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Abstract

Mobile devices are becoming increasingly multi-functional and personal, providing mobile applications with the 
necessary user information (e.g., preferences, personal calendar) to achieve personalization. At the same time,  
detection technologies (e.g., Radio Frequency IDentification, or RFID) allow mobile devices to detect nearby 
physical entities, and thus map the user’s environment. By exploiting existing online data sources about these  
detected entities, mobile applications can further improve personalization by including knowledge on the mobile  
user’s physical environment. Semantic Web sources are useful in this respect, as they are machine-readable and 
facilitate integration with other sources. SCOUT, developed by the authors, is a mobile application framework  
that  supports  the  linking of  physical  entities  to  online semantic  sources,  and provides  applications with an 
integrated, query-able view on these sources and the user’s environment. In order to efficiently access this large 
set of distributed online semantic sources, a tailored data management approach has been developed.

1. Introduction

Modern mobile devices are fully-fledged web clients and personal information managers,  capable of running 
applications previously only reserved for desktops. By exploiting the rich personal information captured by these 
devices (e.g., user preferences, social network data), the provided content and functionality can be personalized 
to the particular user. However, in a mobile setting, a user’s needs also depend on his environment, not just on 
his personal profile. Detection and sensing technologies such as QR (Quick Response) codes or RFID allow 
mobile devices to detect tagged physical entities (i.e., people, places, things) in their surroundings, while online  
services such as LinkedGeoData  [url-1]  can be used to obtain entities near the user’s current GPS location. 
Often, information on these physical entities is already available on the Web: for instance, in webpages or in 
Semantic Web sources. If a reference to this information can be extracted from the detected entity (e.g.,  by 
decoding the URL from a QR code), extensive knowledge on the user’s environment can be obtained, allowing  
mobile applications to tailor functionality and content to the user’s full context. For instance, around lunchtime,  
they  can  draw the  user’s  attention  to  nearby  restaurants  serving  his  favorite  cuisine,  and  provide  walking 



distance.  Online Semantic Web data is  especially useful,  as it  encodes rich semantic information about any 
digital or physical resource and is machine-readable. There already exist a large number of online RDF sources.  
The W3C Linking Open Data project [url-2] currently lists 216 datasets with sizes ranging from 1000 triples to 
over  a  billion. Increasingly,  websites  are  also  semantically  annotated,  using  annotation  languages  such  as 
microformats and RDFa. According to the Yahoo! BOSS API [url-3], around 955 million websites are currently  
annotated using RDFa. Such websites serve as semantic sources in their own right, as RDF data can be directly 
extracted  from their  annotations.  As another  advantage,  Semantic  Web technology supports  interoperability 
between sources, allowing data to be easily integrated. 

We present SCOUT [1], a mobile application framework that supports a range of methods to connect nearby 
physical entities to associated online semantic sources, and provides a data service that transparently handles the 
management, integration, and querying of this data. By offering this integrated, query-able view on the user’s  
surroundings,  mobile  application  developers  are  empowered  to  personalize  and  contextualize  content  and 
functionality. In order to efficiently manage all this information in a volatile environment and on limited devices, 
a  tailored  data  management  approach  has  been  developed,  exploiting  the  capabilities  of  Semantic  Web 
technology. SCOUT is lightweight and scalable, and does not require proprietary servers or middleware; instead, 
it uses the Web itself as information system to obtain useful environmental information. 

In the next section, we present  the architecture of SCOUT. Subsequently,  we present our data management  
approach, centered on a Semantic Web-based indexing strategy tailored to mobile environments, and provide an  
experimental validation. We then present related work, and end with conclusions and future work.

2. Architecture

The SCOUT framework consists of a number of distinct layers, separating the different concerns present in a 
location-based, context-aware system. In doing so, SCOUT decouples the technologies and application logic 
used in these layers,  allowing them to contain interchangeable components. Below, we discuss the SCOUT 
layers bottom-up, and illustrate their features using the COIN [2] application.

2.1. Detection Layer

The Detection Layer is  responsible for detecting physical  entities in the user’s surroundings,  and extracting  
references to their online semantic descriptions (e.g., an RDF description). For this purpose, we utilize existing 
detection techniques; e.g., a camera to extract the URL encoded in the entity’s QR code, or an RFID reader to 
read  a  URL from an  RFID-tagged  entity.  Existing  third-party  services  can  also  be  used;  for  instance,  the 
LinkedGeoData  Semantic  Web service  [url-1]  finds physical  entities  in  a  radius  around the user’s  location  
(obtained  via  GPS),  together  with  references  to  their  semantic  descriptions.  SCOUT  allows  transparently 
switching between detection techniques, or using several in parallel. Currently, QR, RFID, Bluetooth and the  
LinkedGeoData service are supported. For example, in the COIN application, tourist attractions and other points-
of interest are detected using QR codes and the LinkedGeoData service. The extracted URLs along with relevant  
detection data (e.g., approximate entity coordinates, detection distance) are passed to the next layer.

