A Declarative Approach for Engineering
Multimodal Interaction

Loode Hoste

26th June 2015

Jury Members:

e Prof. Dr. Theo D’Hondt (chair)
SOFT DINF, Vrije Universiteit Brussel
e Prof. Dr. Olga De Troyer (secretary)
WISE DINF, Vrije Universiteit Brussel
e Prof. Dr. Beat Signer (promoter)
WISE DINF, Vrije Universiteit Brussel
e Prof. Dr. Wolfgang De Meuter (promoter)
SOFT DINF, Vrije Universiteit Brussel
e Prof. Dr. Bart De Boer
AT DINF, Vrije Universiteit Brussel
e Prof. Dr. Bart Jansen
ETRO, Vrije Universiteit Brussel
e Prof. Dr. Jean Vanderdonckt
Louvain Interaction Laboratory (LiLab), Louvain-la-Neuve, Belgium
e Prof. Dr. Judith Bishop
Director of Computer Science, Microsoft Research, Redmond, USA

Printed by

Crazy Copy Center Productions
VUB Pleinlaan 2, 1050 Brussel
Tel / Fax : +32 2 629 33 44
crazycopy@vub.ac.be
WWW.crazycopy.be

ISBN 9789492312006
NUR 989

All rights reserved. No part of this publication may be repro-
duced or transmitted in any form or by any means, print, photoprint,
microfilm, electronic, mechanical, recording, or otherwise, without the
prior permission from the author.

Alle Rechten voorbehouden. Niets van deze uitgave mag worden
vermenigvuldigd en/of openbaar gemaakt worden door middel van druk,
fotokopie, microfilm, elektronisch of op welke andere wijze ook, zonder
voorafgaande schriftelijke toestemming van de auteur.

Copyright (©) 2015 Lode Hoste

Abstract

The communication between human and machine is rapidly changing
with the introduction of new commodity hardware, such as Apple’s iPad,
HP’s Sprout, Microsoft’s PixelSense and Kinect. This hardware embeds
novel input sensors to facilitate a more natural user interaction (NUI)
paradigm. The development of NUI applications, where the machine tries
to understand and anticipate the user’s interaction, typically relies on
a continuous monitoring of multiple input channels. The collection of
events, the detection of relevant patterns and the embedding of these
concerns into the application engenders significant challenges because
relevant information is hidden in a continuous stream of events. Moreover,
the implementation of the detection process in imperative programming
languages is excessively difficult.

In this dissertation we present novel programming abstractions to
describe multimodal interaction patterns. Our approach consists of two
major efforts: a programming language and a compatible runtime platform
with an extensible architecture. The first effort consists of a domain-
specific language, called Midas, which allows developers to express their
multimodal tasks in a declarative manner. A declarative programming
style allows the programmer to think about what the fundamental condi-
tions are, instead of analysing how to process input events one by one, as
would be necessary with an imperative language. Midas uses declarative
rules to express multimodal interaction patterns. These conditions rely
on the existence and the spatio-temporal relation of input events that
were obtained from various input modalities. Midas provides adequate
programming abstractions to help developers express these conditions in
a modular and composable manner.

Midas programs are interpreted by Mudra, an efficient multimodal
interaction architecture and processing engine. Mudra is centred on a
global information storage, called the fact base, which is populated by
multimodal input events from various devices. As these events arrive in a

continuous manner, rules and other processes actively react to changes in
the fact base. In order to do this efficiently, Mudra progressively filters
and combines facts in order to derive a conclusion. Our high-level Midas
programming language and its efficient Mudra runtime platform allows
developers to fuse information across the data-level, feature-level and
decision-level.

We have successfully deployed our solution in the real world, includ-
ing live programming sessions and live music performances. Using the
programming abstractions presented in this dissertation, we foresee the
rapid prototyping of a whole range of novel natural user interfaces in a
modular and composable manner.

“Knowledge not shared, is wasted.” - Clan Jacobs.

Samenvatting

Innovatieve apparaten zoals Apple’s iPad, HP’s Sprout, Microsofts Pixel-
Sense en Kinect bieden nieuwe manieren om te interageren met computers
ten opzichte van de klassieke toetsenbord- en muisopstelling. Deze hard-
ware bevat een groot assortiment van sensoren om een meer natuurlijke
interactie (NI) met de gebruiker te bekomen. NI toepassingen worden
gekenmerkt door het begrijpen van en anticiperen op de interactie van de
gebruiker en vertrouwt typisch op een voortdurende analyse van meerdere
invoermodaliteiten. Het verzamelen van gebeurtenissen, de detectie van
relevante patronen en de inbedding van deze interpretatie in toepassingen
brengt echter grote uitdagingen met zich mee, omdat de relevante inform-
atie verborgen zit in een continue stroom van gebeurtenissen. Bovendien
is het programmeren van deze analyse in imperatieve programmeertalen
buitengewoon complex.

In dit proefschrift introduceren we nieuwe programmeer abstracties om
multimodale interactiepatronen eenvoudig te beschrijven. Onze aanpak be-
staat uit twee grote inspanningen: een programmeertaal en een bijhorend
uitvoerplatform met een uitbreidbare architectuur. Ten eerste introdu-
ceren we een nieuwe domein-specifieke taal, genaamd Midas, waarmee
ontwikkelaars multimodale interactiepatronen kunnen uitdrukken op een
declaratieve manier. Het gebruik van een declaratieve programmeerstijl
laat de programmeur toe om te denken over wat basisvoorwaarden van
de interactie zijn, in plaats van hoe gebeurtenissen één voor één moeten
worden afgehandeld, zoals noodzakelijk is met imperatieve programmeer-
talen. Midas maakt gebruik van declaratieve regels om multimodale
interactiepatronen uit te drukken. Regels bevatten voorwaarden die
uitgedrukt worden aan de hand van tijd en ruimtelijke relaties tussen
gebeurtenissen die verkregen werden uit verschillende invoer modaliteiten.
Midas biedt de nodige programmeer abstracties om deze voorwaarden uit
te drukken op een modulaire en compositionele manier.

