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ABSTRACT
Nowadays many music artists rely on visualisations and
light shows to enhance and augment their live performances.
However, the visualisation and triggering of lights in popu-
lar music concerts is normally scripted in advance and syn-
chronised with the music, limiting the artist’s freedom for
improvisation, expression and ad-hoc adaptation of their
show. We argue that these limitations can be overcome by
combining emerging non-invasive tracking technologies with
an advanced gesture recognition engine.

We present a solution that uses explicit gestures and im-
plicit dance moves to control the visual augmentation of
a live music performance. We further illustrate how our
framework overcomes limitations of existing gesture classi-
fication systems by providing a precise recognition solution
based on a single gesture sample in combination with expert
knowledge. The presented approach enables more dynamic
and spontaneous performances and—in combination with
indirect augmented reality—leads to a more intense inter-
action between artist and audience.
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1. INTRODUCTION
Today’s musical performances often cover more than simply
the auditive aspect and consist of complex choreographies,
impressive visualisations on large screens or advanced light
shows. Due to the complexity of such concerts, the aug-
menting functionality often consists of scripted behaviour
that is synchronised with the performance. Choreographies
can be kept flexible since humans can spontaneously agree
to modifications, which is not the case for pre-programmed
visualisations. The custom made visualisations are scripted
in advance and have to precisely match to an agreed timing
of the music. Therefore, artists are restricted by the pre-
defined synchronisation between sound and images or light
shows and they have limited or no means to modify and
adapt the behaviour and augmentation during a live per-
formance. We argue that through the use of non-intrusive
predefined gestural expressions, artists become more flexible
in adapting and spontaneously modifying the augmenting
visualisation.
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In order to enable expressive control during live music
performances, non-invasive technologies such as depth cam-
eras (e.g. Microsoft’s Kinect1) can be used in combination
with an advanced gesture recognition engine that allows the
precise definition of multiple explicit and implicit gestures.
In this context, gestures are defined as a sequence of body
movements in time. It is important to stress that there is
a crucial need for both high precision and recall in order to
support gesture-based augmented live performances. While
gesture actions should not be accidentally triggered, the
recognition engine should recognise any gesture performed
by the artist. The problem of translating a large amount of
camera data into meaningful high-level gesture events has
been a subject of research for many years. However, with
today’s available technologies it becomes possible to build
an affordable gesture recognition solution which performs
very well for the described scenario.

In collaboration with the music band Mental Nomad2,
we experimented with different forms of visualisations and
the corresponding activation triggers, including virtual re-
ality as well as indirect augmented reality in order to enrich
parts of their live performance. The solution presented in
this paper has been successfully used in multiple live con-
certs. The overall goal was to achieve a tighter coupling
between the live music performance and the response of the
audience by removing the scripted behaviour of predefined
visualisations. We start by comparing our work with cur-
rent state of the art solutions and then present a number
of important constraints our system had to deal with. We
proceed with a discussion of the implementation of our sys-
tem and outline how it has been perceived as well as how
it might be reused in other settings. We conclude with a
discussion of some future work which will enable artists to
use our system without the support of an expert developer.

2. BACKGROUND
The development of real-time gestural controls for musical
performances has been an active area of development for a
number of years. As Dobian [4] argues, expressiveness can
be enhanced by using an intelligent recognition of gestures
in combination with the corresponding mapping to actions.

Most existing toolkits for real-time gestural control fo-
cus on continuous processes such as dynamic sound synthe-
sis [10, 6, 3] and visualisations [1, 9], rather than investigat-
ing the recognition of discrete triggers. This is mainly due
to the fact that the continuous nature of sounds and visuals
nicely maps to continuous input modalities. In addition,
the robust recognition of an artist’s complex movements in
order to use them as discrete triggers is a challenging task.
Another difficulty is the unforgiving nature of wrongly de-

1http://www.microsoft.com/en-us/kinectforwindows/
2http://www.mentalnomad.be



tected moves and gestures if they are used to trigger and
switch between different visualisations.

