
Hera-S - Web Design Using Sesame
Kees van der Sluijs1, Geert-Jan Houben1,2, Jeen Broekstra1,3, Sven Casteleyn2

1
Technische Universiteit Eindhoven

PO Box 513,
5600 MB Eindhoven,

The Netherlands
+31 40 247 2733

{k.a.m.sluijs, g.j.houben,
j.broekstra}@tue.nl

2
Vrije Universiteit Brussel

Pleinlaan 2
1050 Brussels, Belgium

+32 2 629 33 08
{Sven.Casteleyn, Geert-
Jan.Houben}@vub.ac.be

3
Aduna

Prinses Julianaplein 14b,
3817 CS Amersfoort,

The Netherlands
+31 33 465 9987
jeen@aduna.biz

ABSTRACT

Web application design methods traditionally aim to reduce
complexity in implementing Web applications. However, these
methods struggle with providing the necessary dynamics and
flexibility to keep up with the increasing users' demand for
personalization and feedback mechanisms. We present Hera-S,
based on Sesame and the SeRQL query language, that does
provide the necessary flexibility. Hera-S allows designers the
plain use of the Semantic Web languages RDFS and OWL for
designing the domain model and the context data model, thus
enabling re-use of existing data models and opening up the RDF
instance data to queries and updates via the Sesame RDF-
framework. Furthermore, Hera-S provides an increased flexibility
by integrating server-side scripting availabilities (e.g. for the
integration of web services) and capabilities for adding specific
code constructs as often used in manually crafted Web
applications (e.g. JavaScript). In this way it is able to seamlessly
integrate existing solutions, without losing the complexity-
reduction features necessary for rapid, easy and error-free Web
application design and deployment.

Categories and Subject Descriptors

H.5.2 [Information Interfaces and Presentation]: User

Interfaces – User-centered design; H.5.4 [Information Interfaces

and Presentation]: Hypertext/Hypermedia – Architectures,

Navigation.

General Terms

Design, Reliability.

Keywords

Hera-S, Sesame, Web information system, Semantic Web,
Application Model, navigation, dynamics, RDF-framework,
personalization, adaptation, user feedback.

1. INTRODUCTION
The dynamics and flexibility required in modern Web information
systems (WIS) demand a lot from WIS design methods. In their
model-based approach to limit and control the complexity, their
navigation-based nature often has difficulties accommodating the
requirements that evolve from an increasing demand for

personalization, feedback, and interaction mechanisms. There are
limitations to the (modeling) constructs that can be used in the
models. It is difficult to integrate external service elements
(positive example in [2]) and there is often no possibility to add
specific client-side functionality (positive example in [5]) that is
available in most Web browsers. This difficulty in connecting to
third-party software (e.g. for business logic) is also reflected in
the difficulties around extending the application by integrating
different data sources. The inclusion of additional (background)
knowledge is no sinecure. In this paper we describe Hera-S that
meets a number of these requirements by offering additional
constructs and that allows the application to connect to the
content and context data through the Sesame RDF framework
(e.g. [3] and [11]). This RDF-based solution, combining Hera
navigation design and Sesame data processing by associating
SeRQL queries to all navigation elements, allows to effectively
apply existing Semantic Web technology and a range of solutions
that is becoming available. We can thus include background
knowledge (e.g. ontologies) and connect to services through the
RDF-based specifications. We can also use the facilities in
Sesame for specific adaptation to the data processing and to
provide more extensive interaction processing. In the next section
of this paper we explain the ratio behind the combined approach.
Sections 3 and 4 discuss the models that are used in the design,
both for the data and its processing in an application. Section 5
then addresses the implementation, while section 6 considers
some scenarios that are thus supported.

2. METHOD
The purpose of Hera-S is to support the design of navigation-
based Web structures over semantically structured data. Figure 1
shows an overview of the Hera-S method.

Hera-S takes as a starting point a domain model (DM) that
describes the structure of the content. Based on this DM, the
designer creates an application model (AM) that describes a
hypermedia-based navigation structure over the content for the
sake of delivering and presenting the content to the user.

Hera-S allows dynamic personalization and adaptation of the
content. For this purpose, context data is maintained (under
control of the application) in a so-called context model (CM).
This context data typically is updated based on the (inter)actions
of the user as well as on external information (more on this in
section 3).

