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Abstract. Many hypermedia models have been proposed, including
those specifically developed to model navigational aspects of web sites.
But few hypermedia systems have been implemented based on metamod-
elling principles familiar to the database community. Often there is no
clear separation between conceptual and technical issues in the models
and their implementations are not based on an explicit representation of
a metamodel. This results in a loss of generality and uniformity across
systems. Based on principles of metamodel-driven system development,
we have implemented a platform that can support various categories of
hypermedia systems through the generality and extensibility of the meta-
model. We present our metamodel and show how it generalises concepts
present in a range of hypermedia and link server systems.

1 Introduction

The vision presented by Vannevar Bush in his paper As We May Think [1] is
often accredited as being the origin of hypermedia systems. Since then, many
hypermedia models and systems have been developed, but they are all based
on the same underlying model of information spaces as interlinked collections
of resources. Variations abound according to the precise nature of the links and
resources, how they can be authored and accessed and also the application do-
mains considered. This has led to numerous categories of systems including open
hypermedia, adaptive hypermedia, physical hypermedia and spatial hypermedia.
Of course, the most famous of all hypermedia systems is the World Wide Web
and the hypermedia community has actively investigated ways of extending the
underlying technologies and tools to enable more advanced and flexible features
to be supported. At the same time, hypermedia models have been adopted by the
web engineering community as a basis for modelling navigation and adaptation
in model-based approaches to web site development.

However, a study of the hypermedia literature reveals a lack of clear, concep-
tual models that are general and flexible enough to support the development of
a wide range of hypermedia systems and applications. In some cases, conceptual
and technical issues are combined into the same model, while other approaches
integrate application-specific concepts into the core of the model. Further, in con-
trast to database systems, implementations are rarely metamodel-driven. This



means that a metamodel is not represented explicitly in the system resulting in,
not only a loss of flexibility, but also the introduction of major restrictions in
the model during the implementation process.

Our goal was to produce a general platform for the development of hyperme-
dia systems based on principles of metamodel-driven engineering and extensibil-
ity. This meant defining a core link metamodel that is general enough to support
features of many different systems and free from implementation issues. In ad-
dition, the core metamodel was designed with extensibility in mind so any type
of resource and link could be supported. For example, in the implemented sys-
tem, we currently support text and XHTML documents, images, videos, Flash
movies, databases, RFIDs, interactive paper documents and program compo-
nents as resources that can be linked together. In addition, each type of resource
can have one or more selectors defined to enable links to and from elements
within resources. We support both navigational and structural links as well as
links with multiple targets, multiple sources and also links over links.

In this paper, we present our metamodel and show how it generalises exist-
ing hypermedia models in terms of supporting concepts of these models either
directly in the core model or through extensibility. At the same time, we use this
as an example to show the benefits that can be attained by using a conceptual
metamodel as the basis for system engineering.

We start in Sect. 2 by describing the range of existing hypermedia models
and systems in order to identify the requirements of a general metamodel and
also highlight some of the problems of existing model definitions. Section 3 then
presents the core of our metamodel in terms of link concepts. In Sect. 4, we show
how a user model is integrated into the core metamodel. The concept of layers
is introduced in Sect. 5 and we describe how this can be used to support nested
links. Section 6 shows how the core model was extended to support structural
links as well as navigational links. In Sect. 7, we discuss some key features of the
implementation. Concluding remarks are given in Sect. 8.

2 Background

Over the last two decades a variety of hypermedia models for different domains
and purposes have been proposed. We first review some of the best known in
order to show the variety of features supported and part of the history of how
these models evolved. We then discuss some general limitations of the proposed
models and implementations in order to motivate our approach for a general
metamodel supporting different hypermedia domains.

