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Abstract. While satellite-based positioning systems are mainly used in
outdoor environments, various other positioning techniques exist for dif-
ferent domains and use cases, including indoor or underground settings.
The representation of spatial data via semantic linked data is well ad-
dressed by existing spatial ontologies. However, there is a primary focus
on location data with its specific geographical context, but a lack of solu-
tions for describing the different types of data generated by a positioning
system and the used sampling techniques to obtain the data. In this pa-
per we introduce a new generic Positioning System Ontology (POSO)
that is built on top of the Semantic Sensor Network (SSN) and Sensor,
Observation, Sample, and Actuator (SOSA) ontologies. With POSO, we
provide missing concepts needed for describing a positioning system and
its output with known positioning algorithms and techniques in mind.
Thereby, we enable the improvement of hybrid positioning systems mak-
ing use of multiple platforms and sensors that are described via the
presented POSO ontology.

Keywords: positioning system ontology · positioning techniques · po-
sitioning algorithms

1 Introduction

Whether we are developing a system for indoor or outdoor navigation or sim-
ply want to track the location of an object on a table, a positioning system
that tracks the position based on one or multiple technologies and algorithms is
needed. While outdoor positioning solutions mainly rely on satellite positioning
systems such as the Global Positioning System (GPS), building-specific deploy-
ments and implementations using a wide variety of techniques [26,14] can be
used indoors.

In order to facilitate the interoperability between different positioning sys-
tems or client applications, we need a vocabulary that is generic enough to cover
various use cases. Expressing the position or movement in a geographical con-
text is already well established using ontologies and vocabularies such as the
Basic WGS84 vocabulary [4], the Location Ontology [11], GeoSPARQL [3] or
the LinkedGeoData ontology [33]. However, positioning systems do not always
need to operate within a geographical boundary and may even provide more
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contextual information that is relevant for other positioning systems that would
like to make use of the data.

Interoperability between multiple positioning systems also covers the fusion
of the data these systems provide. Work on linked data networks for IoT sen-
sors already exists [10,12], allowing raw sensor data to be accessible by multiple
platforms. Decision-level fusion of positioning data remains a lacking capabil-
ity of positioning systems due to the missing knowledge on how the location
data has been processed or obtained. The additional semantic information from
these systems is often not available to other systems, making the handover of
tracking [15] between systems difficult.

In this paper we introduce POSO, a generic positioning system ontology for
expressing the techniques, algorithms and data handled by a positioning sys-
tem. We demonstrate how POSO can be used by a positioning system and that
we can perform decision-level sensor fusion of positioning data between multi-
ple independent positioning systems when data is semantically defined based
on POSO.

2 Ontology Design

The main goal of our Positioning System Ontology (POSO) is to offer a solu-
tion that can model different positioning systems, their deployments, techniques,
algorithms and the real-time data they are providing. However, semantics on
post-processed trajectory data lies beyond the scope of POSO.

In Fig. 1 we provide a general overview of a positioning system and related
components. A positioning system is deployed at a particular location or area
that is meant to be covered. This can be a building, an area outdoors or even an
object-specific location such as a game board that does not have to be related to
any geographical boundaries. Each positioning system uses a set of algorithms
and technologies to help computing a position. Finally, with positioning systems
modelled based on POSO, we aim to track the position, orientation and other
properties of one or more entities. These properties can be anything that is of
relevance to the system and obtained using the techniques implemented by the
positioning system and spatial properties of a tracked entity are located within
the deployment using a defined reference system.

We designed POSO with the Semantic Sensor Network Ontology (SSN) as a
top-level ontology [22] together with the Sensor, Observation, Sample and Ac-
tuator (SOSA) ontology [23]. Combined, SOSA and SSN provide an ontology
for linking sensors, actuators, observations, samplers and the systems needed to
process this sensor data to an output. This provides a stable core ontology that
could enable the modelling of a positioning system with its deployment, the used
sensors, procedures, the entities and as well as the observable properties of those
entities. However, as these ontologies are meant to be used as core ontologies,
they do not offer any semantics for expressing the accuracy of individual obser-
vations, the different types of algorithms that are relevant for positioning or how
the results should be represented in order to be interoperable.
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Fig. 1: Basic structure of a positioning system that tracks entities

Our ontology has been designed with the common data requirements of
various positioning system technologies [26,14], datasets [37,38,41] and frame-
works [42,13,30] in mind to cover all types of systems without overcomplicating
the modelling of the data. An initial validation has further been conducted based
on the OpenHPS framework [39].