Figure 1: Hera-S Overview

Instantiating the AM with concrete content subsequently results in
AM (instance) pages (AMP). These AMPs contain the navigation
primitives (based on underlying semantic relations from the DM)
that can be used by the user to navigate to other AMPs and thus to
semantically “move” to a different part of the content. An AMP
itself is not yet directly suitable for a browser, but can be
transformed into a suitable presentation by a presentation
generator. In previous publications, we have demonstrated that
both proprietary [13] and external engines (e.g. AMACONT [7])
can be used for this task. For this paper and for Hera-S this
presentation generation phase is not relevant, and as we will see
in Section 6 we can apply a direct AMP-to-HTML conversion
(e.g. using XSLT) and use a CSS file for presentation formatting.
We already remark that Hera-S supports adding to the AMP
browser-specific data which depends on the presentation target.

AMP creation is pull-based, meaning that a new AMP is only
constructed by the Hera-S engine at request (in contrast to
constructing the whole instantiation of the AM at once). By
navigating (link-following) and forms submission the user triggers
the Hera-S’s feedback mechanism, which results in internal
updating/querying of the website navigation or context data and
creation of a new AMP.

Next to this, the architecture of Hera-S allows to offer an
additional service for designers, namely an API for model
adaptation. This API can be used by external applications to
interfere with the adaptation (e.g. to provide aspect-oriented
adaptation support or to include external navigation templates
[1]).

3. DOMAIN AND CONTEXT DATA

MODELS
Hera-S expects Domain Models in RDFS or OWL format
(without restrictions). As we use the Sesame RDF Framework [3]
as our back-end repository, this data can be exploited and
reasoned upon. Accessing the content data in Hera-S will be done
via customizable SeRQL [4] queries, so that the full potential of
the SeRQL query language can be used for AMP creation.
Furthermore, content that is under the designer’s control can also
be updated via Sesame’s access API.

By supporting unrestricted RDFS or OWL DM’s, Hera-S is
particularly suited to (re-)use existing domain ontologies.
Moreover, many existing data sources that are not yet available in

RDFS or OWL format can be used via Semantic Web wrapping
techniques (e.g. [16] or [14]). In the latter case Sesame can be
used as a mediator between such a data source and Hera-S.

The CM is modeled and implemented in a similar way as the DM.
The main difference between the two is that the context data is
assumed to always be under direct control of Hera-S, while the
content often is not. Furthermore, the content typically contains
the information that in the end is to be shown to the user, while
the context data typically contains information used (internally)
for personalization and adaptation of content delivery. This
distinction might not always be strict, but as it is only a
conceptual distinction in Hera-S, the designer may separate
content and context in whatever way he desires.

As the CM is also implemented with a Sesame repository, it also
provides the means for other processes to use (some) and update
(some of) this information. The context data could for instance be
manipulated by business logic software for the sake of adaptation,
or by external user profiling software.

Another great advantage of using Sesame is the possibility to
combine several data sources (both content and context data) at
the same time (we will give an example of this in section 6). In
this way, designers can couple additional data sources to the
already existing ones and can thus easily extend the domain
content. This also offers possibilities to exploit additional
knowledge when performing a search. Currently, we are
experiencing the exploitation of the WordNet ontology [10],
[12]), time ontologies (e.g. [8]) and geographic ontologies (e.g.
[15] and [6]). In this way, a keyword-search can be extended with
synonyms extracted from the WordNet ontology, or a search for a
city can be extended with surrounding cities from a geographic
ontology. In the example scenarios in section 6 we will shortly
indicate where we could use this additional information.

Even though the designer is free to choose any kind of context
data, we in general discern three types: session data, user data and
global data.

Session data: Session data is data relevant to a certain session of
a certain user. An example of such data is the current application
context, such as the device that is used to access the Web
application or the units browsed in the current session.

User data: Data relevant to a certain user over zero (i.e. initial
user data) or more sessions. User (profile) data can be used to
personalize (even at the beginning of a new session). Note that for
maintaining this user data over time the application needs some
authentication mechanism.

Global data: Usage data relevant to all users over all sessions.
Global data typically consists of aggregated information that
gives information about groups of people. Examples include
“most visited unit” or “people that liked item x, also browsed item
y”.

4. APPLICATION MODEL
In the Application Model (AM), the navigational behavior of the
Web application is specified. The AM enables designers to
specify which objects are shown to the user and what Web pages
the user can navigate to. Furthermore, the AM allows a dynamic
specification of the data, such that the data can be personalized to
a user and adapted for a specified context.

