
A Graphical Editor for the SMUIML Multimodal User

Interaction Description Language

Bruno Dumas*1, Beat Signer*, Denis Lalanne+

*Vrije Universiteit Brussel, Belgium, +University of Fribourg, Switzerland
email addresses: bdumas@vub.ac.be, bsigner@vub.ac.be, denis.lalanne@unifr.ch

Abstract

We present the results of an investigation on software support for the SMUIML
multimodal user interaction description language (UIDL). In particular, we
introduce a graphical UIDL editor for the creation of SMUIML scripts. The
data management as well as the dialogue modelling in our graphical editor
is based on the SMUIML language. Due to the event-centered nature of
SMUIML, the multimodal dialogue modelling is represented by a state ma-
chine in the graphical SMUIML dialogue editor. Our editor further offers
a real-time graphical debugging tool. Compared to existing multimodal di-
alogue editing solutions, the SMUIML graphical editor offers synchronised
dual editing in graphical and textual form as well as a number of operators
for the temporal combination of modalities. The presented graphical editor
represents the third component of a triad of tools for the development of mul-
timodal user interfaces, consisting of an XML-based modelling language, a
framework for the authoring of multimodal interfaces and a graphical editor.

Keywords: Multimodal Interaction, UIDL, Graphical Editor, SMUIML,
HephaisTK

1. Introduction

Multimodal interfaces aim to improve the communication between hu-
mans and machines by making use of concurrent communication channels
or modalities. They have been shown to increase comfort and offer richer

1Corresponding author.

Preprint submitted to Science of Computer Programming April 1, 2013

expressiveness to users [1]. Nevertheless, due to a number of reasons, mul-
timodal interfaces are difficult to realise. First, multimodal interfaces are
normally composed of a number of different recognition technologies such as
speech recognition or pattern matching-based gesture recognition. In order
to create advanced multimodal interfaces, developers typically have to mas-
ter a number of these state of the art recognisers for different modalities.
Second, a combination of input for the same modality can lead to ambiguous
interpretations based on factors such as the ordering of input events, the
delay between events, the context of use or specific user profiles. Fusion al-
gorithms that take adaptation into account are therefore required. Last but
not least, the modelling of multimodal human-machine dialogues is desirable
in order to develop advanced multimodal interfaces.

The last years have seen the emergence of a number of tools for developing
multimodal interfaces. These tools can be classified in three main families.
The first family consists of full-fledged frameworks, which manage recognisers
for different input modalities, offer data processing and analysis capabilities
as well as algorithms for multimodal fusion and fission. Most of these frame-
works offer a programmatic API in order that software developers can access
their features. The second family of tools is frequently linked to the first one
and contains graphical editors for the description of multimodal dialogues.
Indeed, quite a few of these tools have been built on top of frameworks or
multimodal engines and act as a user-friendly entry point to the underlying
API. The third family consists of multimodal user interface description lan-
guages which are used to model the multimodal human-machine dialogues.
As we discuss in this article, very few approaches considered to link these
three families together and most existing solutions are focussing only on one
or two families.

We present our exploration of a language-based multimodal interaction
design approach in the context of the Synchronised Multimodal User Inter-
faces Modelling Language (SMUIML) and the corresponding software sup-
port. HephaisTK is introduced as a framework for the description of the
multimodal human-machine dialogue which makes use of the SMUIML lan-
guage. Finally, we present a graphical UIDL editor for SMUIML and discuss
its support for multimodal interaction design. The graphical editor offers an
alternative to the text-based editing of scripts in our XML-based language,
which is often tedious and can easily lead to errors. Furthermore, our graph-
ical editor focusses on expressing complex temporal relations between input
modalities. In this article, we outline how our approach addresses the de-

2

velopment of multimodal interfaces by a holistic approach encompassing all
three families of tools. We start by discussing related work in the context
of modelling languages as well as graphical editors for multimodal interac-
tion design in Section 2. In Section 3, we introduce the SMUIML language
and some results from our research on the language design for multimodal
interaction modelling. Next, we provide a description of the different sup-
portive software components for the SMUIML language in Section 4, followed
by the graphical UIDL editor in Section 5. After outlining potential future
directions is Section 6, we provide some concluding remarks.

2. Related Work

2.1. Multimodal Dialogue Description Languages

The challenges introduced by multimodal interaction design can poten-
tially be addressed by using a modelling language in combination with a
multimodal framework and development environment. A multimodal user
interface description language (UIDL) forms the key element of such an ap-
proach. The UIDL is used to define the behaviour of the multimodal frame-
work, to perform the dialogue modelling and as the underlying format for
the GUI development environment. A multimodal user interface description
language is typically situated at the Abstract User Interface (AUI) layer.
Furthermore, software support for the UIDL is provided for the definition,
modelling or interpretation of user interface descriptions. Navarre et al. [2]
identified five different categories of UIDLs according to the modelling intrin-
sic characteristics of their underlying notation or language: Petri net-based,
state-based, flow-based, code-based and constraint-based UIDLs.