In an attempt to generalise concepts from different hypertext systems, the
Dexter hypertext reference model [2] introduced three abstraction layers. The
storage layer describes a network of interlinked nodes (components) whereas the
within-component layer deals with the content and structure within those nodes.
User interaction with hypermedia content is handled by the runtime layer. A lim-
itation of the Dexter model is the fact that all data has to be encapsulated within
the components and data not forming part of the hypermedia structure itself



cannot be addressed. Furthermore, the Dexter model does not specify in detail
how anchors can be used to address parts of composite components. The DeVise
Hypermedia (DHM) system [3] for cooperative hypermedia addressed some of
these limitations by extending the Dexter model. Around the same time, the
Amsterdam Hypermedia Model (AHM) [4] added concepts of time and context
to the Dexter model to investigate ways of combining multimedia and hypertext
concepts to support the linking of dynamic multimedia information. In addi-
tion to the original navigational hypermedia models, spatial [5] and taxonomic
hypermedia [6] models were also investigated in the mid-90s.

Adaptive hypermedia systems enable the content and link structure to be
adapted dynamically based on the user context by integrating a user concept
into the model [5]. AHAM [7] is a reference model for adaptive hypermedia
systems that extends the storage layer of the Dexter model with a user model.

Open Hypermedia architectures address interoperability between hyperme-
dia systems and the Open Hypermedia Protocol (OHP) was developed for the
exchange of navigational link information. OHP was specified using DTDs re-
sulting in a lack of detail due to the limited expressiveness of the chosen “spec-
ification language”. The Fundamental Open Hypertext Model (FOHM) [8], an
extension of OHP, attempts to provide a common data model for navigational,
spatial and taxonomic hypermedia by providing operations for these three do-
mains. However, a drawback of FOHM is its limitation to exactly those three
domains, ignoring other existing hypermedia domains. The issue of limited exten-
sibility in terms of structural abstractions necessary to support different hyper-
media domains was addressed by Component-based Open Hypermedia Systems
(CB-OHS) [9]. In many open hypermedia systems, the controlled sharing of in-
formation seems to be difficult since the majority of approaches do not consider
user management and the issues of data and link ownership in their core model.

A distinguishing feature of open hypermedia systems is the fact that they
use external link servers to deal with links between resources. Managing links
separately from resources allows for greater flexibility in supporting features
such as bidirectional links, multi-source and multi-target links and link groups.
Importantly, it also enables the removal of the sharp distinction between the
authors and users of links since users can create links between resources with-
out having access rights to modify those resources. Well known link servers
include Chimera [10], Microcosm [11] and Hyper-G along with its successor
Hyperwave [12]. Similar issues of embedding links in resources as opposed to
managing them separately arose in the context of the World Wide Web and
the hypermedia community have contributed to the development of the XML
Linking Language (XLink) [13] which allows links to be managed separately as
well as providing more flexibility in terms of defining and accessing links. The
XLink standard is based on the Hypermedia/Time-based Structuring Language
(HyTime) [14]. As part of the Semantic Web initiative, the Annotea project [15]
uses these ideas to allow users to create and share annotations of web resources.

More recently, physical hypermedia models for bridging the physical and
digital worlds have been proposed. For example, HyperReal [16] is a mixed reality



model that introduces the concept of map components for managing geographical
data. In addition, existing hypermedia solutions have also been challenged by
new ideas such as the structural computing approach that treats structure as a
first-class citizen and no longer puts the focus on the data [17].

As outlined, there is a wide variety of hypermedia models and systems. While
there have been some attempts to provide reference models such as Dexter and
FOHM, most hypermedia models and systems are isolated solutions for specific
domains (e.g. navigational or spatial hypertext) or even specific applications.
Although the Dexter model was instrumental in providing a common vocabulary,
its specification is not detailed enough to enable information exchange between
different systems based on the Dexter model or one of its extensions. Many
models for hypermedia systems have claimed to be general and extensible and
yet these have often disappeared only to be replaced by another hypermedia
model. There is little or no support for evolution between these models with the
result that applications and data are lost between implementations.