The AM is specified by means of Navigational Units (shorthand:
unit) and Navigational Relationships (shorthand: relationship)
between those units. Elements instantiating the units, and
relationships, can be defined by queries that refer to the content
and context data as explained in section 3. Let’s now discuss in
detail the navigational units and relationships, and their sub-
elements, which together make up the AM, before we illustrate
the implementation in the next section.

Navigational unit: A navigational unit is an application model
element that represents some semantic content which together
forms a logical unit to the users, and will thus be presented
together. Every unit in an AM is uniquely identified. The actual
content of a unit is specified by its access query, and by (the
access query of) its sub-elements. The access query is expressed
in a SeRQL query that may search for information in the domain
and context. Note that the information that is available to a unit is
also accessible by all its sub-elements. Navigational units may
contain sub-elements and also other navigational units. We
distinguish two types of sub-elements, namely simple and
complex ones. As simple ones we discern attributes and constants:

• Attribute: Attributes are the result of a query to the data
sources which returns exactly one result. Such a query may
involve more than one data source and may also contain
variables that are determined by the access query of the
containing unit. As the data sources consist of RDF data,
attributes are typically the literal values of some property.
We will regard literal values by default as strings, unless they
are explicitly typed as an XML data type. References to Web
objects are assumed to have the xsd:anyURI type. For more
specific processing of multimedia objects such as pictures or
applets, we support a proprietary mimeType property
(currently “text/html”, “image/*" and “application/x-java-
applet”).

• Constant: A constant is an element that contains fixed data to
be shown to the user, i.e. data which is not queried from the
content or context data sources. Examples of constants are
header and footer text, a welcome message, etc.

Besides simple sub-elements we also regard a more complex
structure, namely sets.

• Set: A set is a collection of zero or more elements Sets
provide mechanisms to specify (display) operations both on
the whole set and on all the individuals of the set. The content
of a set is defined by an access query. We also offer a special
set construct, namely the (guided) tour.

o Tour: A sequence of navigational objects which are
shown one at a time and can only be navigated in the
order of the sequence.

Besides elements targeted at the display of information, we also
want the user to be able to navigate through the data and interact
with (provide feedback to) the system. Specifically for navigation
we introduce the sub-element anchor and for feedback-interaction
we introduce the sub-element form.

• Anchor: An anchor is a piece of text or some other object (for
example an image) which marks the beginning and/or the end
of a hypertext link. They can be used for the navigation
between units, or between a unit and an external source.
Furthermore, anchors can be used as a destination part of a
Web page for incoming links. Anchors can be attached to

attributes, sets and constants. Anchors are closely related to
navigation relationships, which we will explain later on.

• Form: Forms provide a means to request manual input from a
user (besides clicking link anchors), but also provide an
output mechanism (e.g. a pre-filled form), and a way to
(visibly or invisibly) transport information between units. A
form contains a number of form elements (e.g. string input,
selection element, hidden input elements, etc), but may also
contain attributes and sets. Forms can be made dynamic by
using sets to determine the number and type of form elements
(as will be further demonstrated in section 6.1).

Sometimes, a Web application might need more expressive power
or some specific constructs for certain browsers. Furthermore,
within an AM one might want to utilize the functionality of Web
services or other server-side functionality. Therefore, we have
two additional sub-elements called code objects and script
elements.

• Code Object: Object containing some ‘code’ that will be
executed by the client browser. Code objects are not
processed by the engine executing the AM, and are only
included in the output. Code objects are similar to constants,
but differ in that they can (but don’t have to) be “attached” to
other elements (typically to react on events within that
elements). Typical example languages for code objects are
HTML, JavaScript, CSS, SMIL, etc.

• Script element: Navigational Units may contain inline script
elements. A script element contains scripting code that is
executed server-side before construction of the unit, e.g. by
calling a Web service. The execution possibly returns output
in the form of any of the previously described elements,
which will subsequently be integrated in the unit. A script
element can be defined in a scripting language like PHP, JSP,
etc, depending on which of these languages is supported by
the server that runs Hera-S.

The standard navigational behavior of a navigational unit is that,
when a link is followed, the current unit (i.e. the one containing
the source anchor) will be replaced by the link’s target. However,
we also allow links to replace other units’ content by the link’s
target, similar to the HTML frame-construction. For this end the
links should specify which unit should be replaced.

