
IMPROVED NAVIGATION THROUGH EXTENDED XML
LINKS

Anna Lekova
IUSI,

Bulgarian Academy of
Sciences

Bl 2, Acad. Bonchev St., 1113
Sofia, Bulgaria

alekova@iusi.bas.bg

 Olga De Troyer
Vrije Universiteit Brussels,
 Department of Computer

Science
10G731D Pleinlaan 2 B-1050

Brussels, Belgium
 Olga.DeTroyer@vub.ac.be

Abstract

The paper describes a browser that processes XLink links in XML documents. It creates a

navigation chunk of hyperlinks dynamically for a connected user’s session through a server side

programming. This advanced navigation provides web-based online services while referencing the

electronic documents in use, both local and remote. To allow communicating this information

through the web, an XML/DTD documents for the manner in which Uniform Resource Identifiers

should be referenced, are developed. Web GUIs are generated that enable users to explore and

interact with the XLink elements available in such documents. The browser supports a graphical

query notation based on XLink links in Java Graphics 2D applets.

1. Introduction

The WWW is the most dynamic accumulation of information. Unfortunately it is also the most
lacking in structure. Users need a way to dynamically integrate the information available on the
Internet. The frequent use of hyperlinks in web sites causes people to loose track of where they are
and what they are looking for. Online-guided tours should be generated when novices are getting
acquainted with web sites as well as during sessions of learning and teaching at a distance. Dynamic
navigation could be extremely helpful in the daily work of office workers - to allocate their online
tasks and web services in a way in which they are performed.
HTML linking has its limits [8]. For one thing, URLs are limited to pointing at a single document.
Furthermore, HTML links don't maintain any sense of history or relations between documents.
XML links (xlinks) propose more powerful links between documents. The XML Linking Language
(XLink) [8] working draft defines two types of links, simple links and extended links. XLink

mailto:alekova@iusi.bas.bg
mailto:Olga.DeTroyer@vub.ac.be

provides a framework for creating both basic unidirectional links and more complex linking
structures. It allows XML documents to associate metadata with a link. XLink link associates a set
of resources. Resource is any addressable unit of information or service (files, images, documents,
programs, and query results). More than one resource can be referenced in a single ''hot-spot'' in the
text. An extended link is a link that associates an arbitrary number of resources. In general, the
extended XLink elements could be considered as meaningful wrappers that provide a nest for
resources and arcs trough the following attributes: Locator Attribute (href); Semantic Attributes
(role, arcrole, title); Behavior Attributes (show, actuate); Traversal Attributes (label, from, to).
Therefore an XLink document has the potential to describe how the information is being integrated
over the Internet by identifying the possible XLink points. Extended links are very important for
situations where the participating resources are read-only, or where the resources are in formats with
no native support for embedded links (such as many multimedia formats). An important application
of XLink is in hypermedia systems that have hyperlinks. A hyperlink is a link that is intended
primarily for presentation to a human user. Using or following a link for any purpose is called
traversing [8].
Unfortunately, Elliotte Harold [4] considers that at the time of February 2001, XLink is still
undergoing significant development and modification. To make matter worse, only Mozilla and
Netscape 6.0 have any support for XLink links, and that support is incomplete. There are no
general-purpose applications that support arbitrary links. XLink can be used for a lot more than just
hypertext connections and embedded images in documents. Thus, even when XLink are fully
implemented in browsers, they may not always be in blue underlined text that you click to jump to
another page. In the meantime it is safer to convert XML to HTML on the server using Extensible
Stylesheet Language [7].
If the power of the above mentioned XLink proposal draft [8] is implemented in a client/server
framework, the end-user will be facilitated in exploring the Web for any custom application that
needs to establish connections between documents and parts of documents. Interactive web tools for
XLink analysis and synthesis need to be developed. Information about the longest path that one can
take to reach a destination node could inform us where and how the end-user might get lost.
Querying the XML document could be an easy way how to restructure the XLink resources and arcs
and also how to generate personalized guided tours for information or task allocation.
Servlets [1] are an effective replacement for CGI scripts. They provide a way to generate dynamic
documents that is both easier to write and faster to run. Any kind of browser can send a request to a
set of servlets on the HTTP server when extended Links are encountered in the XML document. In
the present work an approach for XLink links traversing and displaying directly in a browser is
proposed. That approach creates the effect of having a dynamic, virtual temporary XML browser
that creates a semantic navigation chunks for a connected user’s session through a server side
programming. A Java Servlet using XML Link Language Processor combined with Document
Object Model (DOM) manipulates the XML document that serves as a data exchange format for
referencing documents between clients on the I-net. The servlet generates string buffers of applet
parameters and responds through Java applets to the client browser. All of the title attributes of the
potential extended link are presented in that applet. The end-user can click over the graphical
notation of the titles. A Navigation Servlet is responsible for traversing and presenting the requested
xlinks using the "arc" and "locator" attributes. It results in an HTML page to the HTTP client, which
defines the path that one can take to reach a destination node. At the top of such a page a chunk of
hyperlinks for the particular navigation is presented. Moreover the present approach allows
advanced personalization of the XLink document by dragging, clipping and matching the graphical
notation of the extended xlinks. The HTTP server processes the query composed this way
dynamically. A Query Java Servlet generates a new XML document with new information for the