Bevilacqua [3] generalises the mapping between sensors
and processes into one-to-one, one-to-many, many-to-one
and many-to-many mappings. Their MnM mapping tool-
box supports the fusion of different input modalities into
one or multiple output parameters. Additional methods
for interpolation, regression and recognition methods allow
for dynamic sound synthesis or modifications (e.g. pitch,
reverb or volume) based on the artist’s movements. Simi-
larly, Digito provides support for the expressive control of
a virtual musical instrument that can be played through
hand gestures [6]. Furthermore, the performer can dynami-
cally switch between two sound synthesis options via a sub-
tle gesture formed by tapping at various locations in space
with the index finger. Other movements were continuously
mapped to audio synthesis. In Digito, a Microsoft Kinect
sensor was used to capture all the necessary information. A
recent evaluation of the accuracy and performance of the
Microsoft Kinect sensor revealed that the sensor is amongst
the least accurate trackers [12]. However, it is also noted
that it is the simplest system to set up due to the fact
that it does not require any calibration process while be-
ing resistant to changes in lighting conditions. Note that
this resistance to changes in lighting is crucial for most live
music performances.

Mitchel et al. [10] present a number of discrete control
mechanisms for hand-based input, including posture identi-
fication, segmented orientation and inertial peak detection.
As mentioned before, these controls remain quite basic and
do not entail any higher level comprehension of the gestural
interaction. Barry et al. [1] present simple interpretation
rules to augment a Butoh dance performance. They use
contiguous sequences to generate dynamic visualisations.
These visualisations are built from a hidden grammar based
on motions for emotion recognition. Instead of using body
movements to create audio, an implicit mapping is created
for visual enhancement. However, the visualisations were
not based on an explicit triggering for predefined gestures.

Dynamic Time Warping (DTW) is a popular algorithm
to recognise complex patterns. Real-time extensions based
on a multigrid [2] allow the DTW classifier to work on a
continuous data stream, such as camera input. Note that
DTW can only process a single trajectory and finding pat-
terns between multiple joints for full body gesture recogni-
tion requires complex preprocessing methods. The setting
of a global (or gesture-specific) threshold to decide whether
to trigger a gesture or not is too unreliable and easily results
in false positives or false negatives. Due to the lack of train-
ing data, learning-based methods including hidden Markov
models (HMM) [11] are not appropriate for our purpose.

3. CONSTRAINTS
Our goal was to overcome the limited interactiveness and
possibility for spontaneous adaptations and changes in live
performances. The artists should be given more possibil-
ities to interact with and influence the audience without
the fixed scripted behaviour of visualisations. We argue
that through the use of innovative non-invasive technolo-
gies, such as depth sensors, artists have a mean to perform
expressive gesture control by using their body. We explore
what properties a reliable gesture recogniser needs to fulfil
in order to enable such expressive control of visualisations
and indirect augmented reality during a live music perfor-
mance.

It is not trivial to extract meaningful information from
a continuous stream of full body tracking information by

performing real-time pattern recognition. The input stream
contains a lot of non-relevant movements and the recogniser
has to process all this information in real time. Addition-
ally, we did not have access to all the dance moves due to the
minimal time budget for this part of the performance. This
constraint is problematic for many learning-based gesture
recognition approaches since the system needs to “learn”
both gestures as well as non-gestures. In the discussed setup
where explicit gestures and implicit dance moves are used to
control the augmentation process, non-gestural movements
form the norm rather than the exception. The artists re-
quested us to trigger specific visualisations when a number
of key moves are performed. Since a single song takes about
four minutes and multiple artists are dancing in a more or
less controlled sequence, the key movements take up less
than 5% of the overall time. Furthermore, the sequence was
not known and variations are common due to the influence
of the audience.

To summarise, the presented scenario resulted in the fol-
lowing constraints:

One-shot gesture sampling Due to time constraints, we
were unable to perform an iterative evaluation of the
system together with the artists. Hence, single sam-
ples of the five key gestures were recorded and no
garbage data was available to train a classifier with
negative examples.

No garbage data The artist’s choreography is scripted in
a flexible manner. The robustness in the case of un-
scripted and uncommon moves was a requirement put
up front by the artists. The lack of full body data for
the entire choreography complicates the creation of an
idle state and the evaluation phase.

High precision The use of expressive control for a couple
of key movements asks for a high precision. The sys-
tem should not trigger its actions unintentionally as
this would break the flow of the live performance.

High recall On the other hand, a high recall should be ob-
tained in order to ensure that the actions are triggered
when a key movement is performed. Imagine an artist
performing a special jump and no visual feedback is
delivered. The required nearly perfect precision and
recall complicates the task and due to the very lim-
ited recorded data, the use of expert knowledge and
reasoning over a larger time period seems appropriate.