Among these categories, a number of UIDLs address the description of
multimodal human-machine interaction. The work of Katsurada et al. [3]
on the XISL XML language is inspired by the W3C framework. XISL is a
typical example of a code-based UIDL and focusses on the synchronisation of
multimodal input and output, as well as dialogue flow and transition. Araki
et al. [4] proposed the Multimodal Interaction Markup Language (MIML)
for the definition of multimodal interactions. A key characteristic of MIML
is its three-layered description of interaction, focussing on interaction, tasks
and platform. Ladry et al. [5] use the Interactive Cooperative Objects (ICO)
notation and Petri nets for the description of multimodal interaction. This
approach is closely bound to a visual tool enabling the editing and simu-
lation of interactive systems, while being able to monitor low-level system

3

operations. Stanciulescu et al. [6] followed a code-based approach for the
development of multimodal web user interfaces based on UsiXML [7]. Four
steps are necessary to transform a UsiXML document from a generic model
to the final user interface. One of the main features of this approach is the
strong independence from the available input and output channels. A trans-
formational approach in multiple steps is also used in Teresa XML by Paterno
et al. [8]. DISL [9] was created as a language for specifying a dialogue model
which separates multimodal interaction and presentation components from
the control model. Finally, NiMMiT [10] is a high-level graphical modelling
notation associated with a language used to express and evaluate multimodal
user interaction as state transitions. A detailed analysis of multimodal in-
teraction modelling languages can be found in [11].

2.2. Multimodal Authoring Frameworks

Before achieving any work on multimodal UIDLs, researchers sought to
create frameworks for realising multimodal interfaces without having to fo-
cus on implementation issues such as the management of input sources or
low-level data processing. Incidentally, these frameworks evolved to offer ad-
vanced features such as fusion algorithms or dialogue modelling. In the fol-
lowing, we introduce the most representative tools in this category. Quickset
by Cohen et al. [12] is a speech and pen-based multimodal interface rely-
ing on the Open Agent Architecture (OAA) [13], which was used to explore
software agent-based multimodal architectures. IMBuilder and MEngine [14]
introduced the modelling of multimodal dialogues through a state machine,
along with an engine to interpret the dialogue modelling. In their multi-
modal system, Flippo et al. [15] used the initial explorations of Cohen et
al. [12] to create a more generic framework with comparable features. Af-
ter these initial explorations, the last few years have seen the appearance
of a number of fully integrated tools for the creation of multimodal inter-
faces. Among these tools are comprehensive open source frameworks such as
OpenInterface [16] and Squidy [17]. These frameworks share a similar con-
ceptual architecture with different goals. While OpenInterface targets pure
or combined modalities, Squidy was created as a particularly effective tool
for streams which are composed of low-level data. Finally, in contrast to the
linear and stream-based architecture adopted by most other solutions, the
Mudra framework [18] adopts a service-based architecture.

4

2.3. Graphical Multimodal Dialogue Editors

Graphical editors for the definition of multimodal dialogues can broadly
be separated into two families. These two families differ in the way a dialogue
is represented, which is often driven by the underlying architecture. On the
one hand, stream-based architectures favour a direct representation of data
streams with building blocks consisting of processing algorithms that are ap-
plied to the streams in a sequential manner. In the past few years, there has
been a trend towards graphical editors for stream-based multimodal architec-
tures. Petshop for ICO [5], Squidy [17] or Skemmi [19] for OpenInterface and
DynaMo [20] are examples of these types of graphical editors for stream-based
architectures. On the other hand, event-driven architectures result in a state
machine-based representation of the multimodal human-machine dialogue.
In this category, fewer examples exist for the representation of multimodal
interaction, the most prominent one being IMBuilder from Bourguet [14].
Note that the graphical editors introduced in this section have all been built
from scratch and they are not based on a previously defined formal language,
with Petshop for ICO forming the only exception.

2.4. Stream-based Versus Event-driven Approaches

As stated before, graphical tools for designing multimodal interfaces can
be broadly separated in two families—stream-based approaches and event-
driven approaches. However, we can go further than having such a simple
classification since each family of tools is strongly linked to the architecture
used by the underlying framework. As an example, consider the Squidy
framework [17] which is a perfect representative of the stream-based frame-
work family. A tool such as Squidy typically supports input sources like
input devices producing low-level but high-frequency data streams, such as
for example a Wii Remote2 producing streams of accelerometer data or x, y,
and z coordinates. As highlighted in Figure 1, a developer using the graphi-
cal Squidy editor can then link the data streams to processing blocks, which
will typically apply filtering or analysis operations to the data. Finally, the
processed data stream is forwarded to a client application.

The other family of graphical editors for multimodal dialogue modelling
contains event-driven approaches. These approaches typically process low-
frequency but decision-level input data. Examples of typical decision-level

2http://www.nintendo.com/wii/what-is-wii/

5

Figure 1: The Squidy stream-based graphical editor [17]

input events are speech utterance, recognised gestures or RFID tag identifiers
with optionally attached semantic information. These low-frequency events
are used to extract higher-level meaning from the temporal combination of
different events. Graphical editors for event-driven frameworks provide a
representation of the multimodal dialogue modelling, for example by using
a state machine as in our tool presented in the previous section. In this
case, the state machine represents application contexts as well as the transi-
tions between these contexts and therefore outlines how the human-machine
dialogue is expected to develop. Once again, graphical modelling and the
underlying runtime implementation are deeply linked.

On the one hand, event-driven frameworks and their corresponding graph-
ical editors follow a radically different approach to describe multimodal dia-
logues than stream-based frameworks. Indeed, event-driven frameworks are
well suited for applications using semantically rich input modalities such
as speech. Such frameworks frequently integrate multimodal fusion at the
decision level, with high-level rules and combinators. However, event-driven
approaches face problems in describing and managing high-frequency streams
of information, such as accelerometer data. In general, it is necessary to del-
egate the interpretation of a low-level data stream to an external recogniser
which delivers low-frequency high-level events with the effect of losing infor-

6

mation as part of the process. On the other hand, stream-based frameworks
easily manage high-frequency streams of information and offer the possi-
bility to redirect a given input data stream to a different function. These
approaches are ideal candidates for autonomic adaptation based on avail-
able devices and services. This is for example the approach followed by the
DynaMo framework [20], which is able to adapt the human-machine dialogue
model at runtime based on certain conditions. However, as soon as low-
frequency and high-level semantic events are to be processed by the system,
stream-based approaches rely on ad-hoc implementations and workarounds
to associate semantic-level events with their processing stream.