XLink. A more detail description of the approach is given in section 3. Section 2 discusses related
work. In section 4 the approach is illustrated with an example.

2. Related Work

The number of tools for processing XLink and XPointers is limited [6]. The Fujitsu XLink
Processor (XLip) [2] can work with any XML processor or parser, which can create DOMs, on
condition that an appropriate interface between the processors is implemented. XLip cannot be
independently obtained at present. Empolis Ltd. announced X2X, the XML XLink Engine [9]. X2X
allows for the creation, management and manipulation of links. X2X has an extensible architecture
to allow resources to reside in any data repository. X2X stores all the link information within an
ODBC/ JDBC enabled database. X2X allows for the retrieval of resources and can dynamically add
the external link information without altering the original document/information. Linkan XML-
XSL-XLL browser [5] is a simple application written in Java that allows a user to view XML
documents with XSL stylesheets and XLL hyperlinking. It uses several third-party Java libraries,
including the Docuverse DOM implementation, James Clark's XP parser and XT XSL processor,
and the XML-DEV mailing list's SAX API. The XLink Filter [10] uses John Cowan's ParserFilter
class to insert itself between the parser and the application. The XLink filter (derived from the
ParserFilter) passes all SAX events on to the application, which can do its own processing of the
XML document represented by the SAX events. The XLink Filter will leave behind a Link
Collection, which can take requests from the Application regarding which elements contain links
and what the targets and behaviors of those links should be. If you click on an active applet area, a
menu will appear, indicating available links. Links are multi-directional, and each location on the
map may correspond to many clickable areas and its links.
In comparison with the above methods our framework is easier to use, both from the designer's and
the user's point of view, as it employs interactive web tools for traversing and xlinks managing in
graphical mode presentation.

3. A Client/Server Framework for XLink

The presented software framework for XML links processing demonstrates how one can create a
servlet(s) and how a client uses HTTP to communicate with the servlet(s) for XML links traversing
(Fig.1.). The entire XML document is manipulated dynamically using the XLink combined with
Document Object Model through a Java server side programming. A set of Java HTTP Servlets
respond to the client's requests based on the text in the XML & XSL documents as well as to the
interactive work in 2D Graphics applets. A small code fragments are used to show how the web
pages are produced and processed. The modeling of XLink scheme is shown in XML format:

<with_extendedL xlink:title="C_book" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:type="extended">
<NAME xlink:type="resource" xlink:label="C_book"/>
<START_P xlink:type="locator" xlink:href="http://www.amazon.com/" xlink:label="StartPageCust" …
<TARGET xlink:type="locator" xlink:href="http://images.amazon.com/...jpg" xlink:label="info_targetCust"

 xlink:title="has_title"/> <TARGET …
<CONNECTION xlink:type="arc" xlink:from="CustomerPageCust" xlink:to="info_targetCust"/> …

</with_extendedL>

as well as in interactive 2D applet (Fig.2.b.) in order to make XML more easily accessible to a wider
user audience. Here is looking for ways to connect XML documents more directly to in – graphic
objects. It would be much easier to write XML-enabled queries if the components of an XML

http://www.w3.org/1999/xlink
http://www.amazon.com/

document are mapped to in-graphic objects that represent the xlinks’ intended meaning according to
its XML schema.
The Extensible Stylesheet Language (XSL) is used for content visualization. XML documents are
transformed to HTML documents, using a standard that applies fixed style rules to the content of
particular elements. In an XSL transformation, an XSL processor reads both an XML document and
an XSL. In the present work a servlet is integrated into XSL document. Any kind of browser can
send a request to an HTTP servlet when an extended XLink has been activated (fig.2.a).

