
Design Time Support for
Adaptive Behavior in Web Sites

Sven Casteleyn
Vrije Universiteit Brussel,

Department of Computer Science,
WISE

Pleinlaan 2
1050 Etterbeek, Belgium

+32 2 629 37 54

Sven.Casteleyn@vub.ac.be

Olga De Troyer
Vrije Universiteit Brussel,

Department of Computer Science,
WISE

Pleinlaan 2
1050 Etterbeek, Belgium

+32 2 629 35 04

Olga.Detroyer@vub.ac.be

Saar Brockmans
Vrije Universiteit Brussel,

Department of Computer Science,
WISE

Pleinlaan 2
1050 Etterbeek, Belgium

+32 2 629 35 04

Saar.Brockmans@vub.ac.be

ABSTRACT
Adaptive web sites are sites that automatically improve their
internal organization and/or presentation by observing user-
browsing behavior. In this paper we argue that adaptive behavior
of websites should be controlled in order to keep the website
manageable. We believe that adaptive behavior may be a useful
complement to a good website design method on the condition
that the adaptations are limited and according to the modeling
approach followed during design. Therefore, we allow a website
designer to specify at design time the adaptive behavior that will
be allowed at runtime. To accomplish this goal, an Adaptation
Specification Language is defined that allows designers to specify
at the level of the navigational model, which adaptations could be
performed at runtime. The language is event based, i.e. a
collection of rules is used to specify the adaptation operations to
be carried out if certain conditions are satisfied. The approach
proposed is elaborated in the context of WSDM, an audience
driven website design method, but is generally applicable to other
design methodologies.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques;
H.5.4 [Information Systems]: Information Interfaces and
Presentations - Hypertext/Hypermedia - Architectures,
Navigation, User Issues

General Terms
Design, Languages, Theory

Keywords
Web design method, adaptive behavior, web site adaptation,
adaptation language

1. INTRODUCTION
The World Wide Web has become a very popular medium for
sharing data: companies, organizations, governments, individuals
… they all found benefits in exchanging and sharing their data
online. With this explosive amount of information becoming
available, two important problems with the current WWW are
manifesting themselves. First of all, the vast majority of web sites
become increasingly unmanageable for the web site administrator,
usually due to the lack of any systematic underlying design, and
secondly, web site visitors find it increasingly difficult to find the
information they need in the huge, mostly poorly structured and
ordered information available.

To tackle the first problem, several web site design methods have
been described in the literature. The most known ones include
HDM and its successors HDM2 [12] and OOHDM [21] [22],
RMM [15], W3DT [1] [2], WEBML [3] [5] and WSDM [9] [4]
[23]. While most of these methods differ in approach, all
methods do provide some basic mechanisms for describing,
ordering and structuring the data contained on the website, thus
making it (partly automatically) manageable for web site
administrators.

The second problem is addressed to a different extent by the
different design methods, according to their philosophy.
Organization driven design methods structure the information
according to the availability of the data within the structure of the
organization, data driven methods are lead solely by the available
data, and user centered or audience driven methods are driven by
the requirements of the intended users of the web site. Taking
into account the different requirements for the different target
audiences, and ordering the information accordingly, audience
driven design methods help in offering the visitors less but more
relevant information, thus effectively decreasing the time visitors
have to search for the information they require. The Web Site
Design Method (WSDM), which will be used in this paper as a
framework to present our work, is an example of an audience
driven approach.

Another attempt to make web site's information more readily
available to the visitor is the use of adaptive behavior to re-
arrange and re-organize the content and/or structure of the web
site. Adaptive websites are characterized as sites that
automatically improve their organization and presentation by

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SAC 2003, Melbourne, Florida, USA
© 2003 ACM 1-58113-624-2/03/03...$5.00

learning from visitor access patterns [17]. A typical example
would be moving a link that is frequently accessed to a higher
level in the page hierarchy, so that visitors are able to find that
particular information quicker.

