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Abstract. This paper investigates the possibility of using information from 

brain signals, obtained through a light and inexpensive Brain Computer Inter-

face (BCI), in order to dynamically adjust the difficulty of an educational video 

game and adapt the level of challenge to players’ abilities. In this experiment, 

attention levels of Tetris players – measured with the BCI – have been evaluat-

ed as a function of game difficulty. Processing of the data revealed that both in 

intra- and inter- player analysis, an increase in game difficulty was followed by 

an increase in attention. These results come in accordance with similar experi-

ments performed with a 19 sensor EEG cap, as opposed to the single-dry-sensor 

BCI used here. These findings give new possibilities in the development of ed-

ucational games that adapt to the mental state of player/learner.  

 

Keywords: brain signal, brain computer interface, attention levels, Tetris, dy-

namically adjust game difficulty. 

1 Introduction 

The use of educational video games (edu-games) is a way to increase motivation in 

the learning process, but the risk that learners get bored still exists. Therefore, under-

standing the learner’s cognitive state is important when using edu-games, and ena-

bling the edu-game to dynamically respond to the learner’s behavior and mental state 

through adaptive actions could be beneficial. In this paper we are investigating if we 

can monitor player’s behavior and mental state using a simple Brain Computer Inter-

face (BCI). More precisely we are testing if changes in game difficulty are followed 

by changes in the brainwaves. The work presented here is part of an interdisciplinary 

research project on adaptive educational games. Among other issues, we are investi-

gating ways of controlling game difficulty by getting direct input of the mental state 

of the player with physiological sensors. In this first experiment we are using an EEG 



sensor. Over the last few years a number of new light and inexpensive devices, so-

called Brain Computer Interfaces (BCI), have appeared in the market. A BCI is a 

device that can capture brain waves (very low electrical signals produced by the 

brain). These new technologies have made it possible to measure at low cost and in a 

less intrusive way basic brain activity. Until then, brain activity could be measured 

only with dedicated equipment using an EEG cap (Electroencephalography), which is 

of course much more reliable but not usable outside a lab or medical environment. In 

order to test the usefulness of the device in the context of our work, we have per-

formed some preliminary tests and studies. After doing a market research we decided 

to use the MindWave BCI from NeuroSky (www.neurosky.com), which is specially 

designed for and targets the gaming market. It is a low cost wireless device, highly 

user friendly, with a single dry-sensor positioned on the forehead (FP1). Except the 

raw brain signal, this device also provides levels of attention in the scale of 0 to 100. 

NeuroSky does not provide a description of the algorithms used to calculate attention 

levels since they are protected as trade secret. For our experiments we didn’t use the 

raw EEG signal applying processing algorithms, but the readings of attention straight 

from the device. Our intention is to test the usefulness of new BCI technologies based 

on work that has already been done. The specific device is a product of university 

research carried out together with physiologists. Several research groups have already 

carried out studies using the device [1], [2], [3], [4] and [5]. To our knowledge, this is 

the first time that a BCI is used in experiments evaluating attention levels of users 

playing Tetris or any other game in different difficulties. Results reported so far using 

the MindWave BCI was mainly focused on assessing attention levels during mental 

tasks. We performed an experiment based on a gaming protocol introduced by G. 

Channel et al. [6] in order to investigate if changes in game difficulty are followed by 

changes in brain activity. In their experiments, they used a number of physiological 

sensors capturing signals like galvanic skin response, blood volume pulse, heart rate, 

chest cavity expansion, and skin temperature. In 14 of 20 participants an EEG cap (19 

electrodes) was used for capturing brain waves. The authors of [6] investigated the 

use of emotion assessment from physiological signals to adapt the difficulty of a 

Tetris game. They found that playing the game in different difficulty levels gave rise 

to different emotions. In easy difficulty players were bored, in medium they were in 

an engagement mode and in hard levels they felt anxiety. Moreover they found that 

engagement of a player in the game is decreasing if the level of difficulty does not 

change. Except the statistical analysis to determine the emotional states of players in 

different levels, classification has been also performed in order to investigate the pos-

sibility of recognizing these states from the physiological signals. For our experiment 

we used only the BCI which has a single dry sensor placed on the forehead (position 