While the units define the content, for the navigation in Hera-S
we use the concept of navigational relationships between units.

Navigational Relationship: A navigational relationship is a
representation for the directed relationship between a source unit
and a target unit (except for the session start, which is external).
This relationship is the basis for navigation in the hypermedia
application (i.e. through hyperlinks and forms). The relationship
is constituted of a query that refers to the target unit, and also
specifies adaptation of that unit by means of queries to domain
and context data. This query consists of three (possibly empty)
parts: 1) a query for pre-updating data in the data sources based
on input from the source unit, 2) a query that retrieves data from
the data sources for (composing) the target unit, 3) and finally a
query that post-updates data in the data sources based on
processing of the target unit. We note that the two update parts are
motivated by the need to separate updates that take place prior to
the target unit composition from those that take place afterwards.

One special navigational relationship is the ‘contains’ relationship
to define the elements contained in a navigational unit.

We have now defined the main concepts of the Hera-S models. In
the next sections we will treat the implementation of Hera-S and
example scenarios in which we sketch how a particular Web
application can be constructed using Hera-S.

5. IMPLEMENTATION
In this section, we will illustrate the implementation of Hera-S,
and show how the Sesame framework [3] and the SeRQL [4]
querying facilities are used to realize the system.

5.1 Hera-S Implementation Architecture

AMPGen

DM Repository AM Repository

PresentationServer

Context Data

UM Repository

Session Repository

page request page

SessionManager

Content

DataWrapper

UserManagerPresGen

Figure 2: Implementation Architecture

In Figure 2 we see the main components that make up the Hera-S
implementation architecture. The domain model (DM),
application model (AM) and all context data are realized as
Sesame repositories, exploiting Sesame’s capability that enables
storage, reasoning and querying of RDF and OWL data.

The content is interfaced to the rest of the system through the DM
repository. A major advantage of this approach is that integrated
querying of both schema and instance data becomes possible. To
enable this, the content has to be represented as RDF statements.
For non-RDF content repositories this can be achieved in various
ways. The simplest and most straightforward case is an offline
translation of the data to RDF and simply storing that RDF in a
Sesame repository. However, this approach has a drawback by
duplicating data which means that updates to the data need to
happen in two places. An alternative way of realizing the link
between DM and data is by creating a wrapper component around
the actual data source that does online back-and-forth translation.
The Sesame architecture caters for this scenario by having a
storage abstraction layer called the SAIL API [3]. A simple
wrapper component around virtually any data source can be
realized as a SAIL implementation and then effortlessly be
integrated into the rest of the Sesame framework and thus into our
Hera-S environment.

The entire system is an event-driven architecture. When a request
for a certain page comes in at the Presentation Server component,
the request is translated to a request for an AMP. At the same
time, the UserManager and SessionManager components are
informed of the request. These two manager components can then
take appropriate actions in updating the context data repositories

(specifically, the UM (user model) Repository, and the Session
Repository). Independently from this, the so-called AMPGen
component retrieves the requested part of the AM that contains
the conceptual specification which is the basis for the next AMP.
It then starts the AMP creation process by following that
specification. The AM specification consists of constructs and
their queries that specify the information from the DM and CM
that is needed to correctly instantiate the AMP.

The actual AMP is internally implemented as a volatile (in-
memory) Sesame repository, which means that all transformation
operations on it can simply be carried out as RDF queries and
graph manipulations using the SeRQL query language. When the
AMP has been fully constructed, it is sent back to the server. The
implementation architecture allows for a presentation generator
component, which, as already explained in section 2, can be any
third-party component. This presentation generation component
can then transform the AMP into an actual page (in terms that a
thin client such as a Web browser can understand, e.g. XHTML).
The result is then finally sent back to the client (as the response).

5.2 RDF Querying in SeRQL
SeRQLis a declarative query language for RDF, implemented in
the Sesame framework, which allows flexible manipulation of
RDF graphs. Queries are defined by a graph template pattern, a
set of Boolean constraints and a set of filter conditions.

An example SeRQL query is:

SELECT movie, title

FROM {X} rdf:type {imdb:Movie};

 imdb:title {title}

This query retrieves the movie identifier and its title attribute
from a collection of movie descriptions (see also section 6,
Example scenarios). Notice that in the FROM clause a graph
pattern template is specified – each statement is represented by a
pattern of the form ‘{Subject} Predicate {Object}’, that is, each
graph node is surrounded by curly brackets. Path branching is
indicated by a semicolon: in the above query, the semicolon
indicates that both the predicate ‘rdf:type’ and ‘imdb:title’
emanate from the subject variable X..