Extensive research has been done in adapting websites to facilitate
an individual user or a group of users, using both content-based
and access-based adaptation [19]. Until now, the main research
issue has been techniques such as information retrieval,
classification, page clustering and semantics matching for content-
based adaptation; and data mining, association rule discovery,
page clustering, … techniques for access-based adaptation [13],
[18], [20], [25]. For a more extensive list of references, see e.g.
[19]. In the Hypermedia community, some attempts have been
made to formulate adaptation models [6], [7], often integrated
within the DEXTER reference model [13]. None of these models
targets websites specifically though, building on standard
hypermedia systems functionality, or they are very
implementation oriented.

The approach to adaptive websites taken in this paper is to
complement a website design method with adaptive behavior at
runtime. We believe that the use of a website design method is
essential for a website to be maintainable and usable. On the other
hand, it is impossible, even in an audience driven approach and
especially for public websites, to accommodate all the needs of all
website users at design time. Therefore it may be useful to allow
for adaptive behavior during runtime to enhance the usability of
the website. However, if the adaptation is done in an uncontrolled
way, we may end with a website whose structure is no longer
conform the philosophy of the design method used and is not
manageable because the structure is no longer transparent for the
designer. Therefore, we will allow the designer to specify the
kinds of adaptation that may be executed at runtime, during the
design of the website. We present the approach in the context of
WSDM (Web Site Design Method), but it is also applicable for
other website methods. WSDM is an audience driven website
design method, which also makes a clear distinction between the
conceptual design (free from any presentation or implementation
issue) and the implementation design. Following this distinction,
the specification of the adaptive behavior will be done during the
conceptual design. This specification of the allowed adaptive
behavior of the website is done by means of an event based
specification language that allows to express changes to the
structure of the website.

In this paper, we mainly focus on the adaptation for a group of
users by adapting the structure of and the navigation possibilities
in the website. In the literature, this is often called
"transformation", as opposed to "customization" [19], where a site
is adapted for an individual user (either by the user himself, or by
the system using knowledge about the user) which usually
involves profiling in some way (for example, ATG's CRM
software). The latter, customization, is not discussed in this paper.
Also, adaptation of presentation issues (page layout, fonts, etc.)
and adaptation of actual content of the website is outside the
scope of the paper.

The paper is organized as follows. In the second section, we will
give a brief introduction to WSDM. In the third section, we give
a formalization of the navigation model of WSDM to allow to
define basic operations upon this model in the fourth section. We

present an event-driven adaptation language in section five.
Conclusions and future work can be found in section six.

2. WSDM: AN OVERVIEW
Here, we give a short overview of WSDM, more information can
be found in [4], [8], [9], [10], [11], [23]. WSDM puts the
emphasis on the different kind of users, and their different
requirements. The first step is to define the Mission Statement.
The Mission Statement should express the purpose and the subject
of the web site and declare the target audience. Based on this
Mission Statement a two-step Audience Modeling phase is
performed. In the first step, Audience Classification, the different
kinds of users are identified and classified. Members of the same
Audience Class have the same information and functional
requirements. In the next step, Audience Class Characterization,
the characteristics of the different Audience Classes are given.
The result of the Audience Modeling is a set of Audience Classes,
ordered into an Audience Class Hierarchy, together with an
informal description of all their requirements: information- and
functional - as well as navigational- and the usability
requirements, and their characteristics. For a formal definition of
Audience Classes, and a method to automatically derive them, we
refer to [4].

Next, we perform a Conceptual Design of the site. The
Conceptual Design phase is divided in three steps: Information
Modeling, Functional Modeling and Navigational Design. During
Information & Functional Modeling, the information & functional
requirements of the different Audience Classes are modeled. For
each requirement a Chunk is created that models the information
needs described in the information requirement or the
functionality needed by a functional requirement. To control the
redundancy that we may introduce in this way, all Chunks are
linked together in a single information model, called the Business
Information Model.