Midas programma’s worden geinterpreteerd door Mudra, een efficiénte
multimodale interactie architectuur en uitvoermachine. Centraal in Mudra
staat een feitenbank die multimodale invoergebeurtenissen bevat. Bij elke
wijziging in deze feitenbank zal de uitvoermachine elke regel aftoetsen.
Om de nodige efficiéntie te bekomen, gebruikt Mudra een incrementeel
algoritme waarbij de combinatie tussen feiten in een tijdelijke opslag
wordt bijgehouden. De combinatie van onze hoog-niveau Midas program-
meertaal en de efficiénte Mudra architectuur stelt ontwikkelaars in staat
om informatie over data-, feature- en besluitvormingsniveau te fusioneren.

We hebben met succes onze oplossing toegepast in de echte wereld,
onder andere voor live programmeer sessies en live muziek optredens. Met
behulp van de programmeer abstracties gepresenteerd in dit proefschrift,
kan men snel prototypes ontwikkelen die modulair kunnen worden opge-
bouwd waardoor er een hele reeks van nieuwe applicaties met natuurlijke
interactie mogelijk wordt.

Acknowledgements

Eerst en vooral wil ik mijn promotors bedanken, Beat Signer en Wolfgang
De Meuter, om mij de kans te geven een passie na te streven voor een
natuurlijkere interactie tussen mens en machine. Beat, uw gedrevenheid
om papers in te dienen naar relevante conferenties was een zeer belangrijke
factor in de succesvolle verspreiding van mijn werk. Ik zal altijd uw
aanmoedigingen herinneren om de soms echt korte deadline te halen
zonder het oog voor detail te verliezen. Ik waardeer echt de lange nachten
die je hebt besteed aan allerlei aanpassingen van mijn papers. Ik wil graag
Wolf bedanken omdat je mij meermaals te overweldigen met ongewone
ideeén die de hoofdcontributies van dit werk verbeterd hebben. Ik moet je
gelijke nog ontmoeten die zo een toekomst visie heeft over de fundamenten
van een breed scala van subdomeinen binnen de informatica. Ik denk dat
de kruisbestuiving van ideeén tussen de twee labo’s dit werk echt laten
uitblinken.

Ik wil ook even de tijd nemen om Christophe Scholliers in de bloemetjes
te zetten. Vijf jaar geleden heb jij de uitdagingen gelokaliseerd van
het programmeren van multi-touch gebaren. Dit is vandaag, met de
introductie van allerlei nieuwe invoermodaliteiten, meer dan ooit relevant.
Het eist een diep inzicht (en een beetje puur geluk?) om zo’n interessant
onderzoeksonderwerp te formuleren. Ik ben dan ook zeer blij dat ik
degene was die deze uitdaging kon aangaan. Ik waardeerde ook jouw
voortdurende feedback tijdens deze jaren.

Leden van de jury, Prof. Dr. Theo D’Hondt en Prof. Dr. Olga De
Troyer, ik dank u voor het volgen van de voortgang van het onderzoek.
Ik heb veel van jullie beide geleerd in domeinen die buiten mijn expertise
liggen. Prof. Dr. Bart De Boer, Prof. Dr. Bart Jansen, Prof. Dr. Jean
Vanderdonckt and Prof. Dr. Judith Bishop, thank you for accepting the
invitation and making this defense a reality. It is my pleasure to have
gotten to know you and I hope we can meet again in the future.

Tijdens de laatste vijf jaar heb ik veel collega’s zien komen en gaan. Tk
wil jullie allemaal bedanken voor de vele ideeén die jullie gedeeld hebben
met mij en om de werkomgeving uiterst aangenaam te maken. Daarnaast
wil ik graag specifiek Kevin vermelden omdat hij dit proefschrift vrijwillig
gelezen heeft; Thierry, voor het ontcijferen van Wolfs aantekeningen
en het zorgvuldig lezen van een aantal secties waarbij de details van
bijzonder belang zijn; en Yves, voor het delen van uw ‘leet R skills’ om
de noodzakelijke grafieken te produceren wanneer de tijd kort was.

Beste Lia, dank u voor de verplichte afleiding wanneer ik opnieuw een
paragraafke’ aan het schrijven was. Het is verbazingwekkend om te zien
hoe snel je evolueert in vergelijking met wat professionele programmeurs
kunnen bereiken met de hele rekenkracht van de ‘cloud’. Ik denk dat de
computerwetenschappen nog een zeer lange weg te gaan hebben. Ik ben
trouwens ook op zoek naar een kinderslot plugin voor vim — dgg is een
gevaarlijke combinatie — iemand?

Een laatste woord van dank gaat naar Lise, om het evenwicht tussen
het echte en het virtuele leven goed te balanceren. Ik kan me geen leven
voorstellen zonder jou en ik zal de inspanningen die je gedaan hebt, en nog
steeds doet, om mij te steunen tijdens zeer drukke periodes niet vergeten.

4

This work has been funded by the Agency for Innovation by Science
and Technology (IWT)!. T further thank Microsoft Research’s ICSE
SRC initiative? (2010) and the Doctoral School of Natural Sciences and
Bioscience Engineering® (2014) for received travel grants.

! Agentschap voor Innovatie door Wetenschap en Technologie: http://www.iwt.be

2ACM Student research competition (SRC) of International Conference on Software Engineering
(ICSE 2010) sponsored by Microsoft Researchhttp://www.sbs.co.za/icse2010/SRC_2010.html

3Doctoral School of Natural Sciences and (Bioscience) Engineering: http://www.vub.ac.be

http://www.iwt.be
http://www.sbs.co.za/icse2010/SRC_2010.html
http://www.vub.ac.be

Table of Contents

1 Introduction 1
1.1 Research Context 3
1.2 Research Goals 5)
1.3 Methodology 7

1.3.1 Language-oriented Approach 7
1.3.2 Architecture and Execution Engine 8
1.3.3 Towards a Solution 9
1.4 Contributions 10
1.5 Supporting Publications and Demonstrators 11
1.5.1 Publications 11
1.5.2 Demonstrators 15
1.6 Dissertation Outline 16

