (such as
ER and NIAM), which closed the gap between the
application domain and the implementation, that the
domain of databases became more accessible to a wider
audience.

Therefore, like for other domains, introducing a
Conceptual Design phase in the development process of a
VR application can help the VR community in several
ways. As Conceptual Modeling will introduce a
mechanism to abstract from implementation details, it
will reduce the complexity of developing a VR
application and it avoids that people need a lot of specific
VR knowledge for such a Conceptual Design phase.
Therefore, also non-technical people (like the customer or
the end-user) can be involved and this will improve the
communication between the developers and the other
stakeholders. In addition, by involving the customer more
closely in the design process of the VR application,
earlier detection of design flaws is possible. And finally,
if the conceptual models describing the VR system are
powerful enough, it may be possible to generate the
system (or at least large parts of it) automatically (cf.
Model-Driven Architecture (MDA) of the Object
Management Group (OMG 2007)).

3 Limitations of Existing Conceptual
Modeling Techniques

Several general-purpose conceptual modeling languages
exist. Well-know languages are UML (Fowler and Scott
1999), ER (Chen 1976) and ORM (Halpin 2001). ER and
ORM were designed to facilitate database design. Their
main purpose is to support the data modeling of the
application domain and to conceal the more technical
aspects associated with databases. UML is broader and
provides a set of notations that facilitates the development
of a complete software project. However, these existing
Conceptual Modeling techniques are too limited for
modeling a VR application in an appropriate way.

To a certain extend, ORM and ER could be used to model
the static structure of a VR application (i.e. the scene and
the objects), however, both are lacking modeling
concepts in terms of expressiveness towards VR

modeling. For example, they do not have built-in
modeling concepts for specifying the position and
orientation of objects in the scene or for modeling
connected objects using different types of connections.
Although, it is possible to model these issues using the
existing modeling primitives, this would be tedious. E.g.,
each time the modeler would need a particular connection
he would have to model it explicitly, resulting in a lot of
“redundancy” and waste of time. In addition, the models
constructed in this way would not be powerful enough to
use them for code generation because the necessary
semantics for concepts like connections would be lacking.
Furthermore, neither ORM nor ER provides support for
modeling behavior.

UML is more expressive than standard ORM and ER
since it offers a number of diagram types to model the
system dynamics. In principle, UML can be used to
model a VR application. For example, the static part (the
scene and the objects) can be modeled using class
diagrams; the behavioral part by means of state chart
diagrams; and the interaction can be described using the
sequence diagrams. But again, although UML can be
used to model a VR application from a software
engineering point of view, it is also lacking
expressiveness for VR modeling. However, in contrast to
ORM and ER, UML offers the concept of stereotype to
add new modeling primitives. A stereotype is a new type
of modeling element that extends the semantics of the
meta model. Stereotypes must be based on existing types
or classes in the meta model. So, stereotypes allow
extending the vocabulary of modeling concepts of UML.
Extensions made by means of stereotypes will appear as
basic building blocks in UML. So actually, they can be
seen as first class citizens of UML. In principle, we could
use these stereotypes to define the modeling primitives
lacking for VR. However, these stereotypes also have
some disadvantages. As stated by Berner, Glinz, and Joos
(1999), stereotypes increase the complexity of the
language. In addition, it is not clear if the concept of
stereotype will be powerful enough to define all the
modeling concepts needed and use them for code
generation. UML also contains much more core concepts
than needed for our purpose. Furthermore, the use of
UML would also force the use of its modeling paradigm.
It is our opinion, that for certain aspects of VR, this
would not be the best solution. If we want to make VR
more accessible for non VR-experts and in particular for
application domain experts, we should carefully watch
the intuitiveness of the conceptual modeling approach
taken. The modeling approach of UML is very close to
the way software is implemented by means of OO
programming languages.

As current modeling languages are too limited for our
purpose, we either need to extend them or we should
define a new one. We have opted for the last solution
because this provides more freedom in the development
of the modeling concepts. However, it is clear that a lot of
the modeling concepts used are not new and inspired by
concepts for other modeling approaches.

4 A Conceptual Modeling Approach for VR
Development

To facilitate and shorten the development process of VR
applications we propose to introduce an explicit
conceptual design phase in the development life cycle of
a VR application. During this conceptual design phase,
conceptual specifications (so-called conceptual models)
are created. Such a conceptual specification will be a
high-level description of virtual world, the objects inside
the virtual world, the relations that hold between these
objects and how these objects behave and interact with
each other and with the user. These conceptual
specifications must be free from any implementation
details and therefore the approach should offer a set of
high-level modeling concepts (i.e. a modeling language)
for building these conceptual specifications. In addition,
we require that these modeling concepts are very
intuitive, so that they can be used, or at least be
understood, by different stakeholders. This means that the
vocabulary used, should be familiar to most of its users. If
we also opt for a model-driven approach, the expressive
power of the different modeling concepts must be
sufficient to allow using the resulting models as input for
an automatic implementation phase.

VR-WISE (Virtual Reality – With Intuitive
Specifications Enabled) (De Troyer et al. 2003 and Bille
et al. 2004) is such a conceptual model-based approach
for VR-application development. Figure 1 illustrates the
VR-WISE development process. Since the gap between
the conceptual level and the implementation level is too
large to be bridged in one single step, the development
process is divided into three main phases, the conceptual
specification phase, the mapping phase and the
generation phase. Note that the sequential order as
showed in the figure only shows the main process flow.
In practice, the process will be iterative. One can do part
of the conceptual specification, part of the mapping,
invoke the generation and then go back to the
specification to complete or correct it until everything is
specified and the result is satisfying. We will explain each
phase briefly in the following sub sections.

Figure 1: VR-WISE development process

4.1 The Conceptual Specification Phase
During the conceptual specification step the designer can
specify the virtual world at a high-level using the intuitive
modeling concepts offered by the VR-WISE approach.
The specification consists of two levels since the
approach follows to some degree the object-oriented
paradigm.

The first level is the domain specification. The domain
specification describes the concepts of the application
domain needed for the virtual world (comparable to
object types or classes in OO design methods). It also
describes possible relations that may hold between these
concepts. In the urban domain, the domain specification
could contain concepts such as car, street, road sign,
streetlight, building, and owner and relations such as ”a
building has an owner” and “a streetlight is located on a
street”. Concepts may have properties (attributes). Next
to properties that may influence the visualization of the
concepts (such as height, color, and material) also non-
visual properties like the rent, and the function of
building can be specified.

For VR applications behavior is an important feature.
E.g., for an urban designers application it may be
necessary to allow adding, removing and replacing road
signs, rescaling and repositioning streets, and simulate the
working of the streetlights by simulating some traffic.
Therefore the conceptual specification phase also
contains the behavior specifications.