During Navigation Design we design the (conceptual) structure of
the website and model how the members of the different Audience
Classes will be able to navigate through the site. For each
Audience Class a Navigation Track is created. Navigational
requirements are taken into consideration in this step. All
Navigation Tracks together form the Navigation Model of the site.
A Navigational Model is composed of nodes. Nodes represent
units of information or functionality. The information or
functionality represented by a node is denoted by connecting the
node to one or more chunks. Nodes themselves are connected by
means of links. Links are used to model the structure of the
website as well as to indicate the need for navigation. We can put
conditions on links to indicate that the availability of the link is
dependent on the truth-value of the condition. The main structure
of the Navigation Model can be easily derived from the Audience
Class Hierarchies. How this is done is explained in [10]. The
integration of the Information Chunks and Functional Chunks in
the Navigation Model is called the Conceptual Model of the web
site. An example of a Navigational Model fragment is given in
figure 1. The example is a website for a telephone company and
shows the main structure of the website and the navigation
structure for the Personal User Track. The other tracks are not
elaborate to not overload the figure. Nodes are represented by
rectangles, chunks by rounded rectangles, links by arrows and the
connections between chunks and nodes by lines. A double lined

rectangle is used for the root of a track or the root of the website
(in this example the node ‘Visitor Track’ is the root of the
website)

During Implementation Design we essentially design the page
structure as well as the ‘look and feel’ of the web site. The aim is
to create a consistent, pleasing and efficient look and feel for the
conceptual design made in the previous phase by taking into
consideration the usability requirements and characteristics of the
Audience Classes.

Track

n1

Personal
User Track

n2
Tarrifs

Games

Form
ula 2 Form

ula 1

PacM
an

Snake

Compan
y I nfo

Online
SMS

Ut ilit ies
Online
SMS

Tones

n4

n5

n6

Proffesional
User Track

n3

Small bus.
Track

n7

Medium bus.
Track

n8

Large bus.
Track

n9

Credit Consult

n10

n11

n12

Visitor

Consult

Bell

Credit

Tones
Bell

Figure 1 Simplified Navigational Model for Phone Company

The design of the page structure starts from the Navigation
Model. Nodes may be grouped into or distributed among pages.
This depends on the amount of information represented by a node:
the amount of information on a page should not overwhelm the
user, but too little information on a page may force the user to
“click” too much.

The Implementation design should also provide the specification
for the logical data design. This could be a logical database
design, an XML DTD, RDF definitions, or any other suitable data
definition format. Whatever format chosen, the data design can
be derived from the Business Information Model.

The last phase, Implementation, is the actual realization of the
web site using the chosen implementation environment.

3. FORMALIZATION OF THE
NAVIGATIONAL MODEL
In this section, we formally define the concepts used during the
Navigational Design in WSDM. During Navigational Design, a
web site is modeled as a graph of nodes. Every node may group a
number of chunks, which are pieces of information or
functionality and defined during Information Modeling and
Functional Modeling. Chunks model elementary information and
functional requirements of the users. Please note that nodes do not
necessarily correspond with the actual pages in a website. It is
only in a later phase (during Page Design) that nodes are assigned
to pages. Depending on the size of a node, different nodes can be
grouped on one page or a node can be distributed among pages.

Definition

• N is a finite non-empty set of nodes
• H is a finite non-empty set of chunks

• L ⊆ N X N, is the set of links

• C ⊆ N X H is the set of connections between nodes and
chunks

The first node of a link l is called the source, denoted source(l);
the second node is called the target, denoted target(l). The node of
a connection c is denoted node(c); the chunk is denoted chunk(c).

The purpose of the Navigational Model as defined here, is to
define the main structure of the website. This is done by defining
nodes for the different elementary informational and functional
requirements (represented by means of chunks) and by linking
these nodes according to a certain structure1 (e.g. a hierarchical
structure or a linear structure).

We define a path (loop-free) between two nodes in the usual way:

Definition Let n1 and n2 be two nodes of a Navigational Model
M= (N, H, L, C).A path p from n1 to n2 is a sequence of links l1,
..., ln, ∈ L where:

- source (l1) = n1
- target (ln) = n2
- ∀ k where 1 < k ≤ n: target(lk-1) = source(lk)
- ∀ i where 1 ≤ i ≤ n, ∀ j where 1 ≤ j ≤ n, i ≠ j:

source(li) ≠ source(lj) ∧ source(li) ≠ n2

The notation path(l1, ..., ln,) is used to denote the path. If no
confusion is possible also the notation path(n1 ,n2) can be used.
The length of path p, denoted by length(p), is n, the number of
links in p. n1 is called the top of the path p, noted pathTop(p).