<xsl:stylesheet xmlns:xsl="http://www.w3.org/XSL/Transform/1.0"
 xmlns="http://www.w3.org/TR/REC-html40" result-ns="">
 <xsl:template match="/">
 <HTML> <BODY>
 <xsl:for-each select="order/item/book">
 <FORM ACTION=" http://starpc8.vub.ac.be:8080/servlet/XLink? XML_Name “ METHOD="POST">
 <INPUT TYPE="SUBMIT" VALUE=" XlinkMap"/>
 </FORM>
</xsl:for-each></xsl:template></xsl:stylesheet>

Class Arc

Class XLinkPanel

Class NodeXLink

ClientBrowser

Class Locator

Class Res

Class GraphXLink

xlinks referencing

Class SearchServlet extends HttpServlet

DOMParser

Class Query Servlet extends HttpServlet

Class NavigationServlet extends HttpServlet

Class StartS ervlet extends HttpServlet

Web Server

Class XLinkServlet extends HttpServlet

Fig.1. Java Client/Server framework for XLink traversing using DOM parser

New XML
document

xlinks
in 2D Applet

XSL

XLink Processor

Query Processor

WebSites

Remote Resources

HTTP
Request/Re

sponse
Model

Local Resources

Query Interactive
Framework

Navigation chunk
of hyperlinks

2D Applet

http://www.w3.org/XSL/Transform/1.0
http://www.w3.org/TR/REC-html40
http://starpc8.vub.ac.be:8080/servlet/XLink?

Servlets are modules that extend request/response-oriented web servers as handling HTTP client
requests for XLink parsing and processing data POST-ed over HTTP. The set of servlets also need
to integrate a DOM Parser (in the present work the Xerces DOM Java Parser 1.4.1 is used):

import XMLParsing.*;
import org.w3c.dom.*;
import org.apache.xerces.dom.*;
import org.xml.sax.*;
public class XLinkServlet extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException
 { String XML_Name = request.getParameter("XMLname");

 org.apache.xerces.parsers.DOMParser parser = new org.apache.xerces.parsers.DOMParser();
parser.parse(XML_Name);

 Document document = parser.getDocument();

The XLink servlet integrates an XLink processor and responds to the client browser through Java
applets. It applies the XLink Processor to convert the XLink in XML document to parameters of
xlinks applet.

… //XLink Processor class is instantiated
TraverseXLinks con1 = new TraverseXLinks(document);

 ResXML = con1.Return_ResXML();
xlinks = con1.Return_Xlinks();

…
 response.setContentType("text/html"); PrintWriter out = response.getWriter(); out.println("<html>"); …
out.println("<applet CODEBASE=http://starpc8.vub.ac.be:8080/XMLNav/Graph/ CODE=GraphXLink.class
width=900 height=220> "); out.println("<param " + xlinks + ">"); out.println("</applet>");

An XLink processor reads the entire document and extract and store any extended links found there
in a DOM tree. The knowledge for how to match the XLink information for synthesizing applet
parameters is embedded in the XLink Processor:
- An extended link consists of a set of resources and a set of connections between them using the

"arc" and "locator" attributes that define the path that one can take to reach a destination node;
- Attaching xlink:title attribute to the locator elements specifies Semantics;
- Extended links provide many different possible traversal paths. Each of these possible paths

between resources can have different rules for when the link is traversed and what happens
when it's traversed. Traversal rules are specified by attaching xlink: actuate and xlink: show
attributes to arc elements. Applications can use arc elements to determine which traversals are
and are not allowed and when a link is traversed;

- A single arc element may actually describe multiple arcs. If more than one resource has the
xlink: label A, then arcs go from all resources with the label A to the resource with label B. Each
arc goes from exactly one resource to exactly one other resource.