The second level of the specification is the world
specification. The world specification contains the
conceptual description of the actual virtual world to be
built. This specification is created by instantiating the
concepts given in the domain specification. These
instances actually represent the objects that will populate
the virtual world. In the urban example, there can be
multiple street-instances and multiple building-instances.
Furthermore, behaviors specified at the domain level are
assigned to objects and it is specified how these behaviors
can be triggered (e.g., by means of a user interaction, a
collision detection, or a time event).

In principle no or little knowledge about VR is needed to
perform this phase.

Some of the modeling concepts devised to support this
conceptual specification step are described in section 5.

4.2 The Mapping Phase

The purpose of the mapping step is to bridge the gap
between the conceptual specifications and the
implementation. Appealing visualizations and graphics
are very important in the field of VR, therefore it is
necessary to allow describing how the objects should be
visualized in the virtual world. Similar as for the
conceptual specification step, this is done at two levels. In
the domain mapping, the designer specifies how the
concepts from the domain specification should be
visualized by means of VR implementation concepts or
existing 3D models. For example, in a simple world a
building could be mapped on a box indicating that it
should be visualized as a box, but for a more demanding
application a building could be mapped onto a 3D model
of a building created by means of an authoring tool such
as 3D Studio Max (Murdock 2002). The purpose of these
mappings is to specify defaults for the visualization of the
instances of the concepts in the virtual world. Although
instances may be of the same concept, they may in some
case require a different representation in the virtual
world. Therefore the world mapping allows the designer

to override these default mappings for specific instances.
For example, you may want to have different
representations for some (or all) of the building instances.

For this phase, the help of a VR-specialist may be needed,
especially when 3D models need to be created or non-
trivial mappings are needed.

Because the mapping phase is outside the scope of this
paper, we will not elaborate on this step further on. More
information can be found in (De Troyer et al. 2007).

4.3 The Generation Phase
During this step the actual source code for the virtual
world is generated. This means that the conceptual
specifications are converted into a working application by
means of the mappings given during the mapping phase.
In principle, different VR implementation languages can
be supported. The current tool supporting VR-WISE
allows generating X3D. Also this phase is outside the
scope of the paper and will not be described further on.
For more detail on this, we refer to (Pellens, 2007a).

5 Conceptual Modeling Concepts
In this section, we will describe a number of the modeling
concepts that have been developed in the context of VR-
WISE to model VR-applications. As common for
conceptual languages, the modeling concepts also have a
graphical notation, which we will also provide. First we
describe modeling concepts for specifying the static
structure of a virtual world, next we deal with the
modeling of behavior.

5.1 Modeling the Static Structure
As already indicated, we distinguish between concepts
and instances. A concept represents an object type from
the application domain that is relevant for the VR-
application. A concept can have a number of visual as
well as non-visual properties, which can be given default
values. A concept is graphical represented as a rectangle
containing the name of the concept (see Figure 2a). The
properties can be specified using the extended graphical
notation (illustrated in Figure 2b).

Figure 2: Example of a concept

The VR-objects in the actual virtual world are modeled as
instances of concepts. In this way an instance inherits all
the properties defined for the concept. Graphically,
instances are represented as an ellipse containing the
name of the concepts and the name of the instance
separated by a colon (see Figure 3).

Figure 3: Example of an instance

Many of the modeling primitives that we will introduce
are applicable to concepts as well as for instances. If this
is the case the term object will be used.

In VR application, many objects are in fact assemblies of
other objects like a human, which is an assembly of a
head, 2 arms, 2 legs and a body. Therefore, we
distinguish between simple objects and complex objects.
In section 5.1.3, we will deal with issues related to the
modeling of complex objects and explain some of the
modeling primitives introduced for modeling them.

Another important aspect that needs to be modeled for a
VR application is the scene. The scene contains the VR-
objects. These objects have a position and an orientation
in the scene (defined in a three-dimensional coordinate
system). To model this we have introduce spatial and
orientation relations. We explain these modeling
concepts in section 5.1.1 and 5.1.2.

5.1.1 Spatial Relations

Although it is possible to specify the position of the
instances in a scene by means of exact coordinates, we
found it useful to provide a more intuitive way to do this.
If you want to explain to somebody how your room looks
like, you will not do this in term of coordinates. Instead
you will say that “your bed is in front of the window,
your desk is left of your bed, and at the right side of your
bed there is a carpet on the floor”. In such an
explanation, spatial relations are used to describe the
space. As spatial relations are also used in daily life, they
provide a good intuitive way to specify a scene. Note that
although the use of spatial relations may be less exact
than coordinates, they are exact enough for a lot of
applications. A spatial relation specifies the position of
an object relative to some other object in terms of a
direction and a distance. The following directions may be
used: “left”, “right”, “front”, “back”, “top” and “bottom”.
These directions may be combined. However, not all
combinations make sense. For example, the combined
direction ”left top” makes sense, but ”left right” doesn’t.
Spatial relations can be used in the domain specification
as well as in the world specification. In the domain
specification, the spatial relations are used between
concepts and specify default positions for the instances of
a concept.

A spatial relation is graphically represented by a rounded
rectangle (the general symbol for a relation) containing an
icon indicating that the relation is a spatial relation.
Below this icon the actual information for the spatial
relation is specified: the direction and the distance. The
graphical notation is illustrated in Figure 4, which
expresses that the instance myCar (of the concept Car) is
3 meters in front of myHouse (which is an instance of
House). Note that the spatial relation symbol is connected
to the objects by means of an arrow. The direction of the
arrow indicates that the instance myCar is in front of the
instance myHouse and not vice versa. The direction of the

arrow actually indicates the reading direction: myCar is in
front of myHouse.

Figure 4: Example of a spatial relation

5.1.2 Orientation Relations

In VR, it is also necessary to indicate how objects are
oriented. We can distinguish two types of orientations for
an object: an internal orientation and an external
orientation.

The internal orientation of an object is used to specify
which side of the object is defined as the front, back, left,
right, etc. The internal orientation is actually defined by a
rotation of the local reference of the object around some
of the axes of the default reference frame. This principle
is illustrated in Figure 5. Figure 5(a) shows the default
internal orientation of an object. In Figure 5(b), an
internal orientation of 45 degrees counterclockwise
around the front axis is illustrated. Note that the object
itself is not rotated. Actually we only have redefined the
left-right and top-bottom sides of the object.

Figure 5: (a) Default internal orientation; (b) Non-
default internal orientation

The external orientation of an object is used to rotate the
object itself. This means that an object will be rotated
around some of the axes of its reference frame and this
will be visible in the virtual world. The external
orientation is illustrated in Figure 6. Figure 6(a) shows
the default orientation of an object while Figure 6(b)
shows an external orientation with a rotation of 45
degrees counterclockwise around the front axis. As we
can see, the concept itself has now been rotated.

