
Explorotron: An IDE Extension for Guided and Independent
Code Exploration and Learning

Yoshi Malaise
ymalaise@vub.be

Web & Information Systems Engineering Lab
Vrije Universiteit Brussel

Brussels, Belgium

Beat Signer
bsigner@vub.be

Web & Information Systems Engineering Lab
Vrije Universiteit Brussel

Brussels, Belgium

Figure 1: Explorotron Visual Studio Code extension showing recommended study lenses on the left and the Argument Picker
study lens where students have to decide which argument goes where in the code on the right. Image altered due to space
constraints.

ABSTRACT
We introduce the Explorotron Visual Studio Code extension for
guided and independent code exploration and learning. Explorotron
is a continuation of earlier work to explore how we can enable
small organisations with limited resources to provide pedagog-
ically sound learning experiences in programming. We situate
Explorotron in the field of Computing Education Research (CER)
and envision it to initiate a discussion around different topics, in-
cluding how to balance the optimisation between the researcher-
student-teacher trifecta that is inherent in CER, how to ethically
and responsibly use large language models (LLMs) in the inde-
pendent learning and exploration by students, and how to define
better learning sessions over coding content that students obtained
on their own. We further reflect on the question raised by Begel
and Ko whether technology should “structure learning for learners”
or whether learners should “be taught how to structure their own
independent learning” outside of the classroom.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Koli Calling ’23, November 13–18, 2023, Koli, Finland
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1653-9/23/11. . . $15.00
https://doi.org/10.1145/3631802.3631816

CCS CONCEPTS
• Applied computing → Interactive learning environments.

KEYWORDS
Study Lenses, PRIMM, Programming Education

ACM Reference Format:
Yoshi Malaise and Beat Signer. 2023. Explorotron: An IDE Extension for
Guided and Independent Code Exploration and Learning (Discussion Pa-
per). In 23rd Koli Calling International Conference on Computing Education
Research (Koli Calling ’23), November 13–18, 2023, Koli, Finland. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3631802.3631816

1 INTRODUCTION
The work in this paper is a continuation of earlier work that pro-
poses a curriculum packager combining a web environment, a
mobile application and micromaterials to empower educators in
helping their students to study from code available online, even
if the educational institution has limited available resources [18].
This self-guided approach is essential and has become more impor-
tant in recent years as the shortage of technically qualified STEM
people implies that there is also a shortage of STEM teachers and
educators [11].

We start by motivating the need for our proposed VS Code ex-
tension and positioning our solution within the field of Computing
Education Research (CER). We then provide some details about

https://orcid.org/0000-0002-3228-6790
https://orcid.org/0000-0001-9916-0837
https://doi.org/10.1145/3631802.3631816
https://doi.org/10.1145/3631802.3631816

Koli Calling ’23, November 13–18, 2023, Koli, Finland Malaise and Signer

Explorotron1 and illustrate how it addresses the different pedagog-
ical requirements. After presenting our preliminary version of the
system, we highlight its current strengths and limitations to initiate
a discussion about a number of points that we feel are worthwhile
to investigate in future research.

1.1 Motivation and Background
The main motivation behind this work was our experience as ed-
ucational coordinator for HackYourFuture Belgium, a daughter
company of Open Knowledge Belgium and a small non-profit or-
ganisation providing coding classes for asylum seekers, refugees
and migrants. As part of this role, we were responsible for keeping
the curriculum up to date with the regional demands of the industry,
while still providing a solid foundation to students so they could
grow on their own. While operating in that context is definitely
inspirational, it also comes with many challenges. An example of
such a challenge is the fact that the students are not regular stu-
dents following traditional classes during the day and working on
coding homework during the evenings, but our classes rather had
to be taught in a hybrid setup where students are studying the
content on their own during the week and we would meet up once
a week (Sundays) to cover the most challenging aspects of the week
in a flipped classroom setting. This means that most of the time
students are learning on their own or in collaboration with their
classmates, making improving our students’ self-reliance one of
the main goals. This makes Begel and Ko’s [3] question whether
technologies should “structure learning for learners” or whether
learners should “be taught how to structure their own independent
learning” outside of the classroom relevant for our work. Our work
unavoidably tries to do both, as on the one hand we try to offer
as streamlined solutions as possible, making students “job-ready”
in the shortest feasible time, but on the other hand, we have to
acknowledge our limitations and note that we are unable to teach
them the large variety of tools and frameworks they might en-
counter during their job hunt. The main deciding factor of these
students’ success is not their proficiency in an individual tech stack,
but rather to what extent they are able to pick up new skills as
required by the ever-changing industry expectations. Over time,
our approach to teaching steadily changed from trying to teach the
latest in-demand framework to teaching students how to read and
learn from code they encounter, regardless of where they encounter
it. This is one of the pillars in the design of our proposed Visual
Studio Code (VS Code) extension. We would also like to note that
the organisation receives help from many great volunteer develop-
ers and alumni who offer to lead the modules that are being taught.
While these volunteers prove to be an indispensable resource, this
approach also comes with some downsides. While a system is in
place where volunteers can first be an assistant coach helping a
lead coach before going on to lead their own modules, and coaches
do get debriefings after classes and feedback, there is no way for
the organisation to provide real teacher training. This means that
the team of teachers consists mostly of professional developers
or recent graduates who might have little to no pedagogical or
teaching experience.