SeRQL supports two basic projection types: variable binding,
realized by SELECT-queries as shown above, and triple pattern

generation, realized by CONSTRUCT-queries. Especially the
latter is useful for data transformations, since it allows the
transformation of one graph into a different graph. A
CONSTRUCT clause is used in place of the SELECT clause and
rather than a list of variables, it too specifies a graph pattern
template, which in this case prescribes the graph structure of the
query result.

In the Hera-S system, and mostly in the access queries, SeRQL
query expressions are extensively used to define mappings and
filters between the different data sources source data and the
eventual AMP: after all, since all this data is expressed as RDF
graphs, an RDF query/transformation language is a natural choice
as a mapping tool.

In the next section, we will outline some example scenarios and
show example SeRQL queries that are used to map content and
context data to the application model, i.e. from DM/CM to AM.

6. Example scenarios
In our example we use the movie domain as a case study. Our
goal is to create a personalized Web application, similar to the
well-known International Movie Database (IMDB, [9])
application. Suppose we have a (simplified) domain model (DM1)
representing information about movies and their crew (e.g. actors,
directors), and a context model (CM1) representing information
about the users’ viewing history (e.g. the number of times users
viewed a particular movie, and an aggregation of all the views of
every movie by all users). This is depicted in the UML diagram in
Figure 3.

Figure 3: IMDB domain and context data model

In our case study we will consider a simple part of the application
that allows navigation over movies and persons. In section 6.1 we
give an example of personalization in this application and in
section 6.2 we give an example of how an existing domain can be
extended by adding cinema information to the movie application.

6.1 Personalization
In the first example scenario we will look particularly at
personalization. Therefore, the application will start with a login
screen. After authentication, the user arrives at a starting page that
contains a menu (which will remain visible throughout the whole
browsing session) and a welcome screen. Within the menu the
user has the option to logout, go to a search page, go to a favorites
page and see a history of the last 10 movies that were browsed.

The ‘search’ page enables users to search over the movies and
persons in the database. There are two kinds of search. Simple
text search will find all persons and movies that contain the search
string in one of their attributes. More advanced is the attribute
search, which allows searching for persons and movies by
querying specific attributes. Note that the types of search are only
restricted by the expressive power of the SeRQL language: here
we opt to use simple types of search.

The ‘favorites’ page shows a list of the top 10 most viewed
movies for the current user. Furthermore, it will also contain a list
of the top 10 movies viewed by all users. These two lists are made
“expandable” and “collapsible” via the user interface (similar to
existing well-known hierarchical (directory) structures).
Similarly, the ‘history’ page shows the ten last movies and
persons that have been visited.

Evidently, movies and persons can be browsed the ‘regular’ way.
This means that every movie has a separate page that shows the
user a collection of its attributes (title, year, description, etc). It

also shows a list of people (by their name) that are involved in the
movie, and are grouped based on their function (actor, director,
etc). Every person name has a hyperlink to his/her personal page.
On this page a number of his/her attributes (e.g. DateOfBirth,
Name) are shown. Furthermore, for every person a set of movie
names (movies in which they were involved) is shown. This set is
grouped by function (director, actor, etc). Every movie name
again links to the corresponding movie page.

Figure 4: Partial AM for personalization example

Figure 4 is a partial visualization of the AM for our application.
Because of space considerations it only shows the most
interesting units, omitting units like Login, History, SearchResults

and Person.

The Start unit succeeds a login process. Therefore, it has login
information at its disposal that can consequently be used by its
sub-elements. The Start unit has two sub-units: Menu and
Content. Start_aq1 is the access query for Menu and is used to
personalize the anchors that are attached to the Favorites and
History menu items, such that navigational relationships will
transport the required information for the relevant units. Start_aq2
in this case may be left empty, as the Content unit only contains
one constant without an anchor (i.e. a welcome message).

The anchors of the elements in the Menu unit also have, besides a
navigational relationship, a “Replace” specification. This
specification indicates that not the current unit (here: Menu) will
be replaced, but the unit with the name specified in “Replace” (in
this example Content).