With our proposed ontology, we aim to support concepts for defining a generic
position, orientation, velocity, acceleration and the sampling of this data. We
extended the sosa:ObservableProperty to express different types of position,
orientation, velocity and acceleration. For expressing observation-based sensor
data, we use the SOSA ontology together with the QUDT ontology for express-
ing Units of Measure, Quantity Kinds, Dimensions and Data Types [17]. Each
observable property defined in POSO can also be used as a result within a
SOSA observation, with a set of predicates that express the result. This enables
expressing a fixed position of a feature of interest as shown later in Listing 6.
The proposed vocabulary should support the following three main goals:

– Sensor fusion: High- and low-level sensor fusion should be possible based
on the data [9]. High-level fusion, also called decision-level fusion, consists
of merging processed data from multiple sources, while low-level fusion is
the use of multiple sources of raw sensor data. Both fusion levels require
additional knowledge on how the data has been obtained and its quality.
In the context of high-level fusion in a positioning system, the additional
semantics includes the accuracy as well as the techniques used to obtain the
data. Using this knowledge, other systems can prioritise the observations to
be used.
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– Historical data: Positioning systems make use of previous information to
predict future movement [44]. These predictions can be used to improve the
calculation of a next position. In order to support this technique, historical
positioning data should be available.

– Granularity: The position of an entity should be offered with varying ranges
of granularity without causing conflicts with the decision-level sensor fusion.
This enables use cases where observations of a minimum or maximum ac-
curacy can be separated in a different triple store, further enabling access
control to these individual stores.

2.1 Positioning System

A positioning system is a system or mechanism that can determine the position of
one or multiple objects based on some sensor data. Multiple positioning systems
might track the same object either individually or simultaneously. These multiple
systems can work independently from each other or combine information from
other systems to provide an output. We identify five types of positioning systems
based on the ISO 19116:2019 standard [20]. Each positioning system extends the
ssn:System class of the SSN ontology:

– Satellite positioning system: A positioning system using satellites. Ex-
amples include the Global Positioning System, Galileo or GLONASS [18].

– Integrated positioning system: An integrated or hybrid positioning sys-
tem can be used outdoors, indoors or in any other space. Despite the fact
that many positioning systems are hybrid (e.g. Assisted GPS [8]), we ex-
plicitly specify it as a type in POSO to define a system that does not fall
within other more specific categories. In POSO, we define an integrated po-
sitioning system as a system that must implement at least one sensor fusion
procedure.

– Optical positioning system: A positioning system that uses optical sen-
sors to determine a position. This includes positioning systems where ob-
jects are tracked externally (e.g. Multi-Target Multi-Camera Tracking [24])
or systems where the tracked object is the optical sensor observing the en-
vironment (e.g. Visual Simultaneous Localisation and Mapping [34]).

– Inertial positioning system: An inertial positioning system calculates the
position based on its movement and an initial reference point [16].

– Indoor positioning system: Indoor positioning covers all systems and
techniques that are deployed indoors as opposed to outdoor positioning
where often satellite positioning is used [26].

Being able to determine whether a position was obtained using satellites, an
inertial- or indoor positioning system enables the reasoning about the relevance
of a position sampled by one of these systems. With this additional knowledge, a
fusion technique can ignore the sampled position of a satellite positioning system
if an indoor positioning system is able to determine that the tracked object is
inside a building. Alternatively, an inaccurate inertial positioning system may
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provide useful context on the movement, rather than the position calculated
using its algorithms.

Finally, we define a location-based service (LBS) as an ssn:System to cat-
egorise services with a black-box implementation of a positioning system. An
example of such a service is the Geolocation API [29] that uses the techniques
available by the underlying hardware. Note that an LBS might specify one or
more positioning systems that it implements. In the poso-common extension dis-
cussed in Sect. 2.7, we provide a set of deployed satellite positioning systems, as
these can be used as subsystems1 in integrated positioning systems.

2.2 Positioning Algorithms and Techniques

The SOSA ontology describes a sosa:Procedure as a workflow, protocol, plan,
algorithm or computational method to make an observation, sample or change
the state of the world2. In a positioning system we identify a procedure as a
workflow that processes sensor data to an intermediate result or observation.