2 Multimodal Interaction 19
2.1 Multimodal Concerns 19
2.2 Multimodal Fusion Levels 21

2.2.1 Data-Level Fusion. 21
2.2.2 Feature-Level Fusion 22
2.2.3 Decision-Level Fusion 22
2.3 Criteria for Expressing Multi-Level Multimodal Fusion . 23
2.3.1 Language Features 24
2.3.2 Multimodal Processing Concerns 26
2.3.3 Multimodal Disambiguation 32
2.3.4 Accessibility and Tooling 35

Vi

viii TABLE OF CONTENTS
24 Conclusion 36
3 Related Work 39
3.1 Data Streams and Semantic Inferencing 39
3.1.1 Data Stream-oriented Solutions 40
3.1.2 Semantic Inferencing Solutions. 40
3.1.3 Irreconcilable Approaches? 43
3.2 Positioning of Related Work 43
3.3 Multimodal Languages 47
3.3.1 Data-level Gesture Languages A7
3.3.2 Gesture Authoring 59
3.3.3 Template Matching and Machine Learning 60
3.3.4 Decision-level Multimodal Languages 62
3.4 Multimodal Architectures 67
3.4.1 Data Stream-oriented Architectures 67
3.4.2 Semantic Inferencing Architectures 70
3.5 Conclusion 73

4 Midas: A Programming Language for Multimodal Inter-

action 75

4.1 A Declarative Language, 76

4.1.1 Formal Grammar of Midas 76

4.2 Interpreting Midas L. 76

4.2.1 Templates, Modules, Facts and Events 78
4.2.2 Rules with Conditional Elements, Tests, Attempts

and Functions 79

4.2.3 Rules with Modifiers 82
4.2.4 A Midas Implementation of the Hold-and-Rotate

Gesture 83

4.3 Multimodal Language Features 84

4.3.1 Modularisation and Abstraction 84

4.3.2 Inheritance as Composition of Modules 88

4.3.3 Customisation and Extensibility 89

434 Negation 92

TABLE OF CONTENTS iX

4.4

4.5

4.6

4.7
4.8
4.9

4.3.5 Application Symbiosis 92
4.3.6 Unbound Variables and Unification 94
4.3.7 FEvent Expiration 95
Data-level Fusion 96
4.4.1 Spatial Specification 97
4.4.2 Temporal Specification 100
4.4.3 Spatio-Temporal Specification 100
4.4.4 User-defined Attempts and Functions 100
4.4.5 Identification and Grouping 101
4.4.6 Segmentation and Control Points 103
Feature-level Fusion 107
4.5.1 Synchronising Streams 108
4.5.2 Dynamic Service Instantiation 109
4.5.3 Asynchronous Tests 111
4.5.4 Verification L. 112
4.5.5 Cross-level Fusion 113
Decision-level Fusion 114
4.6.1 Shadow Facts 114
4.6.2 Alternating Between Conditions and Modifiers . . 116
4.6.3 Conflict Resolution 117
Multimodal Language Patterns 121
Developer Feedback 124
Conclusion 125

5 Mudra: A Unified Multimodal Interaction Architecture 127

0.1

0.2

Conceptual Architecture of Mudra. 129
5.1.1 Motivating Examples 129
Mudra’s Unified Fusion Architecture 133
5.2.1 The Infrastructure Layer 134
5.2.2 The Distribution Layer 138
5.2.3 The Core Layer 142
5.2.4 The Service Layer 145

5.2.5 The Application Layer 153

TABLE OF CONTENTS

5.3 Multimodal Processing Concerns 154
5.3.1 Online Processing 154
5.3.2 Offline Processing 155
5.3.3 Partially Overlapping Matches 155
5.3.4 Segmentation L. 157
5.3.5 Long Term Reasoning 159
5.3.6 Concurrent Interaction 161
5.3.7 Portability, Serialisation and Embeddability . . . 162
5.3.8 Runtime Definitions and Device Instantiation . . 162
5.3.9 Reliability and Scalability 163

5.4 Authoring Tools L 164
5.4.1 Inferencing and Refining Control Points 164
5.4.2 A Graphical Full-Body Development Environment 166
5.4.3 Summary 167

5.5 Compilation and Runtime Model 167
5.5.1 Compilation Flow 167
5.5.2 Midas 2.0 ANTLR Compiler 169
5.5.3 Midas 1.9 Ruby Compiler 169
5.5.4 Midas 1.0 Core Engine 172

5.6 Conclusion 173

Midas & Mudra at Work 175

6.1 Midas and Mudra: A Qualitative Evaluation 175
6.1.1 Language Features 176
6.1.2 Multimodal Processing 178
6.1.3 Multimodal Disambiguation 180
6.1.4 Accessibility and Tooling 182
6.1.5 Conclusion. 182

6.2 Comparing Software Engineering Abstractions for Mul-

timodal Interaction 183
6.2.1 Comparing the Data-Level Language Abstractions
of Midas and Proton 183

TABLE OF CONTENTS Xi

6.2.2 Comparing the Decision-Level Language Abstrac-

tions of Midas and SMUIML 187
6.3 Case Study #1: The Kinect Presenter 190
6.4 Case Study #2: Live Gesture Programming Session 191
6.5 Case Study #3: Declarative Gesture Spotting 194
6.6 Case Study #4: Augmented Live Music Performance . . 196
6.6.1 Constraints 198
6.6.2 Expressive Control 200
6.6.3 Discussion and Conclusion 205
6.7 Case Study #5: Hand Grip Assessment for Effort Discount-
ing Taskso o 205
6.8 Case Study #6: Water BallZ 206
6.8.1 Electronic Schema 208
6.8.2 Solenoid Valves and Nozzles 209
6.9 Conclusion 209
7 Conclusions 211
7.1 Summary and Contributions 212
7.1.1 Analysis of Criteria, Challenges and Open Issues in
Multimodal Fusion Frameworks 214
7.1.2 Midas 214
713 Mudra 215
7.1.4 Shadow Facts 215
7.1.5 Control Point-based Gesture Spotting 216
7.2 Shortcomings and Future Work 216
7.2.1 Forgiving Interfaces 218
7.3 Overall Conclusion 218
Appendices 223
A Terminology in Multimodal Interaction 225
B Transcript of the Formal Grammar of Midas 229

C Positioning and Discussion of Related Work 231

Xii

TABLE OF CONTENTS

D

E

ANTLR Specification of Midas

Reused Attempts and Functions

Built-in Mudra Templates

Compatibility of Criteria Defined by Cirelli et al.

