
Semester Work

WS 1998/99

Personal Assistant for
Internet OMS

An Intelligent Adaptive Caching Agent

Beat Signer, IIIC
March 1, 1999

Institute for Information Systems
Swiss Federal Institute of Technology (ETHZ)

Advisor:
Antonia Erni

Responsible Professor:
Prof. M. C. Norrie

Abstract

To improve the performance of internet database services for regular users,
the Internet OMS framework was extended by the personal assistant, a
middle layer caching agent. On the one hand, the user can explicitly define
queries to be permanently cached, on the other hand, the personal assis-
tant monitors all user actions and prefetches the data most likely to be
used in the near future from the database agent into his local persistent
cache. Cache consistency is ensured through cooperation between the per-
sonal assistant’s caches and the database agent. The usage of the personal
assistant’s caching framework will increase the overall cache hit rate and
therefore reduce response times, e.g. over slower network connections.

i

Contents

Abstract i

1 Problem Formulation 3

2 Introduction 5

3 Architecture 7
3.1 Overview . 7
3.2 Session Cache . 8
3.3 Personal Cache . 8
3.4 Prefetching Cache . 9
3.5 Startup Process . 10

4 User Interface 12
4.1 Personal Assistant . 12

4.1.1 Parameters . 12
4.1.2 Statistics . 13
4.1.3 Log View . 13
4.1.4 Session Cache . 14
4.1.5 Personal Cache . 16
4.1.6 Prefetching Cache . 17

4.2 Database Agent . 18
4.2.1 Parameters . 18
4.2.2 Statistics . 18

4.3 Frontend Agent . 19
4.3.1 Parameters . 19
4.3.2 Statistics . 20
4.3.3 Personal Cache . 20

5 Object Signing 22
5.1 Relaxing the Sandbox Restrictions 22
5.2 Digital Signatures . 23
5.3 Netscape Signing Tool . 24
5.4 Codebase Signing . 25

1

CONTENTS 2

A API Reference 27
A.1 The agent Package . 28
A.2 The cache Package . 68
A.3 The tools Package . 92
A.4 The views Package . 100

Chapter 1

Problem Formulation

SEMESTER-WORK Beat Signer

Personal Assistant for Internet OMS

Internet OMS is an agent based Internet interface to the object oriented
database system, OMS, both developed in the group for Global Information
Systems. A combination of server and client agents provides performance
gains to users through active caching mechanisms.

Casual users may access the information service directly via the usual
WWW services. The server agent controls all access to the database and
general access is improved by the caching strategy of the server agent. All
results of queries frequently requested by clients are stored in a global server
cache, thereby reducing response time and database load.

The objective of this semester work is to extend the Internet OMS ar-
chitecture by an additional agent - the personal assistant. The personal
assistant should help regular users to reduce response times in prefetch-
ing often required data in the users local cache. Cooperation between the
server and client agents ensures that only new and updated information is
transferred from the server, while other information is accessed via the local
cache. Prefetching of data can be based on user profiles which enable user
information requirements to be downloaded into the cache in order that it
is available locally when required.

The front end agent should be extended with functionalities for changing
and updating the user profile, if a personal assistant is installed on the clients
local machine.

The goal of the semester work is to have an extension of Internet OMS,
such that a personal assistant can be downloaded over the Internet and
installed on the clients local machine. Configurations and changes to the
user profile should all be possible over the Internet.

3

CHAPTER 1. PROBLEM FORMULATION 4

The main stages of the work are:

• Learn the Internet OMS architecture

• Development of a personal assistant as an extension of the generic
agent

• Extension of the front end agent with functionalities for regular users
in case a personal assistant is installed on the clients local machine

Start Date: Monday, 19th of October 1998
Environment: Internet OMS, Java, OMS/Prolog, Sun, Unix
Supervision: Antonia Erni, IFW D47.1

Chapter 2

Introduction

Based on the Internet OMS architecture [EN97, Rus97, ENK98] – an agent
based internet interface for the object oriented database system OMS [Wue95]
– the personal assistant, a new middle layer caching agent, was developed.
It’s main task is to reduce response times for queries requested by regular
users, using different cooperative caches.

Each user can tell his preferences to the personal assistant by explicitly
defining queries he wishes to be permanently cached. This is an effective way
to increase the cache hit rate for users exactly knowing their preferences,
i.e. knowing which data they will regularly use in the future.

Because it is an illusion to assume each user knows exactly which queries
he will regularly request in the future and also is willing to investigate the
necessary time to add them to the personal assistant’s cache, there exists
a second, adaptive caching component. The personal assistant monitors all
user actions and maintains statistics about user behaviour. Based on this
statistics, it autonomously will perform prefetching of the data most likely to
be used in the near future. Over slower network connections, e.g. internet
connections using analogue modems, the active prefetching will lead to a
better utilization of the available bandwidth. After receiving an answer, a
user naturally analyzes the result for a certain time. Without prefetching,
no data will be transmitted during this time and the modem will be idle.
Unfortunately when connecting to the internet using a modem, you have
to pay for the whole online-time, including the time the modem is idle.
The personal assistant will therefore use the idle time to perform active
prefetching of data, resulting in a permanent workload on the modem.

The usage of this two cooperative caching mechanisms complemented
by a third short time session cache should adapt to each individual users
behaviour and therefore improve the overall cache hit rate. As a result of
the higher cache hit rate, the mean query response times will get smaller.

The price we have to pay for shorter response times is the overhead
caused by the management of the caching framework and by maintaining

5

CHAPTER 2. INTRODUCTION 6

cache consistency. As a result of active prefetching, the database agent will
have to handle an increased number of queries. An optimal tradeoff between
the reduction of response times and the resulting overhead trying to improve
the caching hit rate had to be found.

In chapter 3 we describe the architecture of the personal assistant and his
different caches. The user interfaces of the personal assistant, the database
agent and the extended frontend agent will be the content of chapter 4.
Finally, the object signing mechanism necessary to give applets additional
power will be discussed in chapter 5.

Chapter 3

Architecture

3.1 Overview

There are three different “subcaches” building up the personal assistant’s
caching framework: The session cache, the personal cache and a prefetching
cache (see figure 3.1). These three caches are distinct, i.e. the same infor-
mation will be cached at most in one of the caches. From section 3.2 to
section 3.4 we will describe the architecture of the three subcaches an their
tasks.

Session Cache

Personal Assistant’s Cache

Personal Cache

Prefetching Cache

images

images

images

query results

query results

query results

Figure 3.1: Personal assistant’s caching framework

Each of the three caches is separated in a part which will cache query
results and an image caching part. We have chosen this approach because
the image sizes are large relative to the query results and often the same
image is required by different queries. Due to this separation, an image will
always be cached at most once, even if it is needed by several queries. The
caching space saved by this strategy, i.e. by eliminating image redundancy,
is used to cache additional queries. Every time a user removes a query from

7

CHAPTER 3. ARCHITECTURE 8

the cache (e.g. from the personal cache), the corresponding images should
also be deleted. By using the separation strategy, we always have to check
if an image is still required by other queries before removing it from the
cache, i.e. we had to introduce a reference counter (indicating the number
of queries using the image) to process garbage collection.

