
Visual Generative Behavior Patterns to Facilitate Game
Development

Bram Pellens
Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussels, Belgium
+32 2 629 37 13

Bram.Pellens@vub.ac.be

Olga De Troyer
Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussels, Belgium
+32 2 629 35 04

Olga.Detroyer@vub.ac.be

Frederic Kleinermann
Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussels, Belgium
+32 2 629 37 13

Frederic.Kleinermann@vub.ac.be

1. INTRODUCTION
The worldwide videogame and interactive entertainment industry
revenue is expected to reach over $50 billion in 2009 [2]. The
majority of the effort in game development revolves around
content creation and many resources are spent on it. Game
companies construct or buy a set of content creation tools to aid
the designers in their work. However, these tools only focus on
the artwork, interfaces, game levels, and so on but none of them
really focus on the content which is related to the gameplay or the
game story, that is, the dynamic aspect of the game. Creating this
story-related content, namely the scripts for the behavioral aspect
in computer games, and translating this into appropriate program
code is a very difficult task. For complex scripting, the developer
has to resort to manually write code using scripting languages (i.e.
Lua or Python). Furthermore, these languages are not tailored for
games which also do not make them easier. Over the years, game
developers have come up with many predefined (parts of)
solutions to improve the development process [1][3]. In addition,
in practice, people are also trying to avoid writing long scripts by
using existing scripts and customizing them to fit their needs.

This brings us to the concept of design patterns, known from the
Software Engineering (SE) domain [4]. A design pattern specifies
a well-defined solution to a problem that often appears when
designing and developing software. Design patterns allow
capturing the expertise of others in a well-defined way. In this
work, we use the concept of Generative Design Patterns [5] for
specifying patterns of behavior that often occur in games. The use
of Generative Design Patterns has the additional benefit (over
traditional design patterns) that automatic code generation is
possible. In this way they promote reuse since a pattern can be
designed and implemented once and be used many times in
different computer games and/or in different situations. In
addition, the time of development can be reduced significantly by
providing a library of patterns (or pieces of a solution) allowing
the developer to select a pattern and fill in the details. These
patterns can be used as first class elements in our existing visual

behavior modeling language [6] giving us a number of extra
advantages. A visual language can be very helpful for conveying

complex models and designs. It can help people to grasp large
amounts of information more quickly than large listings of
scripting code. When designed well, a visual language is easier for
understanding and also for learning. Finally, the diagrams can also
be used to ease the communication between different and non-
technical stakeholders.

The combination of the generative design patterns and the visual
language provides a powerful mechanism to model complex
behaviors for computer games as the required scripting code is
automatically generated from these higher-level models.

2. THE PATTERN-BASED FRAMWORK
We have developed the CoDePA framework, a pattern-based
framework for specifying behaviors. This framework extends our
existing behavior modeling approach, which allows specifying
behaviors by means of a visual language.

The framework (see Figure 1) includes two separated processes,
the Pattern Usage Process (lower-left on Figure 1) and the
Pattern Specification Process (top of Figure 1) for respectively
using and creating behavior design patterns.

Figure 1. Pattern-based Framework

Once a pattern has been created and made available through a
library, it can be applied (called instantiated) in a particular 3D

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FuturePlay @ GDC Canada, May 12-13 2009, Vancouver, Canada.
Copyright 2009 --- 1-XXXXX-XXX-0/00/0009…$5.00.

interactive application (i.e. computer game). The process of
instantiating a behavior pattern consists of three steps, explained
below. Each step is supported by the CoDePA Conceptual
Designer tool, a diagram editor supporting the approach.

In the first step, selection, the designer selects an appropriate
pattern from the collection of patterns available in the library (and
created earlier by a pattern designer). In the second step,
customization, the designer customizes the pattern to the
particular context of the game. We support two different kinds of
pattern customization. A first customization is possible by giving
proper values to parameters (overriding the default values
provided for the pattern). A second kind of customization consists
of adapting the default number of components (e.g. by adding or
removing graphical elements) in the pattern. The third step,
generation, is the automatic code generation in which all the
specifications are translated into the actual scripting code.