An alternative to the stream-based versus event-driven approaches is pro-
posed by Mudra [18], which stores all input data in a central fact base. From
this fact base, low-level stream data can be directly fed to a client applica-
tion or it can be processed by a recognition algorithm, which might add new
semantic-level interpretations to the fact base. The fusion of multimodal
events can then be applied at any level and they can also be seamlessly
mixed. However, even if this architecture effectively reconciles stream-based
and event-driven approaches, it is challenging to create a graphical editor
for modelling the human-machine dialogue and Mudra currently relies on a
declarative rule-based language to describe the fusion processes.

2.5. Strengths and Limits of Our Approach

While each of the three approaches to create multimodal interfaces have
their strengths and weaknesses, they have been rarely combined for achiev-
ing better performance. A notable exception is OpenInterface, a complete
multimodal authoring framework which is linked to the Skemmi graphical
editor. Furthermore, compatibility with UsiXML has been added on top of
the framework. Besides OpenInterface, no other tool has investigated the
linking of a framework with a modelling language and a graphical editor.
IMBuilder and Squidy link the framework with a graphical editor, while Pet-
shop integrates a graphical editor with the lower level modelling. Finally,
OpenInterface is not a fully satisfactory approach since the link between the
framework and UsiXML has not been defined from the ground up but added
after both tools had already been defined.

In the following three sections, we present our triad of linked tools for
the development of multimodal interfaces including the SMUIML modelling
language, the HephaisTK toolkit as well as the corresponding graphical edi-
tor. The SMUIML modelling language forms part of the state-based family

7

of UIDLs. This family of UIDLs has proven effective when modelling user-
machine dialogues at a high level, but tends to be lacking support for high
frequency low level streams such as used when fusing finger input data from
a multitouch surface. SMUIML makes no exception there and an approach
such as the one of Mudra [18] better handles this kind of applications. In
the state-based family of UIDLs, only TiMMiT has also been defined from
the ground up as a multimodal dialogue modelling language. The work
of Jacob [22] and Blanch et al. [21] addressed the modelling of interaction
with graphical user interfaces, with limited support for specific modalities.
However this work lacks the temporal and semantic rules necessary to fully
address the modelling of multimodal interaction. According to Navarre et
al. [2], TiMMiT and SMUIML are more comparable, however tool support
could be further improved for both tools. SMUIML already had interpreta-
tion support through the HepaisTK toolkit, but lacked a graphical editor for
the rapid authoring of SMUIML scripts. In this article we therefore present
the graphical SMUIML editor as the last member of the triad of tools pro-
viding multimodal interaction practitioners with a complete set of tools for
the creation of multimodal interfaces. While we provide a general overview
of SMUIML and HephaisTK, a detailed description of these two components
can be found in previously published work [25, 23, 27]3.

3. The SMUIML Language

SMUIML stands for Synchronized Multimodal User Interaction Modelling
Language. As the name implies, SMUIML aims to offer developers a language
to describe multimodal interaction and to define the use of modalities in
an easy-to-read and expressive way. The language can further be used to
describe the recognisers associated with a given modality, the human-machine
dialogue modelling, the various events associated with these dialogues and the
way these different events can be temporally synchronised [23]. As the first
component of our triad of tools, the SMUIML language builds the foundation
on top of which the other two tools have been implemented. SMUIML was
designed to be as simple as possible and is targeting usability as described
in [23]. Note that in order to minimise SMUIML’s verbosity, we decided not
to rely on existing standard multimodal interaction languages.

3The tools presented in this article are available as open source software from the
following address: http://sourceforge.net/projects/hephaistk/

8

Figure 2: The three abstraction levels of SMUIML

The SMUIML language is divided into three levels of abstraction as shown
in Figure 2. The lowest level details the different modalities which are going
to be used in an application, as well as the particular recognisers to be used
to access the different modalities. The middle level addresses input events
(triggers) and output events (actions). Triggers are defined per modality
which implies that they are not directly bound to specific recognisers and
can express different ways to trigger a particular event. For example, a
speech trigger can be defined in such a way that the words “clear”, “erase”
and “delete” will all lead to the same event. Actions are the messages that
the framework sends to the client application. The top level of abstrac-
tion describes the actual human-machine dialogue by means of defining the
contexts of use and interweaving the different input events and output mes-
sages of these contexts. The resulting human-machine dialogue description
is a series of contexts of use, with transitions between these different con-
texts. Therefore, the description of the multimodal human-machine dialogue
in SMUIML has an implicit representation as a state machine, similar to
Bourguet’s IMBuilder [14]. Triggers, actions and recognisers are grouped
together in elements defined for this role as illustrated in Listing 1. Fur-
thermore, clauses allow groups of reusable SMUIML instances to be defined.
The combination of modalities is defined based on the CARE properties [24]
as well as on the (non-)sequentiality of input triggers. The CARE proper-

9

ties model the temporal relationships between modalities and the temporal
SMUIML descriptors are directly linked to them. As shown in Listing 1, the
three levels of abstraction are directly reflected in the basic structure of the
language.