Real-time processing Any activation that is based on ex-
pressive movements should happen nearly instanta-
neously and we should be able to process the data as
it enters the system.

Non-invasive sensor technology It was requested that
the technology should be non-invasive. The embed-
ding of sensors in clothes was not an option due to
the indoor scene which implies lightweight shirts and
sweating which might negatively affect the sensors.
We requested that the movements should be executed
in an area of 5m2. This allows a single Microsoft
Kinect sensor to easily track the artist performing the
moves.

Multiple users In our scenario, four out of five artists
were moving on stage but requested to be ignored in
the dedicated camera area. As it was risky to perform
the recognition process on the first artist entering the
dedicated area at the beginning of the song, we de-
cided to enable a multi-user gesture recognition pro-
cess that allows multiple artists to trigger the actions.



4. EXPRESSIVE CONTROL
We present several guidelines on how an augmented reality
system can be implemented, specifically paying attention
to constraints introduced in the previous section. There
are two main parts of the application: the input side with
the corresponding real-time input stream processing and the
output side which takes care of the visualisation. The ini-
tial idea for the output modality was to apply a virtual
reality setting where an avatar is directly controlled by one
of the artists and the key gestures trigger additional visu-
alisation elements such as fire or electricity. However, this
has relatively quickly proven to be infeasible due to the fact
that many moves, such as a 360 degree rotation, cannot
be tracked very accurately by the Microsoft Kinect SDK3.
Furthermore, existing avatar models did not fit well with
the overall visualisation concept. An alternative solution is
indirect augmented reality, where a live video capture of the
artist is overlaid with certain visualisation elements which
are triggered by some key gestures. This allows us to deal
with some of the inaccuracies of the Microsoft Kinect SDK
without noticeable visual artefacts. In Section 5 we provide
further details about the implementation and the different
libraries that we used.

Expressive control through non-invasive technologies cre-
ates the opportunity to enable specific visualisations as com-
manded by the artist. The five gestures G1 to G5 which
were used to trigger the indirect augmented reality are high-
lighted in Figure 1 to Figure 5 as a sequence of postures.
Dealing with multiple postures over time is crucial when
only a very few samples are available. The reason for this
is to optimise the precision as gestures should not be unin-
tentionally triggered. Without time information, the artist
might trigger several end postures while dancing, taunting
the audience or even trigger the change in augmentation if
the Microsoft Kinect SDK incorrectly tracks the user. Ad-
ditionally, when incorporating full body gesture recognition,
we do not prohibit the artist from executing other similar
moves. By defining a precise body movement sequence to
which the user must adhere in order to trigger the intended
actions, we can optimise the system’s recall and precision.

It should be noted that the interpretation of full body
movements over time requires advanced software features.
As mentioned earlier, existing work focuses on manipulating
input to direct output with little reasoning. To achieve the
necessary precision in gesture recognition, we extended the
Mudra framework [7] for three-dimensional gesture recogni-
tion based on the idea of declarative control points as pre-
sented by Hoste et al. [8]. In contrast to the gesture spotting
approach described by Hoste et al. [8], which introduced au-
tomated control point inferencing for two-dimensional ges-
tures, we extended the approach with three-dimensional el-
lipsoids as the basic form for the definition of control points.
This generic solution generates declarative code from a sin-
gle sample and allows expert users to further refine the ges-
ture definition to achieve the necessary precision requested
by the artist.

In contrast to statistical or template-based solutions, Mu-
dra provides programming constructs to enable developers
to express complex patterns in space and time. These pro-
grammed patterns are defined based on a declarative rule
language which offers two main features: First, develop-
ers can focus on what they want to recognise rather than
how it should be implemented. In addition, these rules can
be compiled into a direct acyclic graph network (Rete [5])
which allows for real-time performance.