The personal assistant will not cache any references to HTML pages
and multimedia files different to images (sound, movies etc.). Caching of
this data will be done by the internal cache of the browser running the
application.

3.2 Session Cache

The session cache, as its name suggests, acts as a short time cache and will
only cache queries recently used. Therefore the caching strategy used by
the session cache is a simple least recently used (LRU) strategy (for further
information about caching strategies see [Tan92, SG94, Fra96]). By using
an LRU replacement strategy, the session cache will profit from the locality
of a single session.

3.3 Personal Cache

All the queries explicitly defined by the user to be permanently cached will
be managed by the personal cache. It is made persistent every time the
personal assistant is shut down, i.e. it will be written to disk and restored
when the personal assistant is restarted next time. The personal cache is
optimal for so-called “entry-queries” (a small amount of queries, which can
be chosen from the start page) and to permanently cache information the
user often requires.

To be sure the data cached by the personal cache is always up to date,
every time a new entry is added to the personal cache, the personal assis-
tant will register it on the database agent. Whenever data changes on the
database agent, he will check if queries registered by the personal assistant
will be affected. If so, the database agent will send a cache invalidation mes-
sage to the personal assistant, forcing him to update his cache to maintain
cache consistency. After removing a query from one of the personal assis-
tant’s caches, the query will also be unregistered on the database agent.
Further, every time the personal assistant is started, he has to register the
whole contents of his persistent caches on the server.

The personal cache doesn’t have a caching strategy, i.e. if there is no more
place in the cache, the cache manager won’t select a victim and replace it by
the new entry. If the user tries to add a new query to the personal cache and
there is no more place in it, the personal assistant will inform him that there
is no more place in the personal cache and that he either has to manually

CHAPTER 3. ARCHITECTURE 9

remove some entries from the cache or to increase the personal cache size.
This “caching strategy” makes sense because the user wants to be sure that
all the queries he added to the personal cache will be present in the future
and not being deleted by the cache manager without his knowledge.

From the personal assistant’s three subcaches, the personal cache has
the highest priority because the user explicitly defined the queries to be
permanently cached. If an entry is added to the personal cache and is either
present in the session or the prefetching cache, it will be removed from these
caches to avoid cache redundancy. Further a query won’t be added neither
to the session nor to the prefetching cache if it is already present in the high
priority personal cache.

3.4 Prefetching Cache

In addition to the short time session cache and the user defined personal
cache, the intelligent prefetching cache will analyze user behaviour and try to
predict the information the user will need in the near future. It dynamically
adapts to a users preferences without any interaction.

statistic

next query 1

next query 2

next query 3

next query n-1

next query n

statistic

next query 1

next query 2

next query 3

next query n-1

next query n

statistic

next query 1

next query 2

next query 3

next query n-1

next query n

LRUB-Cache
(fixed size)

statistic

next query 1

next query 2

next query 3

next query n-1

next query n

statistic

next query 1

next query 2

next query 3

next query n-1

next query n

query 1 query 3query 2

LRUB-Cache (fixed size)

query n-1 query n

Figure 3.2: Structure of the prefetching statistic

For each query requested by the user (query 1 to query n in figure 3.2),
the prefetching cache maintains a statistic of the succeeding queries and the
number of times they were required immediately after the current query
(next query 1 to next query n in figure 3.2). The statistic is represented by
a cache of limited size. So for each query only a limited amount of possible
succeeding queries – the queries which will most likely follow the current
query – are considered in the statistic. The simplest replacement strategy
for these statistic caches would be an LRU strategy. The problem is, that
these caches should act as long time caches, i.e. the statistic will grow over

CHAPTER 3. ARCHITECTURE 10

a long period. Therefore we should also consider the number of accesses for
each cache entry, when selecting a victim. As a result, the LRU strategy is
extended by the number of times a cache entry was requested. The number
of cache hits acts as a bonus for entries which where often used in the past
but hadn’t been accessed during a longer period (LRUB cache). Considering
these facts, we suggest the following weighting formula for cache entry i:

weighti =
α + (1 − α) log (number of hits)

log (time since last access)
0 ≤ α ≤ 1 (3.1)

Every time an element has to be added to a full cache, the cache entry
with the smallest weight will be selected as a victim and removed from the
cache. The memory of the cache can be adjusted by changing the α value in
equation 3.1. The smaller the value of α, the more the cache will memorize
the number of cache hits (by setting α = 1 we have a normal LRU cache).

The queries with their statistic are also maintained in a cache of limited
size using the same LRUB caching strategy. Therefore only for the queries
most likely being used in the future, a statistic of the succeeding queries will
be present in the prefetching statistic. Every time a user requests a new
query, the personal assistant will check if there exists a statistic for it. If
he finds a corresponding statistic, he will select the queries with the highest
weights (the queries which will most likely succeed the current query) from
it. These queries finally will be prefetched into the prefetching cache.

At the moment, the number of queries to be prefetched (prefetching
width) is set to three, i.e. for each query at most three queries will be
prefetched. By increasing the prefetching width, the cache hit rate should
also increase but as a negative effect the database agent will have to handle
an additional amount of queries.

The prefetching cache will profit from the fact that in the internet based
interface for the OMS database, users often browse the same way, i.e. there
will be chains of queries often requested in the same order. The great ad-
vantage of this new prefetching mechanism over a “static” strategy globally
caching the most frequently used queries is, that the prefetching cache, like
a sliding window, always focuses the current query. As a result the prefetch-
ing cache only contains the data most likely required in the near future and
therefore needs much less memory than a global strategy trying to achieve
the same hit rate!

3.5 Startup Process

The applications startup process was redesigned and simplified giving the
applets more network power by using object signing (see chapter 5). Each
time a personal assistant is started, he will send the IP-address and the
port he is listening for clients to the database agent. When a new frontend

CHAPTER 3. ARCHITECTURE 11

agent is started within the browser, he will first connect to the database
agent, sending him the IP-address of the user’s machine and asking for the
IP-address and port he has to connect to. The database agent will check if
there exists a registered personal assistant with the same IP-address as the
address received from the frontend agent. If a personal assistant is present,
he will send the IP-address and port of the personal assistant to the frontend
agent, otherwise he will send his own IP-address and port (direct connection
to the database agent). For a user starting the applet, the process will look
the same whether he has installed a personal assistant or not.