A positioning system can use a broad range of techniques to calculate a posi-
tion. While it might perform generic processing on raw sensor data, semantically
describing the main techniques that are involved in the processing improves the
reasoning that can be performed on the sampled data as well as its priority for
decision-level sensor fusion. To illustrate this, we provide the example of an in-
door positioning system (IPS) that uses simple QR codes for room check-ins and
an IPS at the same location site that uses Bluetooth beacons. Without knowl-
edge of the techniques used to determine a position, the accuracy of the position
at a given time cannot be determined reliably. While the Bluetooth positioning
provides a continuous output with varying accuracy, the QR scanning only pro-
vides a very high accuracy position when it is scanned; as the person will be
near the code to scan it.

In POSO we subdivide a procedure over multiple different main categories
that are based on the work of Liu et. al [26] and Gu et. al [14]:

– Cell identification: This covers all techniques that detect the position of an
object when it is close to an object with a known position. Existing solutions
range from radio frequency proximity to implicit position such as the act of
scanning a QR code at a known fixed location.

– Dead reckoning: The velocity of an object can be used to determine its
drift in space. This technique called dead reckoning can be a positioning
system on its own, identified as an inertial positioning system [20], but can
also form part of another technology such as Assisted GPS [8].

– Fingerprinting: Scene analysis techniques such as fingerprinting where sen-
sor data is matched to a grid of positions can be used during the setup
of the positioning system. Each scene analysis at a position is called a
fingerprint and is used during the online tracking stage to determine a

1 https://www.w3.org/TR/vocab-ssn/#SSNhasSubSystem
2 https://www.w3.org/TR/vocab-ssn/#SOSAProcedure

https://www.w3.org/TR/vocab-ssn/#SSNhasSubSystem
https://www.w3.org/TR/vocab-ssn/#SOSAProcedure
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position. The sensor data will be matched to the fingerprint that most
closely resembles this data. POSO expresses a fingerprint as a subclass of
sosa:FeatureOfInterest under the term poso:Fingerprint that requires
to have a position in order to qualify as a fingerprint. This allows position-
ing systems that make use of this scene analysis to semantically describe the
system’s setup.

– Odometry: Positioning techniques that use sensor data to detect the change
in position are classified as odometry. This can be sensor data from motion
sensors, visual observations or other environmental data such as magnetic
interference [32].

– Simultaneous localisation and mapping: In simultaneous localisation
and mapping (SLAM), a sensor determines features that are tracked during
movement. By tracking these features it can determine the drift while si-
multaneously using the features to construct a map of the environment [36].
SLAM can be subdivided into Visual SLAM [34] when image sensors are
used to track features as opposed to LiDAR sensors.

– Triangulation: Subdivided into angulation and lateration, triangulation
covers positioning techniques that use angles or linear distance indicators to
determine a position between two or more landmarks with a known position.

– Sensor fusion: In order to specify how multiple positioning systems or
sensors are used together, a sensor fusion procedure category defines proce-
dures where observations from multiple different (sub)systems are merged.
This fusion technique can further make use of additional available context.

As an extension of POSO, the POSO-common module introduced later in
Sect. 2.7 provides several commonly used positioning algorithms and techniques.
The different positioning systems, techniques and observable properties along
with their hierarchical relation to the SOSA and SSN ontologies are illustrated
in Fig. 2. Properties that only contain fixed results without multiple observations
are also subclasses of sosa:Result defining a single result as shown in Listing 6.

2.3 Absolute and Relative Positions

Multiple definitions exist to indicate where a spatial object is located. Our de-
cision for using the term position was based on the definitions in the English
language, as well as its uses within real-world applications:

– Place/Area: The place or area of an entity is an existing semantic definition
in many vocabularies [2]. However, it implies a space rather than a particular
point within this space.

– Pose: Often used in robotics [5] or when describing the movement of a
person [27], a pose contains the position and orientation of an object. In
real-world applications such as the Robotics Operation System (ROS) [30]
it is meant to indicate a position and orientation within 3D space. Not every
positioning system might operate within three dimensions, in which case the
pose terminology might not be appropriate.
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Fig. 2: Positioning systems and techniques in the POSO ontology

– Location: According to the Oxford English Dictionary which defines a lo-
cation as “a place where something happens or exists; the position of some-
thing” we concluded that a location is a semantic description of either a
vague place or accurate position. Because of this imprecision, we decided
not to choose the term location.