Figure 6: (a) Default orientation; (b) Non-default
orientation

The internal orientation of a concept or instance can be
specified by means of properties. To specify an external
orientation different from the default one, we use
orientation relations. There are two types of orientation
relations. The first type, orientation by side relation, is

used to specify the orientation of an object relative to
another object. It specifies which side of an object is
oriented towards which side of another object. E.g., in
Figure 7, it is specified that the instance myCar is
oriented with its right side towards the front side of the
instance myHouse. Also here, the direction of the arrow
is important and indicates the reading direction.

Figure 7: Example of an orientation-by-side relation

The second type of orientation relation is the orientation
by angle relation. This relation can be used to specify that
an object is rotated around some axis of its local reference
frame over a certain angle. Figure 8 illustrates the
graphical notation for this modeling concept. It states that
the external orientation of instance myCar is given by
means of a rotation of 45 degrees around its top-to-
bottom axis.

Figure 8: Example of an orientation-by-angle relation

5.1.3 Modeling Complex Objects

So far, we have seen how to specify simple concepts and
instances and how to specify their position and their
orientation. However, very often it is necessary to reflect
in the virtual world that the VR-object is an assembly.
Usually, all components of such an assembly should keep
their own identity and it should be possible to manipulate
them or let them behave individually as far as this should
be allowed. E.g., a human avatar in a virtual world should
be able to move his arm in the same way that the arm is
limited to move for a human being. To model this, we use
complex objects. Complex objects are defined using
simple and/or other complex objects. They are composed
by defining a connecting between two or more simple
and/or complex objects. The connected objects are called
components. In the virtual world, all components will
keep their own identity and can be manipulated
individually within the limits imposed by the connection.
In VR, in general, different types of connections are
possible. The type of connection used, has an impact on
the possible motion of the components with respect to
each other. We explain this in more detail. Normally an
object has six degrees of freedom, three translational
degrees of freedom and three rotational degrees of
freedom. The translational degrees of freedom are
translations along the three axes of the coordinate system
while the three rotational degrees of freedom are the
rotations around these three axes. Different types of
connections will restrict the degrees of freedom in

different ways. Therefore it is important to be able to
model different types of connections. This is done by
means of connection relations. We will present the
connection point relation, the connection axis relation,
and the connection surface relation.

For other modeling concepts developed to deal with
complex objects (such as e.g., position and orientation of
complex objects, instantiation of complex concepts, roles,
and connectionless complex objects), we refer to (Bille
2007).

Connection Point Relation

The connection point relation allows modeling that two
components of a complex object are connected to each
other over a center of motion. In the real world we can
find many examples of physical objects connected over a
center of motion like the connection of the arm to the
torso in a human body. A center of motion means that in
the VR representation of both connected components
there is somewhere a point that needs to fall together
during the complete lifetime of the connection. We call
this point the connection point. Connecting two objects
over a center of motion removes all three translational
degrees of freedom of the objects with respect to each
other.

To specify a connection point relation between two
objects we have to specify the connection point on each
object. The position of a connection point is specified
relative to the position of the object (which is given by
the position of the middle point). This can be done using
the spatial relations introduced in section 5.1.1. For
example, the designer can specify that the connection
point lies 3 centimeters left of the positioning point. Also
here directions may be combined when they make sense.

Figure 9: Example of a connection point relation

In Figure 9, the graphical notation for a connection point
relation is illustrated. It specifies that a Handle is
connected to a Base by means of a connection point
relation. The Handle is called the source of the
connection and the Base is target (indicated by the
direction of the arrow). The connection points for the
source (S) and the target (T) are specified using a simple
script language in the extended version of the notation. In
this example, the connection point of the Handle is 4
units from the positioning point of the Handle towards the
bottom, and the connection point of the Base is 2 units
backwards and 2 units towards the top from the
positioning point of the base. In addition, the scripting
language allows specifying a number of properties for the
connection, such as the stiffness. The properties are
specified by means of intuitive terms rather than by exact

values. E.g., possible values for the stiffness are “soft”,
“medium”, and “hard”. In the example, the value “soft”
has been used.

Connection Axis Relation

A second way to connect two objects is over an axis of
motion. Again a lot of examples of this connection type
can be found in the real world. Some examples are a
wheel that turns around a certain axis; a door connected
to a wall, which opens around a certain axis; the slider of
an old-fashioned typing machine that moves along a
certain axis. Actually, a connection over an axis of
motion means that the displacements of the connected
objects with respect to each other, is restricted to the
movement along or around this axis. The axis of motion
is called the connection axis. A connection by means of a
connection axis removes four degrees of freedom leaving
only one translational degree and one rotational degree of
freedom.

To specify a connection axis relation between two objects
we have to specify a connection axis for each object.
These two axes need to fall together during the complete
lifetime of the connection. Such an axis can be defined as
the intersection between two planes. To facilitate this,
through each object three planes are pre-defined. These
are the horizontal plane (defined by the front-to-back and
the left-to-right axes, see Figure 10(a)), the vertical plane
(defined by the front-to-back and the top-to-bottom axes,
see Figure 10(b)), and the perpendicular plane (defined
by the left-to-right and the top-to-bottom axes, see Figure
10(c)). A connection axis is defined as the intersection
between two of these planes. The three predefined planes
can also be translated or rotated which allows more
possibilities to define an axis.

Figure 10: (a) The horizontal plane; (b) The vertical
plane; (c) The perpendicular plane

Next to defining the connection axes, it is also necessary
to give the initial positions of both components. For this
we use translation points. A translation point is defined
as the orthogonal projection of the middle point (or
position) of the component onto its connection axis. By
default, the components will be positioned in such a way
that the connection axis falls together as well as the
translation points. Note that the designer can also specify
that the objects should be first translated along the
connection axis (details are omitted here; they can be
found in (Bille 2007)).

Figure 11 shows an example of two concepts, a Door and
a DoorPost, connected to each other by means of a
connection axis. Similar as for the connection point
relation, there is a source and a target. Also for this
relation, the details are given in the extended version of

the graphical notation by means of the scripting language.
The connection axis for the Door, the source, is specified
by a translation of the vertical plane over half of the
width of the Door (width has been defined as a property
of Door) to the right and the perpendicular plane over half
of the depth of the Door (depth being also a property of
Door) to the front. The connection axis for the DoorPost,
the target, is specified by a translation of the vertical
plane over half of the width of the DoorPost (property) to
the left and the perpendicular plane over half of the depth
of the DoorPost (also a property of DoorPost) to the front.
The translation points are not mentioned, which means
that the defaults should be used. The stiffness attribute of
the connection axis relation is set to “medium”. The
specification of the connection axis is visually illustrated
in Figure 12.

Figure 11: Example of a connection axis relation

Figure 12: Illustration of a connection axis relation

Connection Surface Relation

A third way to connect two objects to each other is over a
surface of motion. A real world example of this type of
connection is a boat on a water surface. The boat should
be able to float on the water surface. However, its bottom
surface should stay inside the water surface. A surface of
motion means that there is a surface along which the
connected objects may move. This connection removes 3
degrees of freedom. The degrees of freedom possible in
this case are the two translational degrees of freedom in

the directions of the surface and one rotational degree
around the axis perpendicular to the surface. This is
illustrated in Figure 13. The surface of motion is called
the connection surface.