Chapter 4

User Interface

The main task of this work was to develop a personal assistant. After
implementing the personal assistant, we noticed that it would be nice to
reuse the caching framework for the database agent as well as for the frontend
agent. Further this allowed us to use a visualization of the database and
frontend agent caches similar to the one used for the personal assistant. In
the next three sections we will describe the user interfaces of the personal
assistant, the database agent and the frontend agent.

4.1 Personal Assistant

After starting up the personal assistant, the agent’s main window contain-
ing six tab folders will appear. The control panel on the bottom of the
application allows to start, stop or exit the personal assistant. Further all
important messages will be shown in the center of the control panel. From
section 4.1.1 to section 4.1.6 we will describe the content of the different
tab folders. The additional power added to the default Internet OMS user
interface will be discussed in section 4.3.3.

4.1.1 Parameters

The parameter tab folder contains parameters relevant for connecting to
other agents, locations of the file caches etc. as shown in figure 4.1. First
we have to specify the location of the desired database agent. The Server
Host field contains the IP-address of the host the database agent is located
whereas the Server Port defines the port the database agent is listening
for clients. Further we have to assign a unique port to the personal assistant
itself on which he will listen for potential clients (Listen Port). Help-URL
is the location of the applications help files, if present. A base directory for
the storage of the file caches containing images and queries has further to
be defined in the field Images.

12

CHAPTER 4. USER INTERFACE 13

Figure 4.1: Personal assistant parameters

4.1.2 Statistics

The statistics tab folder shows information concerning the overall perfor-
mance of the caching framework (see figure 4.2). The total number of clients
currently connected to the personal assistant is shown in the Clients field.
Queries indicates the number of queries handled during the session. An in-
teresting parameter is the Cache Hit, indicating the overall cache hit rate of
the three subcaches building up the personal assistant’s caching framework.
A second important parameter is the mean time the personal assistant has
to handle a query (Mean Query Time). It is calculated by the mean time
to handle a query and the mean time to handle an image request. Query
Time is the time from the reception of a query by a client to the end of the
transmission of the answer. Finally, Image Query Time is the time between
the reception of an image request and the transfer of the local image address
to the client, i.e. in particular it includes the time to transfer the image from
the database agent to the personal assistant’s cache.

4.1.3 Log View

Figure 4.3 shows the log view containing additional information to the mes-
sages shown in the control panel at the bottom of the application. If the
application shows an abnormal behaviour, it is a good idea to inspect the
log view and to search for any warnings or errors. Further the log view
shows additional information about processed queries, clients connecting to

CHAPTER 4. USER INTERFACE 14

Figure 4.2: Personal assistant statistics

the agent and other network specific details. All information presented in
the log view is stored in a log file (Log.txt) in the base caching directory
and therefore also can be inspected after terminating the personal assistant
by using a standard text editor.

4.1.4 Session Cache

The cache view described in this section will be similar for all the following
cache views (e.g. the prefetching and personal cache views). As shown in
figure 4.4 each cache view is separated in two main parts to show the two
subcaches (query cache and image cache, respectively). The views of the
subcaches are equivalent, so it suffices to describe one of them only.

By pressing the Delete button, the user can delete the content of the
whole cache (see figure 4.6). After confirming the delete message box, all
cache elements will be removed, i.e. in case of a file cache, the files will be
deleted from the local disk.

To resize a cache press the Resize button and enter the desired new
cache size (see figure 4.7). If the new cache size is smaller than the size of
all entries currently in the cache, the cache manager will select victims and
remove them until the overall size of the cache entries fits the new cache
size.

By pressing the View button you can visualize the cache content as shown
in figure 4.5 for the prefetching query cache. Each cache entry is referenced

CHAPTER 4. USER INTERFACE 15

Figure 4.3: Log View

Figure 4.4: Personal assistant session cache

by Key which in the case of the Internet OMS framework is always equivalent
to the query. The time the query was processed by the database agent is

CHAPTER 4. USER INTERFACE 16

Figure 4.5: Cache content

shown in the Processing Time field. This value is essential to check the
validity of a cache entry. Each time a cache hit occurs, the time of the last
access (Last Hit) and the number of cache hits (Hits) will be updated.

4.1.5 Personal Cache

The personal cache user interface (see figure 4.6) looks the same as the
session cache interface discussed in section 4.1.4. The personal cache is the

Figure 4.6: Delete a personal cache

only cache, the content of which can be directly manipulated by the user. If
a regular user has running a personal assistant and starts the frontend agent,

CHAPTER 4. USER INTERFACE 17

the menu of the agent will be automatically extended by some additional
commands, allowing him to manipulate the contents of the personal cache
as described in section 4.3.

When resizing the personal cache, it shows a different behaviour than
the other caches. If you try to resize either the personal query or image
cache to a size smaller than the entries currently in the cache, you will be
informed that the new size is too small. You first have to manually remove
elements from the cache as long as the size is larger than the desired new
cache size. Why such a complicated mechanism in case of reducing the size
of the personal cache to a size smaller than the elements currently in the
cache? The cache managers of the personal caches don’t remove any element
for you. This makes sense, because you explicitly defined the queries of the
personal cache to be permanently cached and therefore they shouldn’t be
removed by a cache manager without your control.

4.1.6 Prefetching Cache

Also the prefetching cache (see figure 4.7) looks identical to the session
cache described in section 4.1.4. There is one important additional detail

Figure 4.7: Changing the prefetching cache size

concerning the prefetching cache. If you delete either the prefetching query
or the prefetching image cache, only the caches will be deleted but not the
statistics the actual prefetching is based on. If you want not only to delete
the prefetching cache but also to reset the prefetching statistics, you have

CHAPTER 4. USER INTERFACE 18

to delete the stat.idx file located in the prefetching query cache directory
and the prefetching image cache directory, respectively.

4.2 Database Agent

Most of the database agent’s user interface has the same functionality as the
user interface of the personal assistant. Therefore we only describe the parts
different to the personal assistant’s user interface. For further information
about the personal assistant’s user interface see section 4.1.

4.2.1 Parameters

In contrast to the personal assistant, Images indicates where all the images
used by the OMS database are located.

4.2.2 Statistics

The statistics looks exactly the same as the statistics of the personal assis-
tant (see figure 4.8). The only difference to the personal assistant’s statistics

Figure 4.8: Database agent statistics

is the interpretation of the Image Query Time. The value of this field in-
forms you about the time the database agent had to send the address of
the local image to his client, i.e. it doesn’t include any transmission time
for images because the database agent never has to fetch images. Therefore

CHAPTER 4. USER INTERFACE 19

this value will be relatively constant and small compared to the equivalent
parameter of the personal assistant.

4.3 Frontend Agent

The frontend agent consists of two user interfaces: a user interface allowing
to control the cache and the Internet OMS user interface used to browse the
database. While the former looks similar to the caching interfaces described
in section 4.1 and section 4.2, the latter was extended by functionalities to
add queries to the personal cache.

