
A Framework for Developing Pervasive
Cross-Media Applications based on Physical

Hypermedia and Active Components
Beat Signer

Institute for Information Systems, ETH Zurich
CH-8092 Zurich, Switzerland

Email: signer@inf.ethz.ch

Moira C. Norrie
Institute for Information Systems, ETH Zurich

CH-8092 Zurich, Switzerland
Email: norrie@inf.ethz.ch

Abstract—We present a framework that supports the devel-
opment of pervasive cross-media applications through a clean
separation of interaction design and application programming.
The approach is based on a novel concept of active components
that provides a lightweight mechanism for linking physical and
digital entities to services. We show how the development of cross-
media applications can be simplified by adopting an authoring
rather than a programming approach and how we achieved this
by integrating the active component concept into an extensible
hypermedia server.

I. INTRODUCTION

With the rapid growth of interest in pervasive cross-media
applications, we address the problem of how to support the
developers of such applications by minimising the program-
ming effort. Our goal was to develop a platform and tools
that, similar to the World Wide Web, turn the development of
cross-media interfaces into an authoring activity rather than
a programming activity. By this, we mean that users may
develop a wide variety of pervasive cross-media applications
by authoring links between all sorts of physical artefacts and
digital content and services.

The concept of active components is used to link to pieces of
program code that may either be applications in their own right
or bridges to existing applications. By providing an extensive
library of generic active components, developers can simply
define links to a wide range of services without having to
write any code themselves. Only in the case where the library
has to be extended with new active components is some pro-
gramming effort required. The concept of active components
therefore provides a clear separation of interaction design and
application logic which both simplifies the development task
and provides maximum flexibility.

In this paper, we describe how the concept of active
components was integrated into a hypermedia framework that
supports the linking of physical and digital entities to provide
a framework for the development of pervasive cross-media
applications. The authoring process required to develop an
application is presented in detail, including mention of specific
authoring tools that have been developed to simplify the
process even further. As a showcase of the approach, we

describe how the framework was used by an artist to develop
an interactive media installation.

We start with a discussion of related work and then present
the underlying extensible hypermedia framework. The concept
of active components and the mechanisms used to implement
it are described in the following section. We then describe the
process of developing an application through the process of
authoring link definitions and present a specific application.
Finally we give some concluding remarks and outline future
work.

II. RELATED WORK

Over the last decade there has been a trend to provide
new types of tangible user interfaces for accessing information
managed in digital information spaces in a natural and effec-
tive way. For that reason, information management systems
have been extended to not only include digital information
but also associations to physical artefacts based on evolving
technologies for object identification such as RFID tagging.
While few projects deal with the information-centric aspects
of mixed-media integration of digital and physical artefacts,
various frameworks and toolkits have been developed for the
rapid prototyping of physical and tangible user interfaces in
terms of the hardware integration.

Phidgets [1] is a commercial toolkit for the integration of
different input and output hardware components on the basis
of USB-based hardware boards. All hardware components are
connected to a single computer and, as soon as a distributed
set of sensors and actuators are used, detailed low-level pro-
gramming knowledge is required for the communication and
synchronisation between the distributed system components.
The Shared Phidgets toolkit [2] supports developers in dealing
with these hardware components by providing a shared data
space maintaining a runtime model of all distributed Phidgets
that allows components to be rearranged and combined in var-
ious ways. It is no longer up to the programmer to implement
all of the functionality for the integration of a distributed
component, as they can rely on the distributed Model View
Control (dMVC) architecture offered by the Shared Phidgets
toolkit.

The VoodooIO [3] platform provides the flexibility to rear-
range hardware sensors and actuators based on a novel material
called the network substrate. Arbitrary surfaces covered with
the network substrate can easily be transformed into special
control areas by just sticking different buttons and hardware
components into the substrate material. New components that
have been added to the network substrate are automatically
detected by the system and can be configured using a graphical
user interface. Note that VoodooIO does not provide a specific
interface solution but rather enables users to design their
customised tangible control structures.