In our opinion, one of the causes for this situation is the lack of well-defined
conceptual models on which implementations are based. Often models are pre-
sented as a mix of architectural, technical and conceptual features. As a result,
the concepts become obfuscated and restrictions are introduced unnecessarily
due to technicalities of the envisaged implementation.

Designing a system around a well-defined conceptual metamodel leads to
increased generality and flexibility of both the model and the system. The use
of metamodels as a basis for specifying and implementing hypermedia models is
not widespread. In the field of web engineering where hypermedia models have
been adapted to model navigation and adaptivity in web sites, metamodels are
more commonly used and there have been efforts to define common metamodels
(e.g. [18]). However, in this case, the metamodels tend to be focussed on the
specific needs of web engineering.

Summarising, we feel that there is a need for a general framework to sup-
port the development of different categories of hypermedia systems and that
this framework should be based on a general, extensible metamodel for hyper-
media. The core of this metamodel has to be powerful enough to support the
specification and modelling of different hypermedia domains in terms of a small
set of fundamental link concepts. The development of the framework should be
based on an implementation of the metamodel with the explicit representation
of concepts of the metamodel in terms of metadata. While such a metamodel-
driven approach to implementation is well-known to the conceptual modelling
and database communities, along with its advantages in terms of flexibility and
support for evolution, it is relatively rare to find it outside these communi-
ties and, in particular, in hypermedia systems. The result is that often model
concepts are mapped to implementation-specific approximations that introduce
restrictions and the model itself is hard-coded and static.

In the remainder of the paper, we present such a metamodel, the resource-
selector-link (RSL) model, and describe how it was used to implement a general
cross-media information platform called iServer [19]. We highlight how the RSL



model generalises concepts found in the range of hypermedia models mentioned
above. Further we show how extensibility for domain-specific requirements is
supported through a combination of concept specialisation in the metamodel
and plug-in components in the architecture.

3 Link Metamodel

Our general metamodel for hypermedia systems was defined using the seman-
tic, object-oriented data model OM [20]. OM is a data model that integrates
concepts from both entity relationship and object-oriented data models. The
OM model is intended as a basis for efficient data management as well as se-
mantic expressiveness, and a family of object-oriented database platforms have
been realised based on this model including the OMS Java data management
system [21]. Using OM together with OMS allowed us to directly implement
the metamodel and we were able to exploit powerful features of the OM model
such as multiple classification and ordered collections in the metamodelling pro-
cess. For that reason, we choose to use the OM modelling notation here rather
than a more commonly used alternative. However, it is important to note that,
even if another implementation platform were used, it would prove beneficial to
base the system design on our OM metamodel which provides rich classification
structures over objects and associations together with a full operational model.

The OM model supports information modelling through a two-level struc-
ture of classification and typing, dealing with these on separate layers. Typing
deals with representation and entities are represented by objects with attributes,
methods and triggers defined for the corresponding object types. Classification
deals with semantic roles and a particular classification is represented by a named
collection of objects with a specified member type. In addition, OM provides a
high-level association construct which enables associations between entities to
be classified and manipulated directly.

The OM model differs from many conceptual models in that it is intended as
an operational model for data management as well as for system design. Thus
the OM model defines a full operational model over objects, collections and as-
sociations as well as constructs for their definition. The expressive features of the
OM model enable us to capture the semantics of application domains in terms of
a simple, but powerful set of constructs. Its support for the direct representation
and manipulation of associations is particularly useful in supporting link man-
agement in systems that offer hypermedia functionality. For more details about
the OM model and its additional features please refer to [20].