– Position: A position can optionally also contain an orientation. It is the ter-
minology used by most precise and generic positioning systems and location-
based services [29].

Generic positioning systems make a distinction between absolute and relative
positions [14,26]. An absolute position indicates a fixed point in space while
a relative position is relative to another object or landmark. Such a relative
position is a quantitative value relative in distance, angle or velocity, similar to
the ‘Best Practice 9’ mentioned in [35].

When working with absolute positions in a geographical coordinate system,
we make use of GeoSPARQL’s geographical position representation by the Open
Geospatial Consortium (OGC). However, for absolute positions that should not
be expressed as geometric coordinates, we use the QUDT ontology [17] to ex-
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press Cartesian coordinates. POSO provides the concepts of poso:xAxisValue,
poso:yAxisValue and poso:zAxisValue to express a qudt:QuantityValue in
three dimensions.

Despite using simple Cartesian coordinates for a non-geographic position,
a reference frame is still required to indicate how the Cartesian coordinates
relate to each other. Similar to a reference frame in a geographical context, the
reference frame allows the 2D or 3D position to be converted to other reference
spaces such as a geographical context while still enabling the use of a positioning
system that is only meant to operate in a specific context (i.e. an engineering
reference frame as defined in ISO 19111 [21]). Defining a reference system is
already well covered in GeoSPARQL [3]. In order to define the reference system
of a sosa:Result, the poso:hasSRS or poso:hasCRS properties can be used.

For expressing a location that is covering a less specific larger 2D or 3D area,
we still request the use of an absolute position, but provide the ability to indicate
the accuracy as either a one-dimensional (i.e. distance) or polygonal coverage.

2.4 Orientation

An orientation is an important aspect of a positioning system. It does not only
offer the final state of direction after a rotation of an object or person, but is
also required by many positioning algorithms to determine a position. In a ge-
ographical context, the terminology bearing, heading, course or azimuth is used
as a one-dimensional value [1]. However, as we aim to support use cases beyond
geographical positioning and want to offer a more precise three-dimensional ori-
entation, we resorted to mathematical concepts.

The commonly used mathematical definitions of an orientation are Euler
Angles, Axis Angles and Quaternions [7]. Each mathematical definition has its
advantages for a positioning system. Euler angles offer a well-known semantic
description of a 3D rotation while still allowing the use of yaw only for expressing
the heading in a 2D scenario. In robotics, quaternions are chosen since they avoid
gimbal lock, as well as for their analytic properties.

As we aim to create a generic ontology, we have chosen to support any con-
cept that can identify the orientation around three axes. POSO provides three
extensions of the poso:Orientation class, including poso:EulerOrientation,
poso:AxisAngleOrientation and poso:QuaternionOrientation.

2.5 Velocity and Acceleration

Active positioning systems make use of an object’s velocity to determine a posi-
tion and orientation based on its momentum. This procedure called dead reck-
oning uses an entity’s last known location together with its angular and linear
velocity to determine the new position and orientation at a later timestamp.
POSO adds the concept of poso:Velocity with poso:LinearVelocity and
poso:AngularVelocity as subclasses, as well as the momentary acceleration
that is often returned by common Inertial Measurement Units (IMU).
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2.6 Observations and Accuracy

Individual observations and different levels of granularity can be expressed for all
properties. SSN-Systems [6], an extension of the SSN ontology, supports the de-
scription of a system’s properties, capabilities and conditions. While this enables
the semantic description of the potential properties (i.e. accuracy, precision and
operating environment) of a positioning system, it does not provide information
on the individual observations. For a positioning system, the spatial accuracy
can vary depending on the implemented procedure, the amount of sensor data
as well as the accuracy of that data.

The accuracy of any observation can be expressed via poso:hasAccuracy, a
subproperty of ssns:qualityOfObservation3 that can be applied to an obser-
vation or individual result. Alternatively, for expressing the accuracy of spatial
data (i.e. absolute or relative position) the geosparql:hasSpatialAccuracy

from the GeoSPARQL 1.1 draft [28] can be used to express a QUDT quantity
value. Further, in order to express the aimed accuracy of an observable property,
the ssns:Accuracy class can be used to indicate that the accuracy applies to
the position.