We call a node n2 reachable from another node n1 if there is a
path from n1 to n2.

The set of all nodes in a path p is denoted by pathNodes(p). We
also define the notion of inLink and outLink for a node in a path:

Definition Let n ∈ pathNodes(p) where p = (l1, ..., ln).
inLink(n,p) is defined as l where l ∈ {l1, ..., ln} and target(l) = n
outLink(n,p) is defined as l where l ∈ {l1, ..., ln} and source(l) = n

We define the level of a node in a path as the number of links
from the top of the path to the node:

Definition Let p be a path, n ∈ pathNodes(p).
level(n,p) is defined as

0 if n = pathTop(p)
k+1 if level(source(inLink(n,p),p) = k

Due to lack of space, we do not go into the following defintions,
they are defined in the usual way: parent(n,p) & isParent(n, n'),
grandparent(n,p) & isGrandParent(n, n'), sibling(n1, n2) &
isSibling(n1,n2)
Websites usually provide a single access point that will act as a
direct or indirect gateway to all the information and functionality
offered on the site. During the conceptual design, this access point
corresponds with a node. We call this node the root.

1 In WSDM this structure is defined by the structure of the

Audience Class Hierarchy and is therefore a hierarchical
structure.

Definition Given a Navigational Model M = (N, H, L, C), the
root, denoted Root(M) is the node (∈ N) that was chosen to be the
primary access point to the site. Every other node n from N is
reachable from Root(M).

Within a website, very often we can distinguish parts that
constitute a whole (also called sub sites). E.g. in WSDM, each
audience class will have its own sub site (called audience track).
We formally define a sub model of a Navigational Model as
follows:

Definition Consider a Navigational Model M= (N, H, L, C). The
Navigational Model M1=(N1, H1, L1, C1) is a (Navigational) sub
model of M if:

N1 ⊂ N, N1 ≠ ∅
H1 ⊂ H, H1 ≠ ∅
L1 ⊂ L,
C1 ⊂ C,

where
∀ l ∈ L1: source (l) ∈ N1 and target (l) ∈ N1 and
∀ c ∈ C1: node (c) ∈ N1 and chunk (c) ∈ H1

By definition, the following lemma holds:

Lemma A Navigational sub model is a Navigational Model

We are now ready to define an Audience Track. n Audience Track
can be seen as a collection of paths that a group of visitors (an
Audience Class) can follow from a single access point to reach all
the information and functionality they need.

Definition Given a website W with a set of Audience Classes
A={A1, ..., An} and a Navigational Model M= (N, H, L, C), an
Audience Track for an Audience Class Am ∈ A is a sub model

TAm = (Nm, Hm, Lm, Cm) of M with the following properties:

- Hm contains all and only the chunks that resulted from the
information and functional requirements of Am

- Root(TAm) is defined
- ∀h ∈Hm: ∃n ∈ Nm ∧ ∃c ∈ Cm: node(c) = n ∧ chunk(c) = h

The last condition in this definition states that each chunk in the
sub model must be connected to a node of the sub model.

We are now able to define basic operations on the navigational
model. With these operations, it will be possible to manipulate
the navigational model of a website. This will be used to describe
the allowed adaptive behavior of the website.

4. OPERATIONS ON THE
NAVIGATIONAL MODEL
To allow manipulation of the navigational model, we first define
the elementary operations. There are three different kinds of
elementary operations on the navigational model: operations on
nodes, operations on chunk and operations on links. In the
definitions of the operations that follow, we use the following
conventions: M = (N, H, L, C) will be the input, and M’ = (N’,
H’, L’, C’) will be the output Navigational Model. If N’,
respectively H’, L’ and C’, are not defined explicitly, we have
N’=N, respectively H’=H, L’=L and C’=C. Based on the

elementary operations we will define a number of more high level
operations like promotion and demotion, linking and unlinking
and clustering.

4.1 Elementary Operations
4.1.1 Operations on Nodes
We only need two operations on nodes: addNode and deleteNode.
The move operation on nodes can be realized by multiple link
operations.