Listing 1: Basic layout of a SMUIML script

<?xml version=”1.0” encoding=”UTF−8”?>
<smuiml>
<integration desc client=”client app”>
<recognizers>
<!−− ... −−>

</recognizers>
<triggers>
<!−− ... −−>

</triggers>
<actions>
<!−− ... −−>

</actions>
<dialog>
<!−− ... −−>

</dialog>
</integration desc>

<smuiml>

The spectrum of multimodal dialogue description language uses, on a
scale from highly expressive to highly usable, was presented in [25]. Through
various workshops, numerous informal discussions and a study of the current
state of the art, we envisioned the three description language approaches
shown in Figure 3. A highly formal language approach is suited for the con-
figuration of a tool, the less formal language approach is good for communi-
cating the details of an application and the intermediary approach focusses
on the modelling. Along these three approaches, a formal language can also
be used as a learning tool helping teachers in communicating the features of
a particular application domain to their students.

Figure 3: Four purposes of a modelling language (machine to human oriented)

We have presented nine guidelines for a multimodal description language [25],
which should be used as design tools or language analysis criteria:

10

• Abstraction levels

• Modelling the human-machine dialogue

• Adaptability to context and user (input and output)

• Control over fusion mechanism

• Control over time synchronicity

• Error handling

• Event management

• Input and output sources representation

• Finding the right balance between usability and expressiveness

4. Software Support for SMUIML

SMUIML enables the definition of a full model of multimodal human-
machine events and dialogues by providing modelling capabilities. However,
the language shows its true potential when linked to a range of different
supportive software solutions. In the following, we introduce the software
support within SMUIML for interpretation, in the form of the HephaisTK
framework, and discuss the latest software addition in the form of a graphical
editor for designing multimodal human-machine dialogues.

4.1. The HephaisTK Framework

The HephaisTK framework to develop multimodal interfaces based on the
SMUIML scripting language is the second component of our triad of tools.
As such, the framework uses the language described in the previous section
as the underlying model on which all its interpretations are based.

In the HephaisTK architecture shown in Figure 4, the SMUIML document
which is used to configure the behaviour of an application is indicated in
the upper right corner. The description of the multimodal human-machine
dialogue by means of a state machine is then used to drive the framework
and enable intelligent multimodal input for an application written in the Java
language. The application developer making use of HephaisTK has to focus
only on the application logic and output representation. Note that in this
section an application which is based on HephaisTK is going to be referred as
the client application. As illustrated in Figure 4, the HephaisTK framework
is based on a software agent framework called JADE [26]. Individual agents

11

Figure 4: HephaisTK architecture

are responsible for a specific task. In Figure 4, each circle represents an
agent or a set of agents assigned to a specific task. Typical examples are
the agents responsible for managing input recognisers, such as speech or
gesture recognisers. These agents have the task to launch, connect to and
monitor recognisers for individual modalities. Their main goal is to gather
input data from the recognisers and prepare this data for further processing.
For example, a word uttered by a user is captured by the software agent
responsible for the speech recogniser and delegated to the Postman agent.

The role of the Postman agent is to gather and store input data in a
database or a memory buffer depending of the system capabilities. The
Postman agent is also in charge of managing subscriptions to specific types
of input data (e.g. speech data), where other agents can subscribe for specific
types of input data. This technique is, for example, used to filter input data
which is not going to be used by a particular client application. The Postman

12

agent is further responsible for managing requests from agents who are in-
terested in recently captured multimodal input data. In most cases, agents
forming part of the Integration Committee will be subscribed to a subset
of the available input modalities. The Integration Committee consists of
all agents who are responsible for the dialogue management, multimodal fu-
sion as well as multimodal fission. The SMUIML scripts are directly used
by the agents forming part of the Integration Committee to drive the be-
haviour of the entire framework. An example of such a script is shown in
Figure 5. The <recognizers> part indicates which recognisers have to be
loaded by the framework. It further provides some high-level parameters such
as whether a speech recogniser is able to recognise different languages. The
<triggers> are directly bound to the different fusion algorithms provided
by HephaisTK. The <actions> part defines the semantics to be used when
communicating fusion results to a client application. Last but not least, the
SMUIML <dialog> part is used for a number of specific goals in HephaisTK,
linked with the DialogManager agent.

The HephaisTK DialogManager agent is responsible for interpreting the
human-machine multimodal dialogue description in SMUIML. It also ensures
that the framework and client application are in a consistent state. Our
spoken word from the example mentioned before would be matched against
the dialogue description provided by the SMUIML script and possibly trigger
a new event. The clear separation of the SMUIML <dialog> into transitions
and contexts allows the different triggers to be enabled or disabled depending
of the current context. Since only a subset of triggers has to be considered
in a given context, the load on the recognisers is reduced and the overall
recognition rate is improved. The <dialog> part of SMUIML further is
used for the instantiation of the different fusion algorithms that are available
in HephaisTK [27]. The SMUIML language is applied at multiple levels
in the HephaisTK framework including the multimodal dialogue description
level, the recognisers’ dynamic launch and parametrisation level as well as the
fusion engine instantiation level. SMUIML is typically used during the system
design and runtime stages of the multimodal interface development. Please
note that HephaisTK and SMUIML provide the interpretation of multimodal
input. However, as explained above, the creation and management of an
application’s output is the responsibility of the developer.

13

4.2. Developing Applications with HephaisTK and SMUIML

The SMUIML language is derived from the XML metalanguage and a
standard text editor is sufficient for creating SMUIML documents. Even if
the language has been proven to be expressive in a qualitative study [25],
the editing of “raw” XML documents can easily lead to errors which are
only detected at runtime when interpreting a SMUIML script. Other issues
with the text-based editing of SMUIML scripts include the lack of an explicit
representation of the relationships between different elements as well as the
difficulty to produce and maintain an accurate mental model of complex
dialogue scenarios. Furthermore, the necessity of having to learn a new
language may represent a major challenge for some users.