1https://wise.vub.ac.be/project/explorotron

1.2 Situating in and Contributing to CER
In the following, we classify the different contributions of this
paper according to the Translational Computing Education Re-
search (TCER) model proposed by Cole et al. [9]. Many of the
features presented in this paper fall in category 2A (theory-based
designs) of the TCER model, where new interventions and tools
are proposed for evaluation based on what we know from the liter-
ature. Furthermore, the whole setup is designed with computing
education researchers in mind, so the setup of controlled empiri-
cal experiments (phase 2B) should be simplified by our approach.
Further, we fully intend to open up the solution as an extendable
baseline that steadily integrates solutions after they have proven
to have a positive impact in phase 2 and researchers intending
to work on more deepened practise research (phase 4) should see
our solution as a viable option. The released artefact (the VS Code
extension itself) also contributes to the learning process of individ-
ual learners who might not have access to traditional education.
Finally, we hope that the discussion section of this paper might
spark some interesting debates on decisions that need to be made
when designing such a tool, which will hopefully turn into useful
contributions to domain-specific theories in CER (phase 1B).

As illustrated in Figure 2a, we identify four contexts in which
a learner can study code. On the y-axis, we make a distinction
between content that has been specifically curated for the learner by
educators and uncurated code. Curated content often offers tie-ins
to other parts of the curriculum and is carefully crafted to provide
logical steps with explanations and scaffolding. Uncurated content
however is content the learner found somewhere (e.g. in a sample
repository of a project they are interested in) but that might not
have been specifically crafted with the goal of learning (or proper
curriculum design) in mind. On the x-axis we make a distinction
between whether the learner is freely exploring some code to satisfy
their own curiosity or whether they are following a guided tour
towards a specific goal. Plotting out the two axes results in four
categories. Each of these categories benefits from different kinds of
supportive technologies. However, we notice that these categories
are not fully independent of each other. Even though things might
be possible in a curated guided context (category IV) that would
be completely off-limits in an uncurated and unguided context
(category I), most things that benefit students in an uncurated and
unguided context are also beneficial in the curated guided context.
This led us to construct our tool in a pyramid fashion, where lower
layers have to be built first to provide general support in all contexts,
and as we rise higher towards more specific contexts, the tools
become more specialised. Nevertheless, a learner can always make
use of components defined in the underlying layers.

2 EXPLOROTRON PROTOTYPE
In the following, we describe the current state of our Explorotron
VS Code extension for code study, as well as some parts that were
already designed but are still under development. By discussing the
current design, we aim to set the proper scene to have a fruitful
discussion on future directions and open questions presented in
the next section.

https://wise.vub.ac.be/project/explorotron

Explorotron: An IDE Extension for Guided and Independent Code Exploration and Learning Koli Calling ’23, November 13–18, 2023, Koli, Finland

(a) Quadrants of learning (b) Layering of learning tools

Figure 2: Overview of the different ways students can study code

2.1 Uncurated Unguided Learning (I)
As mentioned earlier, one of our main design goals is for students
to be able to explore and learn from code regardless of where it
comes from, which corresponds to quadrant I of our overview in
Figure 2a. In order to accommodate this requested feature, we in-
cluded a newly written implementation of the ideas described in
study lenses [18], where there are functions that take a source code
file as input and will generate a view on that file that focuses on
learning or exploring certain aspects. We believe that a new imple-
mentation is necessary in order to better satisfy the skill transfer
principle [8]. The principle of skill transfer states that learning one
skill can have a negative or positive effect on how easy it will be to
learn a new skill. But it also states that the context and environment
in which a skill is learned become part of the skill acquisition. In
order to gain optimal results, we should strive to teach students
new skills in an environment as close to the realistic environment
as possible without overwhelming them. This is why we opted for
an extension that seamlessly integrates into the development envi-
ronment that students are already using and to make as much use
of pre-existing functionality and metaphors from that environment
as possible. Users can simply start using study lenses to explore
files by right-clicking on a file and choosing the lens they wish to
apply from a context menu. Due to this seamless integration, we
hope that the use of study lenses might become a natural part of
the students’ coding practice routine even after graduation and into
their professional practice. Our current implementation contains
the ten basic lenses described in the following, which can take any
JavaScript file and help students discover certain aspects of the
code.

Annotate Lens. Teaching has been proven to be an effective way for
students to increase both their own understanding of the material
and to increase their confidence [12, 32]. The annotate lens tries to
support this process by providing the learner with a transparent
whiteboard that is overlaid on the code (with highlighting applied).
Students are free to highlight certain parts of the code and use
markers to write, circle, underline or take notes. Students have
mentioned that they like to use the tool when they are studying in

groups with one person sharing their screen in a Microsoft Teams
or Zoom call and explaining the code.