In this section, we focus on the core link functionality of our general model
whereas other parts of the RSL metamodel are presented in Sect. 4 to Sect. 6. The
schema of the core link model is shown in Fig. 1. The shaded rectangular shapes
denote collections of objects (classification) where the name of the collection is
given in the unshaded part and the name of the associated type in the shaded
part. The type serves both as a constraint on membership in the collection and
also as the default view of objects accessed through that collection. Thus, links



are represented by objects of type link grouped into the Links collection. The
shaded ovals represent associations between entities of two collections.

entity

link

Links

selector

Selectors

resource

Resources

(1,*)(1,*)

(1,1) (0,*)

(0,*) (0,*)

RefersTo

HasTargetHasSource

partition

HasProperties

parameter

Properties
(0,*) (0,*)

HasResolver

contextResolver

Context
ResolversEntities

(0,*) (0,*)

Fig. 1. Core link metamodel

The most general concept within our hypermedia metamodel is the generic
notion of an entity (similar to components in the Dexter model). Note that
all instances of entities are further classified and grouped by the collection
Entities. While an entity represents only an abstract concept, there are three
specific forms of entities described by three different subtypes: the resource,
the selector and the link types.

The simplest type of entity is the resource type representing an entire in-
formation unit. While a resource is still an abstract concept, all types of media
to be handled by the hypermedia system have to provide a specific extension of
the resource type based on a plug-in mechanism. Our implementation of the
hypermedia model, known as iServer, currently supports a variety of different
resource types for web pages, movie and sound clips, images, Flash movies, phys-
ical objects marked with RFID tags as well as interactive paper. Note that we
have a subtyping relationship between the resource and entity type but the
specialisation of resources is also reflected in the model by designing Resources
as a subcollection of the Entities collection.

Often we want to define links between not only entire resources but also
specific parts of resources. For example, the anchor of a link within a web page
addresses a specific part of an HTML document using the href anchor tag.
Therefore, as a second subtype of the entity type, we introduce the concept
of a selector which is a construct enabling parts of the related resource to be
addressed (similar to reference objects in FOHM [8]). Again the specialisation of
Entities is reflected by the Selectors subcollection. An association RefersTo
represents the fact that a selector is always associated with exactly one resource,
whereas each resource can have more than one referencing selector. The cardi-
nality constraints specified at the source and target points of the associations
indicate the possible level of participation of individual objects. Thus (1,1)
at the source point of the RefersTo association indicates that each selector is



always associated with exactly one resource, whereas the (0,*) cardinality con-
straint at the target means that each resource can have zero or more referencing
selectors. A selector is an abstract concept that has to be extended to sup-
port concrete types of media. For example, the selector to address parts of an
XHTML document resource could be an XPointer expression, whereas the se-
lector to specify parts of a movie clip could be a temporal selector with a start
and an end time.

After providing a mechanism to allow entities to be referenced by a link,
we now provide a specification for the links themselves. A link within our hy-
permedia metamodel is always directed and leads from one or more sources to
one or more targets. A source may either be an entire resource or parts of a
resource addressed by a selector. This is reflected in the model by making the
collection Entities the target collection of both the HasSource and HasTarget
associations. Furthermore, the (1,*) cardinality constraint at the source point
of both associations indicates that each link must have at least one and possibly
many sources and targets. In this way, we support multi-target links as well as
links with multiple sources. The (0,*) at the target point of the HasSource and
HasTarget associations specifies that there is no limit on the number of links
for which an entity may be the source or target. Note that by ensuring that
each link has at least one source and target entity, we prevent any occurrence of
dangling links as proposed in the Dexter model and guarantee that the system
is always in a consistent state where links can be resolved. For cases where the
source or target entity is not available at link creation time, special placeholder
elements could be used and replaced at a later time.

While there are many existing hypermedia models dealing with multi-target
links, we found that links with multiple source anchors are not supported by
most systems. However, from our experience of integrating information across
different digital and physical information spaces, we can say that the concept
of multi-source links is very powerful. For example, if the same information is
published on different output channels (e.g. a web page and an interactive paper
document) the semantics of a single link is maintained by associating it with
two different sources for the two different types of media triggering the link
resolution. Also note that since the underlying OM model provides bidirectional
associations as a higher-level construct, all the associations used within the cross-
media link model are also bidirectional. This enables us to, not only get all the
link targets for a specific link source, but also to find the corresponding link
sources given a specific target object.