<?xml version="1.0" encoding="UTF-8"?>
<smuiml>
 <integration_description client="macNavigation">
 <recognizer modality="mouse" name="mouse">
 <variable name="trace" value="trace"/>
 </recognizer>
 <recognizer modality="phidget_ikit" name="phidgetInterfaceKit">
 <variable name="source" value="source"/>
 <variable name="index" value="index"/>
 <variable name="value" value="value"/>
 <variable name="diff" value="diff"/>
 </recognizer>
 <recognizer modality="rfid" name="phidgetRfid">
 <variable name="source" value="source"/>
 <variable name="eventType" value="eventType"/>
 <variable name="tagId" value="tagId"/>
 </recognizer>
 <recognizer modality="face_detection" name="OpenCV Face Detection">
 <variable name="id" value="id"/>
 <variable name="event" value="event"/>
 <variable name="bounding_box" value="bounding_box"/>
 </recognizer>
 <recognizer modality="macNavigation" name="macNavigation">
 <variable name="data" value="data"/>
 </recognizer>
 </recognizers>
 <triggers>
 <trigger name="trigger1">
 <source variable="eventType" value="GAINED" modality="rfid"/>
 </trigger>
 <trigger name="trigger2">
 <source condition="valid" value="" modality="mouse"/>
 </trigger>
 <trigger name="trigger3">
 <source condition="" value="left" modality="speech"/>
 </trigger>
 </triggers>

 <actions>
 <action name="action1">
 <target message="message1" name="macNavigation"/>
 </action>
 <action name="action2">
 <target message="message2" name="macNavigation"/>
 </action>
 </actions>
 <dialog leadtime="1000">
 <context name="start">
 <transition name="t1">
 <par_or>
 <trigger name="trigger1"/>
 <trigger name="trigger3"/>
 </par_or>
 <result context="state1"/>
 <result action="action1"/>
 </transition>
 </context>
 <context name="state1">
 <transition name="t2">
 <seq_and>
 <trigger name="trigger2"/>
 <trigger name="trigger4"/>
 </seq_and>
 <result context="start"/>
 <result action="action2"/>
 </transition>
 </context>
 </dialog>
 </integration_description>
</smuiml>

Figure 5: Snippets of SMUIML code showing relationships within the language

Figure 5 shows two SMUIML code snippets. On the left-hand side we
see a snippet of code highlighting the description of a set of input recognis-
ers as well as a number of triggers. The right-hand side shows two actions
and a small dialogue element. In Figure 5, we can further see how the
<recognisers>, <triggers>, <actions> and <dialog> SMUIML elements
are deeply interlinked. In fact, this mix of elements over all three abstraction
levels complicates the editing of SMUIML scripts since developers have to
keep track of variables that have been defined at different levels. Further-

14

more, the editing of a variable name might invalidate a reference to that
variable. Overall, the textual editing of long SMUIML scripts can become
a tedious process. In order to overcome this issue, we have developed a
graphical editor for the creation and manipulation of SMUIML scripts.

5. The Graphical SMUIML Editor

As the last component of our triad of tools for the creation of multimodal
interfaces, we present the graphical SMUIML editor, which is linked to the
SMUIML language and the HephaisTK framework. The goal of our graphical
SMUIML editor was to provide developers who are not fully proficient with
multimodal interfaces a usable and expressive tool to create SMUIML scripts.
The graphical SMUIML editor offers a graphical representation of SMUIML-
encoded multimodal human-machine dialogues. Furthermore, it supports the
creation of sets of actions and triggers and can be used to generate a Java
configuration with all the calls related to the SMUIML script. The graphical
representation of a multimodal dialogue follows the SMUIML logic presented
in the previous section. The graphical SMUIML editor has been developed
based on the Eclipse development platform providing a set of well-known
interface elements. The graphical SMUIML tool itself was developed with
help of the Graphical Editing Framework (GEF)4 and the Eclipse Modeling
Framework (EMF)5.

The main window of the graphical editor is shown in Figure 6. The central
part of the tool is dedicated to the dialogue representation. As stated earlier,
SMUIML represents the multimodal human-machine dialogue via a state
machine. A graphical representation of the state machine is used to visualise
the multimodal dialogue. Note that the editor also provides access to a
textual representation of the currently edited SMUIML script. Any changes
that are applied either in the graphical or the textual representation are
immediately reflected in the other representation. Furthermore, for both the
graphical and textual representation, there exists real-time error checking.

On the right-hand side of the window are a set of toolboxes and most
of them are related to the different parts of a typical SMUIML file. The
Palette toolbox presents the basic building blocks for creating the dialogue
state machine, in particular states and transitions. As the user defines the

4http://www.eclipse.org/gef/
5http://www.eclipse.org/modeling/emf/

15

Figure 6: The graphical SMUIML editor showing a dialogue of a music player application

overall modelling of his application in the form of a state machine, he will
use the state and transition tools to define this model. The selection tool
which is used to select and edit elements in the model also is part of the
Palette toolbox. The Operators toolbox offers a number of operators to
combine different modalities as defined in the SMUIML specification. These
operators are tightly linked to the CARE properties [24]. The Seq and op-
erator corresponds to sequential-constrained complementarity, Par and to
sequential-unconstrained complementarity, the Seq or operator to equiva-
lence and Par or to redundancy. The next toolbox is devoted to input
triggers and contains a list of all the triggers that have been defined for a
given application, as well as a New Trigger button to create new triggers.
Operators and triggers are typically added into transitions and describe the
specific conditions which will trigger the transition. Note that temporal op-
erators can be mixed in order to define complex temporal rules. Temporal

16

windows defined in transitions are generally also linked with a temporal op-
erator. These temporal descriptors allow the interaction designer to describe
the sequential or parallel processing of multimodal commands without having
to specify tight delays between the different actions. Thus, user variabilities
are taken into account, as illustrated by the example in the next paragraph.
Last but not least, the Actions toolbox lists all actions that have been de-
fined for a given application and also provides a New Action button. Actions
are used to define the messages that will be sent to the client application
when a transition is successfully triggered. Note that triggers and actions
are defined by the user. When creating a new trigger, the set of all avail-
able input modalities for the running instance of the HephaisTK framework
is shown to the user, as well as information about the format of expected
input. These elements allow the user to focus on the definition of the user-
machine dialogue by freeing them from tedious tasks such as checking the
data format of a recogniser for a given modality.