Argument Picker Lens. The argument picker is a lens based on the
Predict, Run, Investigate, Modify and Make (PRIMM) approach to
teach programming, stating that students should be asked to make
modifications to existing code before being asked to write their own
code from scratch [29]. This is said to reduce the stress expressed by
students and leads to better overall results as shown in Section 2.2.
In this lens, students are shown the functions that appear in the file
they are studying, but all occurrences of any of the arguments in the
function body have been replaced by drop-down lists from which a
student has to select the right argument for every occurrence.

Blanks Lens. Blanks aims for the later stages of PRIMM. In this lens,
students are shown the code they are studying, but random parts
of the code have been replaced with underscores. It is then up to
the students to restore the original snippet. Students can configure
the difficulty level and which aspects to focus on to provide a more
tailored exercise.

Code Questions Lens. The code Questions lens is heavily based on
the work by Lehtinen et al. [15], where both static code analysis
and an execution engine are used to generate questions about the
code. The student will be presented with a set of generated multiple
choice questions in a sidebar. After answering all the questions, the
student will receive feedback on their answers.

Comment Slots Lens. Learning from worked examples has been
proven to be a valid strategy [1]. In programming education, worked
examples have been demonstrated to work if they are presented in
conjunction with practice problems [24]. These worked examples
make use of comments to indicate subgoals and label sections of
the code. In the Comment Slots lens, we hook into this process by
replacing all comments in the code field with drop-down lists. It
is then up to the student to reconstruct the program by correctly
figuring out which comment goes where.

Flowchart Lens. This lens will render the selected JavaScript file in
the form of a flowchart. Learning how to read flowcharts has been
argued in the past to be beneficial for students as it helps them

Koli Calling ’23, November 13–18, 2023, Koli, Finland Malaise and Signer

form a formal representation of coding concepts in their mind [28].
It is further useful to help students focus on the flow of a program
instead of being distracted by language and syntax features.

Parsons Problem Lens. Parsons problems have been introduced as a
way to assess a student’s problem-solving skills through the code
creation process in an easier-to-grade way than writing code from
scratch and have since proven to be a good indication of a student’s
code writing capabilities [10]. In our Parsons Problem lens, students
are presented with draggable code lines that will display a green
check mark as soon as a line is placed in the correct position.

Flowchart Picker Lens. The Flowchart Picker lens builds on top of
the Flowchart lens. Users will be presented the original code and
three flowcharts. One of these flowcharts is the original flowchart
matching the code and the other two flowcharts are minor varia-
tions generated by randomly adapting parts of the abstract syntax
tree (by for example swapping branches or changing conditionals).
It is up to the student to determine which of the three flowcharts
matches the code.

Pseudocode Lens. Similar to flowcharts, pseudocode is used to help
focus on the logic and flow of an implementation without having to
worry about language details [21]. The pseudocode lens generates
a pseudocode version of the code in the selected file. Studying
the generated pseudocode can also support students in learning a
shared notation that can improve collaboration.

Trace Lens. Research has shown that there is a strong correlation
between code writing and code reading skills, with tracing being
one way to improve the latter [17]. In the Trace Lens, students are
presented with different types of trace tables on the right-hand side
of their code editor. This way, they can practise tracing directly
from within the integrated development environment (IDE). Stu-
dents are also presented a Trace Me button that, when pressed,
will evaluate the script and log every variable assignment/read that
happens during the execution. Students can use the generated trace
to check their manual trace tables when no teachers are available
to correct their work.

Even though we are still targeting the uncurated and unguided
situation, we can already provide some help to students when
deciding which lens to use, as illustrated in the simple architecture
shown in Figure 3. If the user would like to explore a JavaScript (JS)
file but does not know which lenses to pick, they can select a ‘Show
Recommended Lenses’ option. As part of the applicability filter, the
system will then evaluate a function for every lens to see whether
the lens is applicable to the selected JS file. For example, if the user
selected a JavaScript file with functions that take no arguments,
it would not make sense to show the Argument Picker lens. The
remaining lenses are then passed to the Ranking Engine which will
assign each lens a score based on how relevant it is for the given file
(e.g. the Comment Slots lens might work for a piece of code that only
contains two comments, but it might not be the most interesting
way to learn from the code). The student will then be presented
with a sorted list of all applicable lenses with the most applicable
lens at the top. They can also select ‘Open in Suggested Lens’ in
which case the system will skip the recommended lenses page and
directly open the highest-ranked applicable lens.

2.2 Uncurated Guided Learning (II)
The lens recommendation system described in the previous section
also forms the basis for the next quadrant (II) where we provide
guidance in a code space that is not curated to be used for education.
We would like to go beyond just recommending a single lens but
rather suggest a full study path through a selected file by applying
different lenses in order, following a logical progression.

There are many different ways to define logical progression. One
could, for instance, base themselves on the Block model which
provides a detailed overview of how a program can be understood,
its blocks and the relations between them [27]. One could also
follow some of the more general pedagogical taxonomies such as
Bloom’s taxonomy [6] or the SOLO taxonomy [5]. While all these
approaches are interesting and definitely worthwhile to investigate
in future work, for our current implementation we focus on the
PRIMM methodology defined by Sentance et al. [29].