The flexible integration of new hardware components is
also supported by the d.tools [4] project. In addition, d.tools
integrates the design, testing and analysis of new hardware
devices. While the Phidgets project provides a clean API
for programmers who want to develop new physical user
interfaces, the d.tools software focusses on the prototyping of
new tangible interfaces by designers. In addition to existing
other physical prototyping tools, d.tools offers powerful func-
tionality for the analysis of user test sessions. By selecting
a specific state from the state chart or even performing a
“physical query” directly by interacting with the device, the
designer can access relevant parts of movie clips that have
been recorded during the test sessions.

In contrast, the hypermedia community has always been
concerned with the provision of flexible infrastructures for
managing pieces of information through associative linking.
While earlier hypermedia systems mainly focussed on linking
various forms of digital information, more recent systems
organise information in mixed-media environments where
physical information coexists with digital data. For example,
in the WorkSPACE project [5], real-world objects are digitally
augmented to enhance the working experience in architectural
settings. Physical objects are linked to digital entities by
marking them with RFID tags and the digital representation of
various real-world objects, including paper documents such as
architectural drawings, is organised in three dimensional space
based on the Topos spatial hypermedia infrastructure [6].

III. ISERVER PLATFORM

In this section, we describe the iServer platform for physical
hypermedia and some of the digital and physical resource
plug-ins that it offers. The iServer architecture was designed
as an extensible Java-based cross-media information man-
agement platform which can support any type of digital or
physical media. The core component provides concepts for
linking, layer and user management, while a resource plug-
in mechanism based on the resource and selector concepts
enables the integration of new resource types by providing
a resource-specific Java implementation of a resource and its
corresponding selector.

In Figure 1, there is a simplified version of the iServer’s
underlying resource-selector-link (RSL) model [7] showing
only the main concepts. The Selectors representing ele-
ments within a resource in combination with the Resources
which represent entire resources are the central components

for the resource plug-in mechanism. For a particular media
type, the iServer platform can be extended by introducing a
component that defines selectors and resources for that media
type. For example, Figure 1 shows a resource plug-in for
physical objects (iObject) where a resource is a set of objects
and a selector is represented by a physical object identifier
(e.g. RFID tag). The iPaper plug-in enables the integration of
paper documents within the iServer cross-media information
space based on selectors defined by shapes within a page.

Selectors Resources

Entities

Links

Object SpacesObject IDs

source target

Layers

Users

SERVERi

PagesShapes
PAPERi

OBJECTi

Fig. 1. iServer resource plug-ins

A major advantage of the iServer plug-in mechanism is the
tight integration over all types of media based on a common
core link model rather than isolated applications for specific
kinds of media such as web pages or movie clips. As soon
as a plug-in for a new resource type has been implemented,
entities of that medium can be cross-linked with instances of
any existing media type. In Table I, a list of existing iServer
resource plug-ins is given with the corresponding resource and
selector types for each type of media. Note that the list of
plug-ins is far from being complete since arbitrary digital or
physical resources could be added.

Medium Resource Selector
physical object RFID space RFID tag
web page XHTML document XPointer
paper document page shape
movie mpeg file, avi file etc. time span
image gif file, jpeg file etc. shape

TABLE I
ISERVER RESOURCES AND SELECTORS

The iServer plug-in for paper allows physical documents to
be linked to digital content. iServer plug-ins are also available
to integrate XHTML content, movies and RFID-tagged phys-
ical objects. This means that while XHTML documents and
movies have basic support in the core iServer implementation
that would allow a web page to be linked to a movie, these
plug-ins allow elements within a web page or movie to be
linked and not just entire resources. This implies that selectors

are defined for addressing parts of the corresponding resources.
The integration of a completely new resource type requires
some effort to implement the corresponding resource plug-in
and all its necessary functionality. Therefore, to make it even
easier for developers by minimising the programming effort,
we have extended iServer with a concept of active content
that allows different services to be integrated without having
to implement a specific resource plug-in.

IV. ACTIVE CONTENT

While regular links just return a single piece of information
such as an HTML page or a movie, active content is repre-
sented by active components which are bound to a piece of
Java code that can be executed either on the server or the
client side. For example, an active component could open a
given web page, contact a database or communicate directly
with a running application. Figure 2 provides an overview of
the active component architecture.

