
1

INFEX: A Unifying Framework for Cross-Device

Information Exploration and Exchange

REINOUT ROELS, ARNO DE WITTE, and BEAT SIGNER, Vrije Universiteit Brussel, Belgium

In our daily lives we are witnessing a proliferation of digital devices including tablets, smartphones,

digital cameras or wearable appliances. A major e ort has been made to enable these devices to exchange

information in intelligent spaces and collaborative settings. However, the arising technical challenges often

manifest themselves to end users as limitations, inconsistencies or added complexity. A wide range of existing

and emerging devices cannot be used with existing solutions for cross-device information exchange due to

restrictions in terms of the supported communication protocols, hardware or media types. We present INFEX,

a general and extensible framework for cross-device information exploration and exchange. While existing

solutions often support a restricted set of devices and networking protocols, our unifying and extensible

INFEX framework enables information exchange and exploration across arbitrary devices and also supports

devices that cannot run custom software or do not o er their own I/O modalities. The plug-in based INFEX

architecture allows developers to provide custom but consistent user interfaces for information exchange and

exploration across a heterogeneous set of devices.

CCS Concepts: • Software and its engineering→ Development frameworks and environments;

Additional Key Words and Phrases: Information transfer, information exploration, cross-device interaction

ACM Reference Format:

Reinout Roels, Arno De Witte, and Beat Signer. 2017. INFEX: A Unifying Framework for Cross-Device

Information Exploration and Exchange. Proc. ACM Hum.-Comput. Interact. 1, 1, Article 1 (January 2017),

26 pages.

https://doi.org/0000001.0000001

1 INTRODUCTION

Over the last decade we have seen an increase in the number of electronic devices that we use in
our daily lives. While devices such as smartphones, tablets, digital cameras or laptops are already
widespread [1], we witness the rise of new types of electronic devices including smartwatches,
!tness trackers and other wearable technology. As stated by Rädle et al., “We are witnessing an
explosive growth of the number and density of powerful mobile devices around us. However, their great

majority are still blind to the presence of other devices and performing tasks among them is usually

tedious” [24]. For example, if we want to transfer music from a smartphone to an audio-enabled
sports watch for a workout, we often have to use a computer to retrieve the music from the phone
and manually copy the songs to the watch by using vendor-speci!c software such as iTunes which
complicates the process.
Some devices might have built-in WiFi to share content via email, cloud services or social

networking. However, this approach has its own shortcomings as it requires additional user

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for pro!t or commercial advantage and that copies bear this notice and the

full citation on the !rst page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior speci!c permission and/or a fee. Request permissions from permissions@acm.org.

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Association for Computing Machinery.

2573-0142/2017/1-ART1 $15.00

https://doi.org/0000001.0000001

Proc. ACM Hum.-Comput. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Proceedings of the ACM on Human-Computer Interaction

(PACMHCI), 2017 (to appear)

https://dl.acm.org/pub.cfm?id=J1598

1:2 Reinout Roels, Arno De Wi e, and Beat Signer

interactions and results in unnecessary delays given that a user is piggybacking another medium
for quick data transfer. More importantly, this method only works if the receiving end also supports
the chosen transportation method. In practice, this enables information exchange between modern
smartphones, tablets and computers but excludes a large amount of other commonly used devices
such as older devices, devices without a display or devices that do not run third-party applications.
Nevertheless, just because a device does not support the previously mentioned approach does not
mean that it can only be accessed when it is wired to a computer. For instance, even decade old
cellphones allow access to resources such as contacts, pictures or music via the wireless Bluetooth
protocol. Similarly, sports-related wearables such as heart rate monitors often use Bluetooth for
providing access to the gathered data and recent digital cameras might come with built-in WiFi
for accessing captured pictures. However, incompatible hardware characteristics, data formats
and communication protocols limit developers and researchers to use only speci!c devices and
interaction methods are usually tailored to cope with technical restrictions rather than focusing
on the user experience. The HCI community has identi!ed that low-level technical complexity
often results in serious end user issues [7] and we see an opportunity for improving information
exchange across a heterogeneous set of devices.
We present the INFEX framework for cross-device information exploration and exchange which

o ers extensibility and reusability on the device detection and connectivity as well as on the end-
user interaction level. INFEX implements common communication protocols and access methods
as plug-ins and acts as a mediator to handle device detection and information exchange. This
allows application developers to use a higher-level interface for information exchange where every
device, protocol or media type can be used in the same way, encouraging a uniform and consistent
user experience. In contrast to existing approaches, the presented framework is highly extensible,
designed to prevent some of the infrastructure issues mentioned by the HCI community and also
supports devices without a display or I/O modalities. The functionally o ered by INFEX allows both
researchers and commercial developers to build applications for exchanging information between
previously incompatible devices with a minimal amount of e ort, thereby allowing them to focus
on the user interface and potentially novel interaction techniques.
We start by describing di erent solutions for cross-device information exploration and exchange

and discuss some of their limitations in the background section. We then de!ne a number of goals
and requirements for cross-device information exchange before introducing the architecture of
our INFEX solution. After providing some details about the implementation of INFEX, we present
a speci!c use case which uni!es di erent solutions that have been presented in the background
section and enables information exploration and exchange across previously incompatible devices,
protocols and media types. A critical discussion of the presented INFEX framework and an outline
of potential future work is followed by some general conclusions.

2 BACKGROUND

A unifying solution for information exchange between di erent devices involves many aspects,
both on the technical as well as on the usability level. Note that we are not the !rst ones to notice
the ine#ciency of user-driven data exchange between di erent devices [21, 24]. In this section we
discuss the body of existing work and identify a number of limitations of existing solutions which
are going to be addressed by our approach.

2.1 Device Discovery

In order to exchange information between devices, the devices need to be aware of each other’s
existence. From a technical perspective this is trivial for caseswhere devices are connected via a cable.
However, the transfer of information becomesmore challenging whenwe aim for more user-friendly

Proc. ACM Hum.-Comput. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2017.

INFEX: A Unifying Framework for Cross-Device Information Exploration and Exchange 1:3

wireless approaches. The detection of participating devices can, for example, be achieved in a peer-
to-peer manner as seen in the RELATE [10] interactionmodel where custom ultrasound dongles [13]
are used for relative positioning. In most existing approaches, the device detection is performed by
some external infrastructure and not by the participating devices themselves. HuddleLamp [24]
proposes a purely optical solution that uses RGB and depth data from an RGB-D camera to detect
devices that have been placed on a surface. Other vision-based solutions include the tagging of
devices with !ducial markers for camera-based tracking [18] or the use of a device’s front-facing
camera to detect !ducial markers on the ceiling [19, 29] to inform the underlying platform about a
device’s presence and position. Also wireless technology such as Bluetooth is used for detecting the
presence of devices as seen in Connichiwa [30] and BlueTable [36] or RFID and NFC are applied
in [27, 31, 32].

2.2 Connectivity and Integration

Another issue investigated by related work is the fact that the technical complexity of integrating a
device into a network-based system often negatively a ects the user experience. Di erent devices
use di erent incompatible technologies and protocols. Further, technical details such as an IP address
or port number are required to establish a connection. In order to address this issue, Frosini et al. [8]
introduced the concept of connectors. When a device registers, its con!guration contains information
on how the framework can communicate with the device. The con!guration describes which
connector to use by specifying a connector type together with any relevant details such as the
type of connection (e.g. HTTP) as well as an IP address and port number. Devices add themselves
to a session by scanning a QR code but frameworks such as Conductor [12] extend this idea
by using additional sensors such as NFC tags or accelerometers for detecting devices that are
bumped together. Although some initial setup is required, these approaches make it easy to add
the device to a session. Some of the previously mentioned solutions using RFID or NFC store the
device’s Bluetooth MAC address on the tag in order that the necessary information for a Bluetooth
connection can be retrieved when a tag is detected [31, 32].
JCAF [3] is a infrastructure framework for context-aware applications and allows di erent

sensors to be integrated in a network for context processing. However, the framework relies on
Java RMI for retrieving data and only supports Java-enabled devices. DynaMo [2] is a framework for
handling dynamic multimodality. In order to deal with a variety of input hardware, the framework
uses Cilia [9] for mediating events captured from input devices before mapping them to speci!c
actions. The mediation layer allows the framework to retrieve data via di erent protocols but after
mediation the events can be processed in a protocol and format independent manner.

2.3 End-User Interactions

Ideally, interactions in a cross-device setting should be intuitive and uniform. From a usability
perspective it is clear that the spatial component plays an important role in developing intuitive
data exchange systems. Most academic work requires users to get the involved devices close to
each other or even make them touch each other for exchanging information. As summarised
by Marquardt et al. [21], these types of actions have been coined as proxemic interactions in the
context of ubiquitous computing and are based on the study of people’s understanding of spatial
relationships [11, 22]. Note that there are implications on the technical level since a device’s position,
boundaries and orientation needs to be tracked for interactions that make use of spatial information.
Rekimoto’s Pick-and-Drop [25] uses digital pens to allow users to pick up a digital object (e.g. a

!le) on one device’s display and drop it to another device’s display to copy or move the object.
Note that this type of interaction reduces the complexity of data transfer over a network and o ers
an intuitive interaction similar to moving a physical object. Rekimoto later proposed a solution

Proc. ACM Hum.-Comput. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:4 Reinout Roels, Arno De Wi e, and Beat Signer

that uses projection to display associated digital information around objects placed on a table
surface [26]. The use of everyday physical objects for information sharing or as an interface to
digital information sources has been investigated in Embodied Data Objects [33] or DroPicks [14].
The limited range of RFID and NFC technology further enables proxemic interaction. For instance,
Seewoonauth et al. [31] and Sánchez et al. [27] discuss interaction techniques that use RFID tags for
transferring !les between di erent devices. A user can, for example, select an image on the phone
and transfer it to a computer over Bluetooth by reading an RFID tag attached to the computer [32].
Dippon et al. [6] suggested the use of an interactive surface for exchanging photos on smartphones.