PRIMM (Predict, Run, Investigate, Modify and Make) is a way
of structuring programming lessons in such a way that students
gradually take ownership of code in a way that reduces their cog-
nitive load. According to Sentance et al. [29], such lessons consist
of the following parts: A predict stage in which the student focuses
on how the code functions and predicts what it does, a run stage
in which they will validate their prediction by running the code,
an investigate stage in which the student answers questions about
the code possibly aided with an activity such as annotating code, a
modify stage in which the student starts to make modifications to
existing code, varying from small changes to advanced new features
and finally a make stage in which students should write a program
from scratch using the same concepts and techniques that they
have been practising in the earlier PRIMM stages.

The attentive reader might already have some ideas on how
some of the lenses that we described earlier fit nicely into the
different PRIMM stages. That is indeed the idea forming the basis
of uncurated guided tours. Whenever a student indicates that they
would like to start a study tour on a file that has not been curated,
we will retrieve all relevant lenses as discussed in Section 2.1, select
the most relevant ones for every PRIMM stage and generate a study
session during which the student explores them in the appropriate
order. An example of this in action could be a lesson plan that starts
with the Flowcharts lens in the predict stage, then goes on to the
Trace and the Code Questions lenses during the investigate stage,
before presenting the Parsons Problem and Blanks lens in the modify
stage. As more lenses are being added in the future, the study tour
generation process can be expanded as well.

2.3 Curated Unguided Learning (III)
Up until this point, we have been discussing a situation in which
the learner is studying code they found or wrote themselves but
that has not specifically been curated for use with our tools. This is
an important and integral part of our tool as it provides students the
freedom to take their learning skills with them even if they move
beyond the borders of our curriculum and it reduces the time needed
to prepare the material. However, a lot more becomes possible when
educators are also using our tools to generate content as illustrated
in quadrant III. For instance, we have a slideshow view that uses

Explorotron: An IDE Extension for Guided and Independent Code Exploration and Learning Koli Calling ’23, November 13–18, 2023, Koli, Finland

Applicability Filter Ranking Engine

Recommended lenses

Annotate Flowchart

Blanks Trace

Figure 3: Overview of the architecture to generate the recommended lenses page

revealjs2 to render markdown files as slideshow presentations. This
can be a useful way for students to refresh some core concepts after
a lecture.We also have dedicated views for teachers to create custom
quizzes. These quizzes can contain multiple choice questions (both
single and multiple answer variants) and code questions where
students are presented an exercise (with optionally some starting
code) and a set of unit tests that need to pass. Finally, we also
allow the educator to indicate optimal lenses for specific files or
directories. Whenever this happens and the students ask to open
the suggested lens, it will pick the one the teacher configured and
not the one the system would pick on its own.

2.4 Curated Guided Learning (IV)
When the teacher is not only designing individual pieces of content
but in fact designing a whole course with clear steps that students
will follow all the way through, that is when the content can be the
most tailored towards a specific group (IV). This is inherently the
case because more assumptions can be made about what students
have already experienced when reaching a certain part. To support
this use case, we designed and developed a study tour view that
can be used by educators to construct a custom study tour over the
material in the repository. They can do so by specifying which files
should be studied in what order using which lenses, resulting in
the generation of simple json configuration files with the custom
.study-tour extension. These study-tour files can be checked into
git and as such can become a part of the repository with educa-
tional content without needing an additional Learning Managing
System (LMS). Whenever a student with an installed Explorotron
VS Code extension tries to open the study-tour file, they will be
shown an overview of all steps expected from them during that
lesson and they will be presented these steps in sequential order,
automatically moving on to the next one if the extension is able to
see that an exercise has been completed successfully. Note that this
mode of operation closely follows Biggs constructive alignment
theory [4] as a teacher can select lenses that focus on the same
concepts that they will focus on during future evaluations.

3 OPEN QUESTIONS AND FUTUREWORK
We have presented the current version of our Explorotron VS Code
extension and its support for unguided or guided as well as un-
curated or curated learning. However, there are still many open
questions and possible future directions in which the presented
research might evolve. In this section, we hope to initiate a debate
resulting in some useful insights from the community on where to
go from here.
2https://revealjs.com

3.1 How to find the right balance between
stakeholders?

In our setup, we identify three main stakeholders. The students
need to be able to use the tool to study the content they want to
learn. Teachers need to be able to use the tool in such a way that
they can—with little or no extra training—construct content and
lesson plans to guide students to master a predefined set of learning
goals, and researchers could gain a lot from using the extension as
a data gathering tool and A/B testing environment to run trials or
new Computing Education experiments.

