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Abstract: We propose a novel gesture spotting approach that offers a comprehensible representation of automatically
inferred spatiotemporal constraints. These constraints can be defined between a number of characteristic
control points which are automatically inferred from a single gesture sample. In contrast to existing solutions
which are limited in time, our gesture spotting approach offers automated reasoning over a complete motion
trajectory. Last but not least, we offer gesture developers full control over the gesture spotting task and enable
them to refine the spotting process without major programming efforts.

1 INTRODUCTION

Over the last few years, we have witnessed an increas-
ing interest in gesture recognition due to new devices
such as tablet computers or Microsoft’s Kinect con-
troller. Template and machine learning-based gesture
recognition approaches have been subject to research
for many years. However, most prominent statisti-
cal analysis-based solutions require the definition of
the start and end points of potential gestures which is
typically enforced by letting the user execute a spe-
cial action while performing a gesture. This segmen-
tation of a continuous motion trajectory data stream
into a number of gestures defined by their start and
end points is called gesture spotting.

Gesture spotting is a challenging problem which
has seen limited exploration to date (Just, 2006),
especially in so-called “always on” user interfaces
where the gestures are mixed with noise in the form
of continuous non-gesture data. Applications like
multi-touch-based window managers, controller-free
home automation solutions or surveillance applica-
tions have to process a vast amount of continuous mo-
tion data often containing only a few meaningful ges-
tures. Simple ad-hoc solutions such as motion thresh-
olding can easily result in a major processing over-
head for statistical classifiers or, if defined too strictly,
miss some of the gestures.

We propose a novel gesture spotting approach
for continuous streams of two- or three-dimensional
Cartesian coordinates, offering fine-grained control

over the segmentation process based on spatial and
temporal constraints between a number of automati-
cally inferred control points. Control points are char-
acteristic points describing the curvy areas or larger
directional movements of a given motion. When de-
scribing a gesture, the gesture designer has to find a
trade-off between a detailed definition and the nec-
essary flexibility in terms of gesture variability. The
presented solution for automatic control point detec-
tion can be further augmented with expert knowledge
to refine spatiotemporal constraints between control
points. Our approach focusses on the three aspects of
processing efficiency, the external representation of
automatically inferred control points and support for
the incorporation of expertise.

Gesture spotting takes place before the gesture
recognition process and our gesture spotting solution
should be optimised for a high recall in order to min-
imise the number of missed gestures. This might im-
ply that we are going to achieve a lower precision
which is not a major problem since the spotted ges-
tures are verified via existing gesture classification so-
lutions. The recall performance is further increased
by supporting a number of variation properties to re-
lax the spatial constraints between control points.

We start in Section 2 by introducing our contin-
uous gesture spotting solution. An evaluation in the
form of experimental results is provided in Section 3.
In Section 4, we discuss related gesture spotting ap-
proaches, before concluding with a discussion of our
gesture spotting solution in Section 5.



2 GESTURE SPOTTING

Our gesture spotting approach is based on an incre-
mental evaluation to find a sequence of control points
in a large amount of trajectory data. The control
points are automatically inferred based on a single
well representative gesture sample. The current im-
plementation uses a tangent-based calculation where
major changes in a small section of the trajectory are
stored as potential characteristic control points. The
top m points are then chosen while preserving a good
spatiotemporal distribution over the trajectory to en-
sure that not only distinctive curves but also longer
straight lines are used for differentiation.

There are for example no distinctive spatial cues
in the flick right gesture shown in Figure 1, but our
control point inferencing mechanism provides a satis-
fying result with the fairly distributed control points
c1 to c4. By encoding spatial and temporal con-
straints between detected control points, a developer
has full control over which parts of a gesture should
be matched closely and where variation is desired.

c1 c2 c3 c4

277 px 5 px 370 px 10 px
-4 px

229 px

Figure 1: Flick right gesture with control points

We opted for a simple but effective solution to
automatically infer control points where the result
can be visualised and manually refined by the ges-
ture developer. Gesture spotting focuses on segmen-
tation rather than classification which implies that we
should aim for a high recall by introducing potential
variation. However, the spotting process should still
impose clear gesture-specific restrictions in order to
minimise the computational classification overhead.