Definition

• deleteNode(n), where n ∈ N
N’ = N \ {n}

L’ = L \ {∀ l ∈ L: source(l) = n or target(l) = n }

C’ = C \ {∀ c ∈ C: node(c) = n }

• addNode(n), where n ∉ N
N’ = N ∪ {n}

4.1.2 Operations on Chunks
We do not allow to add or to delete chunks in adaptive behavior.
Chunks are the result of a modeling activity and therefore it makes
no sense to add a new chunk during adaptive behavior. Also
deleting is not allowed because if the chunk is removed it cannot
anymore be used later on. However it is possible to disconnect
from a certain node and connect it to another node.

Definition Let n ∈ N and h ∈ C:
• connectChunk(h, n):

 C’ = C ∪ {(n, h)}
• disconnectChunk(h, n):

C’ = C \ {(n, h)}

4.1.3 Operations on Links
Next to connecting and disconnecting chunks to nodes, we also
define operations to connect or disconnect the nodes themselves
by means of links:

Definition
• deleteLink (l) where l ∈ L:

L’ = L \ { l }
• addLink (l) where l = (n, n’) and n, n’ ∈ N and l ∉ L:

L’ = L ∪ { l }

4.2 Conceptual Navigation Transformations
In this section we define a number of more high-level adaptation
operations on the navigational model that we call conceptual
navigational transformation. These are promotion and demotion,
linking and unlinking, and clustering. We will discuss each of
these in the following subsections. Other conceptual navigational
transformations are also possible

4.2.1 Promotion and Demotion
Promotion makes a node easier to find by moving it closer to the
root of the web site. Demotion on the contrary moves the node
further away from the root. Doing promotion and demotion will
usually be based on the popularity of the node, and possibly also
on the access path used to find the node (a node may be reachable
by means of more than one path). Usually the rule “the more
popular the node, the closer to the root” is followed. Here, we

define promotion and demotion as moving the node one link
closer or further away from the top of a path. Promotion is
realized by adding a link to the node from a grandparent of this
node, while demotion means adding a link from a sibling to the
node and removing the original link to the node. Promotion is
shown in figure 2, demotion in figure 3. Note that in this version
of promotion, the original link is preserved.

Definition Let n ∈ N, p path where n ∈ pathNodes(p) and
level(n,p) ���

• promoteNode(n, p) stands for
addLink(grandParent(n,p)),n);

Definition Let n ∈ N, p path where n ∈ pathNodes(p), np =
parent(n,p) and ∃ n’ ∈ N: sibling(n, n’) ∧ np = isParent(np , n’),
then

• demoteNode(n, p, n’) stands for
addLink(n’,n);

deleteLink((np , n))

grandparent
(n,p)

parent(n,p)

n

promoteNode(n,p)

grandparent
(n,p)

parent(n,p)

n

l1

l2

l1

l2

Figure 2: Promotion of a node n along a path path(l1 , l2)

np

n
demoteNode(n,p, n’)

np

n’

n

l2

l3

l1

n’

l1

l3

Figure 3: Demotion of a node n via a path p to a sibling n’

Linking connects two nodes that were not (or not directly)
connected by adding new links between them. Even though the
designer did not model a link explicitly, for some nodes it turn out
at runtime that they are conceptually related in the users’ minds.
Similarly, unlinking is based on observing a lack of correlation; if
a link between two nodes is never followed, we might infer that
they are unrelated in the users’ minds, even though the designer
connected them for some reason. Removing them may result in a
simpler and more transparent site structure. In the literature, many
algorithms have been described to determine whether pages are
related, based on (restricted) clustering and user access patterns
within one user session. These may be useful to determine if
nodes are related (node will be contained in pages in the website)

Definition Let n, n’ ∈ N:

• linkNodes(n, n’)
addLink((n’,n)); addLink((n,n’))

• unLinkNodes(n, n’)
deleteLink((n’,n)); deleteLink((n,n’))

4.2.2 Clustering
In the literature, clustering associates a collection of related pages
and makes them accessible as a group on a newly created page.
The system recognizes a collection of similar documents that are
not grouped together anywhere at the site, creates a new page for
them and adds a reference to the new page. Documents may be
considered related based on their filenames, their locations in the
site hierarchy, their correlation in visitor paths, etc. A similar
transformation can be defined on our Navigational Model: if two
or more nodes are related, but not yet grouped we can add a node
and the necessarily links to make them accessible as a group.
Clustering of chunks can be done by connecting them to a single
node.