Unfortunately, not all these goals are compatible. Let us for exam-
ple take the case of the scientist and the student. As scientists, we
would like to add a lot of data collection features to the Explorotron
extension in order that we can learn from how students are using
the tool. This data could include which lenses are used most often,
whether students are using the generated study tour functionality,
how often they are using the free exploration functionality as op-
posed to the guided learning functionality or the amount of time
students are learning from external uncurated resources as opposed
to the curated resources constructed by their teachers. However,
from a student’s perspective, these features are not desirable. Re-
search has shown that electronic monitoring of job performance
leads to decreased job satisfaction, increased stress levels as well
as decreased autonomy and can be seen as a breach of trust [31].
One could argue that this is not a major problem if the data collec-
tion happens anonymously and is opt-in. However, this strongly
depends on whether students trust the anonymity of the tool and
there is a risk that the weaker students who stand to gain the most
from the tool are the ones who might be least willing to share. At
the other end of the spectrum, student self-assessment has been
shown to lead to promising results [20], precisely because students
feel in control, leading to improved motivation, engagement and
learning. This self-assessment technique, however, does neither
lead to insightful data that can be used by education researchers to
improve future forms of learning, nor help teachers to know the
level, the time/effort investment and the progress of their students
that might be necessary if the taught course is supposed to lead
to a degree or certification. This is why we would like to raise the
question “How ethical is it to potentially sacrifice some quality of the
current generation of students by collecting as much data as possible,
if by doing so we are more likely to have an increase in quality for
the next generation of students?”. The exact place on the axis be-
tween these two extremes is a point to be further discussed while
continuing the work on our extension.

In a similar vein, we can look at the relationship between students
and teachers. In our current design, we put the emphasis on the

https://revealjs.com

Koli Calling ’23, November 13–18, 2023, Koli, Finland Malaise and Signer

learner rather than the teacher, by starting with the idea of the
learner being able to use our tools even on content that is found
from completely unrelated sources. We believe there is a lot of value
in this approach, mainly because of the fact that students are not
tied into a fixed ecosystem of learning but are able to take their
ways of learning with them even after graduating. We hope that
this can be a contributing factor to their lifelong learning and their
self-reliance to keep up to date with the ever-changing technology
market. Part of this open architecture stems from the fact that the
extension can be installed for free by the student and no server
infrastructure is required. But, this open-ended nature comes at a
cost for teachers. Due to the lack of a centralised server, teachers
might miss out on a lot of useful features of common learning
management systems such as the ability to do timed submissions,
the ability to see which students completed which portions of the
module and general learner statistics. While we believe the trade-off
is justified since a third-party LMS can still be used alongside our
solution if necessary, that does not matter if teachers are unwilling
to use our tool because they feel some of their needs are lacking. In
the future, we might need to investigate whether it is worthwhile
to explore a hybrid approach in which the extension can be used
independently by students, but might also synchronise information
with a server managed by an institution.

3.2 How to model users for a personalised
learning experience?

Personalised learning has been heralded as one of themain contribu-
tions to improved learner agency, self-reliance and motivation [23].
This inspired a branch of research aiming to create intelligent tu-
toring systems making it possible to personalise education at scale.
One way of using personalised learning to improve student out-
comes is by adhering to the principle of expertise reversal. This
principle states that when someone is learning a new skill, they
should be provided with a lot of handholds and scaffolds of partial
solutions so they can learn in a situation that maximises the intrin-
sic cognitive load and minimises any non-intrinsic cognitive load. It
also states that a lot of the handholds that help beginning learners
actually have a negative impact on more advanced learners [33].
Ideally, our lenses should be designed in a peel-away fashion such
that instead of being one fixed lens, the lens itself can vary the
amount of support it provides by looking at who is using it. An-
other way of implementing personalised learning is by looking at
what content is suggested to be studied. In educational sciences,
Vygotsky’s zone of proximal development represents a zone of ac-
tivities a learner would not be able to do on their own without
any guidance (not too easy) but that are also not so difficult that
they would not be able to do it even with proper guidance (not too
difficult) [30]. According to this theory, one should always suggest
exercises in this zone of proximal development as solving exercises
that are too easy does not really lead to learning anything new and
doing too difficult exercises will just lead to a feeling of failure and
decreased satisfaction.

We would like to make more use of these principles, but in
order to do so we will need to modify our extension to include
some student modelling techniques. One possible representation
of this knowledge is by providing a semantic representation of

all topics and their relations within a given domain [25] in the
form of a knowledge graph. For every topic in the graph, it is then
possible to see how well the user performed and when some topics
are too challenging and identify which underlying topics might
be the cause of the problem. The use of these techniques both
based on knowledge of domain experts and on machine learning
have been studied in the past [13, 19, 22], but we need some further
investigation on howwe can apply these concepts during study sessions
on content that has not been curated, presumably in the form of some
automated assignment of the generated exercises to parts of the
knowledge graph.

3.3 How to create suggested tours across a set of
files?

While our current approach already helps to generate study tours to
practise coding skills based on individual files, we lack an approach
to help students study from a larger repository of content that has
not been explicitly curated for learning. There is room for research
towards techniques that can analyse a whole project and come
up with a logical order to study specific elements of the project.
This could take many shapes, part of it might be to detect which
files follow similar patterns and suggest them together. Another
approach might be to look at the dependencies within the files
(which file imports which other files) and use that information to
start a bottom-up tour. Alternatively, an approach could be used that
employs machine learning to detect certain roles/functionalities
in the code (e.g. controllers, views, business logic or logging) and
tries to base tours on that structure. An additional challenge and/or
opportunity could be to map the found code to parts of a knowledge
graph for the domain of programming. This way, files could be
recommended based on which topics they cover. Ideally, these
path-generation techniques would hook into the student model as
described above so that the student’s performance in one tour can
affect recommended future tours.