4.3.1 Parameters

The Images field normally used to set the base directory for images and
caching, doesn’t influence the frontend agent, because all the caches of the
frontend agent are memory caches which will not be made persistent and
stored on disk when leaving the agent. The Listen Port will always be
zero indicating that the frontend agent doesn’t listen for any clients (see
figure 4.9).

Figure 4.9: Frontend agent parameters

CHAPTER 4. USER INTERFACE 20

4.3.2 Statistics

The statistics looks the same as the personal assistant’s statistics (see fig-
ure 4.2). Query Time and Image Query Time represent the time passed
between sending a query to the server and receiving the corresponding an-
swer from the server.

4.3.3 Personal Cache

The Internet OMS user interface was extended by the facility to add a
query result to the personal assistant’s personal cache (see figure 4.10). A

Figure 4.10: Frontend agent menu

regularly used query can be added to the personal cache by selecting the
Add to cache entry from the new Personal Assistant menu. If you want
to add a new entry to the cache but there is no more place in the personal
cache, the new entry wont be added and you will be informed that you either
have to manually remove some entries from the cache or to increase the size
of the personal cache.

To remove a query from the cache, the user has to select the Remove from
Cache entry in the Personal Assistant menu of the query to be deleted.
Because it isn’t very user friendly always having to browse to the query you
want to remove, there exists a second possibility to remove an entry from
the personal cache which will be described in the next paragraph.

CHAPTER 4. USER INTERFACE 21

By selecting the Show Personal Cache entry from the Personal Assistant
menu, a window with the contents of the personal cache as shown in fig-
ure 4.11 will be displayed. If you don’t know the information behind a

Figure 4.11: Personal cache entries

query, you can view the corresponding data by double clicking the query in
the list of cache entries – it is possible to browse your personal cache. To
remove a query from the personal cache, highlight the corresponding query
in the list of cached queries and press the Remove Query button. The query
will be deleted from the list of cached queries but not yet from the cache
itself until you press the Apply Changes button. So if you unfortunately
removed queries from the cache you didn’t want to remove, by pressing the
Cancel button the entries won’t be deleted from the cache.

Chapter 5

Object Signing

5.1 Relaxing the Sandbox Restrictions

By default, Java applets are contained within a “sandbox”, i.e. they underlie
a lot of security restrictions. Within the Internet OMS framework, it is
necessary the applet can open network connections to locations different
from where it came from (e.g. it has to communicate with the local personal
assistant). Therefore we had to relax the sandbox restrictions to give the
applet additional capabilities. In this chapter, we will describe the essential
steps to give applets more power by digitally signing them.

Fortunately recent browsers1 have provisions to give trusted applets the
ability to work outside the sandbox . For this power to be granted to your ap-
plet, you will need to use Netscape-specific Java classes called the “Netscape
Capabilities API”2. You will have to add additional code to the applet, re-
questing permission to do any “dangerous” actions and then digitally sign
it with an unforgeable digital ID (private key)

Everybody is able to identify the signer of a digitally signed object and
further can determine whether the object has been tampered since it was
signed. Instead of requiring users to allow software either unlimited or no
access at all, object signing allows the user to control the degree of access.

Each time a user runs a signed applet requesting some form of access
to the local system, the browser will check its granted privileges for the
corresponding signer. If the user already granted the requested additional
power to the signer during an earlier session, the browser allows the access
without interrupting the user’s activities; otherwise the browser will show a
Java security dialog box asking if the user will trust the developer the applet
was signed by.

1All the explanations in this chapter refer to the Netscape Communicator. Using
Microsoft Internet Explorer object signing works quite different.

2http://developer.netscape.com/docs/manuals/signedobj/capsapi classes.zip

22

CHAPTER 5. OBJECT SIGNING 23

5.2 Digital Signatures

Public key cryptography always involves a pair of keys (public key and
private key) associated with a person wanting to send secure messages or
digitally sign messages. The public key is published, whereas the private
key is kept secret. A message encrypted with the private key can only
be decrypted with the corresponding public key and analogous, a message
encrypted with the public key can only be decrypted with the corresponding
private key.

To obtain a pair of valid keys, you have to request a certificate from a
certification authority (CA). After generating a private key and the corre-
sponding public key (by using a crypto-tool), you have to send the public
key to a certification authority which – after verifying your identity – will
issue a certificate. This certificate is a digital document, binding a particular
public key to a specific person.

To digitally sign an object, you have to encrypt it with your private
key. Because public key cryptography isn’t very fast, not the data itself
but a small hash value generated by a one-way hash function applied to the
corresponding data will be encrypted. A one-way hash function generates
hash numbers of fixed length with the following characteristics:

• The hash values can be computed efficiently using the one-way hash
function f : A → B.

• For a given f(x) (where x ∈ A) it is too difficult to find an x′ ∈ A so
that f(x′) = f(x) (one-way function).

• The value of the hash is “unique” for the hashed data, i.e. any change
in the data, even deleting or altering only a single character, results
in a different hash value.

Figure 5.1 illustrates the process of signing an object. There are two
items transferred from the sender (Alice) to the receiver of the signed object
(Bob): the original data and the digital signature, which is a one-way hash
value of the original data encrypted with Alice’s private key. To validate
the integrity of the data, Bob first uses Alice’s public key to decrypt the
one-way hash value. He then uses the same one-way hash function Alice
used computing her hash value, and generates a new hash value of the
received data. If the two hash values match, Bob can be sure that the
public key used to decrypt the digital signature corresponds to the private
key used to create the digital signature. Confirming the identity of the signer
additionally requires a method to ensure the public key really belongs to the
corresponding person, which is the task of a CA as described earlier.

CHAPTER 5. OBJECT SIGNING 24

package agent;

 private FileCache prefetchingCache;

 private FileCache sessionCache;

 ...

 ...

 ...

 }

public class PersonalAssistant {

}

 public PersonalAssistant() {

original data

one-way
hash function

package agent;

 private FileCache prefetchingCache;

 private FileCache sessionCache;

 ...

 ...

 ...

 }

public class PersonalAssistant {

}

 public PersonalAssistant() {

original data

one-way
hash function

encryption

private key

ne
tw

or
k

public key

decryption

identical?

Alice Bob

signature
digital

signature
digitalhash

value
hash
value

hash
value

Figure 5.1: Object signing

5.3 Netscape Signing Tool

After this short theoretical introduction to object signing in the last section,
we will explain now, how to use the Netscape signtool to digitally sign your
code. Signing a file using the Netscape signing tool requires the following
steps:

1. Assign a password to your Netscape private key database if not yet
done.

2. Download the Netscape signtool3.

3. If you don’t yet have your own certificate, get one from a CA (like
Verisign, Thawte etc.) or generate a test certificate using the signtool
(signtool -G CERT NAME). Before generating a test certificate using
the signtool, make sure there are no instances of the Netscape Com-
municator currently running.