This kind of connections can be specified by means of the
connection surface relation. To specify a connection
surface relation, a connection surface on both components
should be specified. The connection surfaces of both
objects will need to fall together during the complete
lifetime of the connection. For specifying these
connection surfaces, the same pre-defined planes as
mentioned for the connection axis relation, namely the
horizontal plane, the vertical plane and the perpendicular
plane, are used. However, now the designer should select
only one of these planes. This plane can be translated and
rotated to arrive at the desired connection surface. Similar
as for the connection axis relation, it is also necessary to
specify the initial position of both components along the
connection surface by means of translation points. By
default, the translation point of a component is the
orthogonal projection of the middle point (position) of the
object on its connection surface. The components will be
connected in such a way that the connection surfaces as
well as the translation points fall together. Also for a
connection surface relation, the default translation points
can be changed by means of translations (see again (Bille
2007)).

Figure 13: Degrees of freedom for the connection
surface relation

Figure 14 illustrates the use of a connection surface
relation to model the example of the boat on a water
surface. The connection surface for the Boat object is
defined as the horizontal plane translated 3 units towards
the bottom of the Boat; the connection surface for the
WaterSurface is also the horizontal plane. As the Water
Surface is a plane itself, there is no need to translate this
horizontal plane. Figure 15 shows a possible outcome of
the specification given in Figure 14. This connection
allows a Boat-instance to move freely on the Water
Surface (represented as a blue plane).

Figure 14: Example of a connection surface relation

Figure 15: illustration of a connection surface relation

5.1.4 Constraints

Next to specifying the objects of the scene, their position
and orientation in the scene, and the way complex objects
are composed, it may be necessary to further constraint
the specifications. This is done by means of so-called
constraints.

As explained in section 5.1.3, a connection relation
already imposes an implicit constraint on how the
components can move. However, this may not be
sufficient for realistic worlds. For example, consider
again the example of the door and the doorpost. By using
the connection axis relation, their motion is constrained to
one translational degree and one rotational degree of
freedom, but in reality a door cannot move along the
doorpost and the angle over which the door can rotate is
limited. To further restrict the movement, constraints are
used. So far, a number of declarative types of constraints
have been defined. They are based on metaphors to make
it easy for non VR-skilled people to understand them.
Some examples are the hinge constraint, the slider
constraint and the joystick constraint. The hinge
constraint can be defined on top of connection axis
relation to restrict the motion to a rotation around the
connection axis. Furthermore, the rotation can be limited
by indicating how much the components may rotate
around the connection axis in the clockwise as well as in
the counterclockwise direction. Figure 16 illustrates a
hinge constraint for the door example. The constraint
specifies that from the initial position (the closed door),
the Door can be pulled 90 degrees but cannot be pushed.
Note that the metaphor is also used in the graphical
notation.

Figure 16: Example of a hinge constraint

The slider constraint is also specified on top of a
connection axis constraint and restricts the motion to a
move along the connection axis. It is also possible to
indicate limits for this movement.

The joystick constraint restricts the motion of two
components connected by means of a connection point
relation to a rotation around two perpendicular axes
through the connection point. A joystick constraint can
also have limits indicating how much the components
may rotate around the axes in the clockwise and in the
counterclockwise direction.

So far, we have only considered constraints on objects
that are physically connected. However it may also be
necessary to constrain the motion of objects that are not
physically connected. For example when simulating a
magnetic field between two objects, the way the objects
can move should be restricted, or we may want to enforce
that a coffee cup can only be placed on a saucer. Some of
these situations may occur quite often in virtual worlds.
Therefore, a number of declarative constraints have been
defined to cover these situations. Examples are: the fixed
relative position constraint, the fixed relative orientation
constraint and the positioning constraint. The fixed
relative position constraint states that the initial relative
position between two objects should be maintained
during the complete lifetime of the objects, while for the
fixed relative orientation constraint the initial relative
orientation of two objects should be maintained. The
positioning constraint allows restricting the positioning of
objects by defining an anchor and binding areas for
objects. More information on these constraints can be
found in (Bille 2007).

5.2 Modeling Behavior

As mentioned earlier, in current VR approaches behavior
is often specified directly using some scripting language.
For our conceptual modeling approach, we also have
taken a model-driven approach, meaning that high-level
models are used to describe the behaviors and these
models should be detailed enough to enable the
generation of code. This means that also for describing
behavior a number of high-level and intuitive modeling
concepts are needed.

Most model-based approaches encountered in the related
work (see section 7) use state-machines as the underlying
model for describing behavior of objects. The
descriptions are then based on the different states the
object can be in during their lifetime. Our behavior
modeling approach uses a different approach, which we
call action-oriented because the approach is based on the
different actions that an object may undertake throughout
the lifetime of the application rather than on the states an
object can be in.

A traditional animation process uses transformation
operations for modifying the numerical data describing
the objects in space. These transformation operations are
represented by matrices or quaternions. Although
modeling tools allow manipulating these transformations
through more friendly user-interfaces, it still requires
background knowledge in mathematics to correctly create
such transformations. Our approach tries to provide a
higher level of abstraction by uses more intuitive actions
instead of transformations. When an animation is
specified by means of a number of transformations, then

these transformations need to be set correctly throughout
time. These transformations are usually not only
sequential but are often related to each other in a more
complex way. One of the most difficult aspects for
creating compelling behaviors is this time setting.
Therefore, we have provided a number of modeling
concepts that allow intuitive timing of the actions.

Furthermore, to reduce the complexity and to enhance
reusability, the modeling of behavior is divided into two
separate steps: the Behavior Definition and the Behavior
Invocation.

The first step, the behavior definition, allows defining
different behaviors. It should be noted that the actual
specification of the behaviors is separated from the
specification of the concepts and the instances that will
have the behavior, as well as independent of how the
behavior will be triggered. This improves reusability of
behaviors and enhances flexibility as the same behavior
definition can be used for different objects and/or can be
triggered in different ways (e.g., by different user
interactions or by collision with other objects). The
binding of behavior to objects is done in the second step,
the behavior invocation. Furthermore, in this second step
it is also specified how the behaviors assigned to objects
may be invoked, i.e. the events that may trigger them.
We will now discuss the most important modeling
concepts for each of these steps.

5.2.1 Behavior Definition

To separate the definition of the behaviors of an object
from the definition of the static properties of the object,
the concept of actor is used. An actor is used as a
placeholder for an object when specifying behavior. It is
also used to specify the minimal set of static properties
that an object needs to have for the behavior. Later on, in
the Behavior Invocation, a behavior can be assigned to an
object when it has at least this minimal set of properties.