By also modelling Links as a subcollection of Entities, we gain the flex-
ibility to create links whose sources or targets are defined by other links. This
means that we can annotate any link with supplementary information. While
other systems also support the annotation of links with additional information,
our approach of using the metamodel’s link functionality for annotating links
entails the advantage that links can not only be annotated with textual infor-
mation but with any arbitrary entity. This means that we can use resources,
parts of resources or even other links to annotate a link. For example, we could



have a web page with links to additional information and these links could then
be annotated by other users with textual comments or links to different web
resources etc. A final remark about the three core concepts (resource, selector
and link) is that a partition is specified over the Resources, Selectors and
Links subcollections to denote that each entity belongs to exactly one of these
three categories.

To provide some additional flexibility for future extensions, each entity can
be associated with a set of properties which are stored as a set of string tuples
in an entity’s property attribute. These properties, represented by key/value
pairs, are not predefined by a system implementing the model. They can be
defined individually to customise an entity’s behaviour for specific application
domains. For example, one could define a link property onActivate which would
represent the action to be taken when a link is activated. Possible values could
be openInline to open the link target within the current resource or openNew to
display the link target in a separate view. This is similar to concepts in XLink [13]
where the actuate attribute is used to define the traversal behaviour and the
show attribute defines where a link should be shown (e.g. in the same or in a new
window). However, we try to be as flexible as possible by not predefining a set of
properties but rather introducing an abstract property set which can be extended
for specific domains. Another example is to provide a flexible “typing” of links
by introducing a property with the name type and assigning the appropriate
values to it as proposed in the Dexter model. For instance, we could introduce
a special type for links which represent annotations and treat them in a specific
way. As an alternative, we could also introduce domain- or application-specific
subcollections of Links as a means of classifying links. This combination of being
able to associate properties to links and also classifying them provides a very
flexible and powerful way of representing link taxonomies.

Finally, our core model provides functionality for the context-dependent han-
dling of entities. Each entity can be associated with a set of context resolvers
which are then used to compute an entity’s visibility. A contextResolver basi-
cally returns a boolean value representing an entity’s accessibility based on data
managed by the hypermedia model as well as any other available contextual
information. If multiple context resolvers are associated with a single entity, the
entity will only be visible if all context resolvers return positive feedback. While
the context resolver is an abstract concept, various domain- and application-
specific context resolver extensions can be registered with the system.

By introducing the concept of context-dependent information at the very core
of our model (i.e. at the entity level), we gain the flexibility of having context-
dependent resources, selectors and links operating independently of each other.
For example, a link with multiple targets may be accessible in a given context
while, for the same context, some of its target entities may be inaccessible. The
implementation of adaptive hypermedia functionality mentioned in the previous
section is just one of the domains that can be supported by the context resolver
concept. Entities can be easily tagged with different properties which will then
be used in the decision process of specific context resolvers. A built-in context



resolver for handling access rights has to be provided by all systems implementing
our hypermedia metamodel and is presented in the next section as part of the
user management component.

4 User Model

In order to support both personalisation and the sharing of links and resources,
we need a notion of data ownership combined with different levels of access
rights. While most early hypermedia systems did not deal with an explicit rep-
resentation of users as part of the model, some adaptive hypermedia models
(e.g. AHAM [7]) introduced the concept of user models in the core of the sys-
tem. However, while those user models typically deal with the aggregation and
storage of user access patterns, our user model only provides functionality for
managing data ownership and access rights at the entity level. The richer user
models investigated by the adaptive hypermedia community could be integrated
as a domain-specific extension of our metamodel. Note that even more recent
link models such as the XLink standard do not provide the concept of data own-
ership nor do they deal with the definition of link access rights. By defining the
access rights at the entity level, we can define individual permissions for links,
resources and selectors. The representation of the fundamental user management
component in our model is illustrated in Fig. 2.
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Fig. 2. User management