FP1) and can capture EEG signal from the brain. In the experiments described in [6], 

the Tetris game was used.  As our goal was to investigate if the BCI could provide 

information in the same line as the results reported in [6], we also used Tetris since it 

is easy to control the difficulty by changing the speed of the falling blocks. In the 

regular Tetris game the speed of the falling blocks is gradually increased as the player 

is making more lines. We adapted the code of an open source version so we could 



control the speed of the falling blocks and keep it constant through a gameplay. Speed 

could be changed in 25 steps (levels).  

2 Data Capture 

The experiment was conducted in the recording room of AV Lab, the audiovisual 

laboratory of the Department of Electronics and Informatics (ETRO) of our university 

[7]. Except the BCI we also used 2 cameras: one USB camera attached on the PC 

monitor (video chat position) recording the front view of the face of each player and a 

camcorder recording the game from a second monitor that was reproducing game 

player’s view. Signals from the 2 video cameras and the BCI were in synch using 

timestamps. More specifically, the software used to capture the video of the USB 

camera (www.webcamxp.com) is naming the produced file with the timestamp of the 

PC used. Also, the BCI comes with a SDK where in the resulting text file with all the 

data, a time stamp is introduced when capture started. Both the USB camera and the 

BCI are installed in the same PC, so timestamps refer to the same clock. In order to 

synchronize the camcorder with the USB camera, we used the classic hand clapping, 

so we can align video’s using the high peak produced by the clapping in the sound 

clip of both signals. With timestamps introduced by the local clock of the PC, we 

manage to have a synch down to one second, which is the time resolution of the BCI 

for levels of attention.  The information from the videos was used for segmentation 

and in order to extract other useful information that could help in the analysis.  

3 Experiments 

We have conducted the experiment, letting 14 post-graduate students of our uni-

versity (7 male and 7 female) to play 6 Tetris games in 3 difficulty levels: 2 easy, 2 

medium and 2 hard games in an arbitrary order, according to the gaming protocol 

introduced in [6]. All players had to play each game for a 5 minute period. In case 

where a player would lose the game before the 5 minute period he/she had to stop. In 

a very few cases, some players wanted to continue beyond the 5 minute limit. We let 

them do so. Between the games, players had to rest for 5 minutes and fill in a self-

evaluation form giving scores for their valence/arousal (according to the SAM system 

[9]) and their perceived game difficulty (easy, medium, or hard). We used the five 

scale visual representation for valance and arousal levels of the SAM system, explain-

ing to players how to give their scores for each dimension. For valance, they had to 

give a score between lowest (one), feeling very unhappy with their performance, and 

highest (five), feeling very happy with their performance. For arousal, they had to 

give a score between one, felling very bored and five feeling very excited.  As already 

indicated, in Tetris, game difficulty can be controlled by the speed of the falling 

blocks. We used an open source implementation of the game found on Sourceforge 

(sourceforge.net/projects/tetrominusrex/), where we adjusted the code so that speed 

and therefore the difficulty could be constant.  

 

http://www.webcamxp.com/


 

Fig. 1. Speed of falling blocks as a function of Tetris level 

We adjusted the Tetris game in order to have a total of 25 levels. The higher the level, 

the higher the speed of the falling blocks. In order to find the relation between Tetris 

level and the speed of the falling blocks, we measured the speed of the falling blocks 

(in pixels per second). We found that speed is increasing exponentially with the level 

(Fig 1). 