3.4 What is the role of Large Language Models
in the presented approach?

In recent years, the field of artificial intelligence (AI) has made mas-
sive progress in the domain of Large Language Models (LLMs), as
demonstrated by the appearance of tools such as ChatGPT3, Bard4
and GitHub Copilot5. These models took the world by storm and
we are only now starting to see the first impact of these technolo-
gies on education. Becker et al. [2] discussed the potential impact,
opportunities and challenges of LLMs in education. Research has
been performed on how large language models might be used to
generate more useful error messages that are easier understood by
novice programmers so they can fix their code as they are learn-
ing [16]. Others have looked at ways to use large language models
to automatically provide formative feedback to students when they
submit code rather than solely relying on correctness checking via
unit tests [14]. Chen et al. [7] took it one step further and embed-
ded a programming tutor capable of providing code explanation
directly in Visual Studio Code in the form of a ChatGPT-powered
3https://openai.com/blog/chatgpt
4https://bard.google.com/?hl=en
5https://github.com/features/copilot

https://openai.com/blog/chatgpt
https://bard.google.com/?hl=en
https://github.com/features/copilot

Explorotron: An IDE Extension for Guided and Independent Code Exploration and Learning Koli Calling ’23, November 13–18, 2023, Koli, Finland

extension. Sarsa et al. [26] followed a different approach by using
the OpenAI Codex large language model to generate programming
exercises, including solutions and test cases. From the generated
samples, around 75% were classified as sensible, and 76.7% had a
matching sample solution. However, only 30.9% of the solutions
with unit tests actually passed all of these tests. Reviewing all the
work that is done in this domain definitely gives us hope that they
can be used as an amplifier in the future, and it would certainly be
unwise to ignore them. However, we can also not overlook the fact
that these approaches do make mistakes, sometimes come up with
answers that can be nonsensical or confusing and sometimes even
project a false sense of authority by pretending to cite sources that
they made up. This can lead to negative impacts on the learning of
students if they are attempting to study nonsensical content that
might make fundamental mistakes. It raises the question “to what
extent it is ethical and pedagogically sound to include tools using these
techniques in environments designed to teach students”, a particularly
important discussion to have in settings where students might go
a long time on their own without receiving feedback from their
teachers. What is the potential harm that can arise from the integra-
tion of such tools into our platform? One could imagine that tools
such as clearer error messages might be considered less harmful
when giving wrong results rather than code generation exercises.
But even for the more automatic content generation approaches the
answer is probably not binary. Some types of exercise generation
should maybe not be exposed to students directly but could be
offered to teachers as a way to scaffold exercises that still undergo
revisions and a quality assurance process. Giving students access
to these tools directly could be beneficial for their learning given
that the context and expected errors are clear, but to answer these
questions further research is needed. Further, we might also need
to consider what the new role of the teacher will become; more
emphasis may be put on the tasks of assessment and providing
guiding feedback to discover new content.

4 CONCLUSION
We have presented our Explorotron VS Code extension prototype
that helps students both in their guided and unguided exploration
of code. We further described how Explorotron offers tools to deal
with both content that has carefully been curated by educators as
well as third-party content that the learners discovered themselves.
To achieve this goal, our solution makes use of different code study
lenses that present certain aspects of code files based on educational
best practices, including PRIMM, the skill transfer principle and
the principle of expertise reversal. We further discussed that for
the next envisioned version of Explorotron, we need to answer a
number of open questions such as “how to find the right balance
between stakeholders?”, “how to model users for a personalised learn-
ing experience?”, “how to create suggested tours across a set of files?”
and “what is the role of Large Language Models in the presented
approach?”. The answers to these questions will help us in guiding
the further design of Explorotron, making it an open and accessible
learning support tool available to anyone who wants to learn to
program through guided or independent code exploration.

ACKNOWLEDGMENTS
We would like to thank Evan Cole for his assistance and his ex-
planations regarding the initial study lenses environment as well
as his support in extending the curriculum he designed for Open
Knowledge Belgium.

REFERENCES
[1] Robert K. Atkinson, Sharon J. Derry, Alexander Renkl, and Donald W. Wortham.

2000. Learning From Examples: Instructional Principles From the Worked Exam-
ples Research. Review of Educational Research 70 (2000). https://doi.org/10.3102/
00346543070002181

[2] Brett A Becker, Paul Denny, James Finnie-Ansley, Andrew Luxton-Reilly, James
Prather, and Eddie Antonio Santos. 2023. Programming Is Hard-Or at Least It
Used to Be: Educational Opportunities and Challenges of AI Code Generation. In
Proc. of SIGCSE 2023. https://doi.org/10.1145/3545945.3569759

[3] Andrew Begel and Amy J. Ko. 2019. Learning Outside the Classroom. Cambridge
University Press. https://doi.org/10.1017/9781108654555.027

[4] John Biggs. 1996. Enhancing Teaching Through Constructive Alignment. Higher
education (1996).