A user can either be an individual or a group. Users can be classified in
different groups represented by the collection Groups, where a group itself can
be part of other groups. Each entity is created by exactly one individual user
having full control over its content. Note that the collaborative authoring of links
and resources is possible due to the fact that the creator can define read and
write access rights for other groups of users or individuals. The two associations
AccessibleTo and InaccessibleTo are introduced to define access rights in a
flexible way. The set of individuals having access to a specific entity is defined
by the groups and individuals associated by AccessibleTo minus the groups



and individuals defined through the InaccessibleTo association. In addition,
there exists a constraint that access rights defined for an individual always have
priority over access rights that have been defined for a group. More formally,
a group G is defined by some subgroups Gi and some individuals Ik that it
contains, i.e. G = {G1, . . . ,Gm, I1, . . . , In}. The expanded set of individuals who
are members of a group is given by

E (G ) =
⋃

g∈G

E (g) with E (I) ≡ {I}.

For a specific entity e, let Ga(e) denote the set of groups explicitly specified
as having access to e and Gx(e) those explicitly denied access. Correspondingly,
let Ia(e) denote the set of individuals explicitly specified as having access to
e and Ix(e) those explicitly denied access. Then A (e), the set of individuals
having access to entity e is defined as

A (e) = Ia(e) ∪ (E (Ga(e)) \ E (Gx(e)) \ Ix(e)).

This allows us to define complex access rights for an individual entity of the
form “the entity should be visible to everybody except one specific group of
users and two particular individuals”. The activation of a link may depend on
the user and even the user role. An author of a cross-media application based on
our hypermedia metamodel may not only define different selectors for different
users but also link the same selector to different information resources based on
the user profile. Note that a specific context resolver can be used for ensuring
entity access control based on the presented user model.

5 Layers

We have already introduced the concept of a selector to address parts of a re-
source as a link source or target entity. However, so far we have not explained how
we deal with the case that the parts of a resource defined by different selectors
overlap. For example, we could have one selector which specifies a paragraph
within an XHTML document, while another selector specifies a word within
that paragraph. The overlapping selectors can create a link resolution problem
in terms of not knowing which link to activate when the word is selected. This
is the problem of supporting so-called nested links. In the case of HTML, this
problem does not arise as overlapping anchors are not allowed, but this is also
quite restrictive and therefore a number of hypermedia models support some
form of overlapping anchors (strictly nested and/or partly overlapping). But,
even if nested link anchors are supported, it is often the case that the link res-
olution behaviour in the case of overlapping anchors cannot be specified. For
example, the XLink specification allows for nested and overlapping link anchors
but does not provide any functionality to control their behaviour. To become
more flexible in defining the semantics of nested link source and target anchors,
we introduce the concept of layers shown in Fig. 3.
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Fig. 3. Layers

Each selector is associated with exactly one layer and we do not allow overlap-
ping selectors on the same layer, thereby forcing overlapping link source selectors
to be defined on separate layers. In the case that a concrete selection would re-
turn several links by activating multiple overlapping selectors, by definition, the
link bound to the selector on the uppermost layer will be selected.

The OM model supports collections of four different behaviours—sets, bags,
rankings and sequences—to cater for collections with and without multiple oc-
currences of elements and with or without an explicit ordering. This also applies
to associations. A selector’s associated resource defines the set of available layers
over the association |HasLayers| and the vertical bars indicate that this is a
totally ordered association (ranking) that provides an explicit ordering of the
layers. Furthermore, it is possible to activate and deactivate specific layers by
adding them to or removing them from the ActiveLayers collection. The order
defined by this association is used to choose the appropriate layer in the case that
a selection addresses multiple overlapping selectors. Note that a selector can only
be associated with a layer defined by its related resource over the |HasLayers|
association.

Specific layers may be activated, deactivated and dynamically reordered en-
abling us to generate context-dependent links by resolving a particular selection
to different selectors depending on the current set of active layers and the order
of layering defined by the associated resource. An application may also control
the navigational behaviour by switching the active layer set as a result of a user
repeatedly providing the same selection.