SMUIML XPaint Implementation

251

263

265

267

271

Introduction

Starting in the late sixties, human-computer interaction has shifted from
command line interfaces (CLI) to graphical user interfaces (GUI). In
recent years this trend is taken one step further by expanding human-
computer interaction beyond the typical keyboard and mouse setup in a
trend called natural user interfaces (NUI) [8]. A NUI is an interaction
methodology which incorporates human skills such as touch, sight and
body movement to enable human-computer interaction. Many NUIs rely
on interaction patterns that are also used in everyday life. For example,
a virtual deck of cards can be dealt by swiping towards players, as if
performed with real cards on a table!. In a similar way, a baseball game
with a NUI interface enables players to hit the ball by swinging their
arms>.

New commodity hardware facilitates the expansion of NUI applications.
Devices such as Apple’s iPad®, HP’s Sprout* and Microsoft’s PixelSense®
add a new dimension to human-computer interaction because one can
touch, move and manipulate virtual digital objects in a natural way.
Moreover, physical objects, in the form of tangibles, can be placed on
a multi-touch table to initiate interaction. A nice application of such

lwePoker: http://wepoker.info

2Kinect Sports Season Two: https://marketplace.xbox.com/Product/66acd000-77fe-1000-
9115-d8024d5309d6

3Apple iPad: https://www.apple.com/ipad
4HP Sprout: https://sprout.hp.com
SMicrosoft PixelSense: https://www.microsoft.com/en-us/pixelsense

1

http://wepoker.info
https://marketplace.xbox.com/Product/66acd000-77fe-1000-9115-d8024d5309d6
https://marketplace.xbox.com/Product/66acd000-77fe-1000-9115-d8024d5309d6
https://www.apple.com/ipad
https://sprout.hp.com
https://www.microsoft.com/en-us/pixelsense

2 Chapter 1. Introduction

tangibles is Reactable, which is used to compose music by carefully
positioning multiple physical cubes representing musical effects, filters
and generators [79].

Input sources, such as the Wii Remote® or Samsung’s Smart Remote”,
allow users to interact with computers by performing arm movement in
the air. These remotes embed accelerometers accompanied by optical
sensors to capture their movement and direction. Air gestures can also be
captured by depth sensors, as popularised by SoftKinetic’s DepthSense®
and Microsoft’s Kinect? in Smart TVs!'® and Xbox consoles!!.

The development of NUI applications is hindered by the fact that
sensors used for NUls are typically much noisier than traditional in-
put devices. This means that we need to invest in systems that can
receive different streams of information, such as touch, speech, pen and
visual signal, in order to obtain effective interpretation of the human’s
interaction [41,100].

Besides noise, NUI sensors often provide a continuous stream of
information, which is in big contrast to discrete input found in traditional
applications. In traditional applications, a single key or mouse press
typically results in a single directly connected command. Keyboard
shortcuts such as copy | 8 |+ ¢ | and paste [38 |+| v | are amongst the most
complex operations humans can perform using a keyboard, but are still
relatively easy to interpret in computer code. Likewise, movement of the
mouse is characterised by its sensitivity and enables pointing with good
accuracy and very little noise, causing few apparent issues in today’s input
handling code [111]. In extreme contrast, novel input modalities that
are based on accelerometers, touch-sensitive capacitive sensors, depth
sensors or microphones generate an abundance of information. Such
sensors are active all the time and generate a continuous stream of
data, with an inverted signal-to-noise ratio compared to traditional input
sensors. Therefore, to extract meaningful information from this sensor
technology, we need developer support to combine input sources, to
segment continuous streams and to reduce noise [27,97,142].

The implementation of traditional applications relies on stateless event
handlers to process input one by one. This process is already complex and

SWii Remote: http://www.nintendo.com/wiiu/accessories
"Samsung Smart Remote: https://www.samsung.com/us/video/tvs-accessories/SEK-1000/ZA
8SoftKinetic DepthSense: http://www.softkinetic.com/Products/DepthSenseCameras
9Microsoft Kinect: https://www.microsoft.com/en-us/kinectforwindows

10Samsung Smart TV: https://www.samsung.com/global/microsite/tv/2013_vi

HMicrosoft Xbox: https://www.xbox.com

http://www.nintendo.com/wiiu/accessories
https://www.samsung.com/us/video/tvs-accessories/SEK-1000/ZA
http://www.softkinetic.com/Products/DepthSenseCameras
https://www.microsoft.com/en-us/kinectforwindows
https://www.samsung.com/global/microsite/tv/2013_vi
https://www.xbox.com

1.1. Research Context 3

error prone [111] and will be further complicated with the introduction
of additional input device types. Existing applications for instance rely
on a mouse cursor that can manipulate a single object at once. Multi-
touch technology already allows the use of multiple fingers to manipulate
multiple elements of a graphical user interface in parallel.

These observations lead us to the conclusion that although the in-
dustry has made important steps in terms of hardware technology, the
development of sophisticated human-computer interaction is currently
hampered by the lack of adequate programming abstractions. We argue
that developers use inadequate programming abstractions to process this
multitude of sensor input data.

It is essential to support developers with adequate programming
abstractions to solve these problems. In the following sections we discuss
existing approaches and summarise the need for additional means to
properly address the challenges of today and tomorrow’s human-computer
interaction.

1.1 Research Context

This dissertation is positioned at the crossroad of two major computer
science domains, namely Human-Computer Interaction and Programming
Language Design. This is due to the fact that the complexity to extract
information coming from input devices is increasingly higher. Today’s
software-related limitations severely hinder the ability to experiment with
novel interaction techniques. Additionally, the robustness of every day’s
use of these devices compared to traditional input methods decreases due
to the inability to program user interface code at an adequate abstraction
level.