2.1 External Representation

As highlighted by Kadous (Kadous, 1999), the com-
prehensibility of existing gesture spotting and recog-
nition approaches is rather limited and it is hard to
know when a black box classifier is trained suffi-
ciently in terms of generality or preciseness. We
offer an external representation of the automatically
inferred control points and the resulting human-
readable program code can be refined or tailored to
a given application scenario. The automatically gen-
erated declarative program code for the flick right ges-
ture in Figure 1, with a given default value for the cir-
cular areas surrounding the control points, is shown
in Listing 1.

Listing 1: Semi-automatic flick right gesture spotting rule

1 (defrule FlickRight
2 ?p1← (Point2D)
3 ?p2← (Point2D)
4 (test (< ?p1.time ?p2.time))
5 (test (inside control point ?p1 ?p2 277 5 76))
6 ?p3← (Point2D)
7 (test (< ?p2.time ?p3.time))
8 (test (inside control point ?p1 ?p3 647 15 76))
9 ?p4← (Point2D)

10 (test (< ?p3.time ?p4.time))
11 (test (inside control point ?p1 ?p4 946 11 76))
12 ; Manual refinement
13 (test (< (- ?p4.time ?p1.time) 1000))
14 (not (and ; Bounding Box
15 (Point2D (y ?b y) (time ?b time))
16 (test (> ?b time ?p1.time)) ; After p1
17 (test (< ?b time ?p4.time)) ; Before p4
18 (test (> (abs (- ?p1.y ?b y)) 245)))) ; ∆Y
19 =>
20 (call DynamicTimeWarping
21 (select-between ?p1.time ?p4.time)
22 (gesture-set ”flick-right”)))

The declarative code shown in Listing 1 uses un-
bound variables denoted by a question mark (?) to ex-
press a number of constraints to which the Point2D
events have to adhere. The FlickRight rule starts
with the open starting point p1 and searches for a sec-
ond point p2 which matches the temporal and spatial
constraint based on the distance between p1 and p2
(lines 4 and 5). Line 4 states that the timestamp of the
event matching p1 should be smaller than the times-
tamp of p2 and the matching points should be ordered
in time. For multi-touch or full-body gesture recog-
nition there are multiple options to apply these tem-
poral constraints. Either the inferencing can be ex-
tended to deal with the analysis of movements hap-
pening at the same time or developers can use soft-
ware composition to build more complex gesture pat-
terns. Line 5 makes use of our built-in C function
inside control point, which performs a transla-
tion of the x and y coordinates of the first argument
(point p1) with the given values of 277 and 5 pix-
els. The function returns true, if the second argument
(point p2) lies within a circular area around point p1
with a radius of 76 pixels. The same strategy is used
for the remaining m− 2 control points. For three-
dimensional trajectories, we overloaded this function
with a version with six arguments performing similar
operations in three-dimensional space. We also pro-
vide spatial functions such as Euclidean distance and
new functions can be implemented by the developer.

Finally, there is another temporal gesture con-
straint ensuring that all matched points occurred
within a timespan of one second (line 13). Note that
this temporal constraint is adjusted manually since it



strongly depends on the given gesture and scenario.
Lines 14 to 18 show additional constructs which con-
trol the spotting process when the trajectories leave a
certain bounding box as described later in Section 2.5.
If all the conditions are satisfied, an existing gesture
recogniser is called with the spotted range of events
as a parameter (lines 20 to 22). Note that a detailed
definition of the applied rule language can be found
in Scholliers et al. (Scholliers et al., 2011).

Our control point-based gesture spotting approach
automatically matches a combination of events adher-
ing to the defined constrained trajectory at spotting
time without any lossy preprocessing steps. It further
provides a number of powerful features described in
the following subsections.

2.2 Non-Subsequent Event Matching

Events that do not match the specified constraints are
skipped and we call this the non-subsequent event
matching property. It is important to note that a
skipped event is not discarded but can form the start-
ing point p1 of another spotting or be part of an in-
termediate match with a combination of other events.
This leads to a next property of our spotting approach
with respect to overlapping submatches.