Figure 7: Graphical description of the “put that there” example

As an example, let us consider the graphical representation of Bolt’s
“put that there” [28] example shown in Figure 7. In the graphical editor,
states (contexts) are visualised as blue ellipses. The corresponding textual
SMUIML specification is shown in Listing 2. Based on the actions taken by
users, HephaisTK might stay in the same context or switch to another context
of use. In the “put that there” example, there is only a single start context
with a transition starting from and pointing to this context. This transition
contains the overall description of the “put that there” action which asks for
five different input triggers in order that the action will be fired. Namely,
three speech triggers (“put”, “that” and “there”) as well as two pointing

17

event triggers are required for this action. Furthermore, three temporal com-
bination operators are used in this example. The main transition uses a
Seq and operator requiring a “put” speech trigger to be followed by a “that”
and “there” sub-event. The two sub-events use a Par and combination oper-
ator to define that there should be speech and pointing triggers but without
any sequential constraint. This implies that a user can perform the com-
mands in different orders, such as “put that” point1 point2 “there” or “put”
point1 “that there” point2 and both sequences will be correctly recognised.
Finally, the transition specifies a time window of 1500 milliseconds for the
whole command as well as an action in the form of a message to be sent to
the client application if the command has been successfully recognised. In
our example, the transition proceeds to the original start context.

Listing 2: SMUIML description of the “put that there” example

<context name=”start”>
<transition leadtime=”1500”>
<seq and>
<trigger name=”put trigger”/>
<transition>
<par and>
<trigger name=”that trigger”/>
<trigger name=”object pointed event”/>

</par and>
</transition>
<transition>
<par and>
<trigger name=”there trigger”/>
<trigger name=”object pointed event”/>

</par and>
</transition>

</seq and>
<result action=”put that there action”/>
<result context=”start”>

</transition>
</context>

The graphical SMUIML editor has been presented to two active researchers
in multimodality, independent from the development of HephaisTK, in or-
der to achieve a small expert review. This review resulted in a number of
changes to improve the usability of the graphical editor. The modality of
each trigger is now indicated by means of an icon. The start context which
is the only mandatory context in a given SMUIML script is visualised in a

18

Figure 8: Graphical debugging tool showing three steps going from the start context to
registeredcd and back to start again

slightly different colour to emphasise its special status compared to other
context nodes. Finally, users have the possibility to change the colour of
connections, contexts or transitions in order to best suit their preferences.

The graphical editor also contains an integrated debugging tool. This
debugging tool is launched with the client application and provides a real-

19

time visualisation of the context the HephaisTK framework is currently in.
It also highlights the transition leading from the previous context to the
current one. This allows users to visually debug their SMUIML scripts while
they are running in the framework. In the example illustrated in Figure 8,
the application starts in the start context. A RFID reader connected to
the framework detects a tagged music album and transmits the information.
Based on the trigger album trigger a transition is fired and the application
moves to the registeredcd state and starts playing the music album. The
user then executes a stop command and, at the same time, holds a stop
labelled RFID tag close to the RFID reader. This simultaneous action fires
the transition from the registeredcd context back to the start context and
the visual debugger keeps track of the different events. As illustrated in this
example, the graphical debugging tool allows developers to visually analyse
the application behaviour in real time.

The graphical editor is used to edit SMUIML scripts as it has been de-
scribed in this section. It is strongly linked to the HephaisTK framework
since it uses a HephaisTK instance running on the same machine in order to
identify the available input modalities. The debugging tool forming part of
the graphical editor, automatically connects to HephaisTK in order to test a
script in real time. All three tools—the graphical editor, the modelling lan-
guage and the framework—form an integrated solution for the development
of multimodal user interfaces, offering the user the right tool for a given task.

6. Future Work

While the presented graphical SMUIML editor looks promising and offers
a number of features not available in other graphical multimodal interface
editors, in the near future we plan to perform a detailed evaluation of the
presented solution. First, we are going to evaluate the usability of the pre-
sented graphical editor by asking developers to express a number of multi-
modal interaction use cases via the tool. In addition, we plan to evaluate
the expressiveness of the presented approach. It is not enough to guarantee
an effective and simple definition of multimodal interactions based on the
graphical editor. We also have to ensure that the editor and the underlying
SMUIML language are expressive enough to describe multimodal interactions
of arbitrary complexity.

An important future direction for our triad of tools is to support the
flexible adaptation of multimodal interfaces [29]. The idea is to no longer

20

have a fixed combination of modalities, but to provide a context-dependent
adaptation of multimodal user interfaces. This can either be achieved by
extending the SMUIML language with the necessary concepts or by intro-
ducing another language for the adaptation of the multimodal interaction.
In this view, the abstract user interface definition could rely on SMUIML
while the concrete context-dependant user interface specification would re-
quire the definition of a new language. The final user interface could still be
realised based on HephaisTK. However, the graphical editor would also have
to support the graphical description of adaptation rules, in order to keep
consistency between our three tools.