2.2. Location Management Layer

The  Location  Management  Layer  interprets  the  raw  information  received  from  the  Detection  Layer.  It  
determines whether detected entities are nearby the user or other detected entities, and when they are no longer  
nearby. As the definition of “nearness” can differ per application (i.e., different distances can be considered 
nearby), application-specific proximity criterions are supported. For example, COIN uses a 100m radius as its 
proximity  criterion  (meant  for  pedestrian  use).  SCOUT  employs  so-called  “nearness”  and  “remoteness” 
strategies that exploit detection information to determine whether an entity is nearby (or no longer nearby) the 
user or another entity, according to the monitored proximity criterions. In case of COIN, detection techniques  
with limited range (i.e., QR readers) use a nearness strategy that directly infers nearness to the user when the 



entity is  detected.  For LinkedGeoData,  latitude and longitude are compared with the user’s  (GPS) position.  
Similarly, nearness between two detected physical entities is determined by comparing the approximate positions 
at which the entities were detected. The remoteness strategy consists of comparing the user’s current position 
with the detected  entity’s  (exact  or  inferred)  position at  set  time intervals,  to  determine  when the  distance 
exceeds the used proximity criterion. SCOUT is pre-configured with proximity strategies for each supported 
detection technique,  but applications can also deploy custom strategies.  This layer  notifies the Environment 
Layer of “nearness” and “remoteness” events, along with the employed criterion, the entities’ (approximate)  
locations and references to their online data sources.

2.3. Environment Layer

The Environment Layer provides mobile applications with an integrated view on the user, his environment and 
the physical entities in it, called the Environment Model. This layer maintains two local data models that provide 
the necessary information for this integrated view. In the User Model, the user’s characteristics, preferences and 
device information are stored using ontologies such as CC/PP [url-4] or FOAF [url-5],  along with personal 
information obtained from other applications the user is willing to share (e.g., personal agenda). As such, this 
model  allows  personalizing  content  and  functionality  to  the  user.  Positional  information  on  the  user’s 
environment is encoded in the Proximity Model. It keeps time-stamped positional relations between the user and 
the physical  entities,  together  with  references  to  the  entities’  associated  data  sources.  A positional  relation 
represents the fact that an entity is, or has been, nearby the user or another entity. This model underlines the  
location-based nature of SCOUT, as it keeps relative positional information in an abstract, high-level format.  
The Proximity Model Management component keeps this model up-to-date based on nearness and remoteness  
notifications from the Location Management Layer.  Additionally, this component provides applications with 
their own view on the Proximity Model, corresponding to their specified proximity criterion. The  Environment  
Model encompasses  the  User  and  Proximity Model,  and  extends  them with  information  obtained  from the 
physical entities’ online semantic sources. 

Applications  query the Environment Model using the  Query Service. For instance, the COIN application may 
issue the following SPARQL query to find restaurants in the user’s vicinity, which are close to a metro station 
leading back to the user’s hotel and serve the user’s favorite cuisine (namespaces omitted for brevity):

SELECT ?restaurant ?rLat ?rLong ?station1 ?cuisine 
WHERE
{
 ?user rdf:type um:User ;
     um:stayingAt ?hotel .
 ?hotel rdf:type space:Hotel . 

 ?user prox:currentlyNearby ?restaurant .
 ?restaurant rdf:type resto:Restaurant ; 

      geo:lat ?rLat ;
      geo:long ?rLong .

 ?restaurant prox:isNearby ?station1 .
 ?station1 rdf:type space:Tube_Station .
 ?route space:connects ?station1 .
 ?route space:connects ?station2 .
 ?station2 prox:isNearby ?hotel .

  ?user um:prefersCuisine ?cuisine .
  ?restaurant resto:typeOfCuisine ?cuisine .
}

Query 1. Query retrieving nearby interesting restaurants.