4. Create an empty directory: mkdir SIGNDIR

5. Put the files to be signed into the new directory.

6. Sign the directory by specifying the name of your object-signing cer-
tificate: signtool -k CERT NAME -Z OUTPUT FILE.jar SIGNDIR

7. Type the password of your private key database when asked.

8. Test the archive just created: signtool -v OUTPUT FILE.jar

The generated JAR-file acts as a digital envelope for a compressed col-
lection of files. To use the digitally signed code, you have to specify the

3http://developer.netscape.com/software/signedobj/jarpack.html

CHAPTER 5. OBJECT SIGNING 25

JAR-file in the HTML-code containing the corresponding applet using the
archive tag as follows:

<applet archive="OUTPUT_FILE.jar" code="APPLET_NAME.class">
</applet>

If you are not sure which certificates are available for code signing, you
can use signtool -L to get a list of all object-signing certificates marked
by an asterisk.

Communicator’s certificate and key databases are portable among all
platforms. If you obtained your object-signing certificate while running
Communicator on a system different from the system on which you intend
to sign files, you need to copy your certificate and private key files to the
new system. Locate the files key3.db and cert7.db and copy them on the
system where you intend to sign pages (on unix machines this will be the
/.netscape directory. It is useful to always keep copies of the key3.db
and cert7.db files somewhere separate, ensuring that you won’t lose your
certificates if you accidentally damage them using the signtool executable.

To import a new CA in the Netscape Communicator, make sure your
web server knows the MIME-type application/x-x509-ca-cert. To arrange
this, your system administrator has to associate this MIME-type with the
file extension .cacert. Depending on your web server, this may involve
editing a configuration file or using an administration tool. When opening
now the X509.cacert within the Netscape Communicator, it will ask you,
if you want to import the new CA.

Because during the development of a new application it is very time
consuming always have to sign your code after changing it, there exists a
possibility to get more privileges for applets without signing them, which
will be discussed in the next section.

5.4 Codebase Signing

When developing secure Java code it is often quite useful to bypass the
signing stage during the development cycle. For this reason, developers may
add two additional lines to their Netscape Communicator’s preference file
allowing the codebase of the applet (file-URL or http-URL) to function as
a principal for enabling privileges. As long as the applet stays at the same
location, you can run it after changing it’s code without having to perform
any security procedures. To activate codebase principals you have to edit
the file preferences.js which is located in the Netscape directory. Before
editing the file, make sure that all instances of the Netscape Communicator
are shut down. Then add the following two lines to the preferences.js
file:

CHAPTER 5. OBJECT SIGNING 26

user_pref("signed.applets.codebase_principal_support",true);
user_pref("signed.applets.local_classes_have_30_powers",true);

This change to the preferences file is meant for development use only. After
activating codebase principals, you have to be very careful browsing the
internet!

Appendix A

API Reference

27

APPENDIX A. API REFERENCE 28

A.1 The agent Package

Object

RegisteredQuery

Packet

CLASS INTERFACE extends

ABSTRACT CLASS implements

MiddleLayerAgentQueryHandler

DatabaseAgentQueryHandler

FrontEndAgentQueryHandler

DatabaseAgentClientListener

FrontEndAgentClientListener

MiddleLayerAgentClientListener

DatabaseAgent

FrontEndAgent

MiddleLayerAgent

Runnable PrefetchImageThread

Thread

ClientConnection

ClientListener

QueryHandler

Agent

PersonalAssistant

DatabaseAgentClientConnection

MiddleLayerAgentClientConnection

FrontEndAgentClientConnection

java.lang agent

Figure A.1: The agent package

APPENDIX A. API REFERENCE 29

Class agent.Agent
java.lang.Object
 |
 +----java.lang.Thread
 |
 +----agent.Agent

public abstract class Agent
extends Thread

The Agent is the basic component which builds up the agent-framework. The Agent was developped by P. Ruser. Improvements and changes
have been done by Antonia Erni. Redesign has been done by Beat Signer. The Agent class provides the key functionality which is common to
all agents: user-interface, communication via sockets, query registration, messaging, client and server tasks, client and server communication,
cache handling, query handling, error handling, etc. All agents using the Agent-Framework derive from the base-class "Agent".