Users can select an image from their local gallery for display on the interactive surface and then
use the surface to drag it on the graphical depiction of another phone in order to transfer the image
to the corresponding physical device. Dachselt and Buchholz [5] investigated the use of gestures
to “throw” content or user interfaces from mobile phones to nearby displays. In the opposite
direction, Schmidt et al. [28] describe a cross-device interaction style allowing mobile phones to
pick up digital content from a surface by physically touching the content with the phone. Other
systems that use large surfaces in combination with smaller devices for information exchange
and collaboration include Activityspace [16], Dynamo [17], Impromptu [4] and WeSpace [35].
SurfacePhone [37] eliminates the need of an interactive surface by integrating projection and touch
detection in the phone itself and turning it into a mobile workspace that can interact with other
nearby workspaces. There has also been some work where non-standard devices have been used for
information exchange. For example, WatchConnect [15] explores interactions (including content
transfer) between a custom-built smartwatch and an interactive surface.

2.4 Limitations of Existing Solutions

The presented related work proposes various improvements for transferring content between
devices and covers technical contributions as well as new interaction techniques. Nevertheless, a
number of interesting observations can be made. Our !ndings in terms of information exchange
are related to infrastructure shortcomings that have been documented by the HCI community. We
brie&y introduce these shortcomings using the terminology de!ned by Edwards et al. [7] and show
how they manifest themselves in the previously discussed related work.

2.4.1 Constrained Possibilities. Due to technical complexity or limitations and the fact that
dedicated software has to run on a supported device, almost all of the presented use cases for
user-initiated information exchange limit themselves to laptops, smartphones and tablets only.
Unfortunately, this excludes a large range of existing and emerging devices that cannot run custom
software (e.g. music players, !tness trackers or other wearable technology). Additionally, existing
frameworks and systems often assume that participating devices have a display and o er some input
modalities such as a touch or keyboard-based input, which again excludes various popular devices.
Similar issues can be identi!ed on the protocol level where communication is usually restricted
to either WiFi-based socket connections or Bluetooth. Finally, although a lot of the presented
scenarios share these technical characteristics and have overlapping technical requirements, they
are normally not extensible or reusable and often limited to a speci!c use case or media type (e.g. the
exchange of photos is a common use case). Another example is the UPnP protocol which represents
a more generic protocol for information exchange but still excludes many older or emerging devices
from participation [7].

2.4.2 Unmediated Interaction. The technical complexity at lower levels often manifests itself as
limitations, inconsistencies or added complexity to end users. For instance, in order to integrate a
device in the network a user might have to set up the device by installing software and entering
the IP address of a central server. The more protocols and devices are combined, the higher the risk

Proc. ACM Hum.-Comput. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2017.

INFEX: A Unifying Framework for Cross-Device Information Exploration and Exchange 1:5

that low-level details a ect the user experience. The user interface or interaction method might
further change depending on the device or content type since for technical reasons they are treated
di erently .

2.4.3 Interjected Abstractions. Abstractions made on the technical level can also propagate to
higher levels even if they do not contribute to the interaction model presented to the end user.
For example, an end user might have to !nd and install drivers or adapters to add support for a
speci!c device or content type, when it could have been as easy as enabling a checkbox in list. In a
more literal sense, when considering developers as end users of a framework the interface provided
by the framework might rely on abstractions that require speci!c technologies or programming
languages. Some frameworks might require developers to interact via plain old Java objects (POJOs)
or Java RMI which o ers bene!ts for Java-based clients but excludes clients without Java support.
The shortcomings identi!ed from the relatedwork show that there is plenty of room for improving

cross-device information exploration and exchange. For example, in the presented related work a lot
of the end-user interaction has been implemented from scratch due to the lack of extensibility and
reusability in existing solutions. As a result, researchers and developers often do not spend time to
address the technical complexity but rather only support the most common devices. Further, most
existing solutions are limited to a !xed set of devices and interactions and it is di#cult integrate
and unify existing approaches for exchanging information across devices supported by di erent
existing solutions.

3 GOALS AND REQUIREMENTS

In order to address the previously discussed limitations of existing work we propose a unifying
framework that supports the exchange of information across heterogeneous devices and helps
developers in avoiding common issues. As such, the framework allows developers to mix and match
devices that are not supported in current systems and thereby enables much richer use cases. The
framework mainly focusses on addressing issues on the lower technical levels so that it remains
versatile enough for developers to plug in their own user interfaces and interaction methods in
order to support a wide range of use cases. For instance, our framework might be used to implement
a system where users place all kinds of devices on a tabletop and use drag and drop interactions to
exchange content, or the framework might be used as the backend for a classic desktop application
running on standard consumer hardware. The following goals and requirements focus on creating
a solid foundation on the lower level but as detailed in this section they also manifest themselves
as solutions for higher-level issues such as those described in the previous section. The three main
goals G1–G3 can be summarised as follows:

Goal 1 (G1): Make it easier and faster to develop applications for user-driven information exchange
between devices.

Goal 2 (G2): Support the exploration and exchange of information for devices or combinations of
devices currently not supported.

Goal 3 (G3): Support developers in providing a consistent user-friendly experience regardless of
how di erent hardware or protocols are combined for a given use case. Further, the framework
should not introduce limitations that might restrict the development of customised or novel inter-
faces and interaction techniques proposed by the HCI community.

Proc. ACM Hum.-Comput. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:6 Reinout Roels, Arno De Wi e, and Beat Signer

Based on the presented related work and by taking special care to avoid shortcomings observed in
existing solutions, and by taking into account the issues already identi!ed by theHCI community, we
de!ned a set of requirements for a cross-device information exploration and exchange framework.
For instance, from the classi!cation of issues de!ned by Edwards et al. [7], we avoid constrained
possibilities via requirement R3 and R8, and unmediated interaction as well as interjected abstractions
via requirement R2 and R5. This in turn contributes to the ful!lment of the previously listed goals.

3.1 User Requirements

The following requirements are related to the users of either the framework (developers) or users of
the resulting applications. In most cases the implications for developers also translate into bene!ts
for users interacting with the resulting system.

R1: List, Inspect and Transfer Content. The framework should be able to perform the follow-
ing three actions in order to build functional applications related to information exploration and
exchange (G1): First a user should be able to see a list of all the content on a device. Furthermore, it
has to be possible to inspect speci!c content in more detail in order to verify that this is the content
we are looking for (e.g. check the pages of a PDF document). Finally, the system should make it
easy to transfer content between two devices. This falls in line with design choices made by other
collaborative interfaces such as ActivitySpace [16]. Note that these actions should be supported for
units of information with a !xed size as well as continuous data streams of unknown length.

R2: Customisable Yet Consistent User Experience. The current process of transferring con-
tent between di erent types of devices is not always optimal [21, 24]. Depending on the use case and
the relevant devices, a di erent user interface or interaction method might be necessary. We require
that developers should be able to integrate their own interfaces or interaction techniques (G3) but
the framework should o er the necessary abstraction to allow them to keep the user interface
consistent and uniform, regardless of the hardware or technologies that are combined [7, 23].

R3: Reduced Hardware and Software Constraints In order to support a wide range of de-
vices (G2) and provide richer use cases, the hardware requirements demanded by a framework
should be as low as possible and devices that might not have a display or I/O modalities should
also be supported. There should be no need to install and run speci!c software on a participating
device. One way to achieve this is to make use of the channels already o ered by devices instead of
having to install software to create new ones. For example, both old and modern mobile phones
o er access to contact information and audio via Bluetooth, or some cameras provide access to
the pictures stored within via WiFi. Lowering the hardware and software requirements allows the
inclusion of many devices that are currently not supported by existing solutions, but a unifying
framework has to be designed to cope with new issues introduced by these lowered requirements.

R4: Support for Remote and Non-mobile Devices. In order to not exclude remote or non-
mobile devices such as an FTP server (G2), a framework should take into account that devices are
not required to be physically present to be accessed. There are di erent approaches to include such
devices. For instance, in the domain of information storage, retrieval and manipulation, virtual
representations or tangible physical objects are often used to represent devices that cannot be
physically moved [34]. A framework should therefore take into account that devices might have
alternative representations in the physical world and in the user interface. This might be important
for detecting participating devices or for recognising user-initiated actions.

Proc. ACM Hum.-Comput. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2017.

INFEX: A Unifying Framework for Cross-Device Information Exploration and Exchange 1:7

3.2 Architectural Requirements

Based the goals G1–G3 and the user requirements R1–R4 we can derive additional technical re-
quirements for the architectural level which are independent of the used programming patterns or
implementation technologies.

R5: High-level Abstractions In order to support developers (G1) it is important that a frame-
work provides a consistent high-level interface for accessing its functionality. For instance, a
developer always has to be able to invoke the list, inspect or transfer actions on devices in the same
way, without having to care about the technical di erences which are managed by the framework.
This allows developers to build more consistent user interfaces (R2) and makes it easier to map
speci!c user interactions to the corresponding actions.

R6: Broad Connectivity and Access Support. In order to integrate new devices (G2) and to
deal with requirement R3, it is necessary to support a wide range of communication methods and
protocols such as Bluetooth, TCP/IP or WebSockets. Each of these protocols may act as a carrier
for other protocols. For example, protocols such as FTP, Samba or RESTful HTTP interfaces are
implemented on top of TCP/IP sockets.

R7: Bi-directional Mediation. In order to allow devices with di erent communication hard-
ware or protocols to communicate (G2, R3), a framework should act as a mediator and translate
between di erent protocols for enabling transfers between radically di erent types of devices (R1).
This requires the framework to not only mediate the gathering (input) but also the writing (output)
of information which is not foreseen in various existing mediation frameworks [2].

R8: Extensibility and Reusability. As shown in the background section, existing content
exchange approaches are often hard-coded use cases where the participating devices, content
types and communication channels are limited and !xed. A truly generic framework should be
extensible on all relevant aspects of the process. First of all, there should be no limitations in terms
of the hardware that can be used for user input or the UI rendering. In line with requirement R6, it
should further be possible to extend the list of supported protocols in order that additional devices
can be included while keeping the user interface consistent. Finally, a framework should not be
limited in terms of the content types that can be transferred (e.g. images, contacts or music) and be
extensible to support new content types. A modular architecture also encourages developers to
reuse components, which makes it easier to put together rich use cases (G1).