An example of this would be a scenario in which we want to have
an NPC walk according to a certain path. The first thing to do is to
search for an appropriate pattern in the library. In this case, the
most appropriate pattern is the Path Movement pattern. Selecting
this pattern will automatically drop the visual representation onto
the drawing canvas and the designer can start customizing the
pattern to the scenario. Customizing this particular pattern means
first setting a number of parameters. Amongst the parameters, the
most important ones are the interpolation algorithm and the
obstacle avoidance algorithm that should be used. Secondly, the
actual path the character has to follow needs to be specified since
this will be different for each particular scenario. Once all this
information is given, the actual scripting code can be generated
for the character’s behavior.

Our approach also allows building new behavior patterns and
adding them to a pattern library. The process of specifying a new
pattern is divided into two steps, namely the front-end

specification and the back-end specification. Obviously, creating a
new pattern in our approach requires some knowledge of
programming. However, most of the work is supported by means
of the Design Pattern Manager tool.

The front-end specification focuses on the aspects of the pattern
which are directly visible to the user of the pattern. As the patterns
have a visual representation, the pattern designer needs to specify
this visual representation, i.e. the graphical elements used in this
visual representation, the roles that they play, how these elements
are connected to each other, and the parameters required. This so-
called pattern definition must be given according to an XML
Schema (available online1). Standard graphical elements, with a
well-defined meaning are available to ease the specification and to
avoid a proliferation of graphical elements. However, new ones
can be easily introduced. Furthermore, the pattern should be
described using meta-data. This meta-data contains information
that can assist the designer on how or when the use the behavior
patterns.

The back-end specification is required in order to be able to
generate scripting code. A first set of files to be given is the class

library, which should contain code to enable the interpretation of
instantiations of the newly specified pattern by the system. Also
some templates need to be given. The templates are used to
generate the actual scripting code. The data that will be given by

1 http://codepa.brampellens.be/PatternDefinition.xsd

the pattern user when instantiating and customizing a particular
pattern together with the templates will be transformed into
appropriate scripting code by the code generator. All
specifications in our approach are based on XML, and XSL
transformations are used for the generation. Finally, some
scripting code can be given which contains the actual
implementation of the behavior described by the pattern or some
helper functions. It is this code that is instantiated (i.e. invoked) or
used by the scripting code that was generated. In the case of
simple behavior patterns which are only using primitive actions, it
is not required to provide any scripting code.

3. CONCLUSIONS
The CoDePA project is elaborated in cooperation with a Belgian
game development company. It aims at facilitating the game
development process by means of providing generative behavior
patterns. The patterns are integrated into an already existing visual
behavior modeling language. Also a mechanism to specify new
behavior patterns is provided.

The behavior design pattern framework, implementing the

proposed approach, has been discussed in this abstract. It allows a

more experienced user to create new behavior patterns and to

include them in the library of the framework for further use. The

patterns can be used inside the visual behavior modeling

language, developed earlier to specify behavior. The design

patterns created with this framework are generative, which means

that automatic scripting code generation for interactive

applications such as computer games is supported.

We have already applied our approach to numerous cases coming
from our partner in the project in order to show the feasibility.
However, in the future, we will also conduct experiments to
evaluate the usability of the approach. Furthermore, we also plan
to extend our pattern library with more patterns, especially
towards smart behavior.

4. REFERENCES
[1] Bjork, S. and Holopainen, J. 2004 Patterns in Game Design.

Game Development Series, Charles River Media, 1st ed.

[2] DFC Intelligence 2008 World Wide Market Forecasts for
Video Game and Interactive Entertainment Industry Report
Series, from http://www.dfcint.com

[3] Folmer, E. 2006 Usability Patterns in Games, in Proc. of
Future Play 2006 Conference, Ontario, Canada.

[4] Gamma, E., Helm, R., Johnson, R., Vlissides, J. 1995 Design

Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional.

[5] MacDonald, S., Szafron, D., Schaeffer, J., Anvik, J.,
Bromling, S., Tan, K. 2002 Generative Design Patterns, in
Proc. 17th IEEE International Conference on Automated

software engineering, Edinburgh, Scotland, 23-34.

[6] Pellens, B., De Troyer, O., Kleinermann, F., Bille, W. 2007
Conceptual modeling of behavior in a virtual environment, in
Special Issue of International Journal of Product and

Development, Inderscience Enterprises, 4(6):626-645.