We distinguish between primitive behaviors and
composite behaviors. We first discuss primitive
behaviors; next composite behaviors. We mainly focus on
the available modeling concepts. Note that most modeling
concepts can be complemented with scripts to specify
more details or to model more advanced behaviors.
However, this script language is out of the scope of the
paper. We refer to (Pellens 2007a) for this.

Primitive Behaviors

To express primitive behavior, a number of modeling
concepts, called actions, representing these behaviors
have been defined. They represent behavior that perform
changes at the object level, such as Move (to change the
position of an object), Roll (to specify a rotation of an
object around its top-to-bottom axis), Turn (to express a
rotation of an object around either its left-to-right axis
and/or its front-to-back axis), Resize (to resize an object),
Position (to specify a specific position for an object),
Orientate (to specify a specific orientation for an object),
and Transform (to specify a change in the appearance of
an object (at runtime)). An example is given is given in
Figure 17. The graphical representation of a behavior is a

box. The box is connected to at least one actor (for which
the behavior is defined), but other actors way also be
attached to the behavior if needed (see later on). An icon
represents the type of behavior; in the example we see a
an actor “Bus” has a move behavior with a combined
direction, forward and left, over a distance of 100 meters;
note that the direction of the move and the distance are
also specified. The direction can have one of the values:
“left”, “right”, “forward”, “backward”, “up”, and “down”.
It is also possible to combine directions, e.g., “forward-
left”. Additional parameters are possible, e.g., the speed
of the movement. For an elaborated discussion on these
modeling concepts see (Pellens et al. 2007b or Pellens
2007a).

Figure 17: Example of a primitive behavior

There are also modeling concepts for behaviors that have
an influence on the structure of the overall scene, such as
Construct (to specify the creation of a new object at
runtime), Destruct (to specify that an object should be
removed from the scene), Ungrouping (to assemble
objects into a complex object at runtime), Grouping (to
disconnect the components of a complex object at
runtime), Disperse (to specify that at runtime an object
can be broken into and replaced by a number of new
objects), Combine (to specify that at runtime some object
can be combined into and replaced by a single new
object). An example is given in Figure 18. A disperse
behavior, BreakShelve, is specified. It specifies the
behavior where a Shelve (the actor for which the behavior
is defined) will be broken resulting in two new objects,
namely a ShelvePiece and a RightSupport (modeled as
output actors). The ShelvePiece will be positioned 1 cm
left-of the RightSupport (expressed by a spatial relation in
the middle part of the box). More details on these
modeling concepts can be found in (Pellens et al. 2006 or
Pellens 2007a).

Figure 18: Example of a disperse behavior

Composite Behaviors

Different behaviors can be combined to form a so-called
composite behavior. It allows defining more complex
behaviors and also provides an abstraction mechanism.
The concept of operator is used to compose behaviors.
Four different kinds of operators are introduced, the

temporal operators, the lifetime operators, the
conditional operator and the influential operator.

Temporal operators provide a more intuitive way for
specifying time-dependencies between behaviors than the
typical key frame animation methods found in most VR
modeling tools. They allow synchronizing behaviors. The
temporal operators proposed are based on the binary
temporal relations defined in (Allen 1991). However,
some adaptations were needed in order to completely
specify temporal relationships between behaviors. The
operators supported in our approach are before (inverse
after), meets (inverse met-by), overlaps (inverse
overlapped-by), during (inverse contains), starts (inverse
started-by), ends (inverse ended-by), and equals. In the
graphical notation, an operator is drawn as a rectangle
with rounded corners containing an icon that indicates the
type of operator. The operator is connected to the
behaviors involved by single solid lines. The arrow
indicates the reading direction. In Figure 19, an example
of a temporal operator is given. It specifies that a moving
action of 5 meters in the forward direction needs to
happen 5 seconds before a turning action of 90 degrees to
the right.

Figure 19: Example of a temporal operator

Sometimes, it must be possible to prohibit some behavior,
or to put a behavior on hold and resume it afterwards.
Therefore lifetime operators allow the designer to
describe that one behavior controls the lifetime of other
behavior(s). The following lifetime operators are
supported: enable, disable, suspend, and resume. Figure
20 specifies that the execution of the UnlockDoor
behavior will enable the OpenDoor behavior (which has
been disabled in some way).

Figure 20: Example of a lifetime operator

Furthermore, the conditional operator can be used to
control the execution of behaviours by means of
conditions. The influential operator can be used to
indicate inter-relationships of the behaviors. It allows
specifying how the behavior of one object can influence
the behavior of another object. The use of the influential
operator is very useful when modeling mechanical
devices e.g., gears, belts and pulleys. For example, in a
rack-and-pinion gear (which converts a rotation into a
linear motion), the pinion is rotating and this rotation
engages the movement of the rack respectively according
to a given ratio (e.g., x = 3/4 y).

5.2.2 Behavior Invocation

As explained before, the definition of behaviors is
independent from the specification of the actual objects in
the scene. In the Behavior Invocation diagrams, behaviors

are assigned to objects. Furthermore, they are also used to
denote the events that may trigger the behaviors of the
particular objects.

Behaviors are attached to an object by associating the
object with the actor(s) for which these behaviors were
defined. To specify when the behaviors can be invoked,
the concept of event is used. We distinguish between
context-events, time-events, user-events, and object-
events.

The context-events enable the designer to specify the
context (or situation) in which a behavior of an object
needs to be invoked e.g., when the temperature goes
beyond 25 degrees Celsius. A context is defined as a
condition on some entities. Entities are objects, users, or
the virtual world itself, considered to be relevant for the
behavior in question.

A time-event allows the designer to specify the moment
in time that the behavior needs to be triggered. This can
be a relative time representing the time that has to pass
counted from the start of the simulation; an absolute time;
or a time schedule given by a duration and an optional
from and to clause, for example: “1min FROM 13:00 TO
14:00” to indicate ”every minute between 1 and 2 PM”.

Using a user-event, the designer can specify that the
behavior for an object needs to be triggered when some
user interaction occurs. The following user-events are
supported: OnSelect (when the user selects the object, i.e.
it is clicked with the mouse or selected through another
selection technique), OnTouch (when the user has the
mouse or any other pointing device over the object),
OnVisible (when the user can see the object), OnProxy(p)
(when the user has entered a particular perimeter p
around the object), and OnKeyPress(k,m) (when a
particular key-combination, given by a key k and a mask
m, is pressed on the keyboard). Next to these predefined
user actions, also custom-made actions can be defined
which allow behaviors to be triggered as a reaction on
more complicated user interaction techniques (e.g., using
menus, dialogs).

The last type of event, the object-event represents the
event that is fired when two (or more) objects in the
virtual world interact with each other. Two types of
object events are distinguished. The collision-event
allows reacting to the situation where an object
encounters an obstacle in the form of another object, i.e.
when a collision between two objects occurs. The
constraint-event allows reacting when the limit of a
particular constraint has been reached, or when a
constraint has been violated.

