
A Transparent Data Persistence Architecture for
the SimJulia Framework

Piet Van Der Paelt
Department of Mathematics

Faculty of Engineering
Royal Military Academy

e-mail: piet.vanderpaelt@mil.be

Ben Lauwens
Department of Mathematics

Faculty of Engineering
Royal Military Academy

e-mail: ben.lauwens@mil.be

Beat Signer
Web & Information Systems Engineering Lab

Department of Computer Science
Vrije Universiteit Brussel

e-mail: beat.signer@vub.be

SimJulia is an open source discrete event simulation framework [1] written
in the Julia programming language [2]. The framework transforms processes
expressed as functions into resumable functions using the Resumable Functions
library [3]. The current SimJulia implementation lacks functionality to persist
any variables, characterising the state of such a transformed process during the
simulation in a transparent way. To mitigate this shortcoming, we extended
both the SimJulia framework and the Resumable Functions library by imple-
menting a transparent probing and persistence architecture, employing language-
specific metaprogramming features. Our implementation is based on the Object-
Relational Mapping concept (ORM) [4] using the PostgresORM library [5], sup-
ported by the PostgreSQL Relational Database Management Systems (RDBMS),
and Julia’s macro expansion.

A simulation model expressed by means of functions is transformed into re-
sumable functions ready to be run by SimJulia. Our solution uses the code
analysis occurring at this stage to store a monitored function’s state variables
configuration in the database. The user controls which processes are monitored
through a flag set on each process. After the code analysis phase, macro ex-
pansion takes place, creating the object definitions based upon the configuration
saved earlier, before the simulation runs. During the simulation, successive events
invoke an array of callback functions being executed. The last function in such an
array is the probing function. Monitored processes are probed using the object
definitions created just in time. Instantiated objects materialising the state of
the concerned process are then persisted in the table specific to the concerned
process. The data is subsequently available in the RDMBS, and can be visualised
using the technology of choice. Our implementation visualises the data using the
VueJS library.

Our contribution consists of a transparent probing and persistence mecha-
nism. Using Julia’s metaprogramming capabilities, we were able to divert from

TA-3: Tools

95



a static ORM configuration as often seen in web applications, to a transparent
and dynamic configuration. The end user has the evolution of the state variables
available throughout the simulation, without having to provide any configuration.

References
[1] B. Lauwens, “Simjulia: Discrete Event Process Oriented Simulation Frame-

work Written in Julia.” https://simjuliajl.readthedocs.io/en/stable/
welcome.html, 2017. Online; accessed 28-June-2022.

[2] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A Fresh
Approach to Numerical Computing,” SIAM review, vol. 59, no. 1, pp. 65–98,
2017.

[3] B. Lauwens, “ResumableFunctions: C# Sharp Style Generators for Julia,”
Journal of Open Source Software, vol. 2, no. 18, p. 400, 2017.

[4] C. Russell, “Bridging the Object-Relational Divide: ORM Technologies Can
Simplify Data Access, But Be Aware Of The Challenges That Come With
Introducing This New Layer Of Abstraction,” Queue, vol. 6, no. 3, pp. 18–28,
2008.

[5] V. Laugier, “PostgresORM.jl: Object Relational Map-
ping for PostgreSQL.” https://discourse.julialang.org/t/
ann-postgresorm-jl-object-relational-mapping-for-postgresql/
63847, 2021. Online; accessed 28-June-2022.

TA-3: Tools

96