Active Component
A

Active Component
B

Active Component
C

iS
er

ve
r

AC Manager

Server

R
eq

ue
st

 S
en

de
r

Active Component
Stub B

AC Names

ACS Manager

C
lie

nt
 D

ev
ic

e

AC Names

Client

H
TT

P

Fig. 2. Client- and server-side active components

After some input has been acquired by a client device, the
client-side component has to check for any running active
components. This means that the client distinguishes two
working modes: a default mode where no active component is
running on the client side and an active mode where an active
component has been instantiated and is currently running. Let
us assume that no active component is currently running on
the client side. An incoming request by the client device is
sent to the server using the Request Sender class. On
the server side, the incoming request is handled by iServer.
The resolved link target can either be “static content” or an
active component. In the latter case, the Active Component
Manager (AC Manager) will load the component on the
server. Each active component stored in the database has an
identifier and some additional parameters which are used to
initialise the Java object at instantiation time. Before an active
component can be used within the iServer framework, it has
to be registered with the Active Component Name Directory
(AC Names). For each active component identifier, a client
(stub) and server (logic) binding has to be provided defining
the Java classes to be loaded when an active component
is activated. An example of an Active Component Name
Directory with the bindings for a single active component is
shown in Figure 3.

<?xml version="1.0" encoding="UTF-8"?>

<activeComponents>
<activeComponent>

<identifier>COMMAND_LINE</identifier>
<logic>org.iserver.logic.CommandLine</logic>
<stub>org.iserver.stub.CommandLineStub</stub>

</activeComponent>
...

</activeComponents>

Fig. 3. Active Component Name Directory

The server will check if an active component for the
given identifier has already been loaded since every active
component is instantiated only once by the Active Component
Manager. If a new active component logic has to be loaded,
its init method, containing any program logic, is invoked
by the Active Component Manager. After the init method
has executed, an XML description of the active component is
sent to the client side. Note that for each active component an
arbitrary set of string parameters can be defined and handled
in a generic way. On the client side, the Active Component
Stub Manager (ACS Manager) does a lookup in the Active
Component Name Directory, loads the corresponding stub
component and invokes its init method for initialisation.
Note that we are currently developing a distributed version of
the Active Component Name Directory where information will
be synchronised between different computers and be accessible
by means of an active component lookup service.

The client switches to the active mode and dispatches the
original request parameters, i.e. any information provided by
the input device, to the active component’s processEvent
method. Since the client is now in active mode, all subsequent
client device events will be handed over directly to the active
component’s processEvent method. Note that as soon as
the active component’s setDone method gets invoked as a
result of the component’s program logic, the active component
stub will be unloaded and the client will switch back to default
mode. However, before an active component is definitely
unloaded, there is an upcall to its finish method. This
enables the active component developer to execute specific
program code to release any acquired resources (e.g. database
or network connections). Each active component has an op-
tional timeout parameter and will be terminated automatically
if it has been idle for longer than a given timeout value.

A client-side active component stub can communicate di-
rectly with the server-side active component by sending special
active component requests. All information encoded within
an active component request is handed over to the server
component’s handleActionRequest method and the re-
sult is sent back to the client-side active component in XML
format. Figure 4 summarises the functionality available for
active component stub and logic entities.

The concept of client- and server-side active components
that can communicate by sending special active component
messages to each other has proven to be very useful if the
client-side component has to retrieve additional information

+init(ActiveComponentConfiguration config,
 ActiveComponentEvent event)
+processEvent(ActiveComponentEvent event)
+setDone()
+finish()

ActiveComponentStub

+init()
+Object handleActionRequest(Object request)

ActiveComponentLogic

+init(AComponent dbActiveComponent)

+name: String
+identifier: String
+timeout: int
+parameters: Hashtable<String, String>

ActiveComponent

Fig. 4. Active component stub and logic

managed by the iServer database. Furthermore, the active
component concept enormously simplifies the implementation
of complex interaction components since the active component
developer does not have to know all the details of the iServer
architecture. They can focus on implementing the simple active
component interface with only a few methods. Once a specific
active component has been implemented, it can be reused
in any application by just using it as a link target in the
iServer framework. We have to distinguish two types of active
components. There are resource-specific active components
which require additional information from the input device
triggering the link. An example of such an active component
is the CaptureNote active component which captures infor-
mation from an iPaper input device. These resource-specific
active components can be reused in different applications
but they always have to be used in combination with the
appropriate input device. On the other hand, there are generic
active components which do not depend on any additional
information from the device triggering the link. An example
of such a generic active component is the Browser active
component which opens the system’s default web browser with
the URL specified as an active component parameter.