3Microsoft Kinect SDK: http://www.microsoft.com/
en-us/kinectforwindows/develop/overview.aspx

Figure 1: Gesture G1

Figure 2: Gesture G2

Figure 3: Gesture G3

Figure 4: Gesture G4

Figure 5: Gesture G5

Listings 1 and 2 show a partial implementation of ges-
ture G1 which has been introduced earlier in Figure 1. A
couple of control points per posture of a gesture and rela-
tionships of joints relatively to other joints in space, are de-
fined in Listing 1. The code consists of a conditional element
(lines 2 and 3) and spatio-temporal operators (lines 4 to 7).
The conditional elements require that there should be a rel-
ative joint from the torso (parent) to the left foot (child)
that meets a number of conditions. One of these conditions
is defined on line 4 via a spatial operator specifying that
the relative joint should match a three-dimensional ellipsoid
with a specific size at a certain location. Lines 1 to 7 are
considered to be conditional code, while the lines 9 and 10
(after the ⇒ symbol) contain activation code which will be
executed whenever a condition is satisfied. Several spatio-
temporal operators are provided as built-in functionality
and expert developers can extend the system with their own
operators. An expert further adjusts the gesture definition



according to specialisation or flexibility requirements. For
each control point (ellipsoid) such a definition has to be
created, whereby user-defined operators can help in dealing
with distance, angles or other spatio-temporal properties.

Listing 1: Control points for gesture G1
1 (defrule ControlPoint3LeftFoot0
2 ?p1 ← (RelativeJoint (parent ?∗torso∗)
3 (child ?∗foot left∗))
4 (test (spatial:matchEllipsoid ?p1
5 -0.14259260892868 -1.68670213222504
6 0.137266874313354 0.6216448 1.506405
7 0.6314279 0 0 6.189708))
8 =>
9 (assert (Ellipsoid (name ”g3FootL0”)

10 (time ?p1.time))))
11
12 (defrule ControlPoint1RightHand0
13 ?p1 ← (RelativeJoint (parent ?∗shoulder right∗)
14 (child ?∗hand right∗))
15 (test (spatial:matchEllipsoid ?p1
16 0.152908384799957 -1.12613391876221
17 0.0352647304534912 0.4534679 1.695701
18 0.3887017 0 0 0.1501325))
19 =>
20 (assert (Ellipsoid (name ”g3HandR1”)
21 (time ?p1.time))))
22 . . .

In the definition of gesture G1 shown in Listing 2, control
points are combined to form a complex gesture. Notice how
all feet (torso-foot relative joint) and arms (shoulder-hand
relative joint) are important in this movement (lines 2, 5,
6 and 7), even though the left arm remains steady (Fig-
ure 1). For this gesture, the steady arm contains a lot of
valuable information as we optimise for a precise gesture
definition to give the artist the freedom to perform other,
but similar movements that should not activate the gesture
definition. Lines 7 to 11 describe the movement of the arm
in three phases which could even be extended if higher pre-
cision is required.

Listing 2: Gesture G1: pointing up
1 (defrule Gesture1
2 ?p1 ← (Ellipsoid (name ”g3FootL0”) (user ?u))
3 ?p2 ← (Ellipsoid (name ”g3FootL4”) (user ?u))
4 (test (time:before ?p1 ?p2 3.s))
5 ?p3 ← (Ellipsoid (name ”g3FootR5”) (user ?u))
6 ?p4 ← (Ellipsoid (name ”g3HandL7”) (user ?u))
7 ?p5 ← (Ellipsoid (name ”g3HandR1”) (user ?u))
8 ?p6 ← (Ellipsoid (name ”g3HandR2”) (user ?u))
9 (test (time:before ?p5 ?p6 3.s))

10 ?p7 ← (Ellipsoid (name ”g3HandR3”) (user ?u))
11 (test (time:before ?p6 ?p7 1.s))
12 =>
13 (assert (GestureMatch (name ”Gesture1”)
14 (startTime ?p1) (stopTime ?p7) (user ?u))))

By using a declarative language, we can easily manually
refine various details without having to capture additional
sample data. For instance, the angle of the arm in the end
move could be less strict and the movement of the left leg
can be used to optimise the precision. Additional control
points can be added to make the gesture sequence more
strict, including those based on other joints can be incor-
porated to refine the definition. The further we go back in
time, the more precisely a gesture can be defined. However,
this forces the user to perform the gesture as agreed in the
gesture definition.

Furthermore, the declarative definition of gestures based
on the Mudra framework allows for an easy explanation to

the artist on how a gesture is implemented and to what
constraints their movements have to adhere. We do neither
require extensive training data to implement new gestures,
nor other non-gesture data. The Mudra recognition engine
is implemented in the C programming language and is fast
enough to process continuous full body movement of mul-
tiple users over a period of time. Furthermore, it allows
precise detection (i.e. reducing false positives) and also re-
sults in a high recall. In this application, gestures occur
in a fixed sequence which means that the activation of ges-
tures can be further refined by adding a previous gesture
activation as a conditional element.