Trajectories Creating an observation for every calculated position provides
context on historical data that can be used. Semantics of trajectories, such as
segmentation, map matching and additional post-processing context [43] lies be-
yond the scope of our positioning system ontology. However, as each observation
is a momentary timestamped result, they indirectly support the modelling of a
trajectory space and time path [19].

A basic overview of how a person’s speed, orientation and position in an
office deployment might be modelled is shown in Fig. 3. The green objects and
properties represent the concepts from SOSA and SSN(S), the blue objects and
properties represent the concepts from POSO and the purple objects represent
the example individuals. Note that the full POSO specification with all the
available concepts can be found in [40].

2.7 Alignment Module

The poso-common alignment module provides individual common positioning al-
gorithms, systems and data used in positioning systems categorised under the
classes defined in POSO. It describes seven satellite positioning systems [18];
known platforms such as IndoorAtlas4, Anyplace [13], OpenHPS [39,42], ROS [30]
and individual algorithms for common positioning techniques. With the provided
poso-common alignment module, we want to offer a foundation of algorithms and
techniques that can easily be used to describe complete positioning systems. Fu-
ture work should focus on expanding these algorithms, along with more detailed

3 ssns: is the prefix for SSN-Systems [6]
4 https://www.indooratlas.com

https://www.indooratlas.com
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Fig. 3: Example of a positioning system with a position, orientation and velocity
property

descriptions on their input and output shapes. In a hybrid or integrated posi-
tioning system as described in Sect. 2.1, the use of these common algorithms can
provide insights on what observations to use in the fusion process.

3 Usage

In order to demonstrate the use of POSO to semantically model multiple po-
sitioning systems, we provide an example of a campus positioning system for
the indoor as well as outdoor tracking of students. Our fictional setup consists
of three individual systems; an outdoor positioning system using GPS, an in-
door positioning system using Wi-Fi fingerprinting as introduced in Sect. 2.2
and a hybrid position system that makes use of the indoor and outdoor tracking
subsystems by using a high-level sensor fusion technique.

We start by semantically describing the technical setup of the fictional de-
ployment of the three positioning systems on our campus. Additional domain-
specific ontologies such as IndoorGML [25] can be used to describe the physical
context of these deployments. Throughout our examples, we make use of the
prefixes defined in Listing 1.

In Listing 2 we create an outdoor campus positioning system that uses GPS.
Indoors, we deploy a system that uses k-NN fingerprinting for Wi-Fi access
points. For the integrated positioning system on lines 15 to 18 that uses both
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1 @prefix poso: <http://purl.org/poso/> .

2 @prefix poso-common: <http://purl.org/poso/common/> .

3 @prefix ssn: <http://www.w3.org/ns/ssn/> .

4 @prefix sosa: <http://www.w3.org/ns/sosa/> .

5 @prefix dbr: <http://dbpedia.org/resource/> .

6 @prefix geosparql: <http://www.opengis.net/ont/geosparql#> .

7 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

8 @prefix qudt: <http://qudt.org/schema/qudt/> .

9 @prefix unit: <http://qudt.org/vocab/unit/> .

10 @prefix ssns: <http://www.w3.org/ns/ssn/systems/> .

11 @prefix schema: <http://schema.org/> .

Listing 1: Prefixes used in the demonstration examples

the outdoor and indoor system, we add the two individual systems as subsystems
with an additional procedure on how the high-level fusion of these two systems
is performed.

1 dbr:Some_Unversity a ssn:Deployment .

2 <deployment/building_a> a poso:IndoorDeployment, geosparql:Feature ;

3 rdfs:label "Building A"@en ;

4 geosparql:hasGeometry [

5 a geosparql:Geometry ;

6 geosparql:asWKT "..."^^geosparql:wktLiteral ] .

7 <system/OPS> a poso:LocationBasedService ;

8 rdfs:label "Outdoor campus positioning"@en ;

9 ssn:hasSubSystem poso-common:GPS ;

10 ssn:hasDeployment dbr:Some_University .

11 <system/IPS> a poso:IndoorPositioningSystem ;

12 rdfs:label "Indoor campus positioning"@en ;

13 ssn:hasDeployment <deployment/building_a> ;

14 ssn:implements poso-common:KNNFingerprinting .