 NO_VALUE

 public static final int NO_VALUE

 NO_DATA

 public static final String NO_DATA

 SIMPLE_QUERY

 public static final int SIMPLE_QUERY

 ANSWER

 public static final int ANSWER

 COMMAND_OK

 public static final int COMMAND_OK

 GET_IMAGE_BASE

 public static final int GET_IMAGE_BASE

 IMAGE_BASE

 public static final int IMAGE_BASE

 GET_IMAGE

 public static final int GET_IMAGE

 SERVER_SHUTDOWN

 public static final int SERVER_SHUTDOWN

 CACHE_INVALIDATION

 public static final int CACHE_INVALIDATION

 REGISTER_QUERY

 public static final int REGISTER_QUERY

 UNREGISTER_QUERY

 public static final int UNREGISTER_QUERY

 REGISTER

APPENDIX A. API REFERENCE 30

 public static final int REGISTER

 GET_HELP_URL

 public static final int GET_HELP_URL

 HELP_URL

 public static final int HELP_URL

 GET_START_ADDRESS

 public static final int GET_START_ADDRESS

 START_ADDRESS

 public static final int START_ADDRESS

 ADD_TO_PERSONAL_CACHE

 public static final int ADD_TO_PERSONAL_CACHE

 REMOVE_FROM_PERSONAL_CACHE

 public static final int REMOVE_FROM_PERSONAL_CACHE

 GET_CACHED_QUERIES

 public static final int GET_CACHED_QUERIES

 CACHED_QUERIES

 public static final int CACHED_QUERIES

 FETCH

 public static final int FETCH

 FETCH_ANSWER

 public static final int FETCH_ANSWER

 PREFETCH

 public static final int PREFETCH

 PREFETCH_ANSWER

 public static final int PREFETCH_ANSWER

 INITIATE_PREFETCH

 public static final int INITIATE_PREFETCH

 VIRTUAL_QUERY

 public static final int VIRTUAL_QUERY

 VIRTUAL_IMAGE

 public static final int VIRTUAL_IMAGE

 CACHING

 public static final int CACHING

 NO_CACHING

 public static final int NO_CACHING

 SYNTAX_ERROR

 public static final int SYNTAX_ERROR

APPENDIX A. API REFERENCE 31

 FATAL_ERROR

 public static final int FATAL_ERROR

 TIMEOUT_ERROR

 public static final int TIMEOUT_ERROR

 NO_LINK_ERROR

 public static final int NO_LINK_ERROR

 NO_PLACE_ERROR

 public static final int NO_PLACE_ERROR

 COMMAND_OK_PACKET

 public static final Packet COMMAND_OK_PACKET

 GET_IMAGE_BASE_PACKET

 public static final Packet GET_IMAGE_BASE_PACKET

 SERVER_SHUTDOWN_PACKET

 public static final Packet SERVER_SHUTDOWN_PACKET

 GET_HELP_URL_PACKET

 public static final Packet GET_HELP_URL_PACKET

 GET_CACHED_QUERIES_PACKET

 public static final Packet GET_CACHED_QUERIES_PACKET

 SYNTAX_ERROR_PACKET

 public static final Packet SYNTAX_ERROR_PACKET

 FATAL_ERROR_PACKET

 public static final Packet FATAL_ERROR_PACKET

 TIMEOUT_ERROR_PACKET

 public static final Packet TIMEOUT_ERROR_PACKET

 NO_LINK_ERROR_PACKET

 public static final Packet NO_LINK_ERROR_PACKET

 NO_PLACE_ERROR_PACKET

 public static final Packet NO_PLACE_ERROR_PACKET

 NULL_PACKET

 public static final Packet NULL_PACKET

 DELIMITER

 public static final String DELIMITER

 BUFFER_SIZE

 public static final int BUFFER_SIZE

 CHAR_SIZE

 public static final int CHAR_SIZE

 helpURL

APPENDIX A. API REFERENCE 32

 public String helpURL

 imageBase

 protected String imageBase

 serverImageBase

 public String serverImageBase

 host

 protected String host

 port

 protected int port

 listenPort

 protected int listenPort

 PrefURL

 protected String PrefURL

 cacheDir

 protected String cacheDir

 registeredQueries

 protected Hashtable registeredQueries

 currentQueries

 protected Hashtable currentQueries

 currentQueriesPacket

 protected Hashtable currentQueriesPacket

 lastQuery

 protected long lastQuery

 server

 public Socket server

 listen_socket

 public ServerSocket listen_socket

 stream_in

 protected DataInputStream stream_in

 stream_out

 protected PrintWriter stream_out

 clientConnections

 public Vector clientConnections

 disconnectAllways

 protected boolean disconnectAllways

 clientListener

 protected ClientListener clientListener

APPENDIX A. API REFERENCE 33

 serverListener

 protected ServerListener serverListener

 middleLayerAgentPorts

 protected Hashtable middleLayerAgentPorts

 showMainWindow

 protected boolean showMainWindow

 mainWindow

 protected AgentView mainWindow

 preferences

 protected Properties preferences

 Agent

 public Agent(boolean showMainWindow,
 boolean disconnectAllways,
 String path)

 init

 public void init()

 sendNoLinkError

 public void sendNoLinkError()

Sends a NO_LINK_ERROR to all waiting clients. This error will occure when the server was shut down.

 increaseClients

 public void increaseClients()

 decreaseClients

 public void decreaseClients()

 registerClient

 public void registerClient(ClientConnection client)

Registers a new client on the agent which keeps a list of all connected clients and the links it has to these clients. This is done to be
able to send a shutdown-message to all the connected clients.

Parameters:
client - Client to be registered.

 sendSimpleNonCachingQuery

 public void sendSimpleNonCachingQuery(String query)

Send a simple query non cached query.

 openMainWindow

 protected abstract void openMainWindow(boolean showMainWindow)

Opens the main window.

APPENDIX A. API REFERENCE 34

 readLog

 protected void readLog()

Reads the log from a file.

 writeLog

 public void writeLog()

Writes the log to a file.

 readPreferences

 protected void readPreferences()

Reads the preferences from a file.

 writePreferences

 public void writePreferences()

Writes the preferences to a file.

 updatePreferences

 public void updatePreferences()

Updates the preference variables if the user changed them on the graphical agent window.

 printToLog

 public void printToLog(String text)

Prints a message to the log.

Parameters:
text - Text to be printed to the log.

 startServerConnection

 public abstract boolean startServerConnection()

Tries to connect to another agent which is listening on a specific port. If successful, a server task is created which listens to messages
from the server agent.

Returns:
TRUE if connected sucessfully, FALSE otherwise.

 stopServerConnection

 public void stopServerConnection(boolean propagate)

Stops the connection to the server agent and ends the task which is listening for messages from the server.

 startClientConnection

 public abstract boolean startClientConnection()

Tries to create a server socket and a task which listens for queries from other agents on a specific port.

Returns:
TRUE if connected sucessfully, FALSE otherwise.

 stopClientConnection

 public void stopClientConnection()

Stops the connection to all client agents and terminates the task listening for queries from other agents.

 updateImageBase

APPENDIX A. API REFERENCE 35

 public void updateImageBase()

 unregisterClient

 public void unregisterClient(ClientConnection client)

Unregisters a client.

Parameters:
client - Client to be unregistered

 registerQuery

 public boolean registerQuery(String query,
 ClientConnection client,
 long time)

Registers a query. All the queries cached in a client's cache are registered on the server. If a query is invalidated, an
invalidation-message is sent to all the clients registered for the query. The Registration is stored in a hashtable. Each entry stores all
the clients registered for that query, since more than one client can register for the same query.

Parameters:
query - Query to be registered.
client - Client registering for the query.
time - Processing time.

Returns:
TRUE if registered, FALSE otherwise.

 unregisterQuery

 public void unregisterQuery(String query,
 ClientConnection client)

Unregisters a query. If a query is purged from a clients cache, it will be unregistered from this agent. If a client disconnects, he will
unregister all his queries.

Parameters:
query - Query to be unregistered.
client - Client unregistering the query.

 invalidateCache

 public void invalidateCache(String query)

This method is called to send an invalidation-message to all the clients which are registered for a specific query. The
invalidation-strategy depends on the type of agent which keeps track of the queries. The concrete agents have to overwrite the method
to update the invalidated entry.

Parameters:
query - Query to be invalidated.

 sendRegisterQuery

 public void sendRegisterQuery(String query,
 long time)

Registers a query on a server agent.

Parameters:
query - Query to be registered on the server agent.

 sendUnregisterQuery

 public void sendUnregisterQuery(String query)

Unregisters a query from a server agent

Parameters:
query - Query to be unregistered from the server agent

 handleQuery

 public boolean handleQuery(Packet query,

APPENDIX A. API REFERENCE 36

 QueryHandler source)

This method handles the queries received from a client agent. Depending on the query-type, the appropriate query handling takes
place (Query processing on the server, query registering, query un-registering, error handling)

Parameters:
query - Query to be processed
source - Client which asked for the query to be processed

 addPackage

 public synchronized void addPackage(Packet query,
 QueryHandler source)

If a query needs to be processed by a server agent, it is send to the server agent. The query is then stored in a queue on this agent
where it will remain until the server agent has processed the query.

Parameters:
query - Query to be processed
source - Client which asked for the query to be processed

 handleError

 public void handleError(int error)

HandleError should be overwritten. This method will invoke the front-end windows and data visualization in the front-agent.