Appendix A shows Java classes of XLink and Query Processors.
The mapping of XLink to applet parameters in HTML tag results in the statements shown below:

<applet code="GraphXLink.class" width=350 height=200> <param name=Xlinks value="<with_extendedL>
NAME(xlink:label)C_book,START_P(xlink:href)http://www.amazon.com/exec/,CUSTOMER_P(xlink:label)Customer
PageCust,CUSTOMER_P(xlink:title)onCustomerPage,TARGET(xlink:href)http://images.amazon.com/images/P/15826.
jpg,TARGET(xlink:label)info_targetCust,TARGET(xlink:title)has_title,…,
CONNECTION(xlink:show)replace,CONNECTION(xlink:to)CustomerPageCust,CONNECTION(xlink:from)StartPage
Cust, CONNECTION(xlink:to)info_targetCust,”> </applet>

Fig.2. a. The transformed XML/XLink document b. the xlinks applet in a browser session

The xlinks applet converts these parameters to it’s own object-oriented structure for XLink:

class NXLink {
 String type="extended";
 int numbLocator, numbAttr;
 Res res;
 Locator loc;
 Arc arc; }

class Res extends NXLink{
 String type="resource";
 double x, y;
 boolean selected;
 String role,title, label; }

class Locator extends NXLink{
 String type="locator";
 double x[]=new double[50];

 double y[]=new double[50];
 boolean selected[]=new boolean[50];
 String href[]= new String[50];
 String role[]= new String[50];
 String title[]= new String[50];
 String label[]= new String[50];}

class Arc extends NXLink{
 String type="arc";
 String from[]= new String[50];
 String to[]= new String[50];
 String show[]= new String[50];
 String actuate[]= new String[50];
 String arcrole[]= new String[50]; }

The end-user can click over the graphical notation of title attributes of the potential extended xlinks
presented in the applet. If no direct arc exists between the local and remote resources the hyperlinks
are associative: A link from xlink:href1 to xlink:href 2 will only be traversed if you are at
xlink:href1.When extended XLink is requested the browser sends that request to a Navigation
Servlet, which responds to the client browser through HTML pages composed of two frames. At the
top frame a chunk of hyperlinks for the requested navigation is presented. The hyperlinks are
associated and creates more complex linking structure embedded in the extended XLink. For
instance, the content of a tailored page may be different for different users based on the identity of
the user or the value of one or more input fields. In dynamic pages the content may change
depending on the navigation, e.g. a shopping basket page.

public class NavigationServlet extends HttpServlet {
 public void doGet(HttpServletRequest request,…
String Query[]=new String[20]; //contains all hyperlinks of entemded xlink
FileWriter fw4 = new FileWriter("./XMLNav/top_frame.html");

 for (StringTokenizer t = new StringTokenizer(query, ",") ; t.hasMoreTokens() ;) {
 String str = t.nextToken(); Query[i]=str; i++;
}

 // Creating the first frame - the navigation chunk – file top_frame.html with Java script code for how to follow
the hyperlinks
top_frame="<html> <head> <script language=JavaScript>" function preload(){ "
function showhide(what,what2)" + "\n" + "{if (what.style.display=='none'</script > <BODY > XLL <img id=menu1sign
src=back.gif valign=bottom> … style="
+ "\""+"cursor:hand; font-Family:Verdana; text-decoration:underline; font-weight:bold"
+ "\""+"> Navigation
Chunk
"+ " ";
 // Creating the chunk of associate hyperlinks
for (int j=i-1; j>0; j=j-2) {
top_frame = top_frame+ " " + Query[j]
 + " ";
 }
 // Dynamic HTML with two frames – top_frame.html is appear in the target “in”, the requested resource is
placed in the target “out”
response.setContentType("text/html"); PrintWriter out = response.getWriter(); out.println("<html>");
out.println("<head>");
out.println("<FRAMESET rows=14,80> <FRAME src=http://starpc8.vub.ac.be:8080/XMLNav/top_frame.html
scrolling='no' frameborder='0' name=in>");
out.println(" <FRAME src=" + Query[i-2]+ " frameborder='0' name=out>");
out.println(" </FRAMESET>"); out.println("</html>");
 }

Fig.3. The Query Interactive Framework (Design mode)

