
A Multi-layered Context Modelling
Approach for End Users, Expert Users
and Programmers

Sandra Trullemans
WISE Lab
Vrije Universiteit Brussel
Pleinlaan 2
1050 Brussels, Belgium
strullem@vub.ac.be

Beat Signer
WISE Lab
Vrije Universiteit Brussel
Pleinlaan 2
1050 Brussels, Belgium
bsigner@vub.ac.be

SERVE 2016, June 7, 2016, Bari, Italy
Copyright held by the author(s).

Abstract
Context awareness plays an important role in smart envi-
ronments and embedded interactions. In order to increase
user satisfaction and acceptance, context-aware solutions
should be controllable by end users. Over the last few years
we have therefore witnessed an emerging trend of visual
programming tools for context-aware applications based
on simple “if this then that” rules. Unfortunately, existing
solutions do not support the easy reuse of the “this” part
in other rules. Further, the desired level of control varies
among individuals. In order to let users choose the right
level of automation and control, we propose a multi-layered
context modelling approach distinguishing between end
users, expert users and programmers. We report on our on-
going development of the Context Modelling Toolkit (CMT)
consisting of the necessary context modelling concepts as
well as a rule-based context processing engine. We further
discuss an initial design of the graphical user interface for
the presented multi-layered context modelling approach.

Author Keywords
Context-aware systems; context modelling toolkit; end user.

ACM Classification Keywords
H.5.m [Information interfaces and presentation (e.g., HCI)]:
Miscellaneous



Introduction
It is well-accepted by the community that we have to achieve
a better synergy between context-aware systems and their
users by providing control and intelligibility [8]. There is no
general rule about the necessary level of control since in-
dividual users have varying preferences. As pointed out by
Hardian [6], there needs to be a balance between the level
of control and automation. In order to provide end users
some control, visual programming tools such as the Jigsaw
Editor [7] and iCAP [4] as well as commercial applications
such as IFTTT1 have been developed for defining simple “if
situation then action” context rules. Note that in this case a
situation consists of one or more events such as the current
temperature. Nevertheless, the complexity of context-aware
systems is significantly increased in new forms of smart
homes. In such a complex environment, advanced mod-
elling support for end users is required since simple context
rules cannot cover all desired smart home behaviour [10].

In this paper we explore the opportunities for advanced end
user modelling of rule-based context-aware applications.
We propose a multi-layered context modelling approach
which supports the seamless transition between different
levels of expertise. We further enable the reuse of situa-
tions defined by end users. Finally, we discuss an imple-
mentation of the Context Modelling Toolkit (CMT) enabling
the practical use of our multi-layered context modelling ap-
proach.

Background
For decades context-aware frameworks have been devel-
oped to facilitate the development of context-aware applica-
tions. They often include support for context modelling and
reasoning. The SOCAM [5] framework is an example of an
ontology-based context-aware framework. Unfortunately,

1https://ifttt.com

ontology-based approaches are not ideal for dynamic con-
text modelling, given that changing the ontology at runtime
introduces potential issues with conflicts and ontology in-
tegrity. The Java Context Aware Framework (JCAF) [1]
takes an object-oriented approach and forwards the rea-
soning of context rules to the application layer. This has the
effect that context rules are spread over various applica-
tions which can lead to issues concerning conflict manage-
ment and inconsistent application behaviour across client
applications. In order to overcome this issue, JCOOLS [9]
integrates JCAF with the Drools inference engine. Although
JCOOLS is very promising, it lacks support for different ex-
pertise levels and reusable user-defined situations. Finally,
the most well-known and used context-aware framework in
the Human-Computer Interaction (HCI) community is the
Context Toolkit by Dey et al. [2]. The framework applies
a component-based software design where components
are represented by so-called widgets. Each widget pro-
cesses information, from low-level data input to higher-level
abstract context information (i.e. detected situations). In
order to foster intelligibility and offer control over context
rules, Dey and Newberger extended the Context Toolkit with
a middleware that includes the concept of situations [3].
Whenever all the widgets of a given situation are active,
the situation will invoke an action of the context services
listening for it. While some user control is provided via the
customisation of parameters, the reuse of situations in the
definition of other situations is not possible.

We can conclude that there is a broad spectrum of context
modelling tools ranging from context-aware development
frameworks to end-user tools. Nevertheless, existing con-
text modelling solutions do not foresee a seamless transi-
tion between the different levels of expertise of end users,
expert users and programmers and they do not support the
reuse of user-defined situations.