To extract meaningful information, such as gestures'?, from multiple
sensors, the literature uses the term multimodal fusion. Sharma et al. [144]
distinguish three levels of multimodal fusion, namely data-level fusion,
feature-level fusion and decision-level fusion. In data-level fusion tasks,
developers focus on the fusion of identical or tightly linked types of
multimodal data. The goal is to (1) remove the excess of noise and to
(2) provide feature candidates in (3) a real-time manner [41]. Feature-level
fusion tasks rely on derived information from the data-level to fuse closely
coupled modalities. A classical feature-level example is the integration

12A gesture in the context of this dissertation is based on the definition of Rhyne et al, namely a
configuration of strokes, including handwritten text, pointing, and others [133].

4 Chapter 1. Introduction

of speech (captured by a microphone) and lip movement (captured by a
camera) to improve speech recognition results [128]. Finally, decision-level
fusion is the highest abstraction level of multimodal fusion, as it focuses on
correlating information coming from loosely coupled modalities, such as
speech and gestures. For example, the well-known put that there example
by Bolt [11] fuses speech input such as “that” and “there” with pointing
information to identify an object and a new location.

Unfortunately, mainstream programming languages do not align very
well with the continuous event-driven nature of modern sensors, such
as multi-touch surfaces and accelerometers. Imperative languages are
designed with the assumption that the control flow is decided by the
programmer and the state of the computer, and not driven by external
events. The complexity to collect events, detect relevant patterns and to
embed these into the application therefore engenders enormous challenges.
The situation is further aggravated when more than one sensor is involved.

Various multimodal solutions have been proposed in literature. How-
ever, these research approaches are narrowly focused on a single fusion
level, resulting in incompatibilities with one another. On the one hand,
data-level fusion solutions are characterised by a focus on performance,
noise filtering and typically provide abstraction in the form of composition
boxes that need to be chained together [5,97,142]. This means data-level
solutions lack high-level language abstractions and need to implement the
logic inside composition boxes [41,102]. On the other hand, decision-level
fusion solutions focus on bridging the gap between input data and the
application layer by providing abstractions in the form of dialogue man-
agement and high-level programming languages. Unfortunately, these
high-level abstractions cannot cope with the vast amount of input data.

Due to the inability to properly describe multimodal interaction pat-
terns, many researchers resort to machine learning solutions. Therefore,
in general, many advantages of programming the interaction are lost,
including the ability to control the result of the model (i.e. which con-
ditions are crucial), to verify the model (i.e. is there a risk of accidental
activations), to comprehend the model (i.e. will this work for other users)
and to manually manipulate its preciseness (although there exist machine
learning algorithms that partially allow this). Similarly, we argue that
there needs to be a way to describe multimodal fusion concerns without
having to resort to mainstream imperative programming languages. The
use of an imperative programming style to implement event-driven fusion
results in the inversion of control (i.e. the user, and not the code, dictates

1.2. Research Goals 5

the program flow) [73], requires a complex manual state management and
lacks modularisation and composition abstractions.

The lack of adequate high-level language abstractions to properly
describe multimodal fusion processes has been highlighted in recent sur-
veys [41,100]. Lalanne et al. explicitly state that engineering aspects of
fusion engines must be further studied. As stated by Cuenca et al. [31] the
ultimate goal of multimodal frameworks is to minimise the programming
effort and allow for a faster creation of prototypes. To the best of our
knowledge, this concern has not been adequately addressed. These sur-
veys further argue that there is a need to efficiently manage the large
amount of input data, to provide abstraction and composition of gestural
interaction implementations, and to allow for a proper symbiosis between
the application logic and the inherent continuous processing of multimodal
events.

1.2 Research Goals

The extraction of meaningful information from multiple continuous input
streams is a challenging task. In this work, we focus on two basic
principles of software engineering, namely the separation of concerns and
the reduction of accidental complexity by providing adequate abstractions.

Implementing multimodal interaction patterns is complex because
it requires the concurrent processing of multiple event streams, the seg-
mentation of endless input information and dealing with an abundance
of noise. Even the recognition of a simple multimodal interaction de-
mands for a major amount of work when using traditional programming
languages. Furthermore, the reasoning over interaction from multiple
users and devices significantly increases the complexity. Therefore, we
need a clear separation of concerns between the multimodal application
developer and the designer of new multimodal interactions to be used
within these applications. The user experience designer must be supported
by a set of programming abstractions that go beyond simple low-level
input device event handling. Application developers on the other hand
should be able to properly integrate these designed building blocks into
their applications. Therefore, the direct beneficiaries of our work are
developers who wish to rapidly prototype novel multimodal interaction
patterns. Additionally, we consider that our approach should satisfy
requirements to deploy these prototypes in the real world by gradually
refining the multimodal interaction patterns. Finally, we wish to improve

6 Chapter 1. Introduction

the programming code of existing multimodal applications by exploiting
the novel programming abstractions our approach offers. Indirectly, we
target an improved human machine interaction by leveraging these new
input sensors to drive numerous applications.

In software engineering, a problem can be divided into its essential and
accidental complexity [18]. Accidental complexity relates to the difficulties
a programmer faces due to the choice of software engineering and problem
modelling tools. Other research fields, for example mathematics and
natural sciences, have made great strides by designing simplified models
of complex phenomena. These models are then verified with the help of
experiments. This paradigm works because the complexities ignored in
the model were not the essential characteristics of the phenomena. The
modelling does not work if the complexities are of essence.

Essential complexity is caused by the inherent characteristics of the
problem to be solved and cannot be reduced. Selecting or developing
better tools can reduce the accidental complexity because the view and
implementation of the model can be simplified. While the accidental
complexity of today’s traditional keyboard and mouse applications is
partially addressed by the use of high-level programming languages such as
Java, C# or XAML, we have not witnessed the same software engineering
support for the development of multimodal applications. Furthermore,
the few existing high-level multimodal languages cannot cope with the
vast amount low-level input events, making existing multimodal languages
not suitable for processing low-level input events.