This new language for flexible multimodal interface adaptation could then
be used to provide innovative fluid document interfaces. Today’s document
formats often do not provide access to specific semantic subparts or embed-
ded media types [30]. However, if we are able to get access to these document
substructures, specific substructures or embedded media types can be associ-
ated with different modalities of interaction. Within the MobiCraNT project,
we are currently investigating innovative next generation mobile cross-media
applications. As part of this research effort, we are developing a new fluid
cross-media document model and investigate how SMUIML, in combination
with a context-dependant user interface specification language, could be used
to provide multimodal access to such a fluid document model.

7. Conclusion

We have presented our exploration on software support for a multimodal
UIDL based on the SMUIML multimodal dialogue modelling language. In
addition to the SMUIML language, we presented two particular software
components including the HephaisTK framework for interpretation of the
SMUIML language at the runtime stage and the graphical SMUIML edi-
tor for designing multimodal interaction dialogues. The graphical SMUIML
editor provides a user-friendly way to create multimodal applications based
on HephaisTK and SMUIML. Compared to other graphical dialogue editors,
our solution supports temporal constraints and a number of operators for
the combination of multiple modalities. While these concepts already form
part of the underlying SMUIML language, the graphical editor makes them
accessible via a user-friendly interface. Users further have the possibility to
freely switch between the graphical and textual dialogue representation. The
presented graphical SMUIML editor further addresses a number of usability

21

issues such as automatic layouting, the clear identification of input modali-
ties via specific icons as well as the possibility to customise various features
of the graphical editor. Last but not least, the graphical SMUIML editor
offers an integrated debugging tool supporting developers in analysing the
behaviour of an application in real-time. With this last addition to our triad
of tools, we offer an integrated solution for the development of multimodal
interfaces, addressing the modelling, framework and visual editing level.

8. Acknowledgments

The authors would like to thank Säıd Mechkour for his work on the graphi-
cal SMUIML editor. The work on HephaisTK and SMUIML has been funded
by the Hasler Foundation in the context of the MeModules project and by
the Swiss National Center of Competence in Research on Interactive Multi-
modal Information Management via the NCCR IM2 project. Bruno Dumas is
supported by MobiCraNT, a project forming part of the Strategic Platforms
programme by the Brussels Institute for Research and Innovation (Innoviris).

References

[1] S. Oviatt, Human-Centered Design Meets Cognitive Load Theory: De-
signing Interfaces That Help People Think, in: Proceedings of the 14th
ACM International Conference on Multimedia (ACM MM 2006), Santa
Barbara, USA, 2006, pp. 871–880.

[2] D. Navarre, P. Palanque, J.-F. Ladry, E. Barboni, ICOs: A Model-based
User Interface Description Technique Dedicated to Interactive Systems
Addressing Usability, Reliability and Scalability, ACM Transactions on
Computer-Human Interaction (TOCHI) 16(4), 2009, pp. 18:1–18:56.

[3] K. Katsurada, Y. Nakamura, H. Yamada, T. Nitta, XISL: A Language
for Describing Multimodal Interaction Scenarios, in: Proceedings of the
5th International Conference on Multimodal Interfaces (ICMI 2003),
Vancouver, Canada, 2003, pp. 281–284.

[4] M. Araki, K. Tachibana, Multimodal Dialog Description Language for
Rapid System Development, in: Proceedings of the 7th SIGdial Work-
shop on Discourse and Dialogue, Sydney, Australia, 2006, pp. 109–116.

22

[5] J.-F. Ladry, P. Palanque, S. Basnyat, E. Barboni, D. Navarre, Deal-
ing with Reliability and Evolvability in Description Techniques for Next
Generation User Interfaces, in: Proceedings of the 26th ACM Interna-
tional Conference on Human Factors in Computer Systems (CHI 2008),
Florence, Italy, 2008.

[6] A. Stanciulescu, Q. Limbourg, J. Vanderdonckt, B. Michotte, F. Mon-
tero, A Transformational Approach for Multimodal Web User Interfaces
Based on UsiXML, in: Proceedings of the 7th International Conference
on Multimodal Interfaces (ICMI 2005), Torento, Italy, 2005.

[7] Q. Limbourg, J. Vanderdonckt, B. Michotte, L. Bouillon, V. Lopez-
Jaquero, USIXML: A Language Supporting Multi-Path Development
of User Interfaces, in: Engineering Human Computer Interaction and
Interactive Systems (2005): pp. 134–135.

[8] F. Paternò, C. Santoro, J. Mäntyjärvi, G. Mori, S. Sansone, Author-
ing Pervasive Multimodal User Interfaces, International Journal of Web
Engineering and Technology 4 (2) (2008) 235–261.

[9] R. Schaefer, S. Bleul, W. Mueller, Dialog Modeling for Multiple Devices
and Multiple Interaction Modalities, in: Proceedings of the 5th Inter-
national Workshop on Task Models and Diagrams for User Interface
Design (TAMODIA 2006), Hasselt, Belgium, 2006, pp. 39–53.

[10] J. D. Boeck, D. Vanacken, C. Raymaekers, K. Coninx, High-Level Mod-
eling of Multimodal Interaction Techniques Using NiMMiT, Journal of
Virtual Reality and Broadcasting 4(2).

[11] J.-S. Sottet, G. Calvary, J. Coutaz, J.-M. Favre, J. Vanderdonckt,
A. Stanciulescu, S. Lepreux, A Language Perspective on the Develop-
ment of Plastic Multimodal User Interfaces, Journal on Multimodal User
Interfaces 1 (2007) 1–12.

[12] P. R. Cohen, M. Johnston, D. McGee, S. Oviatt, J. Pittman, I. Smith,
L. Chen, J. Clow, QuickSet: Multimodal Interaction for Simulation Set-
Up and Control, in: Proceedings of the 5th Conference on Applied Nat-
ural Language Processing (ANLC 1997), Washington DC, USA, 1997.