15 <system/CampusPositioning> a poso:IntegratedPositioningSystem ;

16 rdfs:label "Hybrid campus positioning system"@en ;

17 ssn:hasSubSystem <system/OPS>, <system/IPS> ;

18 ssn:implements poso-common:WeightedAccuracyFusion .

Listing 2: Positioning system setup

The entity that is being tracked by the campus positioning system is con-
figured in Listing 3. Each feature of interest, which we identify as our tracked
feature, has multiple observable properties. A property predicate such as the
poso:hasPosition on line 3 can be used multiple times to represent a position
with different levels of granularity. In linked data front ends with data access
control, such as Solid [31], these levels of granularity can control who is able to
access a property with a certain accuracy. By specifying the accuracy of these
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1 <me> a poso:TrackedFeature, foaf:Person ;

2 foaf:name "John Doe"@en ;

3 poso:hasPosition <me/position>, <me/approxposition> ;

4 poso:hasOrientation <me/orientation> .

5 <me/position> a poso:AbsolutePosition ;

6 rdfs:comment "Absolute position of John Doe"@en ;

7 poso:hasAccuracy <me/position/accuracy> .

8 <me/position/accuracy> a ssns:Accuracy ;

9 schema:maxValue "25.0"^^xsd:float ; schema:unitCode unit:CentiM .

Listing 3: Example setup of a tracked person and their properties

properties along with possible other semantic information, the information can
be used in queries to determine which property offers the required accuracy.

Further, in Listing 4 we show an observation created by the outdoor position-
ing system. The GPS provides a latitude and longitude that we output using the
OGC GeoSPARQL 1.1 ontology [28] as a well-known text (WKT) representation
on lines 9 to 11.

1 <position/1654350300000> a sosa:Observation ;

2 sosa:hasFeatureOfInterest <me> ;

3 sosa:observedProperty <me/position> ;

4 sosa:resultTime "2022-06-04T15:55:00+02:00"^^xsd:dateTimeStamp ;

5 poso:usedSystem <system/OPS> ;

6 sosa:hasResult [ a geosparql:Geometry ;

7 geosparql:hasSpatialAccuracy [ a qudt:QuantityValue ;

8 qudt:unit unit:CentiM ; qudt:numericValue "28"^^xsd:float ] ;

9 geosparql:asWKT """

10 <http://www.opengis.net/def/crs/OGC/1.3/CRS84>

11 Point(4.888028 50.31397)"""^^geosparql:wktLiteral ;

12 geosparql:dimension 2 ] .

Listing 4: Example observation of the outdoor positioning system

Indoors, our system outputs an absolute Cartesian 3D position as illustrated
in Listing 5. We identify that the 3D position is made inside a specific deploy-
ment on line 8, which contains information about its geometry and the reference
system used to convert the coordinates to a common reference frame used by
the campus positioning system. The technique used to obtain the result is de-
fined using sosa:usedProcedure while the system where this technique is used
is defined based on poso:usedSystem.

In previous example listings, we have shown how a positioning system might
model the observations of an absolute position. With the example in Listing 6
we outline how a relative distance to a wireless access point (named wap 1)
from our TrackedFeature can be expressed. Similar to an absolute position,
we can have multiple observations of the relative distance. POSO requires the
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poso:isRelativeTo predicate on a relative position to indicate the feature of
interest that the position is relative to.

1 <position/1647513000000> a sosa:Observation ;

2 sosa:hasFeatureOfInterest <me> ;

3 sosa:observedProperty <me/position> ;

4 sosa:resultTime "2022-03-17T11:30:00+01:00"^^xsd:dateTimeStamp ;

5 sosa:usedProcedure poso-common:KNNFingerprinting ;

6 poso:usedSystem <system/IPS> ;

7 sosa:hasResult [ a poso:AbsolutePosition ;

8 poso:inDeployment <deployment/building_a> .

9 poso:hasAccuracy [ a ssns:Accuracy ;

10 schema:maxValue "25.0"^^xsd:float ;

11 schema:unitCode unit:CentiM ] ;

12 poso:xAxisValue [ a qudt:QuantityValue ;

13 qudt:unit unit:M ; qudt:numericValue "5"^^xsd:double ] ;

14 poso:yAxisValue [ a qudt:QuantityValue ;

15 qudt:unit unit:M ; qudt:numericValue "6"^^xsd:double ] ;

16 poso:zAxisValue [ a qudt:QuantityValue ;

17 qudt:unit unit:M ; qudt:numericValue "3.5"^^xsd:double ] ] .