In the Search unit, a simple Keyword_Search form is shown and
also a more specific Property_Search form. The Property_Search
in our example is a dynamic form which is created based on an
input query. The Property_Set access query queries for all
property names for movies and persons, as defined in the Domain
Model. As a result, for every property its name is shown, together
with a (string) input element. Using such a (generic) input query
as a basis of the property-search form yields the advantage that

whenever the Domain Model is adapted, the Property_Search
form is automatically adjusted.

The Favorites unit contains two sets. One set shows the top 10
movies that are most often viewed by the current user. The other
set shows the top 10 movies that are most often viewed by all
users. Both sets get the same code object attached. This code
object takes care of collapsing or expanding the sets. If we target
HTML, we could (in our case) for example insert JavaScript code
that sets the display-style to none for collapse, and unsets this
style for expand.

Let’s now go in more detail into the unit representing the top 10
movies of the current user. Figure 5 contains a snippet of the
underlying code of the Favorites unit, and in particular the
personal favorites. It shows the SeRQL (access) query for
selecting the names of the 10 most viewed movies by the current
user. Furthermore, these names are ordered on (amount of) views
and limited to the top-10 at most.

<NavigationalUnit rdf:ID="Favorites">

 <SubElement>

 <Set rdf:ID="Personal_Favorites">

 <Set_AccesQuery rdf:datatype="xsd:string">

 SELECT DISTINCT MovieTitle

 FROM {} rdf:type {imdb:Movie};

 imdb:title {MovieTitle};

 um:userMovieViews {} um:ofUser {User};

 um:amount {Views}

 WHERE User = $$currentUser$$

 ORDER BY DESC(Views)

 LIMIT 10

 </Set_AccesQuery>

 <Setelement_Operator rdf:datatype="xsd:string">

 <Attach rdf:resource="Anchor_PersFav_Movie_aq">

 <Assign>

 $$movieX$$=MovieTitle

 </Assign>

 </Attach>

 </setelement_Operator>

 </Set>

 </SubElement>

 <SubElement>

 <Anchor rdf:ID="Anchor_PersFav_Movie_aq">

 <Anchor_Uses_NavigationalRelationship

 rdf:resource="#Fav_Movie_aq"/>

 </Anchor>

 </SubElement>

...............

</ NavigationalUnit>

<NavigationalRelationship rdf:ID="Fav_Movie_aq">

 <targetUnit rdf:resource=”#Movie”/>

 <selectQuery rdf:datatype="xsd:string">

 {movie=$$movieX$$}

</selectQuery>

 <updateQueryPost rdf:datatype="xsd:string">

 {UPDATE {x} um:amount {views + 1}

 FROM {movie} um:amountOfViews {x} rdf:type

 {um:UserMovieViews};

 um:ofUser {user};

 um:amount {views}

 WHERE movie=$$movieX$$ and user=$$currentUser$$

 },

 {

 UPDATE {x} um:amount {views + 1}

 FROM {movie} um:amountOfViews {x} rdf:type

 {um:GlobalMovieViews};

 um:amount {views}

 WHERE movie = $$movieX$$

 }

 </updateQueryPost>

</NavigationalRelationship>

Figure 5: AM code snippet for Favorites Unit

The code snippet also shows the definition of a navigational
relationship. In the specification of these relationships, the queries
that are executed when one of the movies in the Favorites page is
selected are defined. In this case, the query specifies exactly
which movie the Movie unit should show. As we already know
which movie this should be, namely the movie that the user just
selected, no query needs to be actually executed; instead this
information just needs to be passed on, The update queries define
an update of the amount of movie-views of the movie the user is
navigating to, and likewise an update of the global movie-views
of that movie. This update is only executed after the next unit is
computed, so that the update does not interfere with the (current)
visualization of that unit. Note that it is also possible to define
pre-update queries (instead of post-update queries), so that the
updates could influence the next unit.

Also note the use of variables in Figure 5. In the code snippet two
variables are used, namely “$$movieX$$” and
“$$currentUser$$”. These variables have to be determined before
the queries can be executed. The value of the $$currentUser$$
variable is resolved after the Login process succeeded.
Subsequently, the Start-unit has this information to its disposal,
and therefore also all of its subunits (i.e. through an access query,
or through an additional query to the Context Data, that can also
act as a temporary variable store). The value of the
“$$movieX$$” variable is determined by attaching the
navigational relationship as an anchor to all elements (via the
setelement_Operator)of the Personal_Fav set, and substituting
MovieTitle for $$movieX$$ by using the “Assign” construct.