Advanced personalization of the XLink document can be performed on the client side. The main
function of the visual presentation, in the applet, is to perform graphical XLink querying, not just to
improve the user's point of viewing. Since the titles of the locators define the semantics and are
more valuable than the information they link, the process of xlink:title definition in the XML
document is very important. The idea implemented in the Object Role Model [3], that the world is
comprised of objects playing roles, is used here in a new way: part of the xlink:titles are verbs
corresponding to the roles the connected resources play in relation to each other. One can choose
among several alternative verbs to prepare statements in a way very similar to the natural language
expression. The querying is performed through dragging, clipping and matching the graphical

notation of the extended xlink:titles(Fig.3.). Performing the interactive process of querying is
straightforward by using the Java 2D Graphics API, i.e.:

paintLink(Graphics g, NXLink n, FontMetrics fm){ g.drawOval (n.loc.x,n.loc.y,…);
mouseClicked(MouseEvent e){ rectangle.contains(n.res.x,n.res.y);..}

GraphPanel panel; Panel queryPanel; Panel controlPanel;
queryPanel.add(New_Window); New_Window.addActionListener(this);
queryPanel.add(run_query); run_query.addActionListener(this);

Editing the values of the xlink:attributes in the control panel of the applet modifies the behavior of
the xlinks. One usually chooses multiple objects and verbs. One can drag, clip and match multiple
statements to prepare a complex query for navigation that corresponds to specific tasks performed
within a specific hypermedia system. The QueryServlet is invoked during the actions in design
mode. It forwards the new combination of XLinks to the Query Processor. The result of the query
composed this way is a new well-formed XML document(s) with new information for XLink
elements. After the XML file is prepared, the user can observe the effect of a new edition of XML
document. In the design mode the user can:
• Explore the different guided tours made possible by the xlinks and select the better ones;
• Change the arcrole, show and actuate value attributes corresponding to the number of opened

windows for task completion;
• Check whether the concepts are reachable and if the target XML page is fully navigable;
• Analyze and reduce the longest path in hyperspace that one can take to reach the destination

node.

4. Example

Let's consider a company ordering books online from Amazon.com. The department ordering books
makes the expenditure, receives invoices and should be able to share part of the information with
other departments. The tasks performed by the accountant after buying books on the Web are
different from those of the librarian. The accountant's navigation chunk should involve web tasks
related to Account Maintenance on "Amazon.com" like orders and transactions, trusted partners,
option settings as well as local tasks related to read or announce information on company white-
board; to reference the company databases or documents and regulations (Fig.4.). On the other
hand, the librarians should be informed of the acquisition and have to enter the related data into the
database of the company. They deals with information pertaining to the Amazon.com line of
products such as title, ISBN number, name of the author, users' feedback and opinions etc.(Fig.5.).
The book ordering is a recurrent process iterating a different set of URIs for each task completion.
Extended links remove the requirement to insert link information inside the document content. All
potential URIs should be part of one XML document. The advantage of that XML link base is that
every time the referencing documents are moved, renamed or divided into smaller pieces, the links
only need to be adjusted in one XML file. It should integrate the local and remote resource for
referencing the information or services for e-paying; e-forms filling; database updating; white-board
writing, etc. For the time being it would be managed manually by the Information department of the
company. Also intelligent agents should be able to compose the XML files. Intelligent agent needs
only to update the metadata for XLink elements by harvesting the URLs and finding out the titles of
the xlinks. The result xlink applet with all potential local and remote resources is shown (Fig.2.).
The possible personalization can be performed in the Query Interactive Framework (Fig.3.). After
that each department obtains it's own XML document(s). The navigation obtained in this way leads
to a navigation chunk of associate hyperlinks for task completion according to the specific needs of

different departments. A personalized XML document for the accounting department comprises the
accounting information with local and remote extended xlinks. The locators will take one to the
"Account Maintenance" of Amazon's store as well as to company’s database or documents and
regulations (Fig.4). An XML document comprises the book's information with extended xlinks for
the librarian. The locators of the xlinks will take one to the main sections of Amazon's bookstore as
well as to the company's private book database or documents and regulations (Fig.5.).