An example of a Behavior Invocation diagram is given in.
It specifies that the BusManoeuvre behavior is attached to
the object bus1 and should be triggered by means of
pressing a key.

Figure 21: Example of a behavior invocation diagram

More details about behavior invocation can be found in
(Pellens et al. 2007b or Pellens 2007a).

6 Towards Semantic Virtual Worlds

Although VR-applications are becoming visually
appealing, they often lack any kind of semantics, i.e.
extra, non-visual information about the virtual world and
its objects (Martinez and Delgado Mata 2006). Usually,
the information associated with a virtual world is limited
to low-level information such as the type of geometry, the
size and material. Furthermore, if any information is
added to a virtual world, then this is often done after the
virtual world has been created. This again increases the
development time and cost of a VR application.

The information that is added to some media to enrich it
is nowadays called semantic annotations. Semantic
annotations are especially important in the context of the
Semantic Web because they make the content of the Web
machine-processable and enable computers and people to
work in cooperation. Similar as for Websites, semantic
annotations can be added to virtual worlds and to their
objects. This is not only useful for making the content
machine-processable, in the context of VR, semantic
annotations are also very important to increase the
usability of the virtual world and/or to adapt the virtual
world to a particular task or user (as discussed by
Kleinermann et al. (2007)). In particular, semantic
annotations are very important for application domains
where providing information is a major concern (e.g.,
Virtual Museums).

By the introduction of a conceptual modeling phase in the
development process of a virtual world, it is possible to
have semantic annotations automatically included in the
virtual world. In VR-WISE, we have achieved this by
using domain ontologies during the conceptual
specification phase (Kleinermann et al. 2005 and De
Troyer et al. 2007). A domain ontology is used to capture
the concepts needed from the domain under
consideration. As discussed in section 5.1, next to the
visual properties needed to be able to generate the virtual
world, the designer can add extra (domain-oriented)
properties to concepts, instances, and behaviors. These
are captured in the domain ontology. During the
generation phase they are used to automatically generate
semantic annotations or incorporate semantics directly
into the virtual world. This semantic information may
enhance the usability of the VR application. For instance,
a search engine can exploit the semantic information by
allowing more powerful and domain-oriented queries
How this can be achieved is described in (Kleinermann et
al. 2005 and De Troyer et al. 2007). Also inside the
virtual world domain specific semantic information can
be provided to the end-user (e.g., when clicking on an
object or when approaching the object).

7 Related Work
The lack of high-level design methodologies for VR has
also been addressed in (Tanriverdi and Jacob 2001) with
the presentation of VRID (Virtual Reality Interface
Design). In their paper, four key components when

developing VR interfaces are identified: object graphics,
object behaviors, object interactions and object
communications. The VRID methodology divides the
design process into a high-level and a low-level phase
and uses a set of steps to formally represent the
environment. Although this methodology helps the
developer to split the design into different steps and then
refine them, it still does not allow the developer to
express the design using domain terminology and
relations. The low-level phase forces the designer to deal
with low-level issues, which can be difficult and too
complex for non-experienced designers.

The Virtual Environment Development Structure (VEDS)
described in (Wilson 2002) is a user-centered approach
for specifying, developing and evaluating VR
applications. The main aim of this approach is to guide
the designer in its design decisions in such a way that
usability, likeability and acceptability are improved. This
will eventually lead to a more widespread use of VR.
With VEDS, the domain for which the VR application is
developed is really integrated into the design stage.
VEDS has a conceptual phase before the real
development of the VR application. During that phase,
the actual VR application is specified at a high level
making balanced decisions on the goals that were set up
at the beginning of the process. This specification is used
by the developers to build the VR application.
Furthermore, there is also a sort of iterative loop in which
the design of the VR application is refined step by step
until it meets the customer's expectations. Nevertheless,
the domain expert is not very much involved into the
actual design of the VR application and is solicited only
at the beginning of the design phase.

The Concurrent and LEvel by Level Development of VR
systems (CLEVR) approach looks at the design problem
from a software engineering point of view and applies
current techniques from this field to VR design. The
CLEVR is the successor of the ADASAL/PROTO
approach (Kim et al. 1998). The authors in (Kang et al.
1998) see a virtual world as a combination of three inter-
related aspects: form, function and behavior. Although
the approach provides a way to design VE applications, it
is based on the assumption that the designer understands
the UML notation and has knowledge about Object-
Oriented (OO) design. It is very much based on classical
software engineering principles. A more detailed
description of the approach together with examples can
be found in (Seo 2002).

The Ossa system is an approach to conceptually model of
VR systems (Southey and Linders 2001). Ossa provides a
modeling environment that allows building strong
underlying conceptual models, as a sort of skeleton for
the VR application. These models are a combination of
conceptual graphs and production systems. The
conceptual graphs are used for representing the
knowledge of the world that is about to be designed. The
production systems approach is taken to capture the
dynamics of the application. A more detailed description
can be found in (Southey 1998). The disadvantage of the
Ossa system is the large complexity it brings since it is
not using a normal procedural approach for specifying the

dynamics. A rule-based approach is used resulting in
more complicated execution patterns. Besides this, also
the fact that the rules need to be described in a kind of
logic programming style makes that they are probably not
usable for non-skilled persons.

The lack of a proper design methodology is also
acknowledged in the research performed in the context of
the interactive 4D (i4D) framework (Geiger et al. 2001).
I4D is a framework for the structured design of all kinds
of interactive and animated media. The approach not only
targets the domain of Virtual (and Augmented) Reality
but also the domains of 3D graphics and multimedia. The
i4D design approach aims to express the conceptual
models in terms of concepts that are familiar to all the
stakeholders of the application. In i4D, an actor-based
metaphor is used. This forces to describe a VR
application using a dedicated terminology, namely that of
role-plays: the actors act like particular roles that are
specified by the designer. Other domain knowledge
cannot be used. Furthermore, most of the issues
eventually need to be programmed in their framework,
which only provides a thin abstraction layer on top of the
currently existing graphics libraries.

In (Willans et al. 2001), the authors have developed
software that separates the process of designing
interaction techniques from the process of building a
specific virtual world, making it easier for developers to
design realistic interaction techniques and try them out on
users. However, the way behaviors are being designed is
still very much an engineering way and therefore, not
intuitive for a non-engineer person.

The Rube methodology proposed by Fishwick (Fishwick
2000) facilitates dynamic multi-model construction and
reuse within a 3D immersive environment. But this
approach is still not that intuitive for a non VR-expert.

A commercial development environment that has similar
goals is Virtools Dev (Virtools Dev 2007). Virtools is not
intended to be a fully functional modeling environment. It
only has some basic support to compose the virtual scene.
Virtools also allows the designer to define behavior for
objects graphically by combining a number of primitive
building blocks. However, the function-based mechanism
tends to be less comprehensible for novices. It also uses a
graphical representation for behavior (and interaction),
which shows the execution flow, together with additional
data-flow. We consider the approach taken by Virtools
still as a low-level.