After creation of an AMP a presentation generation process is
applied before showing the data to the user. In our example, we
applied a simple AMI-to-HTML converter and attached a CSS
file to obtain the screenshot shown in Figure 6.

Figure 6: Hera-S Movie Database Screenshot

6.2 Domain extension
For our second scenario we consider an extension to an
application (integrating for example a new source). We
extend/unite the DM1 of Figure 3 with a new DM2 that maintains
content about cinemas and their featured movies (note that DM1
and DM2 are modeled by two different domain ontologies).
Furthermore, we store additional context data (CM2) that
maintains a shopping cart and the items in this cart, related to the
movie-showings a user wants to visit. The shopping cart is related
to DM1 via the user data. These extensions of the models are
represented in Figure 7. The advantage of using Sesame here is
that this information can be easily stored in different data stores,
without complicating the creation of a new AM. This is possible
because in RDF one can easily cross-reference data between
schemas.

-place

-city

-country

Cinema

1

*

-date

-starting_time

-ending_time

-duration_mins

-price

-room

Showing

1*

-quantity

-price

Item

*

1

-amount

ShoppingCart

*

0..1

1

1

MovieRegisteredUser

DM1CM1

DM2CM2

Figure 7: Additional content and context model

With this domain extension, let’s now consider an extension of
our application as described in Figure 4, in which we are also able
to offer to the user information in which cinemas each movie is
played. We can compute this information, because we refer (in
‘showing’) to a specific movie specified in DM1. The resulting
query could then be (omitting sorting- or grouping-details):

SELECT DISTINCT Cinema

FROM {} rdf:type {cin:Cinema};

 cin:Showing {} imdb:Movie {} imdb:title

 {MovieTitle}

 WHERE MovieTitle = $$movieX$$

In the same way as extending the domain we can use additional
context information. We maintain a shopping cart that is
connected to a particular user. Furthermore the items that can be
added to this shopping cart are related to particular movie
showings. This information is sufficient to implement the
shopping-cart functionality. At checkout the user can provide
some payment details, which can then be updated in the CM.
Third-party software, e.g. business logic software, can extract this
data from the context data via Sesame, and actually process the
payment and send the tickets.

Start

Unit

Menu
Id:menu

Target:content

Unit

Start_aq1

Content

Id:content

Unit

Welcom_Const C
Search

Favorites

Movie

Unit

Start_aq2

History C

C

C

Cast

Set

name

Cast_SetExpr

A

Title

year

description

official_site

A

A

A

A

photo

status

trailer

A

A

A

Cinema

Unit

Session

Set

movie

Session_SetExpr

Session_aq

A

Place

City

Country

A

A

A

Showing

Unit

Shopping-Cart

Form

Amount::InputString

Cart_SetExpr

cart_aq

Movie

date

starting_time

ending_time

A

A

A

A

Duration_mins

price

room

A

A

A

Checkout

Unit

Shopping-Cart

Set

Session

Cart_SetExpr

Cart_aq

A
Payment_details

Form

Details::InputString

Checkout_aq

Shopping Cart C

-Replace=‘content’

-Start_Checkout_aq
Quantity A

Price A

Total Price A
Delete S

date A

starting_time A

Cinema

Set

place

Cinema_SetExpr

A

cinema_aq

-Cin_Show_aq

-Show_check_aq

-Show_mov_aq

-Mov_Cin_aq

Logout C

Login

-Ch_St_aq

Figure 8: Partial AM for the domain extension example

Figure 8 contains the (partial) AM for this extended scenario. As
it is an extension of the AM shown in Figure 4, we only show the
relevant units that were changed, and the new units we added.
Using Sesame, everything can be seamlessly integrated in the
original AM. As the units have a similar structure as defined in
Section 6.1, we will not treat them in depth again.

We can indicate one noticeable point, however. In the Movie unit,
we now show all cinemas that show the specific movie. However,
popular movies may be shown in cinemas all over the world, so
probably the designer wants some mechanism to restrict this. By
using additional information from an external geographical
ontology, which we can (again) access via Sesame, we are able to
use the location of the current user (via RegisteredUser.city as
specified in CM1) to select only those cinemas (via Cinema.city
as specified in DM2) in the neighborhood of the user.