This  query  first  employs  the  User  Model  to  retrieve  the  user’s  hotel  (um:stayingAt),  and  obtains  entities 
currently nearby by utilizing the Proximity Model (prox:currentlyNearby). Subsequently, it checks whether 
these are restaurants (resto:Restaurant), and searches for entities nearby these restaurants (prox:isNearby) 
that are metro stations (space:Tube_Station) with a stop (?route space:connects) nearby the user’s hotel, 



utilizing the Proximity Model and the entities’ online sources. Finally, it checks whether these restaurants serve a 
cuisine (resto:typeOfCuisine) that is one of the user’s favorites (um:prefersCuisine). This example illustrates 
one  of  the  strengths  of  using  Semantic  Web  technology;  it  allows  integrating  information  from  different  
heterogeneous data sources, by relying on the re-use of well-known ontologies and unique resource identity via  
URIs. This integration enables SCOUT to resolve complex context-sensitive queries that cannot be solved by 
any single source. COIN subsequently communicates the results to a browser plugin that injects the data on-the-
fly in existing webpages (e.g., restaurant listings). The latter is outside the scope of this article; we refer to [2].  
Both SCOUT and COIN are based on Android OS 2.2.

3. Data Management

In SCOUT, a major challenge is realizing efficient access to the online data associated with physical entities.  
Firstly, there are various types of online semantic sources available: online RDF files, semantically annotated  
webpages,  and  datasets  accessible  via  query  endpoints.  The  latter  are  accessible  by  issuing  queries,  while 
obtaining information from RDF files and websites requires downloading them. Most related approaches focus 
on optimizing access to distributed query endpoints (see related work); we focus on the huge dataset contained in  
the other two types of sources, which has specific challenges for efficient access.

A first problem in a mobile setting, where the user detects numerous physical entities over time, is that the 
downloaded data may exceed the allocated storage space.  Additionally, our experiments show that querying 
large  RDF datasets  without  optimization  yields  unacceptable  response  times  for  real-time  applications  (see 
section 4). To deal with these issues, we use a semantics-based indexing mechanism to identify sources relevant  
to a given query, combined with a caching mechanism to store downloaded sources (see fig. 1).

Fig. 1. Detailed Environment Layer.



3.1 Indexing online semantic sources

To identify query-relevant sources,  we keep an index called the  Source Index Model  (SIM), which contains 
metadata about encountered sources. The SIM is maintained in the background during the indexing phase, which 
is triggered whenever a physical entity becomes nearby and its online reference is passed to the Environment 
Layer.  Firstly,  the  obtained  reference  is  communicated  to  the  Source  Index  Manager (fig.1-a.1),  which 
downloads the source, extracts the metadata (a.2), and stores it in the Source Index Model (a.3). For semantically 
annotated websites, an existing tool (currently,  a ported version of java-rdfa [url-6]) is used to extract  RDF 
triples from semantic annotations. Afterwards, the RDF source is passed to the Source Cache, where it is stored 
for  later  use (a.4).  The Source Cache employs a Least-Recently-Used replacement  function to locally store  
frequently required sources.

Since  sources  must  be  indexed  on-the-fly  on  devices  with  limited  capabilities,  the  indexing  phase  should 
consume minimal resources, while still enabling the fine-grained identification of relevant sources (selectivity).  
To achieve this, we extract and keep semantic metadata that is quickly obtainable and cheap to store, while still 
guaranteeing high selectivity. We first observe that in order to navigate RDF graphs, most SPARQL queries 
specify concrete predicates (i.e., RDF graph edges), with subjects or objects given as variables. Secondly, as  
mobile applications mostly consider  certain entities in the user's surroundings (e.g., shops, restaurants), their 
queries often restrict the types of these variables. At the data side, RDF sources usually utilize ontologies with 
rich type hierarchies (e.g., FOAF, DCMI) to specify fine-grained types for contained resources. In this respect, 
we  assume  that  sources  are  self-describing,  i.e.,  specify  the  types  of  their  resources.  By  keeping  source  
predicates and their subject and object types in the SIM, and comparing this information to query predicates and  
type restrictions,  our  validation shows we can  rule out  a  significant  amount  of  sources  irrelevant  to  posed 
queries, while still minimizing the indexing overhead. In our implementation, the SIM is realized as in-memory 
multi-level index using hashtables (comparable to [3]), where each level corresponds to an indexed metadata 
part. Given a predicate key in the first index, a second index with subject type keys is returned. The final index 
maps object type keys to lists of source URIs containing the given combination of predicate, subject type and 
object type. We employ dictionary encoding to reduce SIM size, by mapping source URIs and term namespaces  
to unique identifiers. 