Parameters:
error - Error received by agent.

 handleStatusLine

 public void handleStatusLine(String text)

HandleStatusLine should be overwritten. This method will invoke the front-end windows and data visualization in the front-agent.

Parameters:
error - text received by agent.

 handleAnswer

 public void handleAnswer(Packet query,
 Packet answer)

HandleAnswer should be overriden. This method will invoke the front-end windows and data visualization in the front-agent.

Parameters:
answer - Answer received by agent.

 updateStatistics

 public void updateStatistics(long beginTime,
 long endTime,
 boolean cacheHit,
 boolean query)

 closeWindows

 public abstract void closeWindows()

Closes all the Windows opened during the session.

 killAgent

 public void killAgent()

KillAgent is called if the user clicks on the Exit-button in the interface or if he closes the window. This method writes the parameters,
the cache and the log to a file. Then the Application is terminated by 'exit'.

APPENDIX A. API REFERENCE 37

Class agent.ClientConnection
java.lang.Object
 |
 +----java.lang.Thread
 |
 +----agent.ClientConnection

public class ClientConnection
extends Thread

If a new client agent connects to this agent, a new thread is created. This thread - the ClietConnection - will wait for queries sent from the
client agent. The ClientConnection initiates the handling of the query and waits for the next query sent by the client agent.

Version:
v1.0

Author:
Philip Ruser, '97

 client

 public Socket client

 client_address

 public InetAddress client_address

 internetAgent

 public int internetAgent

 ClientConnection

 public ClientConnection()

 ClientConnection

 public ClientConnection(Agent parent,
 Socket client_socket)

Constructor of ClientConnection

Parameters:
parent - Parent of the ServerListener thread (Agent)
client_socket - Socket on which the communication will take place

 run

 public void run()

Loop "forever" and wait for a query. The handling of the query will be initiated, and the ClientConnection waits for the next query to
arrive.

Overrides:
run in class Thread

APPENDIX A. API REFERENCE 38

 send

 public void send(Packet answer)

Sends an answer to a query back to the client agent.

 closeConnection

 public void closeConnection()

Close the connection to the client agent.

APPENDIX A. API REFERENCE 39

Class agent.ClientListener
java.lang.Object
 |
 +----java.lang.Thread
 |
 +----agent.ClientListener

public class ClientListener
extends Thread

The ClientListener is a task which listens for new client agents connecting to this agent. If a new client agent connects, a new thread is created
which handles the client's queries.

Version:
v1.0

Author:
Philip Ruser, '97

 ClientListener

 public ClientListener()

 ClientListener

 public ClientListener(Agent parent)

Constructor of the ClientListener

Parameters:
parent - Parent of the ServerListener thread (Agent)

 run

 public void run()

Loop "forever" to accept new clients, start the client thread and wait for the next client.

Overrides:
run in class Thread

APPENDIX A. API REFERENCE 40

Class agent.DatabaseAgent
java.lang.Object
 |
 +----java.lang.Thread
 |
 +----agent.Agent
 |
 +----agent.DatabaseAgent

public class DatabaseAgent
extends Agent

 DatabaseAgent

 public DatabaseAgent(boolean showMainWindow,
 boolean disconnectAllways,
 String path)

 readPreferences

 public void readPreferences()

Reads the preferences from a file.

Overrides:
readPreferences in class Agent

 openMainWindow

 protected void openMainWindow(boolean showMainWindow)

Starts up the interface.

Overrides:
openMainWindow in class Agent

 closeWindows

 public void closeWindows()

Closes all the Windows opened during the session.

Overrides:
closeWindows in class Agent

 updatePreferences

 public void updatePreferences()

Updates the preference variables if the user changed them on the graphical agent window.

Overrides:
updatePreferences in class Agent

 startServerConnection

 public boolean startServerConnection()

Tries to connect to another agent which is listening on a specific port. If successful, a server task is created which listens to messages

APPENDIX A. API REFERENCE 41

from the server agent.

Returns:
TRUE if connected sucessfully, FALSE otherwise.

Overrides:
startServerConnection in class Agent

 startClientConnection

 public boolean startClientConnection()

Tries to create a server socket and a task which listens for queries from other agents on a specific port.

Returns:
TRUE if connected sucessfully, FALSE otherwise.

Overrides:
startClientConnection in class Agent

 getServerImage

 public synchronized String getServerImage(String destinationFile,
 String sourceAddress)

 handleQuery

 public boolean handleQuery(Packet query,
 QueryHandler source)

This method handles the queries received from a client agent.

Overrides:
handleQuery in class Agent

 updateCache

 public void updateCache(String query,
 String answer)

 checkCache

 public Packet checkCache(String key)

CheckCache checks if a specific query was already processed before. If so, the query and the answer will be in the cache. The cache
entry is fetched from the file and is returned immediately. All the cache statistics are then calculated and updated.

Parameters:
query - Query to look for in the cache.

Returns:
Answer to the specified query if this was found in the cache

 invalidateCache

 public void invalidateCache(String query)

Updates invalidated queries.

Parameters:
query - Query which has been invalidated.

Overrides:
invalidateCache in class Agent

 killAgent

 public void killAgent()

KillAgent is called if the user clicks on the Exit-button in the interface or if he closes the window.

Overrides:
killAgent in class Agent

 getSessionCache

 public FileCache getSessionCache()

APPENDIX A. API REFERENCE 42

Class agent.DatabaseAgentClientConnection
java.lang.Object
 |
 +----java.lang.Thread
 |
 +----agent.ClientConnection
 |
 +----agent.DatabaseAgentClientConnection

public class DatabaseAgentClientConnection
extends ClientConnection

 DatabaseAgentClientConnection

 public DatabaseAgentClientConnection(DatabaseAgent parent,
 Socket client_socket)

 run

 public void run()

Loop "forever" and wait for a query. The handling of the query will be initiated, and the ClientConnection waits for the next query to
arrive.

Overrides:
run in class ClientConnection

APPENDIX A. API REFERENCE 43

Class agent.DatabaseAgentClientListener
java.lang.Object
 |
 +----java.lang.Thread
 |
 +----agent.ClientListener
 |
 +----agent.DatabaseAgentClientListener

public class DatabaseAgentClientListener
extends ClientListener

 DatabaseAgentClientListener

 public DatabaseAgentClientListener(DatabaseAgent parent)

 run

 public void run()

Loop "forever" to accept new clients, start the client thread and wait for the next client.