Furthermore, several models and description languages
exist, which can be used to define user interaction.
Examples are Petri nets (Palanque and Bastide 1994),
UML (Ambler 2004) and ICon (Dragicevic and Fekete
2004). Despite their focus on interaction, these models
are very generic and are often cumbersome to use for
describing interaction, particularly in VR applications.
Other models, such as ICO (Navarre et al. 2005) and
InTml (Figueroa 2002), have been developed with
interaction in virtual world in mind. These models have
the drawback that they are not easy to apply in a
cognitive modeling approach, where the specified models
have to be interpreted at runtime by the application. The

Marigold toolset (Willans 2001) is an approach for
describing 3D interaction. However, the flownets onto
which this toolset is based can currently not be executed
at run-time. Similarly, on top of the Cameleon framework
(Calvary et al 2003), and the UsiXML process for
defining context-sensitive user interfaces (Limbourg et al.
2004), a method has been designed for creating 3D user
interfaces (Gonzales et al 2006). However, the method
needs further experimental validation.

8 Further Work and Open Research Problems
The modeling primitives currently available in VR-WISE
are far from complete. We mention here some of the
limitations of the modeling concepts presented, as well
some missing concepts.

One limitation concerning the modeling of connections is
that it is not yet possible to define a connection between
two components that is a combination of connections, or
to combine constraints on connections. This is needed to
allow for more powerful connections such as e.g., a car
wheel. For this we need actually a combination of two
hinge constraints. The problem however is that the
motion allowed by one hinge constraint may be in
contradiction with the motion allowed by the second
hinge constraint, and therefore a simple combination is
not sufficient.

Next, we also need modeling concepts for specifying so-
called contact joints. This type of joints does not really
describe a connection but rather a contact between two
objects like the gearwheels of a watch that need to roll
against each other.

Also the behavior modeling has some limitations. We
currently only consider event-driven behavior, where the
behavior is triggered by an event and is then executed
independently of this event. However, in many cases,
interaction is much more intertwined with the behavior.
This is called interaction-controlled behavior; during the
complete duration of the behavior the user (interaction) is
having control over the object.

Furthermore, we did not consider the modeling of
interaction in this paper. This has been investigated by
our partner in the VR-DeMo project, being the project is
which part of this research has been conducted. We refer
to (Coninx et al. 2006) for a description of VR-DeMo and
to (Vanacken et al. 2006) for the modeling of interaction.

Other aspects of virtual worlds that are not yet covered
are the modeling of sound and communication, the
modeling of some properties of the world itself like
cameras, viewpoints, light sources, and shadows. Also the
use of avatars is an important issue in VR applications
that have not been considered so far.

9 Conclusions

In this paper, we have described why conceptual
modeling can be important for the field of Virtual Reality.
We also explained the shortcomings of current conceptual
modeling languages with respect to VR. Next, we have
presented a conceptual modeling approach for VR and
discussed some of its modeling concepts. We have

concluded the paper by pointing to some of the
limitations of the approach and by identifying open
research problems.

10 Acknowledgements

This work was carried out in the context of the VR-DeMo
project, funded by IWT (the Institute for the Promotion of
Innovation by Science and Technology in Flanders). It
was also partially funded by FWO (Fund of Scientific
Research – Flanders).

11 References

Allen, J.F. (1991): Time and time again: The many ways
to represent time. International Journal of Intelligent
Systems, 6(4):341–355.

Ambler, S. (2004): Object Primer, The Agile Model-
Driven Development with UML 2.0., Cambridge
University Press.

AC3D. http://www.ac3d.org. Accessed August 2007.

ActiveWorld. http://www.ActiveWorld.com. Accessed
August 2007.

Berner, S., Glinz, M., and Joos, S. (1999): A
classification of stereotypes for object-oriented
modeling languages. Proc. UML’99 - The Unified
Modeling Language. Beyond the Standard. Second
International Conference, Fort Collins, CO, USA,
1723:249–264, Springer.

Blender. http://www.blender3d.org/cms/Home.2.0.html.
Accessed August 2006.

Bille, W. (2007): Conceptual Modeling of Complex
Objects for Virtual Environments, A Formal Approach.
Ph.D. thesis. Vrije Universiteit Brussel, Brussels,
Belgium.

Bille, W., De Troyer, O., Kleinermann, F., Pellens, B.,
Romero, R. (2004): Using Ontologies to Build Virtual
Worlds for the Web. Proc. of the IADIS International
Conference WWW/Internet 2004 (ICWI2004), Madrid,
Spain, I:683 - 690, IADIS PRESS, ISBN 972-99353-0-
0.

Burdea, G.C., Coiffet, P. (2003): Virtual Reality
Technology, Wiley-IEEE Press ISBN: 0471360899.

Calvary G., Coutaz J., Thevenin D., Limbourg Q.,
Bouillon L. and Vanderdonckt J.. (2003): A Unifying
Reference Framework for Multi-Target User Interfaces.
Interacting with Computers, 15(3): 289–308.

Chen, P. (1976): The entity-relationship model: Towards
a unified view of data. ACM Transactions on Database
Systems, 1(1):471–522.

Coninx, K., De Troyer, O., Raymaekers, C.,
Kleinermann, F. (2006): VR-DeMo: a Tool-supported
Approach Facilitating Flexible Development of Virtual
Environments using Conceptual Modelling, Proc. of
Virtual Concept 2006 Cancun, Mexico, Springer-
Verlag, ISBN 2-287-48363-2.

De Troyer, O., Bille, W., Romero, R., Stuer, P. (2003):
On Generating Virtual Worlds from Domain
Ontologies. Proc. of the 9th International Conference
on Multi-Media Modeling, Taipei, Taiwan, ISBN 957-
9078-57-2, 279 – 294.

De Troyer, O., Kleinermann, F., Mansouri, H., Pellens,
B., Bille, W., Fomenko, V. (2007): Developing
semantic VR-shops for e-Commerce. Virtual Reality
11(2): 89-106.

Dragicevic P. and Fekete J.D. (2004): Support for input
adaptability in the ICON toolkit. Proc. of the 6th
international conference on multimodal interfaces,
State College - USA, 25-30.

Flanagan, D. (2001): JavaScript: The Definitive Guide,
O’Relly.

Figueroa P., Green M. and Hoover H.J. (2002): InTml: A
Description Language for VR Applications. Proc. of
Seventh international conference on 3D Web
technology, Tempe, USA, 15-20.

Fishwick, P.A. (2000): 3D behavioral model design for
simulation and software engineering. Proc. of the fifth
symposium on Virtual Reality Modeling Language
(Web3D-VRML), 7-16. ACM Press, California, USA.

Fowler, M. and Scott, K. (1999): UML Distilled: a brief
introduction to the standard object modeling language.
Addison-Wesley Professional, second edition.