Definition Let n ∈ N, n’ ∉ N, h, h’ ∈ H
• clusterChunks(n, h, h’)

addNode(n’);
connectChunk(h, n’); connectChunk(h’, n’);
addLink((n, n’)); addLink((n', n))

Definition Let n, n1, n2 ∈ N, n’ ∉ N
• clusterNodes(n, n1, n2)

addNode(n’);
addLink((n’,n1)); addLink((n’,n2));
addLink((n, n’)); addLink((n', n))

5. ADAPTATION SPECIFICATION
LANGUAGE
Now that we have defined the navigational model, the basic
operations upon that model and some conceptual navigational
transformations, we are ready to define a language that allows
specifying at design time certain kinds of runtime adaptive
behavior. Using this language, the designer can specify what type
of adaptation is permitted during the life of the website. In this
way, he can prohibit that the structure of the website completely
runs out of his control due to the unlimited use of adaptation. The
language can be characterized as event based: conditions (based
on user access patterns) will trigger rules (the adaptive behavior).
Frequency of re-applying the rules is not specified here. Also the
way the user access patterns are determined is not specified
withthe language. These issues are left to (the implementation of)
the adaptation engine, and are not described in this paper.

We suppose that the following functions are available to monitor
the user access to the website:

Let M = (N, H, L, C) be the Navigational Model for the website
W, n, n1, n2 ∈ N, l ∈ L, h1, h2 ∈ C, and p a path in M:

- numberOfVisits (n)
Returns the number of visits to the nod

- totalNumberOfVisits
Returns the number of visits to the website

- numberOfVisits (n, p)
Returns the number of visits to the node n via the path p

- numberOfTraversings (l)
Returns the number of time link l is traversed

- relatedNodes (n1, n2)

Returns true if the nodes n1 and n2 are related, false
otherwise

- relatedChunks (h1, h2)
Returns true if the chunks h1 and h2 are related, false

otherwise
- grouped (h1, h2)

Returns true if the chunks h1 and h2 are connected to the
same node, false otherwise.

- inAudienceTrack(x, T)
Returns true if the concept x (e.g. a node or a chunk) is
present in the Audience Track T.

The designer can define rules on one single element (a node, a
link, or a chunk) to anticipate adaptive behavior on one particular
element, but in this way the possibility are rather limited.
Therefore, the designer is also able to specify adaptive behavior
that is not hooked to one particular element, but to a group of
elements, e.g., all nodes of a particular Audience Track, or nodes
that have a similar access pattern. To accomplish this
functionality, the forEach constructor can be used. The forEach
constructor allows to apply a rule on each element of a set.

We will use BNF notation to define the syntax of the Adaptation
Specification Language (ASL). Due to space considerations it is
impossible to fully specify ASL; only a compact version of the
syntax is given here. Words in italic in the syntax denote
identifiers that need to be substituted. Words or symbols in bold
are keyword. The symbol ‘!’ is used to denote empty (nothing).
<condition> is not specified, but the syntax is the usual one
making use of boolean operators, function calls, the relation
operators <, ≤ >, ≥ = ≠��DQG�WKH�VHW�UHODWLRQDO�RSHUDWLRQV�⊃, ⊇, ⊄,
⊂, ⊆, ∈, ∉.

<rule> ::= (<expression> (; <expression>) * |
forEach (<set> (, <set>)* :

<expression>(; <expression>)*))

<set> ::= <variable> (, <variable>)* in <elements>
 (! |with <property> (and <property>) *)

<elements> ::= (Nodes | { node (, node)* } |
 Chunks | { chunk (, chunk)* } |
 Links | { link (, link)* })

<property> ::= <condition>

<expression>::= if <condition>
 then <operation> (; <operation>)*

<operation> ::= (deleteNode (node) | addNode (node) |
 connect(chunk,node) | disconnect(chunk,node)|
 deleteLink (link) | addLink (link) |

 promoteNode(node, path) |
 demoteNode(node1, path, node2) |

 linkNodes(node1, node2) |unLinkNodes(node1, node2) |
 clusterChunks(node, chunk1, chunk2) |
 clusterNodes(node, node1, node2))