Multi-layered Context Modelling ApproachEnd User

Actions

Tool

Situations

Facts

Rules

Programmer

Rules

(1)

(2)

(3)

Figure 1: Existing context
modelling approaches

End User

Functions

Actions

Templates

Filled in
Templates

Situation

Situations

Facts

Rule

Rules

(4)

(5)
(6)

(7)

(8)

Programmer

Expert User

Figure 2: Multi-layered context
modelling approach

In order to facilitate the end-user context modelling process,
we foresee the possibility to let end users create new situa-
tions such as ‘cooking’ by creating so-called situation rules
which take the form of “if situations then new situation”. In
its simplest form, the IF side of a situation rule can just be
a combination of context data as seen in existing visual
programming tools, such as iCAP [4], in order to construct
context rules. Note that this context data includes facts (real
world objects such as Person is Bob), events or situations.
Besides simple situation rules, we also support the reuse
of newly defined situations on the IF side. For example,
the situation rule “IF Person is Bob and Location is kitchen
THEN Bob is in the kitchen” takes the facts Person:Bob
and Location:kitchen as context data on the IF side
to define a new situation. This new situation can then, for
example, be reused in the situation rule “IF Bob is in the
kitchen AND stove is on THEN Bob is cooking” or in a con-
text rule such as “IF Bob is in the kitchen THEN turn radio
on”. In contrast to existing work, with our approach users do
not have to re-define a situation each time they want to use
it in a different situation or context rule.

We further make use of templates to simplify the definition
of situation and context rules. A template serves as a skele-
ton for rules. The IF side can consist of multiple events,
situations or logical functions. Similar to programming con-
cepts, a function evaluates some logical statements and
returns the result. In our multi-layered context modelling so-
lution, functions only return boolean values. Furthermore,
situations and functions can have a number of parameters.
For example, a function IsPersonInLocation evaluates
whether the given Person is in the specified Room and re-
turns true or false. In contrast to the definition of a context
rule, a template does not specify a specific fact or situation
for a parameter of a given type. The binding to a specific

fact or situation is only done when the template is used to
create a concrete situation or context rule. In order to know
which object types are needed by the template, it contains
a To Fill In part listing the required object types which
are connected to the corresponding input variables of sit-
uations or functions on the IF side. When a user fills in a
template, they only have to provide the concrete instances
of the listed object types such as Person:Bob. Finally, the
THEN side of a template defines the new situation. Since sit-
uations can have parameters, template designers can add
these to the new situation by defining which properties of a
template’s required object types have to be forwarded to the
new situation. When a template is created, it can be reused
to define custom situations or context rules. For instance,
the situation rule “IF Person is Bob and Location is kitchen
THEN Bob is in the kitchen” could be created by using the
PersonIsAtLocation template by simply filling in the vari-
ables Person:Bob and Room:kitchen and by naming the
new situation as “Bob is in the kitchen”. The new situation is
identified by its name. Similarly, the same template could be
used to define that Alice is in the living room.

The situation rules and templates were introduced to sup-
port users with different levels of expertise as proposed by
Ur [10]. As illustrated in Figure 1, in existing systems facts
(e.g. Person is Bob), situations (e.g. cooking) and actions
(e.g. turning on the lights) (1) are usually predefined by a
programmer and can be applied by an end user to construct
simple “IF situation THEN action” context rules (3). Fur-
thermore, in context modelling solutions without end-user
control, programmers also implement the desired context
rules (2). We extended the previous model with an inter-
mediate layer for expert users and integrated the notions of
custom and reusable situations as shown in Figure 2. Sim-
ilar to existing systems, in our multi-layered context mod-
elling approach, programmers are responsible to provide



context data in the form of facts, situations and actions to
the end user (4). Besides the previously mentioned context
data, they also have to provide functions (5) in order that
expert users can create templates (6). End users might fill
in templates by using the provided context data. In addi-
tion to the templates defined by expert users, end users can
also use some default templates such as an AND template
to construct simple situation and context rules. The com-
pleted templates define new situation or context rules (7).
New situations are made available at the programmer layer
in order that they can be reused at the expert and end-
user layer (8). Similarly, custom context rules flow from the
end-user layer back to the programmer layer and can be
used by programmers or other applications. This provides a
seamless transition between the three layers.