Various active components have been implemented for
different interaction tasks as part of numerous iServer ap-
plications. The growing set of reusable active components
simplifies the development of future applications since the
application designer can focus on the realisation of new forms
of interaction and does not have to spend most of their time
dealing with the implementation of existing functionality. To
give the reader an idea of how easy it is to implement a new
active component we provide an example of the implementa-
tion of a CommandLine active component. The goal of this
generic active component is to execute the string provided in
its command parameter as if it would have been typed in the
operating system’s command line. The CommandLine active
component could then be used to start arbitrary third party
applications or execute any other system commands.

Figure 5 shows the implementation of the CommandLine
active component’s logic class. Since, for this active compo-
nent, no operations have to be performed on the server side,
we can simply inherit all functionality from the EmptyLogic
active component without having to implement any new

methods. Note that we could even not provide a new logic
class and just register the EmptyLogic class in the Active
Component Name Directory.

package org.ximtec.iserver.activecomponent.logic;

public class CommandLine extends EmptyLogic {
}

Fig. 5. CommandLine logic

On the client side, we have to perform a number of opera-
tions exactly once and then the active component should be ter-
minated. As shown in Figure 6, this can be achieved by extend-
ing the SingleEventStub. This class simply terminates
the active component stub the first time its processEvent
method gets executed. As mentioned earlier, before an active
component is unloaded, its finish method gets invoked
and that is exactly where we can implement the required
command line functionality. After retrieving the value of the
active component’s command parameter, we simply execute
the command represented by the string value in a separate
process.

package org.ximtec.iserver.activecomponent.stub;

import java.io.IOException;
...

public class CommandLineStub extends SingleEventStub {
public static final String PARAM_COMMAND = "command";

public void finish() {
try {

Runtime.getRuntime().exec(getParameter(PARAM_COMMAND));
}
catch (IOException e) {
LOGGER.log(Level.SEVERE, Constant.EMPTY_STRING, e);

}
} // finish

}
Fig. 6. CommandLine stub

The CommandLine active component example shows how
easy it is to implement a new active component which can
then be used in any future application. Most of the active
components we have so far implemented only contain a few
lines of code which, of course, may include access to external
library functionality. While the active component concept has
proven to be very effective in many tangible user interfaces
that we have built to date, we will outline some potential
extensions when discussing future work.

The idea of modular active components that encapsulate
specific application logic is somehow related to Service Ori-
ented Architectures (SOA). However, in the case of our active
components, the program code is often executed on the client
side to ensure tightly integrated real-time interaction with
different input devices.

V. AUTHORING

The authoring of a pervasive cross-media interface based
on the iServer platform and our concept of active compo-
nents basically involves the definition of links between the

sources triggering an activity and the corresponding services
represented by active components. Only in the case that
some services have not yet been integrated or a new type of
functionality is required, will a new active component have to
be implemented by a programmer. As mentioned earlier, our
goal was to have a clean separation of interaction design and
application programming. Our framework provides different
ways in which a tangible user interface’s functionality may be
authored in terms of linking the corresponding components
together.

<?xml version="1.0" encoding="UTF-8"?>

<iserver>
...

<rfidTag id="rfidTagSky" creator="axel"

layer="default" resource="lc">

<name>RFID tag for Sky scenario</name>
<id>010000004282B355</id>

</rfidTag>

<activeComponent id="skyScenario" creator="axel">

<name>The Sky scenario</name>
<properties>
<parameter>
<key>org.ximtec.iserver.ac:request</key>