 

We first let players practice for 15 minutes in a level that was comfortable for 

them: a level that is not too easy but not too hard. It is the level that players can feel 

satisfaction and engagement playing focused for long time. According to [6] this is 

the level where the skills of a player meet game difficulty and it is defined by the flow 

theory proposed by Mihaly Csikszentmihalyi [8]. Flow is the mental state where a 

person in an activity is fully immersed in a feeling of energized focus and full in-

volvement. In order to identify this level (medium game difficulty) for each player we 

let them play for a short period starting from level 15 and increasing the level until 

they felt they were in a state that it was not too easy but also not too difficult to play 

the game. We call this level the starting level and it gives an indication of player’s 

skill in Tetris. For all players this state was between Tetris levels 15 and 22 (Table 1). 

For easy and hard games we used Tetris levels 1 to 5
1
, respectively 22 to 24 as shown 

in Table 1. 

Table 1. Tetris levels used for each of the 3 game difficulties 

Game Difficulty Tetris Level 

Easy 1 - 5 

                                                           
1 We only considered levels 1-5 because the increase in speed between levels 5 and 15 is very 

small (see Fig 1). 
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Medium 15 - 22 

Hard 22 - 24 

 

Players were asked to evaluate the (perceived) difficulty of each 5-minute game 

(easy, medium or hard). In our analysis, we used these data of player's self-evaluation 

(for game difficulty) as ground truth. By analyzing the videos from the 2 cameras for 

each player we extracted the start and end time for each game and use them for the 

analysis of the corresponding attention data segments. In total we end up with 84 

instances of games (14 players x 6 games). 

4 Affective state assessment 

We first analyze the results obtained for Valence/Arousal for all 84 instances. We 

wanted to have a global view of player's emotional state in the 3 different game diffi-

culties so we can use this as the ground truth for further analysis of attention levels. 

For our analysis we have split the valence/arousal plane in 4 quadrants, each one rep-

resenting a different emotion according to the mapping introduced by Russel [9]. We 

used the 4 basic emotions found in a gaming experience (Fig 2). When game difficul-

ty is easy, players are getting bored but when it is (too) hard they get stressed. Be-

tween these two states there is a flow zone, where skills of the player meet game dif-

ficulty, players are engaged and can enjoy playing the game showing positive emo-

tions like joy or excitement.  

 

Fig. 2. Valence/Arousal space used in our experiments 

   In Table 2 we give the results of player’s self-evaluation for all 84 instances. We 

observe that when players evaluate game difficulty as easy in 65.51% of the instances 

they felt bored. When they had evaluated difficulty as normal, in 57.14% of instances 



they felt engaged and in case of hard difficulty in 55.55% of instances they were 

stressed.  

Table 2. Percentage of instances for each emotion according the player’s self-evaluation 

Game Difficulty 

Player 

Engaged Relaxed Bored Stressed 

Easy 17.24 13.79 65.51 3.44 

Normal 57.14 0 24.42 21.42 

Hard 40.74 0 3.70 55.55 

 

5 Performance Metric 

   A possible measurement of player’s performance in a Tetris game is the total score 

(total number of lines). We could use this performance metric to compare the overall 

performance of the 6 games among players. If we want to compare player’s (same or 

different) performance in individual games we could use the score, where A is a con-

stant: 

 Performance = A * Score        (1) 

The problem by using this performance metric is that it doesn’t take into account 

the difficulty level, which is a function of the speed of the falling blocks. If for exam-

ple two players have the same score for a game, but one played in level 2 and the 

other in level 22 according to (1) they performed equally well. That is not true, since 

the second player had to play faster and make decisions quickly enough. We can 

compensate for game difficulty by giving a higher weight to harder levels and a lower 

one to easy levels. We propose to use the curve of the speed of the falling block (Fig 

2) as the weight that we call speed factor. We use the normalized (to unity) curve 

multiplied by the score (2). With this adjustment our proposed performance metric is 

a function of the score and difficulty of a game, so we can better compare results of 

individual games for the same or different players.     