Listing 5: Example observation of the indoor positioning system

1 <landmark/wap_1> a poso:Landmark ;

2 rdfs:label "Wireless Access Point 1"@en

3 poso:hasPosition [ a poso:AbsolutePosition ;

4 poso:hasAccuracy [ ... ] ;

5 poso:xAxisValue [ ... ] ;

6 poso:yAxisValue [ ... ] ;

7 poso:zAxisValue [ ... ] ] .

8 <me/position/relative/wap_1> a poso:RelativeDistance ;

9 ssn:isPropertyOf <me> ; # Relative distance from <me> ...

10 poso:isRelativeTo <landmark/wap_1> ; # to <landmark/wap_1>

11 rdfs:comment "Relative position of John Doe to WAP_1"@en .

12 <position/relative/wap_1/1646891100000> a sosa:Observation ;

13 sosa:hasFeatureOfInterest <me>, <landmark/wap_1> ;

14 sosa:observedProperty <me/position/relative/wap_1> ;

15 sosa:resultTime "2022-03-10T06:45:00+01:00"^^xsd:dateTimeStamp ;

16 poso:madeBySystem <system/IPS> ;

17 sosa:usedProcedure poso-common:LDPL ; # Log-distance path loss

18 sosa:hasResult [ a qudt:QuantityValue ;

19 qudt:unit unit:Meter ; qudt:value "3.7"^^xsd:double ] ;

20 sosa:hasResult [ a qudt:QuantityValue ;

21 qudt:unit unit:DeciB_M ; qudt:value "-82"^^xsd:integer ] .

Listing 6: Example observation of a relative position
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As mentioned in the beginning of Sect. 2, each observable property can also
be used to express a fixed result that does not consist of multiple observations.
On lines 1 to 7 we utilise this ability to express a fixed result to define the fixed
position of a landmark rather than creating a single observation where the posi-
tion is defined as a result. On lines 12 to 21 of Listing 6, we have one observation
of this observable relative distance obtained using our indoor positioning system.
The result is expressed as a distance using a path loss algorithm and the raw
signal strength expressed in decibel-milliwatts (dBm).

In order to provide a single output for the campus positioning system, we can
use the observations from the indoor and outdoor positioning systems shown in
Listing 5 and Listing 4 to compute a fused output based on the weighted accuracy
fusion procedure that our campus positioning system implements in Listing 2.
Using the knowledge about the accuracy, the systems that produced the results
and the indoor positioning system deployments, we can perform a fusion with
more context than only the self-reported accuracy of each individual subsystem.

4 Conclusions and Future Work

In this paper we introduced our new generic positioning system ontology called
POSO for describing concepts relevant to a positioning system. These concepts
include the different observable properties that can be obtained by a positioning
system, the different categories of systems and the different algorithms and tech-
niques these systems can implement to handle positioning. Further note that our
generic positioning system ontology does not only focus on common geospatial
and geographical concepts that are already described in various existing vo-
cabularies [11,3,33] but also offers a novel vocabulary for describing generic data
outputted by a positioning system. We expanded the SSN [22] and SOSA [23] on-
tologies by providing common procedures and observable properties. By further
presenting the poso-common module, we illustrated how POSO can be expanded
with a set of common algorithms, existing systems and platforms.

Finally, we illustrated the usage of POSO with a scenario containing two
positioning systems and a hybrid positioning system using a high-level fusion
technique. In this demonstration, we have shown how each positioning system
might be modelled using POSO and how observational data can be expressed.

Future work will focus on adding additional positioning technique and algo-
rithm procedures, further describing the input and output that each procedure
provides. By using known input and output RDF shapes that are used in different
positioning systems, we can further classify a positioning system’s technologies
and the output they provide. While we already offer procedures obtaining map
information (i.e. Simultaneous Localisation and Mapping), we did not showcase
how the raw observations generated by such an algorithm can be created.

Supplemental Material Statement: All the sources of POSO and poso-common,
along with additional documentation5 is available on GitHub [40].

5 https://openhps.github.io/POSO/1.0/en/

https://openhps.github.io/POSO/1.0/en/
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