7. CONCLUSION
In this paper we have discussed the design support for the
complexity around dynamics and user-feedback/interaction that

we find in modern Web information systems. In Hera-S we
combine the existing strengths of Hera (i.e. its navigation
modeling based on the semantics of the underlying data) and the
Sesame capabilities for the processing of RDF-based data.
Combining these trumps, it is possible to easily integrate data
sources (e.g. for background knowledge), include external code
and service elements, and to interfere with the data processing
independently from the navigation. This enables a clean
separation of concerns that helps in personalization and
adaptation and in the inclusion of external data sources.

We are currently working on exploiting this facility for using
aspect-orientation in the specification of user and context
adaptation, and for the incorporation of business process and
workflow specifications. We are also extending the available Hera
design environment Hera Studio with the plug-ins for the SeRQL
queries. Next to this work in extending the toolset, we also plan
further investigation of the application of this solution in the
domains of user profiles (within the framework of the IST
MobiLife project) and multimedia and streaming content (within
the framework of the ITEA Passepartout project).

8. REFERENCES
[1] Barna, P., Houben, G.J., et al: Navigation Design Support

Using Reusable Navigation Templates. in: IWWOST'05

International Workshop on Web Oriented Software

Technologies, Proceedings of the CAISE'05 Workshop on
Web Oriented Software Technologies, Porto, Portugal, 13
June 2005.

[2] Brambilla, M., Ceri, S., et al.: Model-driven Specification of
Web Services Composition and Integration with Data-
intensive Web Applications, IEEE Bulletin of Data
Engineering, December 2002

[3] Broekstra, J., Kampman, A. and van Harmelen, F.: Sesame:
An Architecture for Storing and Querying RDF and RDF
Schema. In Proceedings of the First International Semantic

Web Conference (ISWC 2002), Sardinia, Italy, June 9-12

2002, p. 54-68. Springer-Verlag Lecture Notes in Computer
Science (LNCS) no. 2342. See also http://www.openrdf.org/.

[4] Broekstra, J.: SeRQL: A Second-Generation RDF Query
Language. Chapter 4 in Storage, Querying and Inferencing

for Semantic Web Languages. PhD Thesis, Vrije Universiteit

Amsterdam (July 2005). ISBN 90-9019-236-0. See also
http://www.openrdf.org/doc/SeRQLmanual.html.

[5] Ceri, S., Dolog, P., et al: Model-Driven Design of Web
Applications with Client-Side Adaptation, Lecture Notes in
Computer Science, Volume 3140, Jan 2004, p. 201 – 214

[6] Chipman, A., Goodell, J., et al: Getty thesaurus of
geographic names: editorial guidelines. Available at:
http://www.getty.edu/research/conducting_research/vocabula
ries/guidelines/tgn_1_contents_intro.pdf. (2005)

[7] Fiala, Z., Hinz, M., et al: Design and Implementation of
Component-based Adaptive Web Presentations. in: ACM-

SAC2004, ACM Symposium on Applied Computing (SAC),
Nicosia, Cyprus, 14-17 March 2004, p. 1698-1704, 2004,
ACM Press.

[8] Hobbs, J.R., Pan, F.: An ontology of time for the semantic
Web. ACM Transactions on Asian Language Information
Processing (TALIP) 3(1) (2004) p.66-85

[9] International Movie Database, Available at:
http://www.imdm.com, 2006.

[10] Miller, G.A.: Wordnet: a lexical database for english.
Commun. ACM 38(11) (1995) p. 39-41

[11] openRDF.org: home of Sesame, available at:
http://www.openrdf.org/

[12] RDF representation of Wordnet, available at:
http://www.semanticweb.org/library/

[13] Rutten, B., Barna, P., et al: A Tool for Presentation
Generation in WIS. in: WWW2004, The Thirteenth

International World Wide Web Conference, Alternate Track

Papers and Posters, New York, USA, 17-22 May 2004, p.
242-243, ACM.

[14] SIMILE | RDFizers, Available at:
http://simile.mit.edu/RDFizers/index.htm, 2006.

[15] Teknowledge Geographical Ontology, available at:
http://reliant.teknowledge.com/DAML/Geography.owl:

[16] Thiran, Ph., Hainaut, J.L., Houben, G.J.: Database Wrappers
Development: Towards Automatic Generation. in: CSMR'05,

Ninth European Conference on Software Maintenance and

Reengineering, Manchester, UK, 21-23 March 2005, p. 207-
216, 2005, IEEE CS Press.