 Performance = Speed Factor * Score      (2) 

6 Evaluation of attention 

Attention values provided by the BCI are given in the range of 0 to 100 and at a 

sampling frequency of 1Hz. We observed that attention values exhibit increasing (A+) 

or decreasing trends (A-).Similar trends in attention were observed in experiments 

using the specific BCI with archers in shooting process [10]. In their analysis, atten-

tion trends were linked with archer’s skills. For this reason we will also investigate 

the role of these trends and find if there is a relation between attention trends and 

players.   



 

 
Fig. 3. Attention values for a game with a positive trend (A+) 

 

 

Fig. 4. Attention values for a game with a negative trend (A-) 

In Table 3 we give the distribution of A+ and A- for all 14 players together with total 

score and performance metric for comparison.  For each player we calculated the 

mean value of attention per game and difficulty, as it was evaluated by them. 
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Table 3. Distribution of A+ and A- with total score and performance per each player 

 

   Player 

    

  # A+ 

  

  # A- 

 

   Total  

   Score 

Starting 

Level 

    Performance  

   Metric 

 

ANK 4 2 250 17 32.6 

GEO 5 1 185 20 26.4 

LUK 6 0 190 17 19.8 

SEL 3 3 235 20 38.5 

VAS 4 2 142 18 16.8 

PIE 5 1 115 19 13.4 

TOM 3 3 131 12 10.8 

TIF 1 5 88 14 8.3 

PEN 3 3 127 22 20.1 

YEI 5 1 184 17 20.4 

CHR 5 1 124 21 17.2 

ELE 4 2 145 19 18.0 

DES 1 5 148 18 16.3 

WES 4 2 125 20 18.5 

 

Linear regression analysis was carried out and results are shown in Fig 5. This intra- 

player analysis indicates that attention levels are increasing with game difficulty.  

 
Fig. 5. Mean attention levels for all 14 players in the three different game difficulties (* 

Easy, o Medium, + Hard) 

 

Following an inter-player approach, we found that out of all 84 instances (14 play-

ers x 6 games), 53 instances (63%) showed a positive trend in attention (A+) and the 

rest 31 (37%)  a negative one (A-). For every instance we obtained an attention value 

averaging over values provided by the BCI. We then calculate mean values of atten-

tion, arousal and performance for each difficulty level. In Table 4 we give these re-

sults for all instances and for A+ and A- instances separately. We made this distinc-

tion in order to examine the effect of attention trends in our results.   
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Table 4. Attention and Performance as a function of game difficulty 

 Number 

   of Instances 

p-value 

(ANOVA) 

Mean  

 Attention 

Mean   

     Arousal 

      Mean  

  Performance 

 

All instances (84)      

Easy 29  43.43 3.96 1.57 

Medium 28 0.0073 42.70 5.85 5.17 

Hard 27  48.66 6.85 3.22 

      

A+ instances (53)      

Easy 17  41.24 3.70 1.51 

Medium 21 0.0002 43.06 5.85 5.14 

Hard 15  51.87 7.13 2.55 

      

A- instances (31)      

Easy 12  46.54 4.33 1.67 

Medium 7 0.3699 41.63 5.85 5.26 

Hard 12  44.64 6.50 4.07 

    

An ANOVA test was carried out on attention values to test for differences in the three 

conditions (easy, medium and hard difficulty) indicating the significance of results. 

By analyzing data from the SAM based self-evaluation we found that in the majority 

of instances players felt bored when playing in easy levels, engaged when played in 

medium level and stressed when the level of Tetris was hard (Table 2). Also, accord-

ing to Table 4, players had their best performance (on average) when playing in me-

dium game difficulty, where player’s skills meet game’s difficulty. These results are 

in alignment with the flow theory [6] and give us an indication that players were more 

likely to be in the flow zone when playing in medium game difficulty. From Table 4, 

we also observe that the mean arousal level, calculated from player’s self-evaluation, 

is increasing with game difficulty, but performance is increasing up to a point and 

when levels of arousal are too high is decreasing. This experimentally observed fact 

comes in accordance with the Yerkes-Dobson law, describing the relation between 

arousal and performance [11]. By analyzing attention trends we found out that 2/3 of 

game instances exhibited a positive trend in attention (A+) and the remaining 1/3 a 

negative one (A-). By comparing results of Table 3, we conclude that attention trends 

are not related to players or their performance: all 14 players (except one) exhibit a 

positive and negative attention trend and their performance is not linked with the 

number of games with A+ or A- trend. We investigated whether there was a relation 

between attention trends, skills and performance. We found low values of correlation 

coefficient between A+ and starting level (0.29), A+ and total score (0.28), A+ and 

performance metric (0.21). 