4 ARCHITECTURE

We now describe the concepts and overall architecture of our unifying INFEX framework for
cross-device information exploration and exchange. We motivate our design choices and relate
them back to the previously listed requirements R1–R8 to further highlight the bene!ts of our
design with respect to the existing body of work. As motivated earlier, it is not necessary to install
any software on the participating devices themselves. Instead, the INFEX framework is set up on a
dedicated device such as a Raspberry Pi1, a laptop or desktop computer. Note that the choice of
this dedicated device might also be in&uenced by the desired user interface ranging from a simple
WIMP2 interface to a more demanding tabletop interface. The INFEX framework uses the dedicated

1https://www.raspberrypi.org
2“Windows, Icons, Menus and Pointers” interfaces, which are commonly used in desktop environments such as Windows

or macOS

Proc. ACM Hum.-Comput. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:8 Reinout Roels, Arno De Wi e, and Beat Signer

device’s di erent communication channels and associated protocols to connect to participating
devices. Note that it is also possible for the dedicated device to simultaneously be used as a regular
client device, allowing for instance a laptop running the framework to act as a bridge for other
devices while also acting as an information source or target. Regardless of its setup, if connected
devices use di erent communication channels and protocols to communicate with INFEX the
framework will perform the necessary mediation to unify the devices and connect devices with
incompatible hardware or software characteristics. The architecture designed to achieve this is
shown in Figure 1.

��������	

���
��
�

���
��

������

���

��	����

�
���
�
���

���� �����
� ���
��
	�

�	�
�!��
���"#��
����

$�#
����� ���%�� &
����"
��

��� ���� �'�� (�� �$)$

����

�	��
��

���	�!
�

�	�#���	��
�

�
	�
�
�

����
�

���

��	�����

����
���

���*
����

+

,�	
��

������

�����
	�

���

Fig. 1. INFEX architecture

The INFEX architecture consists of multiple components and most of them are extensible or
replaceable (R8) as shown in Figure 1. A !rst important component is responsible for automatically
detecting devices willing to participate in an information exchange session. Whether explicit or
implicit, there will always be a mechanism for the user to specify which devices should be used in
the application. Depending on the developed application, a user might include devices by placing
a device on an interactive surface, by bringing them into the proximity of a designated device
running an INFEX instance or by selecting them from a list in a GUI. Regardless of the chosen
mechanism, the framework should be told by the developer how it can detect that a user wants to
include a device. Device detection is a fundamental component of the INFEX framework and can
be chosen or extended by the application developer via speci!c plug-ins (R8).
A second major component is responsible for the communication with devices. In order to support

communication between di erent kinds of devices, communication protocols and methods are also
implemented as plug-ins and our framework mediates the &ow of information to connect devices
using di erent communication protocols (R7). The third major component is the GUI component,
responsible for capturing user input and providing a graphical interface for interactions. An inter-
active surface might be used to allow users to drag and drop content from one device to another,
but due to the interchangeability of the GUI component one can also just use a laptop screen as an
interface for information exchange. The core logic of INFEX ties these three components together
to support the listing, inspection and transfer of device content (R1).
The presented architecture is language and hardware independent but in Figure 1 some example

technologies and devices are shown for each component in order to clarify what might be integrated
by developers. The leftmost group of devices labelled Devices represents the set of devices that are
going to exchange information. The rightmost group of devices labelled I/O Modalities includes
devices that are used to interact with the system and for instance initialise a data transfer between
two devices of the Devices group. Depending on the use case, a user might interact with the system

Proc. ACM Hum.-Comput. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2017.

INFEX: A Unifying Framework for Cross-Device Information Exploration and Exchange 1:9

via a tabletop interface, a classic WIMP interface running on a computer or even a virtual or mixed
reality interface. In the remainder of this section we provide a detailed description of the di erent
INFEX components coordinating the information exchange and user interaction.

4.1 Device Detection

As mentioned before, the way devices are detected is determined by the used device detection
plug-ins. A device detection plug-in is responsible for detecting when devices are joining or leaving
a session. A plug-in might also determine a device’s position and boundaries which can be used by
the GUI to, for example, display an interaction menu next to the device. However, as this is not
relevant for all potential interfaces, the spatial detection aspect is optional and only needs to be
implemented when relevant. A device detection plug-in is free to use any hardware allowing for
many di erent use cases. Thereby, developers can plug in suitable existing detection frameworks
which can, for instance, be based on RFID readers, network discovery or computer vision. The
framework also allows more than one detection plug-in to be used at a given time. In order to do
so, a developer must specify the set of plug-ins to be used and implement a so-called detection
resolver. A detection resolver is another kind of pluggable logic that combines the output of the
selected detection plug-ins in a way speci!ed by the developer. This way the developer determines
what will happen if di erent plug-ins report con&icting results, or they can use di erent plug-ins
to augment each other. For instance, a plug-in that uses an interactive surface’s touch events could
be used to detect that a device has been placed on the surface and provide a rough estimate of the
location while a second plug-in could use computer vision to identify the device and provide more
precise boundaries. Detection plug-ins continuously run in the background allowing them to poll
for new devices as well as to notify the framework when a previously connected device leaves the
session.

4.2 Device Specification Lookup

In conformance with requirement R3, participating devices do not need to run any speci!c software.
However, a one-time setup of the device is necessary. Nothing needs to be installed on the device
itself, but the user should provide the system with some device details before it can participate in
any information exchange session. From a technical perspective, one or multiple unique device
identi!ers must be provided which can be derived by the detection plug-ins when a device is
introduced. This can, for example, be the device’s Bluetooth MAC address, a unique number
embedded in an RFID tag or a 2D barcode attached to the device. More than one identifying number
or string can be provided during setup so that identi!ers produced by di erent detection plug-ins
can be used to look up the device’s speci!cations even if the plug-ins use signi!cantly di erent
detection methods. Further, the supported media types and communication channels that can be
used with the device must be speci!ed so that they can be associated with the previously provided
identi!ers. For instance, in the case of a smartphone we could specify that a list of contacts is
available via the Bluetooth PBAP (Phone Book Access Pro!le) and that pictures can be retrieved over
USB from the !lesystem location /sdcard/DCIM. A default user interface is provided to simplify this
process for the end-user and can be reused in a wide variety of use cases. However, the way users
provide information about their devices might depend on how the application is implemented and
which interaction hardware is used in the !nal product. For this reason we also allow developers to
create their own interface for this process via a small stand-alone application or as an integrated
part of a use case. Custom interfaces for describing devices simply need to send the captured device
description to the framework in a speci!c format where it will added to the list of known devices.
The process of describing and adding a new device is arguably one of the biggest usability hurdles
for the framework but this is alleviated by allowing the interface to be replaced and improved later.

Proc. ACM Hum.-Comput. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:10 Reinout Roels, Arno De Wi e, and Beat Signer

In the future, a GUI might be provided to compose a con!guration by selecting options from a list
or one might even automatically probe the device for common interfaces and suggest any detected
communication channels. Alternatively, the system could maintain a database of common devices
and provide default settings. Once the setup is complete, the device is added to the database and
the system will be aware of its presence when an associated identi!er is returned by any of the
detection plug-ins. In case that multiple plug-ins are used, the detection resolver combines the
information and ensures a single identi!er is returned together with a position and boundaries. In a
next step the INFEX database is consulted to see whether the device is known (i.e. whether it went
through the initial setup). If the identi!er is not found, the device is simply ignored. However, if the
device is known, all device information—including its supported media types and communication
channels—is retrieved and passed to the framework’s core logic which keeps the information in
memory as long as the device is participating in the session.
Note that the object that is used to identify a device does not necessarily have to be the device

itself. For instance, one could attach a 2D barcode to a simple everyday object and set it up so that
it describes the communication channels to a remote device. Such an object can then be used as a
tangible proxy for a device that might not be mobile or located far away. Using the same principle,
an interface could allow the user to click an image of the device or select the relevant device name
from a menu in the software so that the framework can be told to include the corresponding device
based on the device name, not requiring physical interaction with the device itself. This allows
interfaces to be more &exible in terms of detection and inclusion mechanisms, but it also provides
alternatives for devices where physical interaction is impossible (R4).

4.3 INFEX as Protocol Mediator

One of the major challenges for our INFEX framework was the ful!lment of requirement R7 which
requires that we can read content from one device and copy it to another device even if the two
devices use completely di erent communication methods. For this reason the framework needs to be
able to communicate via various protocols (R6); preferably in an extensible manner (R8). Therefore,
all communication is done via so-called communication plug-ins with each of them implementing
a speci!c communication method such as Bluetooth PBAP, FTP or WebSockets. Note that in order
to avoid redundant code, communication plug-ins can make use of other communication plug-ins.
For example, a plug-in for RESTful API access could be built on top of an HTTP plug-in which in
turn could be built on top of a TCP/IP plug-in.
As mentioned earlier, during the initial device setup each supported media type is speci!ed

together with details about its access method. An older phone might be set up to support the sharing
of contacts via the Bluetooth PBAP protocol. This way, when contact information needs to be read or
written to the phone, the framework knows that it can invoke the Bluetooth PBAP communication
plug-in to perform the communication. Each communication plug-in must implement the following
operations: read(), readChunk(), write(), writeChunk() and list(). By de!ning such a !xed
interface, our framework tells each plug-in what to do in the same way, without needing to be
aware of their inner workings (R5). These operations on the technical level are su#cient to ful!l
requirement R1, allowing developers to provide at least list, inspect and transfer operations in the
user interface. The read() and write() operations allow the framework to read or write a single
unit of content (e.g. a document or a contact) while list() allows the framework to retrieve a
list of all the content that is accessible via the plug-in’s communication channel. For transferring
content between devices, the framework might use one communication plug-in to read from a
device and another communication plug-in to write to a second device. The readChunk() and
writeChunk() operations are variants of the read() and write() operations speci!cally for data
streams that do not have a clearly de!ned length. When a data stream is directed from one device

Proc. ACM Hum.-Comput. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2017.