[5] John B Biggs and Kevin F Collis. 2014. Evaluating the Quality of Learning: The
SOLO Taxonomy (Structure of the Observed Learning Outcome). Academic Press.
https://doi.org/10.1016/C2013-0-10375-3

[6] Benjamin S. Bloom. 1956. Taxonomy of Educational Objectives. Vol. 1: Cognitive
Domain. New York: McKay 20, 24 (1956).

[7] Eason Chen, Ray Huang, Han-Shin Chen, Yuen-Hsien Tseng, and Liang-Yi Li.
2023. GPTutor: A ChatGPT-powered Programming Tool for Code Explanation.
arXiv preprint arXiv:2305.01863 (2023). https://doi.org/10.48550/arXiv.2305.01863

[8] Dan S Chiaburu and Sophia V Marinova. 2005. What Predicts Skill Transfer? An
Exploratory Study of Goal Orientation, Training Self-Efficacy and Organizational
Supports. International Journal of Training and Development 9, 2 (2005). https:
//doi.org/10.1111/j.1468-2419.2005.00225.x

[9] Evan Cole, Yoshi Malaise, and Beat Signer. 2023. Computing Education Research
as a Translational Transdiscipline. In Proc. of SIGCSE 2023. https://doi.org/10.
1145/3545945.3569771

[10] Paul Denny, Andrew Luxton-Reilly, and Beth Simon. 2008. Evaluating a New
Exam Question: Parsons Problems. In Proc. of ICER 2008. https://doi.org/10.1145/
1404520.1404532

[11] Britton H Devier. 2019. Teacher Shortage and Alternative Licensure Solutions
for Technical Educators. The Journal of Technology Studies 45, 2 (2019).

[12] Stanley Frager and Carolyn Stern. 1970. Learning by Teaching. The Reading
Teacher 23, 5 (1970).

[13] Eleni Ilkou and Beat Signer. 2020. A Technology-enhanced Smart Learning
Environment Based on the Combination of Knowledge Graphs and Learning
Paths. In Proc. of CSEDU 2020. https://doi.org/10.5220/0009575104610468

[14] Charles Koutcheme. 2022. Towards Open Natural Language Feedback Generation
for Novice Programmers using Large Language Models. In Proc. of Koli Calling
2022. https://doi.org/10.1145/3564721.3565955

[15] Teemu Lehtinen, André L Santos, and Juha Sorva. 2021. Let’s Ask Students About
Their Programs, Automatically. In Proc. of ICPC 2021. https://doi.org/10.1109/
ICPC52881.2021.00054

[16] Juho Leinonen, Arto Hellas, Sami Sarsa, Brent Reeves, Paul Denny, James Prather,
and Brett A Becker. 2023. Using Large LanguageModels to Enhance Programming
Error Messages. In Proc. of SIGCSE 2023. https://doi.org/10.1145/3545945.3569770

[17] Raymond Lister et al. 2004. A Multi-national Study of Reading and Tracing Skills
in Novice Programmers. ACM SIGCSE Bulletin 36, 4 (2004). https://doi.org/10.
1145/1041624.1041673

[18] Yoshi Malaise, Evan Cole, and Beat Signer. 2023. Codeschool in a Box: A Low-
barrier Approach to Packaging Programming Curricula. In Proc. of CSEDU 2023.
https://doi.org/10.5220/0011967900003470

[19] Yoshi Malaise and Beat Signer. 2022. Personalised Learning Environments Based
on Knowledge Graphs and the Zone of Proximal Development. In Proc. of CSEDU
2022. https://doi.org/10.5220/0010998600003182

[20] James H McMillan and Jessica Hearn. 2008. Student Self-Assessment: The Key to
Stronger Student Motivation and Higher Achievement. Educational Horizons 87,
1 (2008).

[21] Anne L Olsen. 2005. Using Pseudocode to Teach Problem Solving. Journal of
Computing Sciences in Colleges 21, 2 (2005). https://doi.org/10.5555/1089053.
1089088

[22] Gio Picones, Benjamin PaaBen, Irena Koprinska, and Kalina Yacef. 2022. Com-
bining Domain Modelling and Student Modelling Techniques in a Single Auto-
mated Pipeline. International Educational Data Mining Society (2022). https:
//doi.org/10.5281/zenodo.6853131