To illustrate the use of the Adaptation Specification Language, we
will give a few examples, using the Navigational Model of the
telephone company of figure 1. As a first example of adaptation,
consider the following situation: a lot of users might want to
check the tariff formula after they've consulted their credit, to find
out why a certain call was billed in a particular way. Beforehand,
we do not know if people will act in this way, and more-over, the
telephone company would like to avoid linking these two pages if

it's not strictly necessary, fearing people will discover their tariff
is not that beneficial after all. As a designer, specifying the
following rule would be the ideal solution:

if related(n12, n4) then linkNodes(n12,n4)

Another interesting and more complex adaptation we could
consider is the following: we might want to anticipate that certain
utilities offered by the website will be extremely popular, while
others will not be. However, beforehand we are unable to predict
which utilities will be the popular ones, and which the less
popular ones. Therefore, we'll use the forEach rule:

forEach node in {n10, n11, n12} :
if numberOfVisits (node, ((n1,n2),(n2,n6),(n6,node))) /

 numberOfVisits (node) ≥ 0,9 and
(numberOfVisits(node,((n1,n2),(n2,n6),(n6,node))
) / totalNumberOfVisits ≥ 0.05
then promoteNode(node, ((n1,n2),(n2,n6),(n6,node)))

Note that both rules are specified at design time, thus effectively
allowing to model adaptive behavior before implementation
should even be considered. Given an implementation framework,
the runtime adaptation rules could even be automatically
generated.

6. CONCLUSION & FUTURE WORK
In this paper we present an approach to design adaptive websites.
This is done by extending an existing web site design method
WSDM with an Adaptation Specification Language that allows a
designer to specify the desired adaptive behavior. Following the
WSDM approach, the specification is done at the conceptual level
rather than at the implementation (or page) level. In this way the
specification is independent of the actual implementation and can
be carried over to different implementations. The benefit of the
approach is that the adaptive behavior is under control of the
website designer. In this way he can avoid that the structure of the
website runs out of his control by unlimited adaptation and that
the website becomes unmanageable. At this point, it is still up to
the designer not to specify any rules that would cause the resulting
navigational model to be inconsistent, or violate the design
philosophy. In the audience driven approach, for example, one
might easily imagine a rule triggering a series of linking and
unlinking operations, causing a node to become unreachable from
its Audience Track. Although possible, we have not defined any
constraints that allow controlling this. If a tool supports the
method, this tool can guarantee that the adaptation rules
formulated in the language will not violate the chosen
organizational approach.

We are also fully aware of the current limitations of the
Adaptation Specification Language and that further study of
different kinds of adaptive behavior is necessary and may lead to
additional rules being specified in the Adaptation Specification
language.

Future work also includes the actual mapping of the conceptual
and implementation design to the actual implementation, after
which further experiments with the adaptation language will be
possible.

Complementing the work on adapting the navigation and
structural issues of web sites, a specification mechanism for

presentational, content and semantic adaptation could be
provided.

7. REFERENCES
[1] Bichler, M., and Nusser, S. W3DT - The Structured Way of

Developing WWW-Sites, in Proceedings of the ECIS 1996,
Lisbon, Portugal (1996)

[2] Bieber, M., and Isakowitz T. Designing Hypermedia
Application, in Communications of the ACM, Volume 38, S.
26 - 29.

[3] Bongio, A., Ceri, S., Fraternali, P., and Maurino, A.
Modeling Data Entry and Operations, in WebML in
Proceedings WebDB 2000 p. 201-214, Dallas (2000)

[4] Casteleyn, S., and De Troyer, O. Structuring Web Sites
Using Audience Class Hierarchies, in Proceedings of
DASWIS 2001 workshop of the ER 2001 conference,
Yokohama, Japan (2001)

[5] Ceri, S., Fraternali, P., and Bongio, A. Web Modeling
Language (WebML): a Modeling Language for Designing
Web Sites, in Proceedings of the WWW9 Conference,
Amsterdam (2000)