INFEX: A Unifying Framework for Cross-Device Information Exploration and Exchange 1:11

to another the framework repeatedly performs the readChunk() operation on the source device
and writes the retrieved data to the target device using the writeChunk() method.
There is one additional issue that needs to be addressed on the architectural level for both

streams and !xed-length content units. The structure of the data retrieved from a device might
be di erent depending on the protocol used to retrieve the data. For instance, contacts retrieved
via the Bluetooth PBAP protocol are returned in the vCard format while other communication
channels might retrieve contacts as CSV or JSON !les. Therefore, a generic data format should be
used in the core of the framework and communication plug-ins are then responsible for performing
the conversion when reading or writing data. Whenever a communication plug-in is invoked to
retrieve data, it transforms the read data into the generic format before handing it to the framework.
Similarly, when a plug-in is invoked to write data, data in the generic format is converted to
the structure required by the corresponding protocol. The chosen design allows us to isolate
protocol-speci!c complexity into the communication plug-ins in a way that allows INFEX to
provide a more generic high-level programming interface. This makes it easier for developers to
build richer applications and also blocks developers from letting technical complexity a ect the
user experience (R2).

Fig. 2. Example scenario showing how INFEX unifies incompatible devices

In order to illustrate the mediation process, we brie&y discuss the scenario shown in Figure 2. In
this case the user is running an INFEX-based application where the developer implemented a simple
touch-based interface allowing users to simply drag and drop content between icons that represent
the detected devices. The user has taken a nice picture with their GoPro action camera and would
like to print it on a Bluetooth printer and then copy it to their phone via NFC. Without INFEX the
process would be quite tedious, requiring the user to synchronise the GoPro with the computer by
using the GoPro software, pairing the printer, opening the image !le, manually initiating a print,
opening the necessary software for the NFC transfer and manually initiating the transfer. With
our INFEX-based application, the user simply drags the image from the GoPro to the printer. The
GoPro does not support direct printing nor can it establish a connection with the printer due to
the incompatible protocols. In this case, INFEX solves the problem by acting as a mediator and
retrieves the image via WiFi from the GoPro in order to then send it to the printer via Bluetooth.
However, this is all hidden from the user who experiences the transfer as a simple drag and drop
operation. Similarly, the user can drag an image from the GoPro to the mobile phone which will

Proc. ACM Hum.-Comput. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:12 Reinout Roels, Arno De Wi e, and Beat Signer

initiate an NFC transfer if the mobile phone is within range of the laptop’s NFC module. Note
that the scenario could be extended further and more devices and protocols could be added by the
developer without introducing new complexity, allowing all the of the supported devices to be
mixed and matched.

4.4 User Interaction with Device Content

So far we have described all the technical components of the architecture and showed how the
framework can communicate with di erent devices. However, in the end all forms of communication
and transfer are initiated by the user. Similar to the already described parts of INFEX, also the GUI
is not !xed but can be replaced if necessary. As discussed earlier, we should also support devices
without a display or input modalities and therefore the GUI module must provide a graphical
interface to interact with the detected device. The main goal of the interface is to represent the
devices in the session, show what kind of content types a device provides (e.g. contacts or images)
and to allow a user to initiate actions such as listing, inspecting or transferring content (R1). As
requested by requirement R5, at the data level these actions should be supported in the core of the
framework. The requirement further implies that application developers do not need to worry about
the technical details of the connection. User interfaces can be developed on top of the list, inspect
and transfer abstractions which ensures that developers are o ered the necessary technical support
while still allowing them to implement highly customised interfaces and interaction techniques (R2).
In other words, INFEX provides the infrastructure to perform these actions on the data level but
developers can decide how content lists are presented to the end user, how content is inspected
and how the user should initiate a transfer. Note that the architecture also makes it easy to use
additional hardware such as an interactive surface or depth-sensing cameras as part of the user
interface (the group of devices labelled I/O Modalities in Figure 1). As discussed later, we provide
a default GUI implementation working for most use cases, that can be used with commonly available
hardware and which can also serve as a starting point for further extensions.
Concretely, the GUI module should be built in accordance with a speci!c interface de!nition in

order that bi-directional collaboration with the core logic is possible. This allows the core logic
to notify the GUI module when new devices are added or removed to a session as well as when
a device’s position changes. The GUI module can then ask for the content types that the device
supports or directly ask for a list of all content so that it can be visualised accordingly. Similarly, the
GUI module can react to captured user input by mapping it on to one of the list, inspect and transfer
abstractions and delegating the action to the core logic for execution on the data level. Depending
on the use case, GUI modules can be implemented using di erent technologies. A GUI module
might, for instance, be based on web technologies such as HTML, CSS and JavaScript or it could be a
WIMP interface built with the .NET framework. Note that the GUI component does not necessarily
have to run on the same machine as the rest of INFEX and can communicate with the core over the
network using TCP/IP sockets, WebSockets or a RESTful interface.
If a GUI module wants to provide special visualisations or interactions for speci!c media types,

it should implement an internal plug-in system to provide extra functionality for speci!c content.
These media plug-ins may be used to a ect the way content of a speci!c type is listed and inspected.
For instance, one might want to visualise a set of images as a grid of thumbnails instead of a list of !le
names. Similarly, when inspecting a PDF document it can make sense to show a widget that allows
the user to go through the pages of the PDF, or an audio widget might allow users to play back any
audio !les found on a device. Because this behaviour is very content speci!c, it should be isolated
in so-called media plug-ins. As an added bene!t, media plug-ins can be reused in GUI modules that
use the same technology. For instance, media plug-ins developed in HTML and related technologies
for a browser-based interface could also be used in an interface that uses mixed reality since devices

Proc. ACM Hum.-Comput. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2017.

INFEX: A Unifying Framework for Cross-Device Information Exploration and Exchange 1:13

such as the Microsoft HoloLens3 can integrate HTML-based widgets. Similarly, GUI modules that
use technologies such as QML4 might reuse media plug-ins in compatible environments.

Karen Harris:

262!732!9118

Stephen Lee:

718!389!1619

Jeffrey Turner:

312!940!6616

Sarah Mullins:

731!327!5224

Marry Mills:

760!761!7485

Kathy Daniel:

973!348!7069

Stephen Lee:

718!389!1619

John Lewis:

573!543!9337

Thomas Borg:

781!567!5772

Helen Connor:

724!527!3555

Work Tel.: 718!389!1619

Home Tel.: 614!379!4017

3

22

1 1

Fig. 3. A possible user interface for listing, inspecting and transferring content based on INFEX abstractions

To outline the bene!ts of INFEX, we show another possible scenario in Figure 3 where two
phones exchange contact information by placing them on an interactive surface. Even though the
scenario merely involves the exchange of contact information, the phones would be considered
incompatible in existing systems due to the age and hardware di erence of the devices. The surface
shows a graphical interface next to the phones for user interaction so that users can interact with
the phones without having to install any software, which might be impossible for the old phone
shown on the left-hand side anyway. The three steps for exchanging information have been marked
with circles numbered 1 to 3 . Device positions returned by the detection plug-ins are used by
the GUI module to place an interaction menu next to the devices and a tab is shown for each
supported media type. When a tab is selected the list abstraction is applied and the returned content
is visualised in a list 1 . A media plug-in for contacts causes contacts to be listed in a more suitable
manner, showing their name, telephone number and a thumbnail image. Furthermore, when a
contact is inspected by dragging it onto an empty space on the surface, the inspect abstraction is
invoked and a specialised widget is shown that visualises the contact in greater detail 2 . To initiate
the transfer abstraction, the user can either drag the inspection widget into the other phone’s
contact list or a contact can be dragged directly from one list to another list 3 . Please keep in
mind that this is only one possible implementation and di erent solutions such as Rekimoto’s
Pick-and-Drop [25] user interface could also be developed on top of the list, inspect and transfer
abstractions. It is also important to note that the developer of the GUI component does not need
to know any technical details about the underlying connections as they only have to use the list,
inspect and transfer abstractions. For each invocation, INFEX automatically uses the corresponding
technology and protocols and converts the data where needed. In this scenario the framework
might use Bluetooth to list and inspect contacts on the older phone on the left, while it might use
HTTP to connect to a cloud service to copy the contact to the newer smartphone on the right.
Although the scenario is relatively simple it would already take a signi!cant developer e ort to
create such an application from scratch and the complexity rapidly increases if more devices or
media types (e.g. images) have to be supported.

5 IMPLEMENTATION

In this section we present an initial version of the INFEX framework and illustrate how we imple-
mented the previously mentioned requirements and architecture. We start by detailing how we

3https://www.microsoft.com/microsoft-hololens/en-us
4http://doc.qt.io/qt-5/qmlapplications.html

Proc. ACM Hum.-Comput. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:14 Reinout Roels, Arno De Wi e, and Beat Signer

addressed some of the non-trivial technical issues and then show how the framework can be used
by developers.

5.1 Implementation-specific Details

In accordance with the previously mentioned requirements and the proposed architecture, we have
implemented a !rst version of the INFEX framework to demonstrate its potential. The framework
is implemented in Java and a classical JAR-based plug-in loading mechanism has been applied
to enable the extensible components described in the architecture section. In order to e#ciently
handle the internal processing of various events (e.g. device detection or the invocation of actions
or plug-ins) we make use of Google’s EventBus implementation forming part of the Guava Google
Core Libraries for Java5. The EventBus o ers an e#cient publish-subscribe mechanism allowing
components of the INFEX framework to publish events to a central pool from where they are
automatically redistributed to other components that are relevant to the event. The EventBus is,
for instance, used by communication plug-ins to notify other components in the system about their
progress when performing a transfer. Similarly, when a device detection plug-in detects that a new
device has been added to the session, it publishes the detected device identi!er in order that the
framework can react accordingly. The use of an EventBus enables e#cient asynchronous event
handling and simpli!es the orchestration of various components of the framework working in
parallel and the event system is further used for error handling and logging purposes.
The extensible components can be divided into three categories of plug-ins: device detection

plug-ins, communication plug-ins and GUI modules. Each of these JAR !les should implement a
plug-in interface by providing a class that implements the interface for the corresponding plug-in
type. These JAR-based plug-ins may contain additional dependencies such as libraries or binaries
required for accessing hardware relevant to their task. The interface for device detection plug-ins is
fairly straightforward. Developers should simply implement an init() and a stop() method and
are further free to implement their detection method as desired. The plug-in is then responsible
for publishing the correct events to the previously discussed EventBus, for instance when they
detect that a device enters or leaves the session, or optionally when spatial information changes
(e.g. the device’s location or boundaries). When these events are published they will be captured
by the session manager in the core and the corresponding internal actions will be executed. For
instance, when a KnownDeviceDetected event is published the framework looks up the device’s
speci!cations and noti!es the GUI module about the new device in the session. Note that if a
detection resolver was provided, the framework will give the last result of each active detection
plug-in to the resolver which is then responsible for combining the results and publishing the
relevant events.