3.2 Query resolving using the Source Index Model

In the second part of our approach, the  query phase, application queries are analyzed to determine all query-
relevant sources, and the queries are resolved. The central component in this process is the Query Service, which 
receives incoming application queries (fig.1-b.1). The query is first passed to the Query Analyzer (b.2), which 
extracts  predicates  and  type  restrictions  (i.e.,  query  metadata).  This  component  also  exploits  ontological  
knowledge on RDF terms, to increase the amount of extracted query metadata (b.3) (see below). The Query  
Service then communicates the query metadata to the Source Index Matcher (b.4), which accesses the SIM (b.5) 
to identify relevant sources. Subsequently, the Source Manager is contacted for these sources (b.6), which are 
fetched from the cache (b.7)  or downloaded if no longer available locally (b.8).  Finally,  the Query Service  
employs an existing Query Engine (in our case, androjena [url-7]) to execute the query over the combined set of 
sources (b.9). When integrating the data, different URIs or vocabulary terms for the same resources or concepts 
may pose problems.  As no fully  automatic approaches  to  tackle  these issues  exist,  we currently  rely on 1) 
interlinks between resources and vocabulary terms (e.g., via owl:sameAs) that allow us to deduce equivalence 
automatically, and 2) explicitly specified alternatives in posed queries. Below, we discuss the most important 
components: the Query Analyzer and the Source Index Matcher. 

The Query Analyzer extracts the query metadata, consisting of predicates and type restrictions. For regular triple  
patterns in the WHERE, OPTIONAL and UNION clauses, specified predicates and type restrictions of their  
subject  and object (if any) are extracted.  FILTER clauses are scanned for functions that specify a predicate, 
subject or object type (using sameTerm()).  Furthermore, we exploit the domain knowledge captured in OWL 
ontologies to infer additional query metadata. In particular, we infer the type of a variable used as subject or  
object of a certain predicate, based on its domain or range specification in its associated ontology.



The Source Index Matcher uses the extracted query metadata to contact the SIM. For each of the query triple  
patterns, sources are identified that contain triples with the specified predicate and subject / object types. By  
performing this matching on the level of triple patterns, sources relevant to only one or several triple patterns are 
still included, allowing us to solve queries that require data from multiple sources.

The indexing and querying phase are implemented as separate threads, allowing queries to be processed while 
new sources are still being indexed in the background (the querying thread is prioritized). 

4. Experimental validation

To validate  our  indexing  strategy,  we ran  a  series  of  experiments  on a  Samsung Galaxy S with  a  1  GHz 
processor and 512MB RAM, using three different SIM variants: SIM1, which keeps found predicates, SIM2, 
which keeps predicates and subject types, and SIM3, keeping predicates, subject and object types. The online set 
of data sources was distributed across three webservers, and had a total size of 117MB (with an average file size  
of 14.4KB). These sources were extracted from the LinkedGeoData,  DBPedia [url-8], Geonames [url-9] and 
Semantic Web Dog Food [url-10] datasets, and were complemented with product data obtained from a Berlin 
SPARQL Benchmark dataset [url-11]. The complete dataset, as well as the queries used for validation, can be 
found at [url-12].

In the evaluation of the indexing phase, each source in the dataset was encountered and indexed sequentially. 
The SIM keeps all encountered sources; an option to remove older index entries was not used in the experiments.  
The indexing phase has an average execution time per source of 74ms for SIM1, 719ms for SIM2 and 1398ms 
for SIM3, corresponding to insertion rates of 13.5, 1.4 and 0.72 sources per second, respectively (excluding 
download  times).  These  execution  times  are  reasonable,  compared  to  the  average  source  download  time 
(2066ms). Compared to the total size of the indexed sources, SIM average sizes amount to 0.08% for SIM1,  
2.50% for SIM2, and 3.03% for SIM3. Fig. 2 shows the detailed performance of the indexing phase. 

To evaluate the query phase, we used four queries of varying complexity, typically posed by mobile applications 
on top of SCOUT. In the first query, subject and object types are specified, while the others only specify subject 
types.  To  avoid  cache  interference,  we  used  a  cache-all  approach  where  all  sources  are  kept  locally  after 
downloading and indexing. In fig. 2, the detailed query resolution performance is shown for each SIM variant 
and for an increasing amount of encountered sources (including the case where no SIM is used, i.e., native query  
engine performance over all assembled sources). Note that no performance measurements are available for “no 
SIM” and SIM1 for more than 400 and 550 sources (marked as a cross in fig. 2), as the set of collected sources  
became too large, leading to out-of-memory exceptions. In our experiments, the indexing and query phases were 
executed separately, and no other tasks were simultaneously executed to avoid any interference.