2.3 Overlapping Submatches

The overlapping of subparts from different gestures
is a complex gesture spotting problem. Existing so-
lutions require the specification of an exhaustive list
of overlapping subgestures and the gesture spotting
engine needs to block and wait for subsequent events
before the spotting of a gesture can be finished. While
in Alon et al.’s approach (Alon et al., 2009) this sub-
gesture list is automatically generated by an offline
classifier during the training phase, there are still two
implicit cases where possible gestures are incorrectly
rejected. First, for each frame only the best scoring
candidate gesture is added to a candidate list. Second,
in many cases the subgesture does not follow the exact
trajectory of the supergesture and if the supergesture
for example fails at a later stage, subgestures might be
incorrectly rejected from the candidate list.

Similar problems in detecting overlapping ges-
tures exist with state machine-based solutions. When-
ever new data triggers the transition to the next state,
subsequent data will not be used as a potential start
transition. This is illustrated in Figure 2 showing the
gesture to be spotted on the left-hand side and the
ongoing processing on the right-hand side. Initially,
the transitions to consecutive states are valid. How-
ever, at state s3 the single state machine has to decide

s1 s2 s1 ?
s3 ? s2 s3 s4

Figure 2: Overlapping submatches

whether to start from s1 or continue to wait for future
data so that s4 might still be reached. As future data
is not available at the decision point, state machine
approaches might miss valid spottings.

Since the idea underlying our approach is to
search for a combination of events matching the
declarative definition of gestures to be spotted, we in-
herently support overlapping submatches. Our cur-
rent implementation is based on the CLIPS infer-
ence engine1 and all possible paths are automatically
stored in an incremental format for efficient process-
ing (Forgy, 1982). With five active gesture spot-
ting rules, we can for example process an average of
31 505 point events per second on an Intel Core i7
with 4 GB of RAM. This illustrates the low process-
ing requirements of our solution for real-time gesture
scenarios normally generating around 1200 events per
second (20 fingers or joints with 60 Hz sampling rate).

2.4 Relaxed Spatiotemporal Constraints

Partially matched results are stored in a temporary
storage. Spatial flexibility for matching noisy ges-
ture variations is achieved by introducing a circu-
lar boundary (or a sphere for three-dimensional data)
around each control point.

c2

c3 c4

c1

Figure 3: Noisy Z gesture

Figure 3 shows the relaxed matching of a noisy Z
gesture where we manually refined the spotting rule
and increased the radius of the bounding circle for
control point c4 in order to be more flexible around
that point. Most existing feature extraction-based
spotting approaches are prone to false rejections for
the given example. For instance, if the extracted sym-
bols are too local, a lot of intermediate directional

1http://clipsrules.sourceforge.net



symbols not reflecting the three main directions of
the Z gesture (i.e. right, diagonal down-left, right) are
generated. This increases the computational overhead
and requires an extensive amount of training samples
with sophisticated filtering. On the other hand, if the
extracted symbols are too global, we might miss small
characteristic gesture movements.

Our declarative gesture spotting approach offers
developers the flexibility to add user-defined spatial
relations, such as changing the bounding circle to a
rectangular or elliptic form. Similarly, temporal flexi-
bility is provided for incorporating additional tempo-
ral relations. For instance, line 13 of Listing 1 shows a
refined temporal constraint between all points, while
lines 15 to 17 represent an expressive encoded tem-
poral constraint (i.e. after p1 but before p4). The
relaxing of constraints is gesture dependent and hu-
man knowledge can be exploited to further control the
spotting process via constructs such as negation.

2.5 Negation

Negation is a software engineering construct lacking
in most statistically-based recognisers which typically
use negative training or sample data to guide the clas-
sification in a certain direction. We argue that explicit
negation is beneficial for both performance and accu-
racy. To illustrate this, let us have a look at the curved
line shown in Figure 4.

p3 p4
p1

∆Y

c2 c3
c4

c1

p2

Figure 4: Curved line

Although the motion does not describe a straight
line, it would match the flick right gesture rule shown
earlier in Figure 1. Fortunately, the incorporation of
expert knowledge can be used to resolve this issue.
In Listing 1, lines 14 to 18 are negated to ensure that
there is no point q between c1 and c4 whose differ-
ence on the y-axis (∆Y) is larger than 245 pixels.