6 Structural Links

As explained earlier, links are already first class objects in our model. By using
links to describe structural components as well as navigational relationships
between different resources, we place structure on the same level as resources
and navigational links. Note that we do not give priority to structure over data
as sometimes proposed by structural computing [17] but rather consider them
to be on the same level.



In Fig. 4, we present an extension of our metamodel that distinguishes be-
tween structural and navigational links between resources. The collection Links
introduced in Sect. 3 is partitioned into Navigational Links and Structural
Links. By modelling structural links as a subcollection of regular links, they can
be used to define a structure over arbitrary entities (e.g. resources, selectors and
even links).
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Fig. 4. Navigational and structural links

All structures are handled by the Structures collection and a single structure
is related to its structural links by the HasElement association. It is necessary
to have such an explicit grouping of structure elements since parts of structures
might be reused by other structures as shown later in this section. Furthermore,
structural links are a specialisation of general links since we have to introduce
an order for the substructure relationship. For example, if we want to model the
structure of a document with different chapters and sections within a chapter,
we have to know the order of the chapter within the entire document as well
as the order of the sections within the chapters. The order over such substruc-
ture relationships is introduced by the ordered |HasChild| subassociation of the
HasTarget association. Therefore, the Structures and |HasChild| components
provide us with information about all of the components belonging to a specific
structure as well as their structural relationships.

A first type of structure that can be defined based on the new concepts is
a structural relationship of different resources. An example of such a structure
over data is a regular document containing chapters, sections, paragraphs etc. It
is up to an application to define different domain-specific structures. Note that
since we have a clear separation of data and structure, it is possible to reuse the
same resource in different structures by transclusion as suggested by Nelson [22].
The context-dependent link resolution, discussed earlier as an example to sup-
port adaptive hypermedia, is also available for structural links. Therefore, the
structure of a specific resource may change based on the user accessing it or any
other context resolver-based adaptation.

Structural links can not only be defined directly over resources but we can also
define a structure over structures. It is important to know that each structural



link within a structure defines a substructure containing the structural link’s
source elements and all of its children (recursively). This implies that we can
superimpose any structure on top of existing structural components and, of
course, the structural composition of data and substructures can also be com-
bined. Note that to address a substructure we do not define a structural link to
the structure element but rather to the corresponding structural link defining
the substructure. An example of such a reuse of a substructure component could
be a chapter of a document (e.g. a technical specification in an appendix) that
is structurally referenced by different documents.

Last but not least, we can also specify a structure over links. This enables us
to put different navigational links in relation to each other. A simple example
would be the structure of an ordered list of navigational links defined by a
single structural link. Such an ordered list of navigational links could be used
to represent trails and tours, which are two well-known concepts available in
many hypermedia models and systems. While we have indicated some examples
for structure over data, structure over structures and structure over links, it is
beyond the scope of this paper to discuss the potential applications of structural
links in detail. We also point out that we are still investigating the implications
of this powerful concept for different domains.

7 Implementation

The RSL metamodel presented in this paper is implemented using the OMS Java
data management system [21]. The resulting iServer platform [19] for cross-media
information management has been used over the last five years in a variety of
projects for linking digital and physical information resources and, specifically,
for the implementation of the iPaper framework [23] for interactive paper.

Since the metamodel was implemented on the OMS Java data management
system, the iServer platform provides a Java API for accessing data as well
as metadata. We have also implemented a Web Service interface providing the
same functionality as the Java API to offer a more general language indepen-
dent programming interface for the iServer platform. Other extensions include a
distributed version of the platform where different distributed iServer instances
can exchange link information based on peer-to-peer technology.