Context Modelling Toolkit

THEN-side

has
Situation

Rule

Template

hasOutput

hasInput

IF-side

hasAction

ActionSituation

hasInput

has 
Function

Context
InputFunction

Fact

has 
Parameter

has
Property

Type

Item

Property

has
FactType

has
Context

Type
Type

compiled 

to rule

(1,1)

(1,*)

(1,1) (1,*)

(1,*)

(0,*) (0,*)

X

(0,*) (0,*)

(0,*)

(0,*)

(0,*)

(0,*)

(0,*)

(1,1)(0,*)

(1,1)

(0,*)

(0,*)

(1,1)

Event

Figure 3: CMT data model

The proposed multi-layered context modelling approach has
been implemented in the Context Modelling Toolkit (CMT).
CMT has been designed as a client-server architecture and
is implemented in Java. While the server side takes care of
the context reasoning, clients such as sensors, third-party
applications and applications which allow end users to de-
fine new situations, provide the necessary context data to
the server. As shown in Figure 4, CMT consists of a db4o2

database backend and uses the non-persistent version of
the Drools 63 rule reasoning engine. In order to have a uni-
fied representation of the context data delivered by clients,
we have designed the conceptual CMT data model shown
in Figure 3. The data model highlights the elements of the
previously described multi-layered modelling approach in
the form of an Entity-Relationship (ER) diagram. The dif-
ferent entities of the CMT data model serve as a common
vocabulary used in any client-server communication. We

2http://www.mono-project.com/archived/db4o
3 http://docs.jboss.org/drools/release/6.1.0.Final

CMT-REST

Observer

CMT-RMI

Observer

Compiler

Delegator

Event 

Manager

Database 

Interface

Drools 

Interface

db4o

Drools

Translator

Com 

Interface

Listener

Application & 

Sensors

CMT Client Library

CMT Server

Figure 4: CMT architecture

currently support the Java Remote-Method Invocation (RMI)
and REST communication protocols. Since the two pro-
tocols require a different data exchange format, the CMT
server contains the CMT-RMI and CMT-REST components.
These components translate their input to CMT data model
entities and generate the required output format when data
is sent to the clients. Finally, the Java-based CMT Client
Library consists of a Translator component for trans-
lating Java objects to CMT data model entities and to the
corresponding JSON formats, the Com Interface which
abstracts REST calls and the Listener component which
provides Java listeners for CMT.

Clients first have to register the type of situations or facts
they will send to CMT. Since Drools requires compiled Java
classes of the registered types, the Compiler component
will compile these classes and add them to the classpath
at runtime. After registration, clients can add instances of
the registered types to the server. In case the instance is a
fact, the Delegator component sends it to the Database
Interface which inserts it into db4o. The Delegator
component further sends both, facts and situations, to the
Drools Interface where they are inserted in Drools and

http://www.mono-project.com/archived/db4o
http://docs.jboss.org/drools/release/6.1.0.Final


Figure 5: Design of templates in the expert graphical user interface

rules are re-evaluated. Furthermore, new templates are
stored in the database. When a filled in template is re-
ceived, it is compiled to the Drools DRL rule format. The
new rule is then inserted into the Drools knowledge base
and all rules are re-evaluated. Note that our implementation
of the rule compilation is a complex mechanism which takes
into account the full first order logic and provides in depth
error handling for client applications. When Drools detects
some conflicting rules, the Event Manager forwards them
to the clients. In the future, we plan to further develop this
component to provide some intelligibility.

Graphical User Interfaces
End users as well as expert users can interact with CMT
via a graphical user interface (GUI). The expert GUI en-
ables the design of templates as shown in Figure 5. In our
proof of concept scenario Alice designs a template to cre-
ate “Sleeping” situations. First, she adds to the IF side the
inBed situation which has been defined by a programmer
and triggers when a pressure sensor in the bed detects
some pressure. Alice also adds the function noMovement

which again has been defined by a programmer and returns
true if there is no movement in a given room. Further,
she adds a time constraint which indicates that it must be
later than a specified time. When the logical statements are
defined, Alice has to add the object types to be provided
when using the template. In our example, a Location and
ItIsAfter type are added to the To Fill In part. Next, she
connects the Location type to the inBed and noMovement
parameters to indicate that the entered location has to be
passed to the two functions. Finally, she allocates the room
to the new situation on the THEN side by clicking the ar-
row of the room field in the Location type. After saving the
template, Alice can use the template to define “Sleeping”
situations such as that she or her son Bob sleep.