To summarise, the practical problem this dissertation wants to address
is the following;:

How much can the accidental complexity of engineering multimodal
interactions be reduced by using a non-imperative approach?

In this dissertation, we aim to provide a high-level programming
language to describe multimodal fusion with the ability to process a vast
amount of incoming information in real time. Concretely, the research
goals for this approach are:

e To reduce the accidental complexity, the approach must facilitate
the implementation of multimodal interaction patterns through
high-level programming abstractions.

1.3. Methodology 7

e To cope with the vast amount of low-level input events in soft real-
time, the approach must facilitate an execution engine and react
accordingly to the given multimodal descriptions. This includes
dealing with segmentation (i.e. the process of extracting meaningful
bits from continuous streams), and supporting overlapping matches
(i.e. where input data can be shared between multiple multimodal
descriptions).

e To fuse low-level data with high-level data, the approach must
facilitate cross-level multimodal fusion. This is challenging due
to the fact that low-level data and high-level data operate at different
frequency rates. Additionally, the approach must integrate with
existing fusion processes, such as feature extractors, in order to reuse
existing specialised methods with a small amount of development
effort.

e The applicability of this approach must be demonstrated in real
world settings. This verifies the ability to describe the functionality
defined by customers, as well as the real-time processing properties
of the engine and its robustness against noise in real world settings.

1.3 Methodology

To address the aforementioned challenges, we rely on the design science
research methodology defined by Peffer et al. [127]. This methodology is
based on six steps: problem identification and motivation (Chapter 2),
definition of the objectives for a solution (Chapter 2 and 3), design
and development (Chapter 4 and 5), demonstration (Chapter 6), evalu-
ation and communication (Chapter 6 and 7). The challenges to express
multimodal interaction patterns transcend the traditional focus of the
Human-Computer Interaction domain and involve advanced computa-
tional resources. Therefore, in order to pursue our research goals, the
approach consists out of two major design and development artefacts: a
programming language and a compatible runtime platform with a unified
architecture.

1.3.1 Language-oriented Approach

In order to ease the application development process, we need tools that
let developers focus on the essential complexity of the multimodal fusion

8 Chapter 1. Introduction

problem. Existing frameworks mostly rely on imperative programming
paradigms that do not align well with the event-driven nature of HCI. This
complexity translates into poor abstraction levels, inadequate recognition
rates, and ad-hoc solutions. Therefore, we propose a language-oriented
approach that allows developers to express their multimodal tasks in
a declarative manner. A declarative programming style allows the
programmer to think about what the fundamental conditions are, instead
of analysing how to process input events one by one as necessary in an
imperative approach. Our research shows that our declarative language
approach offers a number of important benefits, including the reuse
of existing code through modularisation and composition. This reuse
of existing code is not limited to linking components as is commonly
done in pure data stream approaches, but actually allows case-specific
customisation without the need to modify existing code. Our declarative
approach corresponds to an implicit programming flow [139], where the
execution engine translates the descriptions into a Rete network [54]. This
execution engine and its overarching architecture form the second part of
our work.

1.3.2 Architecture and Execution Engine

An important aspect of our work is to apply the proposed solution in real
world scenarios. This requires (1) an efficient processing engine and (2)
an extensible architecture to incorporate existing work (e.g. practical
solutions that have been derived with machine learning). Additionally,
many other multimodal concerns, including cross-level fusion, overlapping
matches or event expiration, form part of our focus. We describe a
unified fusion architecture that interprets our declarative high-level
language and enables the processing of real-time sensor data. Such a
unified architecture should support multi-level fusion across low- and high-
level data and be extensible to enable the incorporation of existing feature
processes. This integration is based on existing techniques, including the
publish/subscribe [49] model.

The core idea of our unified architecture is the use of a central fact
base. The fact base, in combination with a declarative language and the
Rete algorithm, allows developers to easily share information between
various fusion processes. A main characteristic of the Rete network is
the ability to efficiently cache intermediate results. This means that if an
input event satisfies one condition of a multimodal description consisting
out of two conditions (i.e. event a and event b need to happen), an

1.3. Methodology 9

intermediate representation of the result is temporarily kept in memory.
This information is maintained for some time until the event expires to
free memory for newer input events.

The central fact base also allows for extensibility and sharing of
information with other processes. Each process can access all available
information, including intermediate results, application information and
share its derived knowledge with all other processes.

Finally, we provide novel mechanisms to incorporate application in-
formation. For instance, the x,y position of particular GUI components
or the current interaction state provide precious information for the
multi-touch gesture recognition processes. Context, such as application
information, is of utmost importance to properly process multimodal
input data.

1.3.3 Towards a Solution

Listing 1.1 provides a preview of our language abstractions. It describes
that a multi-touch pinch gesture (Pinch, line 2) should be interpreted as
a basic zoom operation (scale, line 5) when performed on top of a digital
image (inside, line 4, a Image, line 3). The runtime interpretation of
this declarative description is illustrated in Figure 1.1. Our approach
transforms declarative conditions into a directed acyclic graph using the
Rete algorithm [54]. Input events are progressively filtered and joined
with other events in order to derive a conclusion. This process is reactive
because the input drives the computation.

Filter Filter
Pinch facts Image facts

Listing 1.1: Shrink an image A »
1 rule shrinkImage Join p and i such that
2 b= Pinch p—inside i
3 1= Image
4 p<inside i .
5 call i.scale(p.difference)
6 end cale the image

Figure 1.1: Rete graph

10 Chapter 1. Introduction

1.4 Contributions

In the following section we would like to highlight the main contributions
of this dissertation.

Analysis of Criteria, Challenges and Open Issues in Multimodal
Fusion Frameworks

Based on a literature study of the broad domain of multimodal fusion
and our expertise, we propose a set of 30 criteria. These criteria unify
a number of concepts from existing work and expose a large number of
issues that received little attention. A first analysis was discussed at
the first international workshop on Engineering Gestures for Multimodal
Interfaces (EMGI 2014) [46,69]. In this dissertation, we provide a second
iteration of these criteria which is used as a guideline throughout the text.