Communication plug-ins have to implement the read(), readChunk(), write(), writeChunk()
and list()main methods. As mentioned earlier, the readChunk() and writeChunk()methods are
variants of the read() and write() methods that deal with data streams of unknown length and
will be called repeatedly by the framework to deal with potentially endless streams. When any of
the methods are called, a HashMap containing key/value pairs with additional parameters is passed
along. For instance, if a device states that its images can be retrieved via FTP from a particular
folder, the IP address and folder path need to be given to the FTP plug-in when it is invoked to list
content. Since INFEX keeps track of all the devices and their communication speci!cations, it is
able to automatically provide the relevant parameters to the corresponding plug-ins when the user
triggers an action. An example of a communication plug-in is described later in Section 5.2. Note

5https://github.com/google/guava

Proc. ACM Hum.-Comput. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2017.

INFEX: A Unifying Framework for Cross-Device Information Exploration and Exchange 1:15

that although a communication plug-in has to implement all the mentioned methods, in some cases
this might not be possible. For instance, not all communication plug-ins can read or write data as a
stream (e.g. the Bluetooth PBAP protocol only deals with phone contacts as !xed-sized content
units). There are also devices that only produce digital data (e.g. scanners or webcams) or devices
that only consume digital data (e.g. printers, speakers or televisions). Therefore, plug-ins for the
corresponding protocols cannot always provide both read and write methods at the same time. In
such cases all the methods still have to be implemented, but the unsupported ones should !re an
UnsupportedCommunicationPluginMethod event when invoked so that the framework can deal
with the situation accordingly and notify the GUI module in order that the incompatibility can
be visualised to the user. Figure 4 shows a scenario where streams as well as consume-only and
produce-only devices are combined in a particular application. In this case the diagram shows how
INFEX can retrieve information from a scanner (produce-only device) and visualise the resulting
digital document on a television screen (consumer-only device) by, for example, implementing a
communication plug-in for the Chromecast6 protocol. The same plug-in would also allow audio to
be streamed to the television from a Bluetooth device such as a sports watch. The user interface
that allows the user to initiate these exchanges is of course &exible and in this case a tabletop is
used, potentially with tangible objects to represent devices such as the scanner and the television.

Fig. 4. Example scenario showing a particular application of streammediation and transfers between consume-

only and produce-only devices

As discussed in the architecture section, the structure of retrieved information sometimes depends
on how the data was retrieved. For instance, when using the Bluetooth PBAP protocol contacts are
returned in the vCard format shown in Figure 5a while Google’s cloud storage for contacts will
return contacts as XML format as illustrated in Figure 5c. These formats are incompatible and even
though the framework can mediate the corresponding data transmission protocols, exchanging
contacts between these storage media would not be possible without conversion. In order to address
this issue, it is necessary that a communication plug-in translates any retrieved data to a generic
representation before passing it on. This generic representation is then used internally, and is
eventually passed on to another communication plug-in which will convert it to the target device’s
data format for writing.

6https://www.google.com/chromecast/

Proc. ACM Hum.-Comput. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:16 Reinout Roels, Arno De Wi e, and Beat Signer

BEGIN:VCARD
VERSION:2 . 1
N:Doe ; John ; ; ;
FN: John Doe
TEL ; CELL: +12025550196
EMAIL ; PREF ; HOME:jd@mail . com
END:VCARD

(a)

{
" type " : " c o n t a c t " ,
" d a t a " : {
" d isp layName " : " John ␣ Doe " ,
" fu l lName " : [" John " , " Doe "]
" phone " : [" +12025550196 "] ,
" ema i l " : [" jd@mail . com "]
}

}

(b)

< a tom : en t r y xmlns :a tom= " . . . " xmlns :gd= " . . . " >
. . .
<gd:name>

<gd:givenName>John< / gd:givenName>
<gd: fami lyName>Doe< / gd : fami lyName>

< / gd:name>
< gd : ema i l r e l = " . . . " a dd r e s s = " jd@mail . com " / >
. . .

< / a t om : en t r y >

(c)

Fig. 5. (a) Contact data as retrieved by the PBAP plug-in (b) Contact data converted to the generic format for

internal usage (c) Contact data converted to Google’s format by the Google Contacts plug-in

Similarly, the write method implemented by a communication plug-in will be passed data in
the generic format and then convert or interpret it according to the speci!cs of the implemented
protocol. Therefore, the write method of a communication plug-in does not need to know where the
data came from or how it was retrieved; it only needs to know how to convert the generic format to
the format required by the target device ensuring compatibility with any other communication plug-
in that can generate data of that type. In our implementation JSON is used for internal information
representation. Each object stores the original content type (e.g. contact, image, movie or PDF
document) together with a set of key-value pairs that represent or link to the relevant information.
For example, the vCard data shown in Figure 5a is converted to the JSON format shown in Figure 5b
for internal usage and then converted to the XML-based data format shown in Figure 5c if it is to
be written to a device via Google’s Contacts API.
In order to standardise the internal representation and to help plug-ins handle them, each internal

data object is tagged with with a media descriptor (much like a MIME tag) describing its content
(e.g. “file/image/png”. Just like MIME types media descriptors represent a hierarchy of types and
subtypes describing the content, with the di erence that we allow for more than two levels. The
structure of each data type is de!ned in JSON !les, in the form of a list of !elds and their data types
(e.g. String, Integer, FilePath or ByteArray). These format de!nitions can be added or extended
by developers. As expected, each subtype inherits the structure of the supertype which might be
extended with additional !elds. The bene!t of this representation is that communication plug-ins
can make use of the fact that they know the subtype, but they do not have to and can also treat the
object based on its basetype. For instance, an FTP communication plug-in that receives an object of
the type “file/image/png” can ignore the fact that it is an image with PNG encoding and will just
address the document as any regular !le (e.g. reading and writing it as a byte array). On the other
hand, another device might only accept bitmap images and the corresponding communication
plug-in might then use the details related to the image encoding so that it can apply the correct
conversion before writing it as a bitmap to the device.
In our current version, one GUI module has been implemented but special care has been taken to

make this default GUI module as generic as possible. This ensures that developers have a working
starting point and only need to write a new GUI module if they have special requirements. The
implemented GUI module is based on web technologies including HTML5, JavaScript and CSS
which allows the GUI to run on any interface hardware that can run a modern web browser (e.g. a
dedicated laptop or a tabletop). The GUI module contains a lightweight web server for serving
the static web !les that implement most of the visualisation and interaction logic. Once the web
!les are delivered to the web browser, JavaScript is used to open a WebSocket connection to the
GUI module and connects the HTML-based front end with the GUI module. This bidirectional
communication is needed to, for example, notify the front end when a new device has been detected
in order that it can display the necessary UI elements next to it. Similarly, when the user performs

Proc. ACM Hum.-Comput. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2017.

INFEX: A Unifying Framework for Cross-Device Information Exploration and Exchange 1:17

an action on the front end such as dragging content from one device to another, the requested
action is passed back to the GUI module that invokes the request handler to perform the action.
As discussed earlier, the GUI module can also provide a modular mechanism for visualising

speci!c content types while listing or inspecting content. In this case the media plug-ins are
implemented in JavaScript and CSS. When the front end needs to display a list of content of a
speci!c type, the plug-in for that type is given the list of content and is responsible for generating
the HTML code that will be injected into the DOM tree. The widgets for inspecting content are
generated by the plug-ins in the same way. Note that this default HTML-based GUI module might
be replaced to suit the speci!c needs of both the application developer and the end user.

5.2 Usage

As detailed earlier, client devices do not need to install speci!c software but instead a dedicated
device is set up to unify the connected client devices. Even if the INFEX framework runs on the
dedicated device, it does not prevent the dedicated device from participating as an ordinary client
device. Since the INFEX framework is implemented in Java, the dedicated device needs to be able
to run a Java Virtual Machine but apart from than there are no other requirements. However, in
order for INFEX to mediate protocols such as Bluetooth or NFC, it is necessary that the dedicated
device contains the necessary hardware. For this reason a small form factor computer such as
a Raspberry Pi might be su#cient for simple use cases, but a laptop or desktop computer with
additional communication hardware is preferred for more complex use cases.

My INFEX Application

INFEX.conf

INFEX.jar

gui.jar (optional)

resolver.jar (optional)

plugins

communication

BluetoothAudio.jar

BluetoothPBAP.jar

Chromecast.jar

FTP.jar

LPD_Printer.jar

REST_API.jar

detection

OpenCVDetector.jar

Fig. 6. Example deployment of the INFEX framework

The INFEX framework comes as a JAR !le and can be used a standalone server providing access
to the functionality via WebSockets or TCP/IP, or the JAR !le can be used as a standard library in
another application providing direct access to the functionality. In some cases it may be desirable
to deploy INFEX as a standalone server as it allows the user interface to run on another device
and communicate with the INFEX instance remotely. Regardless of how the framework is used,
additional !les such as plug-ins should be placed in prede!ned directories next to the main JAR
!le. The default detection resolver and the GUI module can be replaced by placing plug-ins named
resolver.jar and gui.jar in the same directory as the main JAR. Figure 6 shows an example
deployment of the framework.
Depending on the use case, the framework might need to mediate di erent protocols by means of

communication plug-ins. A plug-in should be provided for each protocol that needs to be supported,
but these plug-ins can of course be shared and reused by developers. To implement a communication

Proc. ACM Hum.-Comput. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:18 Reinout Roels, Arno De Wi e, and Beat Signer

plug-in, the developer must implement the read(), readChunk(), write(), writeChunk() and
list() methods of the CommunicationPlugin plug-in interface.