The end user GUI shown in Figure 6 displays the created
template with a placeholder for the required Location in-
stance where Alice can enter Bob’s room. In addition, there
is a ItIsAfter placeholder. By clicking the ‘Enter Values’
button, Alice can enter the desired time (e.g. 20:00). She
then enters “Bob Sleeps” as the name for the new situation



on the Situation side. Similarly, she can enter her room and
specify 22:00 to define that she sleeps. Finally, the sleep-
ing situations can be used to define context rules. Alice can
add “Bob Sleeps” and “I Sleep” to the IF side of the AND
template (i.e. default context rule template) and add the
action that the night light has to be turned on to the THEN
side as shown in Figure 7. Note that similar to the creation
of templates for new situations, expert users can design
templates for advanced context rules.

Figure 6: End-user GUI to define new
situations

Figure 7: End-user GUI to define new
context rules by using the default AND
template

Conclusion and Future Work
We are currently investigating the further design of the ex-
pert user and end user graphical user interfaces. Besides
usability and interaction enhancements, we are exploring
the integration of feedforward and intelligibility features. Fur-
thermore, we plan to deploy CMT under a research license
in order that the HCI community can explore new opportuni-
ties in designing user-centric context-aware applications.

We have presented a multi-layered context modelling solu-
tion and the corresponding CMT data model as an innova-
tive approach for end users to control their context-aware
applications. The presented solution contributes to the ex-
isting body of work by enabling end users to define new
custom situations in the form of “if situations then new sit-
uation” at runtime and to reuse these situations in other
situation and context rules. Ultimately, the proposed multi-
layered context modelling approach enables end users,
expert users as well as programmers to collaboratively de-
velop their context models.

Acknowledgements
The research of Sandra Trullemans is funded by the Agency
for Innovation by Science and Technology in Flanders (IWT).
We would further like to thank Wouter Mensels and Brecht
De Rooms for their work on an earlier version of the toolkit.

References
[1] Jakob Eyvind Bardram. 2005. The Java Context

Awareness Framework (JCAF) - A Service Infrastruc-
ture and Programming Framework for Context-Aware
Applications. In Proc. Pervasive.

[2] Anind Dey, Gregory Abowd, and Daniel Salber. 2001.
A Conceptual Framework and a Toolkit for Supporting
the Rapid Prototyping of Context-Aware Applications.
Human-Computer Interaction 16, 2 (2001).

[3] Anind Dey and Alan Newberger. 2009. Support for
Context-Aware Intelligibility and Control. In Proc. CHI.

[4] Anind Dey, Timothy Sohn, Sara Streng, and Justin Ko-
dama. 2006. iCAP: Interactive Prototyping of Context-
Aware Applications. In Proc. PerCom.

[5] Tao Gu, Xiao Hang Wang, Hung Keng Pung, and Da
Qing Zhang. 2004. An Ontology-based Context Model
in Intelligent Environments. In Proc. CNDS.

[6] Bob Hardian, Jadwiga Indulska, and Karen Henrick-
sen. 2006. Balancing Autonomy and User Control in
Context-Aware Systems - a Survey. In Proc. PerCom.

[7] Jan Humble, Andy Crabtree, Terry Hemmings, Karl-
Petter Åkesson, Boriana Koleva, Tom Rodden, and
Pär Hansson. 2003. "Playing with the Bits" User-
configuration of Ubiquitous Domestic Environments.
In Proc. UbiComp.

[8] Brian Lim and Anind Dey. 2009. Assessing Demand
for Intelligibility in Context-Aware Applications. In Proc.
UbiComp.

[9] Jongmoon Park, Hong-Chang Lee, and Myung-Joon
Lee. 2013. JCOOLS: A Toolkit for Generating Context-
aware Applications with JCAF and DROOLS. Journal
of Systems Architecture 59, 9 (2013).

[10] Blase Ur, Elyse McManus, Melwyn Pak Yong Ho, and
Michael Littman. 2014. Practical Trigger-Action Pro-
gramming in the Smart Home. In Proc. CHI.


	Introduction
	Background
	Multi-layered Context Modelling Approach
	Context Modelling Toolkit
	Graphical User Interfaces
	Conclusion and Future Work
	Acknowledgements
	References