In a declarative language, unification can be used to group
certain entities. In this case, by using a single logical vari-
able for conditional elements on the user field, we automat-
ically enable support for multiple users. The user identifier
that triggers the gesture will be passed to the final applica-
tion (line 14), such that the correct user will be augmented
with the appropriate visual elements.

Barry et al. [1] mention the “trade-off between recognition
quality and the delay of the real-time recognition” as one ele-
ment of future work. By using a declarative gesture spotting
language, gestures can be recognised precisely and in real
time. It does not require a preprocessing step that splits
up the continuous stream into possible gesture candidates,
but rather computes the incremental gesture by using the
efficient Rete algorithm.

We conclude this section by shortly revisiting how the
constraints of the expressive control are met. Our three-
dimensional ellipsoid Mudra extensions allow us to create
expert gesture definitions instead of statistical or template-
based gesture recognition solutions. This overcomes two
major obstacles: the lack of gesture and non-gesture data
as well as the fact that experts can manually configure the
precision and recall for all gestures by defining control points
and parameterising spatio-temporal functions. The Mudra
engine compiles these definitions into a Rete engine which
maintains incremental results through a time sliding win-
dow, enabling the real-time processing of a continuous in-
put stream. The input stream consists of full body tracking
information (30 Hz and 20 joints) originating from a non-
invasive Microsoft Kinect sensor. By relying on a declara-
tive language and unification, the support for multiple users
at the same time only requires a single additional variable.
This is in huge contrast to imperative languages where in-
termediate state management of complex full body gestures
is very hard to implement and modify.

5. IMPLEMENTATION
The overall architecture of our system is outlined in Fig-
ure 6. The input layer consists of the Microsoft Kinect
sensor, which is responsible to capture the full body move-
ments of users, and the Mudra recognition engine, con-
figured with the corresponding declarative gesture rules.
The Kinect SDK and the Mudra framework are intercon-
nected through the Open Sound Control (OSC)4,5,6 proto-
col. Our OSC components for the Microsoft Kinect SDK7

or OpenNI-NITE8 have been made available under an open
source license. Note that the OSC protocol acts as a decou-
pling layer between the software architecture and the phys-
ical space. It enables us to use a dedicated laptop for user

4http://opensoundcontrol.org
5http://liblo.sourceforge.net
6http://www.ventuz.com/support/help/v3_01/
OpenSoundControl.html
7https://github.com/Zillode/OSCeleton-KinectSDK
8https://github.com/Zillode/OSCeleton-OpenNI



tracking based on the Microsoft Kinect SDK in the front
of the stage and to transmit the data through Ethernet to
another laptop positioned backstage.

Input layer

Kinect
/skeleton

OSC

XNA
Mudra

gesture rules

Output layer

Unity

WPF

Facts

Figure 6: Architecture

Mudra processes the continuous OSC stream and triggers
the programmed assertions whenever the artist performs the
defined gestures. These assertions are transported to the
output layer through two-way TCP/IP key-value pairs as
communication protocol. These pairs contain simple values
(i.e. integers, floats and strings) such as the name of the
gesture and the time it has been recognised. The values
are simple enough to be supported by various programming
languages. We experimented with multiple technologies to
create a virtual reality environment based on the Unity3D
framework where an avatar is controlled by the artist. The
predefined gestures then triggered various flames that were
attached to one or multiple joints. However, as mentioned
before, a direct mapping between the artist and a virtual
avatar resulted in noticeable artefacts when the artist per-
forms a move that was not correctly tracked by the Mi-
crosoft Kinect SDK. We switched to the Windows Presen-
tation Foundation (WPF)9 for implementing the augmented
reality part. Our augmented reality solution is more forgiv-
ing for incorrect tracking and jittering of joint coordinates.
Unfortunately, the WPF implementation is unreliable when
running for several hours due to internal memory leaks and
also results in relatively poor performance when a lot of par-
ticles in the simulation of the flames are used. Nevertheless,
these particles are crucial to form a realistic visualisation of
fire and other effects. Finally, Microsoft XNA10 was chosen
as an ideal platform for our solution as it is a lower level
library providing more control over the performance vari-
ables. Inside the XNA output module, particle effects are
used to the create the fire animation. This fire animation
can be attached to the location of a user’s skeleton joints.
Since the performed song is about fire, we gradually en-
able more fire over time and every time the artist performs
a specific gesture an additional joint is put on fire. This
allows the artist to decide when they want to enable addi-
tional visualisations layers. In particular, when gesture G1
is performed, the right hand is set on fire and the fire keeps
burning even when the artist moves further, creating a visu-
ally appealing fire trail as, for example, shown in Figure 7.
Whenever gesture G2 is performed, both hands will be on
fire. The same applies to gestures G3 and G4 to activate
the fire for the feet. Finally, when gesture G5 is detected,
the whole body is set on fire as shown in Figure 9.