2.6 Coupled Recognition Process

Whenever a gesture is spotted, an existing ges-
ture classifier such as Dynamic Time Warp-
ing (DTW) (Darrell and Pentland, 1993) is applied
with targeted template data. We call this synergy a

coupled recognition process. Besides the fact that it
is hard to find a single gesture spotting technique for
the entire gesture set, the reuse of gesture spotting in-
formation is valuable for the final recognition process.
This is shown on lines 20 to 22 of Listing 1, where the
optional gesture-set parameter defines a set of ges-
tures for the template-based recogniser.

Figure 5: Automatically inferred control points

This coupled recognition process can typically be
used to deal with potentially conflicting gestures, such
as circles and rectangles, which are not trivial to dis-
tinguish since the control points can be very similar as
outlined in Figure 5. In this case, we might generate
a single spotting rule and rely on the gesture classifier
for distinguishing between circles and rectangles.

3 EVALUATION

In order to evaluate our spotting approach, we used
the experimental data set by Wobbrock et al. (Wob-
brock et al., 2007) consisting of 16 unistroke gestures
and a total of 1760 gesture samples which have been
captured by 10 subjects on a pen-based HP Pocket PC.
While the data set consists of segmented unistroke
samples, we concatenated the data with additional
noise (5%) to simulate a single stream of continuous
two-dimensional data input.

r RC (%) PR (%) RC-E (%) PR-E (%)
22 77.50 52.10 78.75 56.50
24 83.13 47.16 84.38 52.53
26 90.63 42.40 91.25 46.79
28 93.75 39.47 94.38 43.26
30 97.50 35.37 97.50 39.29
32 98.75 32.78 98.75 36.41

Table 1: Declarative gesture spotting performance

For each of the 16 gestures, we used a single rep-
resentative sample to infer the control points. Ta-
ble 1 highlights the performance of our gesture spot-
ting approach with 4 to 6 control points per gesture
and the angular method with a sliding window of
160 events. The default spatial variance of the con-
trol points is represented by the radius (r). The results
in Table 1 consist of the recall (RC) as well as the
precision (PR). Columns RC-E and PR-E represent



the recall and precision of spotted gestures after ap-
plying expert knowledge to the single initial sample
(e.g. more flexible matching for certain control points
or use of negation to invalidate certain trajectories).

As we can observe in Table 1, the use of 4 to 6
automatically inferred control points per gesture al-
lows for a high recall. The few non-spotted gestures
originate from differences in the angle in which they
were performed, which is a current limitation of our
approach. However, in the near future, we plan to in-
vestigate methods to incorporate rotation invariance
features. Note that our approach reasons over the
complete trajectory, while still being able to process
more than 400 times faster than real time for 60 Hz
input and a gesture set consisting of 16 different two-
dimensional gestures. The relatively high number of
invalidly spotted gestures is caused by the fact that
several gestures, such as the left curly bracket and
right curly bracket are similar to spot as the left square
bracket and right square bracket. Additionally, the
check gesture is frequently found as a partial match
of other gestures. However, we argue that a gesture
spotting solution should be optimised for a high re-
call since the filtering of submatches can be done at
the classification level.

To demonstrate the power of expert refinements,
we modified the right curly bracket rule to prevent
points between the first and final control point to be
too far off to the left and did some other small refine-
ments for other gestures. These minor changes to the
model took only a few minutes but resulted in an in-
crease of the precision without reducing the recall. In
a broader context, such as full body gesture recog-
nition where multiple concurrent trajectories are to
be processed, the expression of additional conditions
is of major importance for reducing invalid spottings
and to improve the performance.

4 RELATED WORK

The classification of motion trajectories has been a
research subject for many years and influential solu-
tions such as Rubine’s algorithm (Rubine, 1991), Dy-
namic Time Warping (DTW) (Darrell and Pentland,
1993), Neural Networks (NN) (Pittman, 1991) or hid-
den Markov models (HMM) (Wilson and Bobick,
1999) achieve good results for well-segmented mo-
tion trajectories. However, in online settings where
gestures have to be classified while new data is being
captured, these recognisers cannot be used as is.