Flux player. http://www.mediamachines.com/ Accessed
August 2007.

Geiger, C., Paelke, V., Reimann, C. and Rosenbach, W.
(2002): A framework for the structured design of vr/ar
content. Proc. of the ACM symposium on virtual reality
software and technology, 75-82. ACM Press, Seoul,
Korea.

Gonzalez, J.M., Vanderdonckt, J. and Arteaga, J.M
(2006): Method for developing 3D User Interfaces of
Information Systems. Proc of the 6th International
Conceference on Computer-Aided Design of User
Interfaces CADUI’2006, Bucharest-Romania, 85-100,
Springer-Verlag, Berlin.

Gutschmidt, T. (2003): Game Programming with Python,
LUA and Ruby. Course Technology PTR.

Hartman, J. and Wernecke, J. (1998): The VRML 2.0
Handbook. Addison-Wesley Publishing.

Halpin, T. (2001): Information Modeling and Relational
Databases: From Conceptual Analysis to Logical
Design. Morgan Kaufmann, first edition.

KIM, G., Kang, K., Kim, H. and Lee, J. (1998): Software
engineering of virtual worlds. Proc. of the ACM
Symposium on Virtual Reality Software and
Technology, 131-138. ACM Press, Tapei, Taiwan.

Kang, K.C., Kim, G.J., Lee, J.Y. and Kim, H.J. (1998):
Prototype=function+behavior+form. ACM SIGSOFT
Software Engineering Notes, 23(4):44-49.

Kleinermann, F., De Troyer, O., Creelle, C., Pellens, B.
(2007): Adding Semantic Annotations, Navigation

paths and Tour Guides to Existing Virtual
Environments. Proc. 13th International Conference on
Virtual Systems and Multimedia (VSMM’07), Brisbane,
Australia.

Kleinermann, F., De Troyer, O., Mansouri, H., Romero,
R., Pellens, B., Bille, W. (2005): Designing Semantic
Virtual Reality Applications. Proc. of the 2nd
INTUITION International Workshop, Senlis, France, 5-
10.

Limbourg Q., Vanderdonckt J., Michotte B., Bouillon L.,
Florins M. and Trevisan D. (2004): UsiXML: A User
Interface Description Language for Context-Sensitive
User Interfaces. Proc. of the ACM AVI'2004 Workshop
"Developing User Interfaces with XML: Advances on
User Interface Description Languages", Gallipoli -
Italy, 20-25.

Maya Personal Learning Edition. http://www.alias.com/.
Accessed on January 2006.

Martinez, J., Delgado Mata, C. (2006): A Basic Semantic
Common Level for Virtual Environments.
International Journal of Virtual Reality, 5(3): 25 – 32.

MilkShape3D. http://www.swissquake.ch/. Accessed
August 2007.

Murdock, K. L. (2002): 3ds max 5 Bible. Wiley
Publishing.

Navarre D., Philippe Palanque P., Bastide R., Schyn A.,
Winckler M., Nedel L. and Freitas C. (2005): A Formal
Description of Multimodal Interaction Techniques for
Immersive Virtual Reality Applications. Proc. of the
Tenth IFIP TC13 International Conference on Human-
Computer Interaction, Rome, Italy.

Object Management Group (OMG). MDA
http://www.omg.org/mda/. Accessed August 2007.

Octaga player. http://www.octaga.com/. Accessed August
2007.

Palanque P. and Bastide R. (1994): Petri net based design
of user-driven interfaces using the interactive
cooperative objects formalism. Proc. of Interactive
Systems: Design, Specification, and Verification,
Carrara, Italy.

Palmer, I. (2001): Essential Java 3D: Developing 3D
Graphics Applications in Java, Springer.

Pellens, B. (2007a): A Conceptual Modelling Approach
for Behaviour in Virtual Environments using a
Graphical Notation and Generative Design Patterns.
Ph.D. thesis. Vrije Universiteit Brussel, Brussels,
Belgium.

Pellens, B., Kleinermann, F., De Troyer, O. (2006):
Intuitively Specifying Object Dynamics in Virtual
Environments using VR-WISE. Proc. of the ACM
Symposium on Virtual Reality Software and
Technology, Limassol, Cyprus, 334-337. ACM Press,
ISBN 1-59593-321-2.

Pellens, B., De Troyer, O., Kleinermann, F., Bille, W.
(2007b): Conceptual Modeling of Behavior in a Virtual

Environment, Special issue: International Journal of
Product and Development, 4(6):626-645. Fischer X.
and Bernard A. (eds). Inderscience Enterprises, ISBN
1477-9056.

Performer. http://www.sgi.com/. Accessed August 2007.

PlanIt 3D. http://www.planit3d.com/. Accessed August
2007.

Quake. http://en.wikipedia.org/wiki/Quake. Accessed
August 2007.

Second Life. http://www.secondlife.com/. Accessed
August 2007.

Seo, J. and Kim, G.J. (2002): Design Presence: A
Structured approach to virtual reality system design,
Presence: Teleoperators and Virtual Environments,
11(4):378-403.

Southey, F. (1998): Ossa: A modelling system for virtual
realities based on conceptual graphs and production
systems. Master thesis. University of Guelp.

Southey F. and Linders J.G. (2001): Ossa: A conceptual
modelling system for virtual realities. Proc of the 9th
international conference on conceptual structures,
Volume 2120 of Lecture Notes in Computer Science,
333-345. Springer-Verlag, California, USA.

Tanriverdi V. and Jacob R.J.K. (2001): VRID: A Design
Model and Methodology for Developing Virtual
Reality Interfaces. Proc of ACM Symposium on Virtual
Reality Software and Technology, Alberta, Canada.

Unreal. http://www.unreal.com/. Accessed on August
2007.

Vanacken, D., De Boekc, J., Raymaekers, C. and Coninx,
K. (2006): NiMMiT: a Notation for Modelling
Multimodal Interaction techniques. Proc of
International Conference on Computer Graphics
Theory and Applications, Setubal – Portugal, 224-231.

Vince, J. (2004): Introduction to Virtual Reality.
Springer, ISBN 1852337397.

Virtools Dev. http://www.virtools.com/. Accessed on
August 2006.

Willans J. and Harrison M. (2001): A toolset supported
approach for designing and testing virtual environment
interaction techniques. International Journal of
Human-Computer Studies, 55(2): 145-165.

Willans, J. (2001): Integrating behavioural design into the
virtual environment development process. PhD thesis.
University of York, York, UK.

Wilson, J.R. and Eastgate, R.M., and D’Cruz, M. (2002):
Handbook of Virtual Environments, chapter 17, 353-
378.

Walsh, A.E. and Sevenier, M. (2005): Core Web3D.
Prentice Hall, Upper Saddle River, USA.

X3D toolkit. http://artis.imag.fr/Software/X3D/. Accessed
August 2007.

Xj3D. http://www.xj3d.org/. Accessed August 2007.