<value>anchor=get_mood&mood=Sky</value>
</parameter>

</properties>
<identifier>org.iserver.OMSWE_REQUEST</identifier>

</activeComponent>
<link id="skyLink" creator="axel"

sources="rfidTagSky" targets="skyScenario">

<name>Change to the Sky scenario</name>
</link>

</iserver>

Fig. 7. XML-based authoring

A first possibility is to author an application by writing
an XML file with all the necessary information. Figure 7
shows parts of such an XML file containing a selector,
an active component and an association between these two
components represented by a link. In this case, the selector
is an rfidTag which means that the link will be triggered
each time the antenna reads the RFID tag with the identifier
010000004282B355. The link’s target has been defined as
an active component with the identifier OMSWE_REQUEST.
This active component sends the value of its request
parameter to the database system (OMSWE) used in the Lost
Cosmonaut installation described later. In the case of the
information encoded in this request, the ambient mood of
the installation will be changed to Sky which means that
there will be a special ambient sound, lighting and pictures.
So basically the XML snippet shown in Figure 7 binds an
RFID tag to a service for changing the setting of the ambient
environment. Having defined all the necessary functionality in
the XML file, it is imported into the iServer database and the
system can immediately be tested.

We have had multiple projects together with artists and
designers and, after a short introduction, they all managed to

Fig. 8. iServer authoring tool

create the necessary XML files used to generate the required
iServer databases. However, the manual authoring of XML
documents is clearly tedious and also error prone. We therefore
developed a visual authoring tool that hides all of the XML
“complexity” and further simplifies the authoring process. An
early version of this iServer cross-media authoring tool is
shown in Figure 8. A visual authoring plug-in was developed
for different resource types in a similar way as resource
plug-ins were developed for the iServer data management.
Note that, in addition to the visual authoring tool, the XML-
based authoring approach still makes sense for developers
who would like to enter new iServer data from third-party
applications.

VI. APPLICATION

The Lost Cosmonaut project [8] is an example of a pervasive
interactive cross-media installation that was realised based on
iServer and the active component concept. The main goal
of the project was to design and realise an artistic setting
for interactive narratives and story writing and the project
was carried out as six month collaboration between an artist
and our research group. In the Lost Cosmonaut installation,
a user sits in a darkened room in front of a semi-circular
desk. The wall in front of the user contains a large round
screen for projecting digital information. On the desk there is a
digital pen1 and three documents forming part of an interactive
narrative about a cosmonaut lost in space: a star map, a book of
broken images and a collection of love letters. While a visitor
is interacting with the documents, the content presented on the
round screen as well as the ambient sound and the lighting are
changing. There is some pre-authored content but visitors are
encouraged to add texts and drawings to the artefacts thereby
continuing the interactive narrative.

In the Lost Cosmonaut installation, the ambient mood
automatically changes based on the document that a visitor is
working on. The documents are tagged with RFID identifiers

1www.anoto.com

and an antenna is placed underneath the table. The RFID
antenna detects when a new document is placed on the table,
triggers the corresponding link which was defined using the
iObject plug-in for iServer and accesses the associated active
component which activates the appropriate mood. The overall
Lost Cosmonaut architecture includes an iServer Client and
a Client Controller for controlling various things such as
ambient sound and light as well as iServer and a specific Lost
Cosmonaut application database on the server side. The Client
Controller also communicates with the RFID antenna installed
underneath the table and sends any recognised tag identifier
to the iObject resource plug-in.

During the development of the Lost Cosmonaut installation,
the requirements changed as the artist developed his ideas
and it was essential to have an extensible and flexible system
architecture. The chosen architecture not only supported rapid
application prototyping in terms of content and services, but
also enabled an easy integration of new input and output chan-
nels. Furthermore, there was a clear separation between the
implementation of new application functionality and services
in terms of active components and the authoring and design
of the interactive information environment. This enabled the
artist to author the required links and active components
without having to write any program code by editing an XML
document containing the configurations of the corresponding
active components.

An innovative aspect of the Lost Cosmonaut installation is
the fact that information written into the physical space with
the digital pen may be integrated in three different ways into
the interactive narrative. To illustrate the three different ways
of content handling, we discuss the interaction with the star
map, one of the three documents, and outline how content
from all three documents becomes interweaved to a single
story space.