A Multimodal Programming Language

We define a new multimodal programming language, called Midas. Midas
aims to reduce the accidental complexity of developing multimodal interac-
tion and therefore enables developers to focus on the essential complexity.
Midas is a declarative programming language providing a number of
multimodal-specific constructs to ease the modularisation and composi-
tion of fusion processes. Furthermore, it supports customisation, negation
and an application symbiosis which remained rather primitive in existing
approaches. Our programming language therefore significantly increases
the expressiveness in contrast to existing solutions.

A Multimodal Fusion Engine

Mudra is a unified and extensible multimodal architecture focusing on
the real-time processing of input events. Mudra reconciles data stream
and semantic inferencing approaches by relying on a central information
storage, in the form of a fact base and an efficient Rete network algorithm
to process the raw data. This approach offers inherent support for
fusion across low-level data and high-level semantic information. Our
architectural design further enables the incorporation of existing solutions
through the use of a publish/subscribe and actor model.

Declarative Description of 2D and 3D Gestures
We introduce a novel method to declaratively describe complex 2D and

1.5. Supporting Publications and Demonstrators 11

3D gestures based on control points. With this method, gesture traject-
ories are split into multiple points that need to be traversed. Control
points enable the automated segmentation of continuous input data and
unyieldingly deal with noise by ignoring irrelevant events. Automated
gesture segmentation is a valuable asset for many cases where begin and
end points of gesture input cannot be clearly defined. Segmentation
problems are fundamental when processing continuous input streams and
are prevalent in novel, always-on sensors.

Real World Deployment of the Presented Abstractions

We performed a real world deployment of our proposed solution in multiple
scenarios and discuss the results. Firstly, we performed a live gesture pro-
gramming session as a demo during the TEI 2011 conference. At the same
conference, we controlled the interaction of our presentation via a Kinect
sensor, only a few weeks after it was released. Secondly, we deployed our
multi-touch abstractions in a NoiseTube demonstrator showcased at the
“Brussels Innovates!” exhibit. Thirdly, we provided expressive control of
indirect augmented reality during live music performances. Finally, we
designed and tested an augmented fighting game using water as tactile
feedback. A more in-depth description of our demonstrators can be found
in Section 1.5.2.

1.5 Supporting Publications and Demon-
strators

1.5.1 Publications

We disseminated our work in one journal, 7 conferences and 5 workshops.

Software Engineering Abstractions for the Multi-Touch Revolu-
tion Proceedings of ICSE 2010, 32nd ACM/IEEE International Confer-
ence on Software Engineering, Microsoft Student Research Competition.
Lode Hoste [63]. This short paper describes the first approach to a de-
clarative language to express multi-touch gestures. It uses declarative
rules to modularise and compose gesture implementations. The goal is
to disentangle code found in existing imperative approaches that rely on
event callbacks.

12 Chapter 1. Introduction

Midas: A Declarative Multi-Touch Interaction Framework
Proceedings of TEI 2011, 5th International Conference on Tangible, Em-
bedded and Embodied Interaction. Christophe Scholliers, Lode Hoste, Beat
Signer and Wolfgang De Meuter [141]. The work in this paper extends the
previous paper and proposes additional spatial and temporal operators to
describe multi-touch gestures. Furthermore, shadow facts are introduced
that allow gestures to be linked to GUI components. We need to clarify
that the language presented in this paper is named Midas but refers to
an older incarnation. In this dissertation we present a second iteration of
the Midas programming language.

Mudra: A Unified Multimodal Interaction Framework Proceed-
ings of ICMI 2011, 15th International Conference on Multimodal Inter-
action. Lode Hoste, Bruno Dumas and Beat Signer [64]. In this paper
we describe our unified architecture to perform multimodal fusion across
low-level data and high-level semantic information.

SpeeG: A Multimodal Speech- and (Gesture-based Text Input
Solution Proceedings of AVI 2012, 11th International Working Confer-
ence on Advanced Visual Interfaces. Lode Hoste, Bruno Dumas and Beat
Signer [65]. SpeeG is a multimodal speech- and body gesture-based text
input system targeting media centres, set-top boxes and game consoles.
It provides a controller-free zoomable user interface that combines speech
input with a gesture-based real-time correction of the recognised voice
input.

Parallel Gesture Recognition with Soft Real-Time Guarantees
Proceedings of the compilation SPLASH 2012 workshops, AGERE! work-
shop, 2nd International Workshop on Programming based on Actors,
Agents, and Decentralized Control. Thierry Renaux, Lode Hoste, Stefan
Marr and Wolfgang De Meuter [131]. In collaboration with co-authors,
we designed a parallel and scalable variant of Mudra, called PARTE.
PARTE is a complex event-processing engine and is compatible with the
Midas Language. It detects event patterns and provides soft real-time
guarantees for the computational processes.

Declarative Gesture Spotting Using Inferred and Refined Con-
trol Points Proceedings of ICPRAM 2013, 2nd International Confer-
ence on Pattern Recognition Applications and Methods. Lode Hoste,

1.5. Supporting Publications and Demonstrators 13

Brecht De Rooms and Beat Signer [66]. In this work we propose a novel
gesture spotting approach for processing continuous streams of two- or
three-dimensional Cartesian coordinates. This approach translates into
declarative Midas code and offers fine-grained control over the gesture
trajectory.

Expressive Control of Indirect Augmented Reality During Live
Music Performances Proceedings of NIME 2013, 13th International
Conference on New Interfaces for Musical Expression. Lode Hoste and
Beat Signer [67]. In this paper we present a real world application of
Midas and Mudra that uses explicit gestures and implicit dance moves to
control the visual augmentation of a live music performance. The focus
of this work is to evaluate our abstractions in a challenging environment.
Firstly, only a single sample is available for each of the five 3D gestures.
Secondly, there was no ‘noise’ data available that contains other movement
of the artists during the song. Thirdly, the 3D input data needs to be
processed in real-time and finally there was little room for recognition
errors.