Different media-specific plug-ins for the resource and selector concepts have
been developed including plug-ins for XHTML documents, movie and sound
clips, still images, Flash movies, physical hypermedia based on RFID tagged
physical objects and interactive paper. For a given resource type, there may
be varying types of selectors based on the requirements of specific applications.
In Table 1, we suggest time spans to be used as a candidate for movie selec-
tors. However, a specific application might need to link movies based on spatial
information within the movie whereas others might need to define links based
on a combination of temporal and spatial information. The iServer architecture
therefore supports the definition of different selectors for a single resource type.



Medium Resource Selector

paper document page shape

web page XHTML document XPointer

movie mpeg file, avi file etc. time span

movie mpeg file, avi file etc. shape

sound mp3 file, wav file etc. time span

image gif file, jpeg file etc. shape

database database workspace query

physical object RFID space RFID tag

Table 1. iServer plug-ins

To illustrate the flexibility of the iServer model and framework, we would like
to provide some more details about the iWeb resource plug-in for linking XHTML
documents. Similar to other link server approaches proposed by the hypertext
community, our iWeb plug-in uses iServer as an external link repository for
web pages. In contrast to most existing link servers, the iServer-based approach
results in a flexible cross-media solution capable of integrating arbitrary digital
or physical resources.

The definition of a selector for XHTML documents was straightforward since
we could build on work already done in the context of XLink [13]. XLink uses
the XML Pointer Language (XPointer) to address a specific part of an XML
document. By using XPointer expressions as XHTML selectors within the iServer
framework, we can define any part of an XHTML document as a link source or
link target. However, as explained earlier, we obtain some additional features
not available in the XLink language such as the well-defined semantics for multi-
layered link resolution or the link ownership and access right control.

To integrate the link metadata stored in iServer with existing XHTML pages,
we implemented an extension for the Firefox web browser. When a new web page
is requested by the user, it is first downloaded from the server and immediately
visualised in the browser. In a second step, the iWeb browser extension starts
to parse the web page and augment it with supplemental link information that
is acquired by contacting the iServer Web Service based on specific JavaScript
functionality. As soon as the integrated web page has been rendered by the
browser extension, the page gets redisplayed in the browser’s main window.

The general resource and selector concepts together with the multi-layer func-
tionality have proven to be powerful enough to support the integration of dig-
ital and physical objects. Different authoring tools haven been developed for
creating and browsing link information managed by the iServer platform. For
example, the iWeb Firefox extension can be used to augment arbitrary XHTML
web documents in a similar way to the Annotea [15] project. Another authoring
tool developed based on QuickTime technology enables parts of movie clips to
be linked based on temporal selectors. An active component mechanism imple-
mented on top of the iServer platform supports links to pieces of program code
that can used as link targets and are executed when a link is activated [23].



A wide variety of applications have been developed using the iServer plat-
form. These include several applications which use the iPaper plug-in to support
interaction between paper and digital resources including an interactive guide
for the Edinburgh festivals [24], PaperPoint [25], a paper-based interface for
PowerPoint presentations and Print-n-Link [26], a system to support the read-
ing of scientific publications. In addition, iServer has been used to support a
number of interactive media installations designed by artists.

Although the system has been extended significantly over the last few years,
this always happened as an evolutionary rather than a revolutionary process.
This means that, even if the core of the model was extended, all applications
evolved with the changes of the model due to our database-driven approach and
even our first applications are still operational. For example, the recent exten-
sion of the framework to support structural links did not affect the operation
of existing applications or the data managed by these applications. However,
any new or existing application can now make use of the new structural links
functionality. For instance, an application for the publishing of interactive paper
documents now uses the structural link functionality to define a domain-specific
document model.

8 Conclusions

We have presented RSL, a general metamodel for hypermedia systems dealing
with data, structure and navigation information based on a core set of link
concepts. Our conceptual modelling approach led naturally to a very general
and flexible link model that integrates various concepts of existing hypermedia
models. In addition, the RSL model caters for cross-media linking and provides
extensibility for the introduction of new resource types. To show the flexibility of
the model, we also described the iServer framework for cross-media information
spaces which is based on RSL and supports a rich variety of applications.
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