Listing 1 shows an example of how the principles explained in Section 4 have been concretely
implemented for an FTP plug-in based on the Apache Commons Net library. The methods to read,
write and list content on an FTP server are implemented (with the help of an external library) and
the event system is used to publish the relevant events so that the core framework can use the
plug-in in the mediation process without further intervention from the developer. The plug-in
should be compiled into a JAR !le and placed in the plug-in directory for communication plug-ins.
INFEX will then be able to automatically invoke these methods and use them in the mediation
process when that speci!c protocol is encountered.

1 public class FTPCommunicationPlugin implements CommunicationPlugin {

2

3 public static final String protocolName = "FTP";

4

5 public ContentUnit read(int taskID , Device device , CommunicationConfig config , String path) {

6 PubSub.publish(new CommunicationReadStartEvent(this , taskID , device.getID(), path));

7 ByteArrayOutputStream os = new ByteArrayOutputStream ();

8 FTPClient ftp = new FTPClient ();

9 ftp.connect(config.get("server"), Integer.parseInt(config.get("port")));

10 ftp.login(config.get("username"), config.get("password"));

11 PubSub.publish(new ComPluginReadProgressEvent(this , 0, taskID , device.getID(), result.path);

12 ftp.retrieveFile(path , os); // intermediate progress events removed to keep the example brief

13 PubSub.publish(new ComPluginReadProgressEvent(this , 100, taskID , device.getID(), result.path);

14 ContentUnit result = new ContentUnit(INFEX.FileTypes.GENERIC_FILE);

15 result.setField('path', path);

16 result.setField('data', os.toByteArray ());

17 result.setField('contentsize ', result.getField('data'). length);

18 PubSub.publish(new ComPluginReadEndEvent(this , taskID , device.getID(), result));

19 return result;

20 }

21

22 public ContentUnit readChunk(int taskID , Device device , CommunicationConfig config , String path){

23 PubSub.publish(new UnsupportedComPluginMethod(this , CommunicationMethods.readChunk));

24 return null;

25 }

26

27 // write and writeChunk methods are similar to the read and readChunk methods and are left out

28

29 public ContentUnit [] list(int taskID , Device device , CommunicationConfig conf , String path) {

30 ... // similar to the read method but returns a array of ContentUnit objects containing

31 ... // the file metadata but without the byte content

32 }

33

34 }

Listing 1. Implementation of an FTP communication plug-in

Detection plug-ins are also implemented according to a plug-in interface and compiled into
JAR !les. Detection plug-ins are initialised once at startup and are then free to execute whatever
logic needed to detect devices continuously. As an example, a plug-in could be developed to scan the
network for devices, it could use computer vision to detect devices placed on a speci!c surface or it
might simply listen for events originating from the user interface (e.g. a user selects a device from
a list to be added). When the plug-in detects that devices are added or removed the plug-in should
broadcast the corresponding events (e.g. KnownDeviceDetected or KnownDeviceLeft events) so
that INFEX can update the session state.
When the INFEX framework is run, either as a standalone server or embedded in an application

as a library, participating devices should be introduced to the framework in a one-time setup
process. A default interface is provided to do this, but developers may also implement their own

Proc. ACM Hum.-Comput. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2017.

INFEX: A Unifying Framework for Cross-Device Information Exploration and Exchange 1:19

to gather device speci!cations and send it to the framework. Figure 7 shows one of the panels
o ered by the default setup wizard. A list of supported protocols and their relevant details (e.g. an
IP address or user credentials) should be provided, and based on a plug-in’s protocolName !eld
the framework will know which plug-in to invoke when mediation is needed for that protocol.

Fig. 7. Device setup wizard

After adding devices, the device detection plug-in keeps track of devices in the session and
INFEX will keep active devices’ speci!cations (e.g. supported protocols and media types) in memory.
Applications that use INFEX are kept up to date when devices are added or removed in the session
and also their speci!cations are shared so that the user interface may visualise their capabilities
accordingly. Applications that build upon INFEX are then free to initiate content listings or transfers,
for instance based on a user interaction in the user interface. As the application is aware of the
devices’ capabilities, it knows what protocols are relevant when a user initiates a transfer. The
results are returned to the application which can then handle them accordingly (e.g. visualise them
in a list). How users initiate a transfer depends on how the application is implemented but if a
transfer is invoked by the user, it can again ask INFEX to perform the transfer by specifying the
source device, protocol, content path as well as the target device, protocol and target path. The
transfer is then handled completely by INFEX which will perform the necessary mediation and
keep the application updated about the progress.
Please keep in mind that a default GUI module is provided and therefore a generic INFEX-

based application could simply be assembled from existing detection and communication plug-ins
without writing any additional code. The development of additional plug-ins, GUI modules or
client applications is only needed to add support for additional protocols or for customised user
interfaces.

6 USE CASE

As an infrastructure framework, INFEX allows developers to unify devices with di erent hardware
characteristics within a single application. This allows developers to integrate devices that have
been overlooked so far and to create new interesting use cases that would be far from trivial
when implemented from scratch. As INFEX focusses on the lower technical issues associated
with information exchange, it makes little sense to evaluate INFEX from an end-user perspective.
We rather provide a technical evaluation of the INFEX framework by detailing an INFEX-based
application for exploring and exchanging content on various devices, including some previously
unsupported ones. In order to verify our architectural choices, we have built the necessary plug-ins
to replicate and extend some common use cases introduced earlier in the background section.
We also introduce some new use cases and unconventional devices and show how they can be
combined with existing use cases, illustrating the uni!cation capabilities of our framework. Note
that the presented combination of devices and media types has not been integrated as a working
whole in any of the existing solutions before and it is only one example of what is possible with

Proc. ACM Hum.-Comput. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:20 Reinout Roels, Arno De Wi e, and Beat Signer

the INFEX framework. Further, it is interesting to point out that existing tools and use cases are
often limited and cannot be easily extended, making it hard if not impossible to achieve the same
results with existing frameworks. Of course, a similar use case can always be built from scratch
but we intend to show that INFEX already o ers most of the functionality that would have to be
implemented. More importantly, INFEX-based applications can later be extended and recon!gured
as this usually involves the addition or removal of a plug-in rather than having to make changes
throughout the whole application. The o ered abstractions also encourages developers to keep
their user interface consistent and uniform, which helps to prevent user experience issues that can
surface due to underlying technical complexity.
For the presented example interface, we have been inspired by systems such as ActivitySpace [16]

and it is therefore based on an interactive tabletop where participating devices are placed on the
surface. However, we must stress again that is only one possible way of using INFEX and developers
are free to use any kind of user interface or interaction hardware. The same application could
easily be modi!ed to use network scanning for detection and a point-and-click user interface on a
standard laptop. For this particular application, our default HTML-based GUI module was used.
Detection plug-ins based on touch and computer vision are used to detect devices and estimate
their position on the interactive surface. Once detected, the supported media types are queried
and an interaction menu is shown next to the device, with a tab for each supported media type.
Selecting a tab lists all content of the associated type. Dragging an item to an empty space on the
surface opens a widget for inspecting that item, and dragging either a list item or a widget onto
another device’s content list initiates a transfer if the media types are compatible. Figure 8 shows
an INFEX session in progress where most of the features mentioned in this section are used.

Fig. 8. INFEX application with tabletop-based cross-device information exploration and exchange

In the background section we have seen that one of the most common use cases is the exchange of
pictures between two smartphones or between a smartphone and another device [5, 6, 20, 28, 32]. In
order to replicate this use case, we have created the plug-ins needed to exchange pictures between an

Proc. ACM Hum.-Comput. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2017.

INFEX: A Unifying Framework for Cross-Device Information Exploration and Exchange 1:21

Android smartphone shown in the upper-left corner of Figure 8 and a GoPro action camera shown
in the lower-right corner of Figure 8. To access the photos on the phone we use a communication
plug-in that uses the Google Photos API. Alternatively the phone could be connected to the system
via an USB connection and a !le system connection plug-in could be used for accessing the DCIM
folder. In order to access pictures on the second device (GoPro), we used the HTTP protocol over
a local WiFi connection to read, write and list content stored on the device. Since both devices
can now be accessed by the framework via communication plug-ins, pictures can be dragged out
of a device for inspection or can be transferred between the two normally incompatible devices.
Specialised media plug-ins are used to show the list of images as a grid and for viewing images
in a widget. In order to show the extensibility of the communication protocols, we also mixed
in a use case that uses Bluetooth to access a smartphone’s contact list via the Bluetooth PBAP
protocol and visualise it via the contact media visualisation plug-in. Furthermore, the architectural
choices behind the framework make it relatively easy to use tangible objects as physical interfaces
to remote content sources. We demonstrate the use of tangibles by replicating a scenario similar
to the ones presented in [14, 33]. In our case a physical object (cube) with a !ducial marker on
its top is used as a proxy for a remote FTP server as shown in the upper right part of Figure 8.
Images from the GoPro can for example be uploaded to the FTP server with a simple drag and drop
interaction from the list of images shown next on the side the GoPro to the list of !les shown next
to the tangible object representing the FTP server. Finally, in order to demonstrate the extensibility
of the supported media types and their visualisation, we have implemented a media plug-in for
PDF documents. A media plug-in does not only in&uence how a content type is listed, but also
determines how a media type is inspected when it is dragged to an empty space on the surface. For
the implementation of our PDF inspection widget this implies that a user can interactively explore
PDF documents on the table. In Figure 8, a PDF document has been dragged from the list of PDF
!les shown next to the tablet in the lower left corner and dropped to the centre of the tabletop
for further detailed inspection. Once the user is sure that this is the document they are looking
for, the document could, for instance, also be dragged to the list of !les next to the tangible in the
upper-right corner which will upload the !le to the associated FTP server.