[6] Coenen, F., Swinnen, G, Vanhoof, K., and Wets, G. A
Framework for Self Adaptive Websites: Tactical versus
Strategic Changes, Workshop on Web Mining for E-
Commerce, Boston (2000)

[7] De Bra, P., Houben, G.J., and Wu, H. AHAM, A Dexter-
based Reference Model for Adaptive Hypermedia, in
Proceedings of the 10th ACM Conference on Hypertext and
Hypermedia, pp. 147-156, Darmstadt, Germany (1999)

[8] De Troyer, O.M.F. Designing Well-Structured Web Site:
Lessons to be Learned from Database Schema Methodology,
in Proceedings of the ER’98 Conference, Lecture Notes in
Computer Science (LNCS), Springer-Verlag (1998)

[9] De Troyer, O. Audience-driven web design in Information
modelling in the new millennium, IDEA GroupPublishing,
ISBN 1-878289-77-2 (2001)

[10] De Troyer, O., and Casteleyn, S. The Conference Review
System with WSDM, IWWOST 2001,
http://www.dsic.upv.es/~west2001/iwwost01/, Valencia
(2001)

[11] De Troyer, O., and Leune, C. WSDM: A User-Centered
Design Method for Web Sites, in Computer Networks and
ISDN systems, in Proceedings of the 7th International World
Wide Web Conference, Elsevier (1998) 85 - 94

[12] Garzotto, F., Paolini, P., and Baresi, L. Supporting Reusable
Web Design with HDM-Edit, in Proceedings of the 34th

Hawaii International Conference on System Sciences, Maui
USA (2001)

[13] Halasz, F., and Schwartz, M. The Dexter hypertext reference
model, in Communications of the ACM, 37(2): 30 - 39,
ISSN 0001-0782 (1994)

[14] Han, E.H., Jain, N, Mobasher, B., and Srivastava, J. Web
Mining: Pattern Discovery from World Wide Web
Transactions, Technical Report 96-050, Departement of
Computer Science, University of Minnesota, Minneapolis,
USA (1996)

[15] Isakowitz, T., Stohr, E.A., and Balasubramanian RMM: A
methodology for structured hypermedia design, in
Communications of the ACM 38, 8 (1995), 34-44

[16] Marcotty, M., and Ledgard, H. The World of Programming
Languages, Springer-Verlag, Berlin, pp. 41 and following
(1986)

[17] Perkowitz, M., and Etzioni, O. Adaptive web sites: an AI
challenge, in Proceedings of the Fifteenth International Joint
Conference on Artificial Intelligence, Nagoya, Japan (1997)

[18] Perkowitz, M., and Etzioni, O. Adaptive web sites:
Automatically Synthesizing Web Pages, in Proceedings of
the Fifteenth National Conference on Artificial Intelligence
(AAAI98), Wisconsin (1998)

[19] Perkowitz, M., and Etzioni, O. Towards Adaptive Web Sites:
Conceptual Framework and Case Study, in Artificial
Intelligence 118 (1-2) (2000)

[20] Rasmussen, E. Clustering algorithms, W.B. Frakes, R.
Baeza-Yates (Eds.), Information Retrieval, Prentice Hall,
Englewood Cliffs, NJ, pp. 419-442 (1992)

[21] Schwabe, D., Guell, N., and Vilain, P. Modeling Interactions
and Navigation in Web Applications, in Proceedings of the
World Wild Web and Conceptual Modeling 2000 Workshop,
ER Conference, Springer, Salt Lake City (2000)

[22] Schwabe, D., and Rossi G. An Object Oriented Approach to
Web-Based Application Design, in Theory and Practice of
Object Systems 4(4). Wiley and Sons, New York (1998)

[23] WSDM website.
http://wsdm.vub.ac.be/

[24] Wu, H., De Kort, E., and De Bra, P. Design Issues for
General-Purpose Adaptive Hypermedia Systems, in
Proceedings of the 12th ACM Conference on Hypertext and
Hypermedia, pp. 141-150, Aarhus, Danmark (2001)

[25] Yan, T., Jacobsen, H., Garcia-Molina, H., and Daval, U.
From user access patterns to dynamic hypertext linking, in
Proceedings of the 5th International WWW Conference,
Paris, France (1996)