[13] A. Cheyer, D. Martin, The Open Agent Architecture, Autonomous
Agents and Multi-Agent Systems 4 (2001) 143–148.

23

[14] M.-L. Bourguet, A Toolkit for Creating and Testing Multimodal Inter-
face Designs, in: Adjunct Proceedings of the 15th Annual Symposium
on User Interface Software and Technology (UIST 2002), Paris, France,
2002.

[15] F. Flippo, A. Krebs, I. Marsic, A Framework for Rapid Development of
Multimodal Interfaces, in: Proceedings of the 5th International Confer-
ence on Multimodal Interfaces (ICMI 2003), Vancouver, Canada, 2003.

[16] M. Serrano, L. Nigay, J. Lawson, A. Ramsay, R. Murray-Smith, S. Denef,
The OpenInterface Framework: A Tool for Multimodal Interaction, in:
Proceedings of the 26th International Conference on Human Factors in
Computing Systems (CHI 2008), Florence, Italy, 2008, pp. 3501–3506.

[17] W. A. König, R. Rädle, H. Reiterer, Squidy: A Zoomable Design En-
vironment for Natural User Interfaces, in: Proceedings of the 27th In-
ternational Conference on Human Factors in Computing Systems (CHI
2009), Boston, USA, 2009.

[18] L. Hoste, B. Dumas, B. Signer, Mudra: A Unified Multimodal Interac-
tion Framework, in: Proceedings of the 13th International Conference on
Multimodal Interfaces (ICMI 2011), Alicante, Spain, 2011, pp. 97–104.

[19] J.-Y. L. Lawson, A.-A. Al-Akkad, J. Vanderdonckt, B. Macq, An Open
Source Workbench for Prototyping Multimodal Interactions Based on
Off-the-Shelf Heterogeneous Components, in: Proceedings of the 1st
ACM SIGCHI Symposium on Engineering Interactive Computing Sys-
tems (EICS 2009), Pittsburgh, USA, 2009, pp. 245–254.

[20] P.-A. Avouac, P. Lalanda, L. Nigay, Service-Oriented Autonomic Mul-
timodal Interaction in a Pervasive Environment, in: Proceedings of the
13th International Conference on Multimodal Interfaces (ICMI 2011),
Alicante, Spain, 2011, pp. 369–376.

[21] R. Blanch, M. Beaudouin-Lafon, Programming Rich Interactions Using
the Hierarchical State Machine Toolkit, in: Proceedings of the Working
Conference on Advanced Visual Interfaces (AVI 2006), Venezia, Italy,
2006, pp. 51–58.

[22] R. Jacob, A Specification Language for Direct-Manipulation User Inter-
faces, in: ACM Transactions on Graphics (TOG) 5(4) (1986).

24

[23] B. Dumas, Frameworks, Description Languages and Fusion Engines for
Multimodal Interactive Systems, Ph.D. thesis, University of Fribourg,
dissertation No. 1695 (2010).

[24] J. Coutaz, L. Nigay, D. Salber, A. Blandford, J. May, R. M. Young, Four
Easy Pieces for Assessing the Usability of Multimodal Interaction: The
CARE Properties, in: Proceedings of the 5th International Conference
on Human-Computer Interaction (Interact 1995), Lillehammer, Norway,
1995.

[25] B. Dumas, D. Lalanne, R. Ingold, Description Languages for Multimodal
Interaction: A Set of Guidelines and its Illustration with SMUIML, Jour-
nal on Multimodal User Interfaces: “Special Issue on The Challenges of
Engineering Multimodal Interaction” 3(3) (2010) 237–247.

[26] F. Bellifemine, A. Poggi, G. Rimassa, JADE – A FIPA-compliant Agent
Framework, in: Proceedings of the 4th International Conference and
Exhibition on the Practical Application of Intelligent Agents and Multi-
Agents (PAAM 1999), London, UK, 1999, pp. 97–108.

[27] B. Dumas, B. Signer, D. Lalanne, Fusion in Multimodal Interactive Sys-
tems: an HMM-Based Algorithm for User-Induced Adaptation, in: Pro-
ceedings of the 4th Symposium on Engineering Interactive Computing
Systems (EICS 2012), Copenhagen, Denmark, 2012, pp. 15–24.

[28] R. A. Bolt, “Put-that-there”: Voice and Gesture at the Graphics In-
terface, in: Proceedings of the 7th Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH 1980), Seattle, USA,
1980, pp. 262–270.

[29] J. Vanderdonckt, G. Calvary, J. Coutaz, A. Stanciulescu, Multimodal-
ity for Plastic User Interfaces: Models, Methods, and Principles, in:
Multimodal User Interfaces, Signals and Communication Technology,
Springer Berlin Heidelberg, 2008, pp. 61–84.

[30] B. Signer, What is Wrong with Digital Documents? A Conceptual
Model for Structural Cross-Media Content Composition and Reuse, in:
Proceedings of the 29th International Conference on Conceptual Mod-
eling (ER 2010), Vancouver, Canada, 2010, pp. 391–404.

25

	1 Introduction
	2 Related Work
	2.1 Multimodal Dialogue Description Languages
	2.2 Multimodal Authoring Frameworks
	2.3 Graphical Multimodal Dialogue Editors
	2.4 Stream-based Versus Event-driven Approaches
	2.5 Strengths and Limits of Our Approach

	3 The SMUIML Language
	4 Software Support for SMUIML
	4.1 The HephaisTK Framework
	4.2 Developing Applications with HephaisTK and SMUIML

	5 The Graphical SMUIML Editor
	6 Future Work
	7 Conclusion
	8 Acknowledgments