Fig. 9. 3D-printed tangibles (with unique touch point pa erns at the bo om) representing a television, a

webcam and a printer

We have then further extended the example application and have added support for devices that
are not usually seen in related work. For instance, a Chromecast plug-in was implemented which
allows images or a PDF document to be dragged from any device to a 3D-printed television tangible.
This shows the content on the associated television as expected. We have also created a plug-in
to support simple webcams. It was implemented so that both still images (via the read method)
as well as real-time video streams (via the readChunk method) can be read from the camera and
transferred to other devices. This allows users to for instance capture a video fragment and write

Proc. ACM Hum.-Comput. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:22 Reinout Roels, Arno De Wi e, and Beat Signer

the result to any other device. The stream can also be “written” to the television which shows the
video feed on the television in real-time. Plug-ins were also written to support network printers
and scanners which o ers many more interesting device transfers. Small 3D-printed tangibles were
used to represent these devices on the tabletop and can be seen in Figure 9. As for the functionality,
one can for instance drag content from the scanner to the television to show the physical document
on the scanner plate on the television. Similarly, one can also drag an image from the webcam to
the printer to get an immediate print-out. We would like to point out however that the architectural
design makes any two plug-ins compatible on the technical level and many more interactions
between the use case’s devices are possible out of the box. This implies that when developers add
a plug-in for a single protocol that it can directly be used in combination with any other plug-in
and developers can write the code for the protocol in isolation without taking other protocols and
combinations into account.

7 DISCUSSION AND FUTUREWORK

We witness an increasing number of digital devices in our lives, but as illustrated in the introduc-
tion, it is not always trivial to retrieve or exchange content between di erent devices. Existing
scenarios for user-driven content exchange place strict limitations in terms of the hardware or
su er from shortcomings on the usability level. This is often the result of the technical complexity
and incompatibility which propagates all the way up to the user experience, an issue that has been
previously described by the HCI community [7].
We have introduced the INFEX framework which implements the functionality needed to transfer

content between heterogeneous devices. Architectural design choices make sure that the framework
is highly modular allowing it to be deployed for a wide variety of use cases. In order to illustrate
how the INFEX framework improves upon existing work, we refer back to the limitations of existing
solutions described in Section 2.4 and again use the terminology de!ned by Edwards et al. [7].
The issue of Constrained Possibilities is addressed by making the framework highly modular

and extensible. INFEX removes most of the hardware and software restrictions seen in existing
solutions. For instance, participating client devices are not required to install additional software
(which is not always possible) and the design of the framework facilitates the use of devices without
a display or input modalities. Furthermore, support for new protocols (and thus new devices) is
easily added via communication plug-ins allowing developers to mix-and-match devices that are
currently not considered in existing work due to technical complexity. Finally, our framework does
not enforce any particular user interface or user interaction hardware allowing developers to create
customised user experiences ranging from a simple WIMP-based interface to more innovative
interactions using state-of-the-art hardware.
Unmediated Interaction is approached by letting the framework handle the technical complexity

associated with information exchange. Developers are o ered high-level abstractions to transfer
content between devices and INFEX isolates protocol-speci!c details in their respective plug-ins.
The other way around, developers can develop communication plug-ins without having to take
other protocols into account, as the framework will automatically act as a mediator for exchanges
between plug-ins. By o ering high-level abstractions, we ensure that developers do not let any of
the low-level technical complexity show up in the user interface. This encourages the creation of a
uniform and consistent user interface regardless of the mix of devices and protocols that are used.
Note that this is in contrast with many existing solutions where interactions might be di erent
depending on the device or protocol, simply because the developers push some technical complexity
to the end-user instead of dealing with it internally.
Finally, the problem of Interjected Abstractions is also avoided by architectural design choices.

Abstractions de!ned by the INFEX framework do not result in limitations in terms of the supported

Proc. ACM Hum.-Comput. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2017.

INFEX: A Unifying Framework for Cross-Device Information Exploration and Exchange 1:23

devices or user interface. For example, in contrast to existing frameworks or protocols client devices
are not required to support one speci!c programming language or protocol which is the case with
the RPC or the UPnP protocol. Furthermore, user interfaces made on top of the INFEX framework
are not required to be written in the same language and do not even have to run on the same
machine.
By addressing these issues, we achieved our goals G1–G3 described in Section 3. Adding support

for new devices and protocols to an existing system would normally become more complex with
every added protocol which is why developers often limit support to a set of devices with strict
requirements. INFEX deals with most of the technical complexity and ensures that the e ort
required to add an additional protocol does not increase. As more developers are going to use
INFEX, more communication plug-ins can be shared and reused by applications, thereby reducing
the e ort to build new applications. We would again like to point out that developers can create
their own highly custom user interfaces on top of the INFEX framework. We have shown an
example of a graphical interface running on regular laptops as well as tabletop-based interfaces
making use of tangibles. In the future, virtual or augmented reality technologies might be used
to build novel interfaces. It is interesting to point out that we were able to use INFEX to replicate,
extend and combine many of the interactions presented in Section 2 without having to start over
for every use case. This indicates that INFEX might be valuable for the research community as a
rapid prototyping platform for novel interaction techniques, resulting in richer use cases across a
wider range of devices.
We see two minor aspects which might currently a ect the wider spread of the INFEX framework.

First, in order to allow devices to participate without installing dedicated software, an initial setup
is always required which could potentially be troublesome for some users. Although a user-
friendly setup wizard can make this step easier, users still need to have some technical knowledge
about the device they are going to add. Second, there is a minority of devices that can currently
not be integrated in INFEX-based applications. While most devices make use of standardised
protocols which are easy to support in INFEX, some devices only support proprietary protocols
or communication hardware. In a number of cases it might be possible to reverse engineer such
a protocol but for some devices it might be impossible to add support due to encryption of the
content or protocol.
The implementation of the use case reveals a number of aspects that might be improved in a

future version of INFEX. First of all, extensibility is currently achieved via a simple JAR-based
plug-in mechanism. While this was su#cient for an initial evaluation of our architecture, a more
robust and developer-friendly approach based on the OSGi7 dynamic module system for Java
might be investigated. The current architecture also assumes that INFEX-based applications run in
isolation. As part of future work we plan to evaluate the framework with software developers in
order to further validate the framework. We also intend to explore the potential of allowing di erent
INFEX instances to communicate with each other over the Internet. This would allow users to
use their local instance of an INFEX application to exchange content with devices connected to
another INFEX application running at another location. Next, we are also considering operations
that do more than just copying data such as cut or delete operations. However, this introduces
new challenges related to user permissions and security that require further investigation. Finally,
we also plan to make INFEX available to other researchers working on cross-device information
exploration and exchange.

7https://www.osgi.org

Proc. ACM Hum.-Comput. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:24 Reinout Roels, Arno De Wi e, and Beat Signer

8 CONCLUSION

Wehave presented INFEX, a unifying extensible framework for cross-device information exploration
and exchange. INFEX allows developers to exchange information between devices that are not
supported in existing solutions while at the same time ensuring that the increased heterogeneity
does not negatively a ect the user experience. In contrast to related work, INFEX does not require
any special software to be installed on participating devices and takes into account that devices
might not have a display or other I/O modalities. By acting as a mediator, INFEX automatically
handles content retrieval and transfer. It automatically translates between protocols and data
formats to connect arbitrary devices. Last but not least, the extensibility and reusability of plug-in
components increases hardware support and allows developers and researchers to focus on the
creation of interesting new use cases and novel interaction techniques for cross-device information
exploration and exchange.

REFERENCES

[1] Monica Anderson. 2015. Technology Device Ownership: 2015. http://www.pewinternet.org/2015/10/29/

technology-device-ownership-2015

[2] Pierre-Alain Avouac, Philippe Lalanda, and Laurence Nigay. 2012. Autonomic Management of Multimodal Interaction:

DynaMo in action. In Proceedings of the 4th ACM SIGCHI Symposium on Engineering Interactive Computing Systems

(EICS 2012). Copenhagen, Denmark. https://doi.org/10.1145/2305484.2305493

[3] Jakob E. Bardram. 2005. The Java Context Awareness Framework (JCAF) - A Service Infrastructure and Programming

Framework for Context-Aware Applications. In Proceedings of the 3rd IEEE International Conference on Pervasive

Computing and Communications (PerCom 2005). Kauai Island, USA. https://doi.org/10.1007/11428572_7

[4] Jacob T. Biehl, William T. Baker, Brian P. Bailey, Desney S. Tan, Kori M. Inkpen, and Mary Czerwinski. 2008. Impromptu:

A New Interaction Framework for Supporting Collaboration in Multiple Display Environments and its Field Evaluation

for Co-located Software Development. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems

(CHI 2008). Florence, Italy. https://doi.org/10.1145/1357054.1357200

[5] Raimund Dachselt and Robert Buchholz. 2009. Natural Throw and Tilt Interaction Between Mobile Phones and

Distant Displays. In CHI 2009 Extended Abstracts on Human Factors in Computing Systems (CHI EA 2009). Boston USA,

3253–3258. https://doi.org/10.1145/1520340.1520467

[6] Andreas Dippon, Norbert Wiedermann, and Gudrun Klinker. 2012. Seamless Integration of Mobile Devices into

Interactive Surface Environments. In Proceedings of the ACM International Conference on Interactive Tabletops and

Surfaces (ITS 2012). Cambridge, USA, 331–334. https://doi.org/10.1145/2396636.2396693

[7] W. Keith Edwards, Mark W. Newman, and Erika Shehan Poole. 2010. The Infrastructure Problem in HCI. In Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems (CHI 2010). Atlanta, USA. https://doi.org/10.1145/

1753326.1753390

[8] Luca Frosini, Marco Manca, and Fabio Paternò. 2013. A Framework for the Development of Distributed Interactive

Applications. In Proceedings of the 5th ACM SIGCHI Symposium on Engineering Interactive Computing Systems (EICS

2013). London, UK, 249–254. https://doi.org/10.1145/2494603.2480328

[9] Issac Garcia, Gabriel Pedraza, Bassem Debbabi, Philippe Lalanda, and Catherine Hamon. 2010. Towards a Service

Mediation Framework for Dynamic Applications. In Proceedings of the IEEE Asia-Paci c Services Computing Conference