 

Fig. 6. Boxplot of A+ for the different game difficulties  

Another important finding from Table 4 is that 21 out of 28 (percentage 75%) in-

stances referred to medium difficulty, are related to positive trend in attention and 

only 7 out of 28 (percentage 25%) of medium difficulty are related to a negative 

trend. We can conclude that when a player is in the flow zone, it is more likely that 

attention will exhibit a positive trend. Based on the results of Table 4, we have built a 

model for attention using only instances of attention with a positive trend. In this 

model, attention is increasing with game difficulty (Fig 6). In [6], G. Chanel et al. 

observed a similar behavior in the feature EEG_W (Fig 4 in [6]), which is known to 

be related with cognitive processes like workload, engagement, attention, and fatigue 

[12]. We noticed that attention instances with a negative trend showed a high p-value 

(0.3699) in the ANOVA results (Table 4). This is a strong indication that these in-

stances are not really part of a pattern, but just chance and are possibly related with 

loss of interest for the game, something we have to investigate in the future. These 

instances do not contribute to the model: they work counter-wise. If we make the 

hypothesis that attention measurements of the BCI are related to a similar feature like 

EEG_W for brain activity, our results come in alignment with results in [6]. We then 

calculate the mean of mean values of A+ in each game difficulty. The observed simi-

larities between the increase in the speed of falling blocks (Fig 1) and the mean of 

means attention (Fig 6), suggests that a non-linear increase in game difficulty results 

in a non-linear increase in attention.       
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7 Conclusions 

We tested the usefulness of a commercially available BCI dedicated for gaming in 

measuring levels of attention. Based on a gaming protocol for Tetris introduced by G. 

Channel et al. we performed an experiment with 14 participants. Players felt bored 

when game difficulty was easy, engaged when game level was medium and stressed 

when it was hard. Similar results were reported by G. Channel et al. [6]. By analyzing 

data obtained from self-evaluation questionnaires given to participants playing Tetris 

with the same gaming protocol, they found out that the three different gaming condi-

tions (levels of difficulty) gave rise to three different emotional states: boredom for 

the easy conditions, engagement for the normal and anxiety for the hard condition. 

We proposed a performance measure for Tetris that takes into account the non-linear 

increase in the speed of the falling blocks and according to flow theory of Csikszent-

mihalyi and the Yerkes-Dobson law results are consistent. Based on a statistical anal-

ysis of the obtained data, we introduced a model for attention where a non-linear in-

crease in game difficulty is followed by a non-linear increase in attention. The pro-

posed model for attention comes in accordance with similar results obtained by G. 

Channel et al. [6] using the same gaming protocol with Tetris and a full EEG cap to 

capture signals from the brain. As feature they used EEG_W (ratio of energies for 

alpha, beta and theta brain waves) which is related to attention and workload. By 

letting players playing the Tetris game in different difficulties (low, normal and hard) 

they also found that the EEG_W values were increasing on average with game diffi-

culty. For their experiments they also used 14 participants.             

8 Limitations and future work 

As results of this preliminary study using the BCI were encouraging, we will repeat 

the experiment using a bigger sample of players and higher number of Tetris games 

per player, in order to have a stronger proof that the model for attention proposed here 

stands also for each player. With more data it would be possible to build a classifier 

that can distinguish between states of low, medium and high attention. Based on flow 

theory the model for attention can be further tested by incorporating (in the game) the 

dynamic adjustment of difficulty and by evaluating the effect in players’ performance 

and engagement.  
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