Gesture segmentation is a complex task which is
often addressed via ad-hoc solutions. Simple mo-
tion thresholding is an approach that is based on low-

level parameters, including the velocity and change
in direction, where users are asked to hold their hand
still for a few seconds in between gestures. Lee
and Kim (Lee and Kim, 1999) as well as Elmezain
et al. (Elmezain et al., 2009) extended HMM by mod-
elling continuous interaction via the addition of a
garbage state. Nevertheless, this solution shows some
problems in dealing with overlapping submatches and
requires an increased number of training samples for
both, gesture as well as non-gesture data, which fur-
ther has to be tailored to the scenario.

The use of grammar rules (Holden et al., 2005;
Kelly et al., 2011) significantly improves the spotting
process by aiming for an initially high recall which
then gets reduced by the grammar before extensive
classification. However, in our scenario where ges-
tures are mostly atomic commands to control various
user interfaces, such grammar rules cannot be con-
structed. There are also no details about the computa-
tional overhead of the grammar rule-based approach
and no external representation is offered.

Last but not least, Alon et al. (Alon et al., 2009)
propose a spotting method that uses a continuous dy-
namic programming approach via pruning and sub-
gesture reasoning. Similar to the HMM-based thresh-
old model, the interaction is delayed for potentially
overlapping gestures, which might not be optimal for
certain interaction scenarios. In addition, the spotting
process is reset after a gesture has been spotted, re-
sulting in a loss of potentially overlapping gestures
that have not been annotated.

5 DISCUSSION

We argue that current gesture spotting methods
for continuous multi-touch or skeleton data streams
should adhere to three main requirements. First, they
should help to drastically reduce the vast amount of
training data required for statistical-based methods
since the data is too expensive to be acquired; espe-
cially when prototyping real-world applications. Sec-
ond, gesture spotting algorithms should be compre-
hensible or offer an external representation allowing
developers to visualise and refine automatically in-
ferred results. Finally, the gesture segmentation pro-
cess should aim for a minimal computational over-
head in order to process information in real time.

Our approach uses a single representative gesture
sample to automatically infer a number of control
points capturing the characteristic parts of the ges-
ture. By offering an external representation of these
control points, developers can visualise and further
refine these points. Implicit support for overlapping



submatches, relaxed spatiotemporal operators and ad-
ditional programming constructs such as negation and
user-defined conditions are key factors to ease the
gesture spotting development. This includes the op-
timisation for a high recall, precision or processing
performance based on the application scenario.

The manual refinement of gesture rules helps to
achieve better results in the gesture spotting process.
By automatically inferring m control points from a
single gesture sample and compiling them into an
extensible declarative rule, we support gesture de-
velopers in obtaining the intended continuous ges-
ture recognition results. Inspired by mathematical
line simplification schemes such as B-spline curve fit-
ting (Cham and Cipolla, 1999), we plan to improve
the current angle-based control point computation.

Given the use of expert knowledge, we plan to
provide a graphical tool for three-dimensional tra-
jectories based on ideas of Holz and Feiner (Holz
and Feiner, 2009), where relaxed selection techniques
can be annotated and manipulated graphically to ease
the development process. While Holz and Feiner fo-
cussed on creating an interface for time series graphs
with a single dimension, our graphical gesture devel-
opment tool will address at least three dimensions.

As highlighted in Figure 5, the angle-based con-
trol point inferring technique is able to extract char-
acteristic points from a sample trajectory. However,
in this specific case, the control point cA is not opti-
mal and might negatively influence the spotting per-
formance. Another limitation of our current imple-
mentation is the lack of scale invariance. We can also
not choose between a sub- or supergesture spotting.
This application-dependent problem can be solved in
the post-classification process, while the gesture spot-
ting phase should focus on a high recall.

Our main goal was to improve the spotting of po-
tential gestures in continuous data streams. By only
requiring a single gesture sample and due to the possi-
bility to programmatically refine the spotting process
by loosening or tightening spatial and temporal con-
straints, we distinguish ourselves from existing spot-
ting solutions. The external declarative representation
of inferred control points has shown to be beneficial
and complementary to programming constructs such
as spatiotemporal operators, negation, user-defined
functions and the invocation of coupled recognisers.
Last but not least, due to the use of an efficient incre-
mental evaluation engine the computational overhead
of our gesture spotting approach is minimal.
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