((APSCC 2010). Hangzhou, China. https://doi.org/10.1109/APSCC.2010.90

[10] Hans Gellersen, Carl Fischer, Dominique Guinard, Roswitha Gostner, Gerd Kortuem, Christian Kray, Enrico Rukzio,

and Sara Streng. 2009. Supporting Device Discovery and Spontaneous Interaction with Spatial References. Personal

Ubiquitous Computing 13, 4 (May 2009), 255–264. https://doi.org/10.1007/s00779-008-0206-3

[11] Saul Greenberg, Nicolai Marquardt, Till Ballendat, Rob Diaz-Marino, and Miaosen Wang. 2011. Proxemic Interactions:

The New Ubicomp? interactions 18, 1 (January 2011), 42–50. https://doi.org/10.1145/1897239.1897250

[12] Peter Hamilton and Daniel J. Wigdor. 2014. Conductor: Enabling and Understanding Cross-device Interaction. In

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI 2014). Toronto, Canada, 2773–2782.

https://doi.org/10.1145/2556288.2557170

[13] Mike Hazas, Christian Kray, Hans Gellersen, Henoc Agbota, Gerd Kortuem, and Albert Krohn. 2005. A Relative

Positioning System for Co-located Mobile Devices. In Proceedings of the 3rd International Conference on Mobile Systems,

Applications, and Services (MobiSys 2005). Seattle, USA, 177–190. https://doi.org/10.1145/1067170.1067190

[14] Simo Hosio, Fahim Kawsar, Jukka Riekki, and Tatsuo Nakajima. 2007. DroPicks - A Tool for Collaborative Content

Sharing Exploiting Everyday Artefacts. In Ubiquitous Computing Systems, Haruhisa Ichikawa, We-Duke Cho, Ichiro

Proc. ACM Hum.-Comput. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2017.

INFEX: A Unifying Framework for Cross-Device Information Exploration and Exchange 1:25

Satoh, and HeeYong Youn (Eds.). Lecture Notes in Computer Science, Vol. 4836. 258–265. https://doi.org/10.1007/

978-3-540-76772-5_20

[15] Steven Houben and Nicolai Marquardt. 2015. WatchConnect: A Toolkit for Prototyping Smartwatch-Centric Cross-

Device Applications. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (CHI

2015). Seoul, Republic of Korea, 1247–1256. https://doi.org/10.1145/2702123.2702215

[16] Steven Houben, Paolo Tell, and Jakob E. Bardram. 2014. ActivitySpace: Managing Device Ecologies in an Activity-

Centric Con!guration Space. In Proceedings of the 9th ACM International Conference on Interactive Tabletops and

Surfaces (ITS 2014). Dresden, Germany. https://doi.org/10.1145/2669485.2669493

[17] Shahram Izadi, Harry Brignull, Tom Rodden, Yvonne Rogers, and Mia Underwood. 2003. Dynamo: A Public Interactive

Surface Supporting the Cooperative Sharing and Exchange of Media. In Proceedings of the 16th Annual ACM Symposium

on User Interface Software and Technology (UIST 2003). Vancouver, Canada. https://doi.org/10.1145/964696.964714

[18] Clemens Nylandsted Klokmose, Janus Bager Kristensen, Rolf Bagge, and Kim Halskov. 2014. BullsEye: High-Precision

Fiducial Tracking for Table-based Tangible Interaction. In Proceedings of the 9th ACM International Conference on

Interactive Tabletops and Surfaces (ITS 2014). Dresden, Germany, 269–278. https://doi.org/2669485.2669503

[19] Ming Li and Leif Kobbelt. 2012. Dynamic Tiling Display: Building an Interactive Display Surface Using Multiple Mobile

Devices. In Proceedings of the 11th International Conference on Mobile and Ubiquitous Multimedia (MUM 2012). Ulm,

Germany, Article 24, 24:1–24:4 pages. https://doi.org/10.1145/2406367.2406397

[20] Andrés Lucero, Jussi Holopainen, and Tero Jokela. 2011. Pass-them-around: Collaborative Use of Mobile Phones for

Photo Sharing. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI 2011). Vancouver,

Canada, 1787–1796. https://doi.org/10.1145/1978942.1979201

[21] Nicolai Marquardt, Till Ballendat, Sebastian Boring, Saul Greenberg, and Ken Hinckley. 2012. Gradual Engagement:

Facilitating Information Exchange Between Digital Devices As a Function of Proximity. In Proceedings of the ACM

International Conference on Interactive Tabletops and Surfaces (ITS 2012). Cambridge, USA, 31–40. https://doi.org/10.

1145/2396636.2396642

[22] Nicolai Marquardt, Ken Hinckley, and Saul Greenberg. 2012. Cross-Device Interaction via Micro-mobility and F-

formations. In Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology (UIST 2012).

Cambridge, USA. https://doi.org/10.1145/2380116.2380121

[23] Jakob Nielsen. 1989. Coordinating User Interfaces for Consistency. SIGCHI Bull. 20, 3 (January 1989), 63–65. https:

//doi.org/10.1145/67900.67910

[24] Roman Rädle, Hans-Christian Jetter, Nicolai Marquardt, Harald Reiterer, and Yvonne Rogers. 2014. Huddle-

Lamp: Spatially-Aware Mobile Displays for Ad-hoc Around-the-Table Collaboration. In Proceedings of the Ninth

ACM International Conference on Interactive Tabletops and Surfaces (ITS 2014). Dresden, Germany, 45–54. https:

//doi.org/10.1145/2669485.2669500

[25] Jun Rekimoto. 1997. Pick-and-drop: A Direct Manipulation Technique for Multiple Computer Environments. In

Proceedings of the 10th Annual ACM Symposium on User Interface Software and Technology (UIST 1997). 31–39. https:

//doi.org/10.1145/263407.263505

[26] Jun Rekimoto and Masanori Saitoh. 1999. Augmented Surfaces: A Spatially Continuous Work Space for Hybrid

Computing Environments. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI 1999).

Pittsburgh, USA, 378–385. https://doi.org/10.1145/302979.303113

[27] Iván Sánchez, Jukka Riekki, Jarkko Rousu, and Susanna Pirttikangas. 2008. Touch & Share: RFID Based Ubiquitous File

Containers. In Proceedings of the 7th International Conference on Mobile and Ubiquitous Multimedia (MUM 2008). Umeå,

Sweden, 57–63. https://doi.org/10.1145/1543137.1543148

[28] Dominik Schmidt, Julian Seifert, Enrico Rukzio, and Hans Gellersen. 2012. A Cross-device Interaction Style for Mobiles

and Surfaces. In Proceedings of the Designing Interactive Systems Conference (DIS 2012). Newcastle Upon Tyne, UK,

318–327. https://doi.org/10.1145/2317956.2318005

[29] Arne Schmitz, Ming Li, Volker Schönefeld, and Leif Kobbelt. 2010. Ad-hoc Multi-Displays for Mobile Interactive Appli-

cations. In Proceedings of the 31st Annual Conference of the European Association for Computer Graphics (Eurographics

2010), Vol. 29. 8.

[30] Mario Schreiner, Roman Rädle, Hans-Christian Jetter, and Harald Reiterer. 2015. Connichiwa: A Framework for

Cross-Device Web Applications. In Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human

Factors in Computing Systems (CHI EA 2015). Seoul, Republic of Korea. https://doi.org/10.1145/2702613.2732909

[31] Khoovirajsingh Seewoonauth, Enrico Rukzio, Robert Hardy, and Paul Holleis. 2009. Touch & Connect and Touch

& Select: Interacting with a Computer by Touching It with a Mobile Phone. In Proceedings of the 11th International

Conference on Human-Computer Interaction withMobile Devices and Services (MobileHCI 2009). Bonn, Germany, 36:1–36:9.

https://doi.org/10.1145/1613858.1613905

[32] Khoovirajsingh Seewoonauth, Enrico Rukzio, Robert Hardy, and Paul Holleis. 2009. Two NFC Interaction Techniques

for Quickly Exchanging Pictures Between a Mobile Phone and a Computer. In Proceedings of the 11th International

Proc. ACM Hum.-Comput. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:26 Reinout Roels, Arno De Wi e, and Beat Signer

Conference on Human-Computer Interaction withMobile Devices and Services (MobileHCI 2009). Bonn, Germany, 39:1–39:4.

https://doi.org/10.1145/1613858.1613909

[33] Manas Tungare, Pardha S. Pyla, Pradyut Bafna, Vladimir Glina, Wenjie Zheng, Xiaoyan Yu, Umut Balli, and Steven

Harrison. 2006. Embodied Data Objects: Tangible Interfaces to Information Appliances. In Proceedings of the 44th

Annual Southeast Regional Conference (ACM-SE 44). Melbourne, USA, 359–364. https://doi.org/10.1145/1185448.1185529

[34] Brygg Ullmer and Hiroshi Ishii. 2000. Emerging frameworks for tangible user interfaces. IBM Systems Journal 39, 3.4

(2000), 915–931. https://doi.org/10.1147/sj.393.0915

[35] Daniel Wigdor, Hao Jiang, Clifton Forlines, Michelle Borkin, and Chia Shen. 2009. WeSpace: The Design Development

and Deployment of a Walk-up and Share Multi-surface Visual Collaboration System. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems (CHI 2009). Boston, USA. https://doi.org/1518701.1518886

[36] Andrew D. Wilson and Raman Sarin. 2007. BlueTable: Connecting Wireless Mobile Devices on Interactive Surfaces

Using Vision-based Handshaking. In Proceedings of Graphics Interface, Conference on Graphics, Visualization and HCI

(GI 2007). Montreal, Canada. https://doi.org/10.1145/1268517.1268539

[37] Christian Winkler, Markus Löchtefeld, David Dobbelstein, Antonio Krüger, and Enrico Rukzio. 2014. SurfacePhone:

A Mobile Projection Device for Single- and Multiuser Everywhere Tabletop Interaction. In Proceedings of the 32nd

Annual ACM Conference on Human Factors in Computing Systems (CHI 2014). Toronto, Canada, 3513–3522. https:

//doi.org/10.1145/2556288.2557075

Proc. ACM Hum.-Comput. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2017.