Cloud PARTE: Elastic Complex Event Processing based on Mo-
bile Actors Proceedings of AGERE! 2013, 3rd International Workshop
on Programming based on Actors, Agents, and Decentralized Control. Jan-
willem Swalens, Thierry Renaux, Lode Hoste, Stefan Marr and Wolfgang
De Meuter [151]. In collaboration with co-authors, we extended PARTE
to dynamically distribute the processing load on multiple machines. It
involves data and code mobility of rete networks [54] and automated
load-balancing mechanisms.

SpeeG2: A Speech- and Gesture-based Interface for Efficient
Controller-free Text Input Proceedings of ICMI 2013, 15th Inter-
national Conference on Multimodal Interaction. Lode Hoste and Beat
Signer [68]. In this paper we present a second version of SpeeG, a
multimodal text entry solution combining speech recognition with gesture-
based error correction. Four innovative prototypes for the efficient
controller-free text entry have been developed and evaluated. A quantitat-
ive evaluation of our SpeeG2 text entry solution revealed that the best of
our four prototypes achieves an average input rate of 21.04 WPM (without
errors), outperforming current state-of-the-art solutions for controller-free
text input.

14 Chapter 1. Introduction

Water Ball Z: An Augmented Fighting Game Using Water as
Tactile Feedback Proceedings of TEI 2014, 8th International Confer-
ence on Tangible, Embedded and Embodied Interaction. Lode Hoste and
Beat Signer [70]. In this paper we present a second real world application
of Midas and Mudra in the form of a game. Water Ball Z is a novel
interactive two-player game that allows kids and young adults to “fight”
in a virtual world with water-based physical feedback. The focus lies on
the online processing capabilities of Mudra and the integration of Midas
with the application layer to deliver incremental feedback.

Parallel Gesture Recognition with Soft Real-Time Guarantees
Science of Computer Programmaing. Stefan Marr, Thierry Renaux, Lode
Hoste and Wolfgang De Meuter [113]. In collaboration with co-authors, we
evaluated the scalability of PARTE on machines with up to 64 cores. The
presented evaluation indicates that gesture recognition can benefit from
the exposed parallelism with superlinear speedups. The paper demon-
strates the scalability of a declarative approach for gesture recognition
and multimodal fusion processes.

Criteria, Challenges and Opportunities for Gesture Program-
ming Languages Proceedings of EGMI 2014, 1st International Work-
shop on Engineering Gestures for Multimodal Interfaces. Lode Hoste and
Beat Signer [69]. The work described in this paper summarises a large
number of criteria, challenges and opportunities for gesture programming
languages. In this dissertation, we have elaborated on these concerns and
extended them for multimodal fusion solutions.

Software Engineering Principles in the Midas Gesture Specific-
ation Language Proceedings of PRoMoTo 2014, 2nd International
Workshop on Programming for Mobile and Touch. Thierry Renaux, Lode
Hoste, Christophe Scholliers and Wolfgang De Meuter [132]. In this paper
we present our second and latest iteration of the Midas programming
language. In this dissertation, we have elaborated on these concerns and
extended them for multimodal fusion solutions.

Next to these publications, I co-organised the first international
workshop on Engineering Gestures for Multimodal Interaction (EGMI
2014) [46]. Additionally, I have been invited to review papers for several
journals and conferences, including Science of Computer Programming,
International Conference on Tangible, Embedded and Embodied Interac-

1.5. Supporting Publications and Demonstrators 15

tion, European Conference on Object-Oriented Programming, Interna-
tional Conference on Distributed Applications and Interoperable Systems,
Journal on Software: Practice and Experience, Computers in Biology and
Medicine.

1.5.2 Demonstrators

Our software engineering abstractions for expressing multimodal interac-
tion have been used in real world setups. The following demonstrators
form part of our validation of the applicability and robustness of our
approach.

Live Gesture Programming Session. In this session, participants of
the TEI 2011 conference were able to spontaneously propose novel multi-
touch gestures. We then implemented these gestures within a few minutes
using initial incarnations of Midas and Mudra. Challenging gestures
during this session have been a driving force for vast improvements
and numerous extension of the multimodal framework presented in this
dissertation.

Multi-Touch-enabled NoiseTube. A multi-touch enabled demon-
strator was showcased at the exhibit “Brussels Innovates!” which ran
from October 17 to 29 (2011) in the Woluwe Shopping Centre in Brussels.
We presented this exhibition along with innovative actors in Brussels such
as BMW Motors, Solar Impulse, PlantDesign, and others.

Expressive Control of Indirect Augmented Reality During Live
Music Performances. The Midas and Mudra abstractions have been
used to program and recognise complex 3D gestures. During multiple live
music performances at the ArtCube!® and the International Convention
Center Ghent'*, our expressive control of indirect augmented reality was
received with great enthusiasm by the audience. The artist was able to
control the visualisations via 3D gestures as part of a dance act. Four
live performances took place in 2012 and 2013 with an audience of about
1800 people.

13 ArtCube: http://artcube.be
“Tnternational Convention Center Ghent (ICC): http://www.iccghent.com

http://artcube.be
http://www.iccghent.com

16 Chapter 1. Introduction

1.6 Dissertation Outline

The remainder of this dissertation is structured as follows:

Chapter 2. Multimodal Interaction. In this chapter we discuss
and analyse the three multimodal fusion levels [144]: data-level fusion,
feature-level fusion and decision-level fusion. As the multimodal domain
is broad, we also define the terminology used throughout this disserta-
tion. We further enumerate and discuss criteria for expressing multi-level
multimodal fusion.

Chapter 3. Related Work We provide an overview of the landscape
of existing multimodal frameworks. Existing work is categorised into two
main strands, namely data stream and semantic inferencing solutions. We
then focus on the expressiveness of multimodal and gesture programming
language support.

Chapter 4. Midas: A Programming Language For Expressing
Multimodal Interaction. This chapter defines the Midas program-
ming language and discusses its features on the various multimodal fusion
levels. We analyse our language using the language feature criteria ex-
pressed in Chapter 2.

Chapter 5. Mudra: A Unified Multimodal Interaction Frame-
work W