If a user writes a new dedication on the star map, the
information is physically “stored” as new content on the
document and forms part of a subsequent user’s experience.
By writing a dedication on the star map, a new active area
is generated for the handwritten information. The new active
area is randomly linked with image or film material. If later,
the same or another user touches the dedication, an image
or film is shown. Finally, the dedication is captured and
stored in a database as an XML document containing a set of
points together with a timestamp for each point. The digitally
captured information is dynamically linked from active areas
in the love letters and gets activated when the corresponding
part of a sentence is selected in a love letter. The temporal
information together with the stroke information is used to
replay the handwriting as an animated drawing.

The application presented in this section is only one of
many applications that we have implemented based on iServer
and its active component mechanism. Given the constantly
changing and evolving hardware available for services such
as object tracking, it has been extremely beneficial to have a
development platform that can be easily extended and adapted
to cater for new technologies and services.

VII. CONCLUSION AND FUTURE WORK

We have presented our framework for the prototyping and
development of pervasive cross-media applications based on
a physical hypermedia server and active components. The
active component approach enables the rapid development
of pieces of program code binding third party services or
providing specific application logic. Furthermore, the event-
based information processing within an active component,
whereby an active component is instantiated on link activation
and then gets control over any data provided by an input
device until the active component is terminated, has proven
be an effective solution for the tangible user interfaces we
have implemented so far. The open architecture enables the
integration and control of arbitrary services and, at the same
time, the growing set of active components and resource plug-
ins supports the rapid development of new applications.

We are currently developing different plug-ins for the vi-
sual iServer authoring tool which will support developers,
designers, artists and other users in the authoring of different
interaction scenarios. It is also planned that the active com-
ponent configurations can be directly specified in the iServer
authoring tool rather than having to use the iServer Java API
or by providing the corresponding XML document.

ACKNOWLEDGMENT

We would like to thank Philipp Bolliger and Samuel Willi-
mann for their work on the active component framework. We
would further like to thank Nadir Weibel and Adriana Ispas
for working on different parts of the iPaper framework and
Axel Vogelsang for the Lost Cosmonaut collaboration.

REFERENCES

[1] S. Greenberg and C. Fitchett, “Phidgets: Easy Development of Physical
Interfaces Through Physical Widgets,” in Proc. of UIST 2001, 14th
Annual ACM Symposium on User Interface Software and Technology,
Orlando, USA, November 2001.

[2] N. Marquardt and S. Greenberg, “Distributed Physical Interfaces With
Shared Phidgets,” in Proc. of TEI 2007, 1st Intl. Conference on Tangible
and Embedded Interaction, Baton Rouge, USA, February 2007.

[3] N. Villar and H. Gellersen, “A Malleable Control Structure for Softwired
User Interfaces,” in Proc. of TEI 2007, 1st Intl. Conference on Tangible
and Embedded Interaction, Baton Rouge, USA, February 2007.

[4] B. Hartmann, S. R. Klemmer, M. Bernstein, L. Abdulla, B. Burr,
A. Robinson-Mosher, and J. Gee, “Reflective Physical Prototyping
Through Integrated Design, Test, and Analysis,” in Proc. of UIST 2006,
19th Annual ACM Symposium on User Interface Software and Technol-
ogy, Montreux, Switzerland, October 2006.

[5] K. Grønbæk, J. Kristensen, P. Ørbæk, and M. A. Eriksen, “Physical
Hypermedia: Organizing Collections of Mixed Physical and Digital
Material,” in Proc. of Hypertext 2003, 14th ACM Conference on Hypertext
and Hypermedia, Nottingham, UK, August 2003.

[6] K. Grønbæk, P. P. Vestergaard, and P. Ørbæk, “Towards Geo-Spatial Hy-
permedia: Concepts and Prototype Implementation,” in Proc. of Hypertext
2002, 13th ACM Conference on Hypertext and Hypermedia, College Park,
USA, June 2002.

[7] B. Signer and M. C. Norrie, “As We May Link: A General Metamodel
for Hypermedia Systems,” in Proc. of ER 2007, 26th Intl. Conference on
Conceptual Modeling, Auckland, New Zealand, November 2007.

[8] A. Vogelsang and B. Signer, “The Lost Cosmonaut: An Interactive
Narrative Environment on Basis of Digitally Enhanced Paper,” in Proc. of
VS 2005, 3rd Intl. Conference on Virtual Storytelling, Strasbourg, France,
December 2005.