The decoupling between input and output layers through
TCP/IP further allows us to experiment with other types of
activations such as enabling different types of visualisations
or triggering light programmes in the future. Note that ac-
tivations could also be triggered by attentive staff, but for
many artists this is not an option for their performances
due to budget restrictions. It should also be stressed that

9http://msdn.microsoft.com/en/library/ms754130.
aspx

10http://msdn.microsoft.com/en-us/centrum-xna.aspx

this approach is tailored towards precise gesture recogni-
tion. This is in contrast to many related approaches that
generate direct feedback in terms of sound synthesis or dy-
namic visualisations. However, the system can also serve as
an additional module for these approaches, for instance to
switch between scenes or enabling more complex behaviour
than a direct mapping between input and output.

The presented system provides an ideal solution for sce-
narios where precise gesture recognition is required to ac-
tivate certain actions. Currently, the declarative gesture
rules are composed by an expert user. However, in the
near future we plan to provide an integrated development
environment (IDE) that is suitable to create complex three-
dimensional full body gestures by end users. The IDE will
allow the graphical coordination of control points which
are transformed into readable declarative rules that sub-
sequently still can be modified by the expert user.

6. DISCUSSION AND CONCLUSION
The use of our gesture-based indirect augmented reality dur-
ing three live performances of the band Mental Nomad is
shown in Figures 7, 8 and 9. We are happy that the artists
were extremely satisfied with the accuracy of the system and
the added value it produced in terms of an excited audience
and more flexibility for improvisation. Indeed, the reception
from the audience was intense, partly due to the augmented
reality stream, but mainly also due to the matching visual
overlays that gradually increased during the song. We also
received comments from the audience that the visualisa-
tions were extremely accurate and synchronised with the
performed choreography.

Figure 7: Live performance (after gesture G3)

Figure 8: Live performance (gesture G4)

The recognition engine performed flawlessly without any
false positives or missed gestures during all three live per-
formances that took place in 2012 with an audience of about
1500 people. The mix between continuous augmented real-
ity and discrete activations of the visualisation layers pro-
vides an interesting view on the two large screens that have
been installed at the sides of the stage as illustrated in Fig-
ure 10. The Kinect sensor was positioned at the front of
the runway and the optimal tracking area was labelled on



Figure 9: Live performance (gesture G5)

the ground as an aid for the artists. All Kinect skeleton
data was transmitted trough OSC to a backstage laptop
connected to the two large screens.

The live music performance was recorded and our paper
is accompanied by parts of the video material showcasing a
small part of the performance. Currently, our system was
embedded in a larger album presentation and was only used
to augment a single song. However, based on the good per-
formance and the positive feedback from both the artists as
well as the audience, we hope that these kind of systems
become more ubiquitous in future performances. One limi-
tation of our approach entailed by the Microsoft Kinect sen-
sor and SDK, is the limited skeleton tracking accuracy and
the inability to function under certain conditions (e.g. di-
rect sunlight). However, more advanced depth sensors and
tracking algorithms could be used in other settings.

Large
screen

Audience

Kinect area Kinect camera

Stage

Large
screen

Figure 10: Stage configuration

We demonstrated an application of our general gesture
recognition engine. The presented solution allows precise
gesture recognition without requiring multiple gesture sam-
ples. Nevertheless, despite the lack of non-gestural expres-
sions and the inaccurate tracking provided by the Microsoft
Kinect SDK, the presented system for expressive control
of indirect augmented reality performs very well. Finally,
our declarative real-time classification platform can also be
used to implement discrete gesture-based triggers in other
settings, including the expressive control of light shows or
when activating different sound synthesis features. Other
future plans include the development of an integrated de-
velopment environment to simplify the definition of complex
gesture by end users.
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