As observed in fig. 2, the data collection step, comprising the fetching of relevant source data from persistent 
cache and loading it in a repository, forms a performance bottleneck. This mainly results from the required read-
time for large amounts of source data. This leads to a significant performance gain for the SIMs, as they are able  
to rule out large  amounts of  sources.  This  gain increases  as  more semantic  information is  exploited in  the 
subsequent SIM versions, while the overhead of indexing remains minimal. In our experiments, the average  
amount of sources determined to be query-relevant is 26.1% for SIM1, 3.5% for SIM2 and 1.5% for SIM3. We  
also observe that the performance gain for SIM3 over SIM2 is relatively small. This is because typically, the 
type of subject variables is more often restricted than object variables (this is also the case in our validation  
queries), leading to object type data in SIM3 being underused.



Fig. 2. Validation results.

5. Related work

Many  context-aware  middleware  approaches  rely  on  context  providers  to  obtain  information  on  the  user’s 
environment, which extract data from internal (e.g., sensors) or external (e.g., traffic service) sources (e.g., [4-
5]). Such solutions are useful for achieving efficient access to dynamic data, and often require query stream 
processing techniques [6] to handle high-volume datastreams and support queries with lively updated results. In  
SCOUT however,  data acquisition and query time are typically distinct,  fewer data is handled over a larger  
amount of time, and queries are performed on a snapshot of the currently available data. Similar to SCOUT, 
some  of  these  approaches  focus  on  integrating  context  sources  to  provide  a  unified  view  on  the  user’s  
environment [4]. However, in contrast to SCOUT, this integration is mostly achieved via a single centralized 
service, which has a higher participation threshold for source providers and is less scalable and flexible. 

Data indices, such as the proposed SIMs, are also used in other fields to optimize data access. In RDF stores,  
indices  allow  the  quick  retrieval  of  relevant  RDF triples,  given  the  concrete  values  (e.g.,  resource  URIs) 
provided in queries. For instance, androjena keeps separate indices for subjects, predicates and objects, while 
systems such as HexaStore [7] index each possible query access pattern to further optimize query execution. In  
HexaStore, this leads to six indices with high update and insertion costs, and a (worst-case) five-fold increase in  
storage space. In contrast, our largest SIM requires only around 3% of the RDF data size. In the MQuery system 
[8], issues related to efficient RDF access in mobile environments are tackled. This system supports four types of  
queries,  allowing users to find related content and navigate between related nodes (e.g.,  from a photo to its 
photographer). Two indices are used to optimize query performance, namely a text index (inverted index) and a  
graph index (comprising node adjacency lists), while an index compression method is proposed to reduce the  
index sizes. However, even after compression, each individual index takes up more space than the dataset size. 
Moreover, our approach supports any type of information request encoded as a SPARQL query.

In the field of query distribution, a query is divided into subqueries on particular data sources. To achieve this, 
indices are kept describing the contents and capabilities of the different query endpoints. For instance, in [9], 
properties found in a dataset are extracted and stored, which is equivalent to SIM1. In semwiq [10], lists of 
classes and properties are kept; this leads to information loss compared to SIM2 and SIM3, as it is no longer  
known which classes occur in the domain or range of the found properties. DARQ [11] relies on manually  
specified  service  descriptions,  listing found properties  together  with value constraints  on their  subjects  and 
objects. In contrast, we focus on metadata that is more efficiently extractable (i.e., types). 



6. Conclusion

This  paper  presents  a  framework  that  supports  the  development  of  location-based,  context-aware  mobile 
applications. The framework provides various techniques for detecting nearby physical entities and extracting 
their associated online semantic information. Based on this online data, an integrated and query-able view on the 
user’s  surroundings is  provided.  To efficiently  access  and  manage this  view,  we developed a tailored data 
management approach that filters online data sources relevant for a query, based on semantic information from 
the sources and ontological domain knowledge. According to our experimental validation, query performance is  
significantly improved, making management and local querying of online RDF sources feasible in a real-world, 
mobile environment.

Future work consists of investigating how semantic data can be further utilized, for example by using OWL’s  
reasoning capabilities to infer additional knowledge. We are also studying automatic semantic query enrichment  
(e.g., using Wordnet [url-13] synonyms) to mitigate losing relevant results due to different vocabularies. For the  
same purpose, we plan to investigate existing solutions like Silk [url-14] to setup and use online services to 
automatically link together disjoint datasets. Furthermore, since SCOUT applications typically pose location-
related queries, focusing on these specific semantic relations should imply performance gains. Other interesting 
research avenues include studying how to ensure index freshness without negatively impacting performance, and 
swapping parts of the index to persistent storage to increase the potential index size.
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