[23] Vaughan Prain, Peter Cox, Craig Deed, Jeffrey Dorman, Debra Edwards, Cathleen
Farrelly, Mary Keeffe, Valerie Lovejoy, Lucy Mow, Peter Sellings, et al. 2013.
Personalised Learning: Lessons to be Learnt. British Educational Research Journal

https://doi.org/10.3102/00346543070002181
https://doi.org/10.3102/00346543070002181
https://doi.org/10.1145/3545945.3569759
https://doi.org/10.1017/9781108654555.027
https://doi.org/10.1016/C2013-0-10375-3
https://doi.org/10.48550/arXiv.2305.01863
https://doi.org/10.1111/j.1468-2419.2005.00225.x
https://doi.org/10.1111/j.1468-2419.2005.00225.x
https://doi.org/10.1145/3545945.3569771
https://doi.org/10.1145/3545945.3569771
https://doi.org/10.1145/1404520.1404532
https://doi.org/10.1145/1404520.1404532
https://doi.org/10.5220/0009575104610468
https://doi.org/10.1145/3564721.3565955
https://doi.org/10.1109/ICPC52881.2021.00054
https://doi.org/10.1109/ICPC52881.2021.00054
https://doi.org/10.1145/3545945.3569770
https://doi.org/10.1145/1041624.1041673
https://doi.org/10.1145/1041624.1041673
https://doi.org/10.5220/0011967900003470
https://doi.org/10.5220/0010998600003182
https://doi.org/10.5555/1089053.1089088
https://doi.org/10.5555/1089053.1089088
https://doi.org/10.5281/zenodo.6853131
https://doi.org/10.5281/zenodo.6853131

Koli Calling ’23, November 13–18, 2023, Koli, Finland Malaise and Signer

39, 4 (2013). https://doi.org/10.1080/01411926.2012.669747
[24] Siti Soraya Abdul Rahman and Benedict du Boulay. 2010. Learning Programming

via Worked-examples. PPIG-WIP, Dundee 2010 (2010). https://doi.org/10.1016/j.
chb.2013.09.007

[25] Mariia Rizun. 2019. Knowledge Graph Application in Education: A Literature
Review. Acta Universitatis Lodziensis: Folia Oeconomica 3, 342 (2019). https:
//doi.org/10.18778/0208-6018.342.01

[26] Sami Sarsa, Paul Denny, Arto Hellas, and Juho Leinonen. 2022. Automatic Gen-
eration of Programming Exercises and Code Explanations Using Large Language
Models. In Proc. of ICER 2022. https://doi.org/10.1145/3501385.3543957

[27] Carsten Schulte. 2008. Block Model: An Educational Model of Program Compre-
hension as a Tool for a Scholarly Approach to Teaching. In Proc. of ICER 2008.
https://doi.org/10.1145/1404520.1404535

[28] Andrew Scott, Mike Watkins, and Duncan McPhee. 2007. A Step Back From
Coding: An Online Environment and Pedagogy for Novice Programmers. In Proc.
of JICC 2007, Vol. 2007.

[29] Sue Sentance, Jane Waite, and Maria Kallia. 2019. Teaching Computer Program-
ming With PRIMM: A Sociocultural Perspective. Computer Science Education 29,
2–3 (2019). https://doi.org/10.1080/08993408.2019.1608781

[30] Karim Shabani, Mohamad Khatib, and Saman Ebadi. 2010. Vygotsky’s Zone of
Proximal Development: Instructional Implications and Teachers’ Professional
Development. English Language Teaching 3, 4 (November 2010). https://doi.org/
10.5539/elt.v3n4p237

[31] Rudolf Siegel, Cornelius J König, and Veronika Lazar. 2022. The Impact of
Electronic Monitoring on Employees’ Job Satisfaction, Stress, Performance, and
Counterproductive Work Behavior: A Meta-Analysis. Computers in Human
Behavior Reports 8 (2022). https://doi.org/10.1016/j.chbr.2022.100227

[32] John Spencer. 2003. Learning and Teaching in the Clinical Environment. British
Medical Journal 326, 7389 (2003). https://doi.org/10.1136/bmj.326.7389.591

[33] John Sweller, Paul L Ayres, Slava Kalyuga, and Paul Chandler. 2003. The Expertise
Reversal Effect. (2003). https://doi.org/10.1207/S15326985EP3801_4

https://doi.org/10.1080/01411926.2012.669747
https://doi.org/10.1016/j.chb.2013.09.007
https://doi.org/10.1016/j.chb.2013.09.007
https://doi.org/10.18778/0208-6018.342.01
https://doi.org/10.18778/0208-6018.342.01
https://doi.org/10.1145/3501385.3543957
https://doi.org/10.1145/1404520.1404535
https://doi.org/10.1080/08993408.2019.1608781
https://doi.org/10.5539/elt.v3n4p237
https://doi.org/10.5539/elt.v3n4p237
https://doi.org/10.1016/j.chbr.2022.100227
https://doi.org/10.1136/bmj.326.7389.591
https://doi.org/10.1207/S15326985EP3801_4

	Abstract
	1 Introduction
	1.1 Motivation and Background
	1.2 Situating in and Contributing to CER

	2 Explorotron Prototype
	2.1 Uncurated Unguided Learning (I)
	2.2 Uncurated Guided Learning (II)
	2.3 Curated Unguided Learning (III)
	2.4 Curated Guided Learning (IV)

	3 Open Questions and Future Work
	3.1 How to find the right balance between stakeholders?
	3.2 How to model users for a personalised learning experience?
	3.3 How to create suggested tours across a set of files?
	3.4 What is the role of Large Language Models in the presented approach?

	4 Conclusion
	Acknowledgments
	References