Fig.4. Semantic Navigation chunk for the accounting department

Fig.5. Semantic Navigation chunk for the librarian department

5. Conclusion

The proposed approach creates the effect of having a dynamic, virtual temporary XML browser for
semantic navigation and organization of the information over the Internet. It will improve the web-
based online services while referencing the existing electronic documents. A browser generates web
GUIs that is easier to use, both from the designer's and the user's point of view, as it employs
interactive web tools for traversing and xlinks managing in graphical mode presentation. To do so,
the HTTP server traverses the set of xlinks for the HTTP client, which set dynamically a semantic
navigation chunk of hyperlinks in the manner in which specific tasks are performed.

References

[1] BLOCH, S., Bodoff, S., Servlets, Java Tutorial, http://java.sun.com/docs/books/tutorial/servlets/index.html

http://java.sun.com/docs/books/tutorial/servlets/index.html

[2] FUJITSU, XLink Processor, http://www.fujitsu.co.jp/hypertext/free/xlp/en/
[3] HALPIN, T. (1995), Conceptual Schema and Relational Database Design, Second Edition Prentice
[4] HAROLD, E R., The XML Bible, XLinks, http://www.ibiblio.org/xml/books/bible/updates/16.html
[5] JUSTIN, L., Linkan XML–XSL-XLL browser, http://pages.wooster.edu/ludwigj/xml/index.html
[6] Tools for processing XLinks and Xpointers, http://www.xmlsoftware.com/xlink/
[7] W3C Candidate Recommendation - Extensible Stylesheet Language, http://www.w3.org/TR/xsl/
[8] W3C Candidate Recommendation - XML Linking Language Xlink, World Wide Web Consortium, 2000,
http://www.w3.org/TR/xlink .)
[9] X2X - XLink engine, http://www.stepuk.com/products/prod_X2X.asp
[10] XLink Filter Project, http://www.simonstl.com/projects/xlinkfilter/

Appendix A: Java application for XML parsing

Class FullSearchText
extends Search
public FullSearchText (Document
 document, String Searc hText)
public void FullSearch (Node
 node, String SearchText)
public void
walkContentSearch (Element
 element, String SearchText)
public void getTextSearch (Node
 node, String SearchText)
public void
getTextElemSearch (Node elem,
 String SearchTe xt)

Class ChangeStatus extends Search
public ChangeStatus (Document document)
public void walkNode (Node node, String SchemaType)
public void walkNode (Node node, String SchemaType,
 String InstanceName)

Class FullSearchTag extends Search
pub lic FullSearchTag (Document
 document, String
 SearchText,String SearchTag)
public void FullSearch (Node node,String
 SearchText, String SearchTag)
public void walkContentSearch(Element
 element, String SearchText, String
 Sear chTag)
public void getTextSearch (Node node,
 String SearchText, String SearchTag)
public void getTextElemSearch (Node
 elem, String SearchText, String
 SearchTag)

Class Search
public Search (Document document)
public void FullTraverse (Node node)
public void walkContentMeta (Element element)
public void getText (Node node)
public void getTextElem (Node elem)
pub lic String Return_Buffers ()
public void AttrToBuf (StringBuffer BufName, Node node)
public void DeleteBuffs () public void ProcessBuffs ()
public void Buf Processing()

package XMLParsing

Class RunQueryRes extends FullSearchTag
public RunQueryRes (Document document, String Query1)
FullSearch(topLevel,"_SW");
FullSearchTag(topLevel, tav[j][2], tav[j][0]);
Class.forName(Roles).getConstructor().newInstance(document,"operates_on");
FullSearch(topLevel,"Volvo", "HREF");
 walkTraverseXLinks(Node node, String LinkType, String ConceptName);

Class TraverseXLinks extends
Search
public TraverseXLinks(Document
document, "w ith_extendedL"){
public TraverseXLinks(Document
document, "with_extendedL", String
ConceptType){

http://www.fujitsu.co.jp/hypertext/free/xlp/en/
http://www.ibiblio.org/xml/books/bible/updates/16.html
http://pages.wooster.edu/ludwigj/xml/index.html
http://www.xmlsoftware.com/xlink/
http://www.w3.org/TR/xsl/
http://www.w3.org/TR/xlink
http://www.stepuk.com/products/prod_X2X.asp
http://www.simonstl.com/projects/xlinkfilter/