Overrides:
run in class ClientListener

APPENDIX A. API REFERENCE 44

Class agent.DatabaseAgentQueryHandler
java.lang.Object
 |
 +----java.lang.Thread
 |
 +----agent.QueryHandler
 |
 +----agent.DatabaseAgentQueryHandler

public class DatabaseAgentQueryHandler
extends QueryHandler

 DatabaseAgentQueryHandler

 public DatabaseAgentQueryHandler(Packet query,
 DatabaseAgent parent,
 ClientConnection client)

 processAnswer

 public void processAnswer(Packet answer)

Overrides:
processAnswer in class QueryHandler

APPENDIX A. API REFERENCE 45

Class agent.FrontEndAgent
java.lang.Object
 |
 +----java.lang.Thread
 |
 +----agent.Agent
 |
 +----agent.FrontEndAgent

public class FrontEndAgent
extends Agent

 parentApplet

 public Applet parentApplet

 specificQueries

 protected Hashtable specificQueries

 imageAddress

 public String imageAddress

 FrontEndAgent

 public FrontEndAgent(String host,
 int port,
 boolean showMainWindow,
 boolean disconnectAllways,
 boolean middleLayerAgent)

 init

 public void init()

Overrides:
init in class Agent

 readPreferences

 public void readPreferences()

Reads the preferences from a file.

Overrides:
readPreferences in class Agent

 openMainWindow

 protected void openMainWindow(boolean showMainWindow)

Starts up the interface.

Overrides:
openMainWindow in class Agent

APPENDIX A. API REFERENCE 46

 closeWindows

 public void closeWindows()

Closes all the Windows opened during the session.

Overrides:
closeWindows in class Agent

 killAgent

 public void killAgent()

KillAgent is called if the user clicks on the Exit-button in the interface or if he closes the window.

Overrides:
killAgent in class Agent

 startServerConnection

 public boolean startServerConnection()

Tries to connect to another agent which is listening on a specific port. If successful, a server task is created which listens to messages
from the server agent.

Returns:
TRUE if connected sucessfully, FALSE otherwise.

Overrides:
startServerConnection in class Agent

 startClientConnection

 public boolean startClientConnection()

Tries to create a server socket and a task which listens for queries from other agents on a specific port.

Returns:
TRUE if connected sucessfully, FALSE otherwise.

Overrides:
startClientConnection in class Agent

 sendQuery

 public void sendQuery(String query)

SendQuery is used by the Front-agent to feed a query into the system.

Parameters:
query - Query to send.

 handleAnswer

 public void handleAnswer(Packet queryPacket,
 Packet answerPacket)

HandleAnswer should be overriden.

Overrides:
handleAnswer in class Agent

 sendSpecificQuery

 public void sendSpecificQuery(String query,
 String specificID)

FrontSendSpecificQuery is used by the Front-agent to feed a query into the system, and to specially handle the answer.

Parameters:
query - Query to send.
specificID - ID used to recognize the answer to be handled specially.

 sendSpecificNoCachingQuery

APPENDIX A. API REFERENCE 47

 public void sendSpecificNoCachingQuery(String query,
 String specificID)

FrontSendSpecificNoCachingQuery is used by the Front-agent to feed a query which shouldn't be cached into the system, and to
specially handle the answer.

Parameters:
query - Query to send.
specificID - ID used to recognize the answer to be handled specially.

 handleSystemViewer

 public void handleSystemViewer(String operator,
 String text)

HandleSystemViewer should be overriden. This method will invoke the front-end windows and data visualization in the front-agent.

Parameters:
answer - Answer received by agent.

 updateCache

 public void updateCache(String query,
 String answer)

 checkCache

 public String checkCache(String query)

CheckCache checks if a specific query was already processed before. If so, the query and the answer will be in the cache. The cache
entry is fetched from the file and is returned immediately. All the cache statistics are then calculated and updated. If a query is found
in the cache, the liveTime of the appropriate cache entry is increased. The liveTime of all the other cache entries is decreased. This
liveTime-Algorithm is used to avoid queries residing in the cache "forever".

Parameters:
query - Query to look for in the cache.

Returns:
Answer to the specified query if this was found in the cache

 requestImage

 public void requestImage(String name)

 writePreferences

 public void writePreferences()

Writes the preferences to a file. On the frontend agent nothing is written.

Overrides:
writePreferences in class Agent

 writeLog

 public void writeLog()

Writes the log to a file. On the frontend agent nothing is written.

Overrides:
writeLog in class Agent

 getImage

 public Image getImage(String attrVal,
 Applet parent)

 updatePersonalCacheView

 public void updatePersonalCacheView(String data)

 handleSpecificAnswer

APPENDIX A. API REFERENCE 48

 public void handleSpecificAnswer(String answer,
 String query,
 String specificID)

 invalidateCache

 public void invalidateCache(String query)

Updates the specified query.

Parameters:
query - Query which has been invalidated.

Overrides:
invalidateCache in class Agent

 getSessionCache

 public MemoryCache getSessionCache()

 getSessionImageCache

 public MemoryCache getSessionImageCache()

APPENDIX A. API REFERENCE 49

Class agent.FrontEndAgentClientConnection
java.lang.Object
 |
 +----java.lang.Thread
 |
 +----agent.ClientConnection
 |
 +----agent.FrontEndAgentClientConnection

public class FrontEndAgentClientConnection
extends ClientConnection

 FrontEndAgentClientConnection

 public FrontEndAgentClientConnection(FrontEndAgent parent,
 Socket client_socket)

 run

 public void run()

Loop "forever" and wait for a query. The handling of the query will be initiated, and the ClientConnection waits for the next query to
arrive.

Overrides:
run in class ClientConnection

APPENDIX A. API REFERENCE 50

Class agent.FrontEndAgentClientListener
java.lang.Object
 |
 +----java.lang.Thread
 |
 +----agent.ClientListener
 |
 +----agent.FrontEndAgentClientListener

public class FrontEndAgentClientListener
extends ClientListener

 FrontEndAgentClientListener

 public FrontEndAgentClientListener(FrontEndAgent parent)

 run

 public void run()

Loop "forever" to accept new clients, start the client thread and wait for the next client.

Overrides:
run in class ClientListener

APPENDIX A. API REFERENCE 51

Class agent.FrontEndAgentQueryHandler
java.lang.Object
 |
 +----java.lang.Thread
 |
 +----agent.QueryHandler
 |
 +----agent.FrontEndAgentQueryHandler

public class FrontEndAgentQueryHandler
extends QueryHandler

 FrontEndAgentQueryHandler

 public FrontEndAgentQueryHandler(Packet query,
 FrontEndAgent parent,
 ClientConnection client)

APPENDIX A. API REFERENCE 52

Class agent.MiddleLayerAgent
java.lang.Object
 |
 +----java.lang.Thread
 |
 +----agent.Agent
 |
 +----agent.MiddleLayerAgent

public class MiddleLayerAgent
extends Agent

 MiddleLayerAgent

 public MiddleLayerAgent(boolean showMainWindow,
 boolean disconnectAllways)

 openMainWindow

 protected void openMainWindow(boolean showMainWindow)

Starts up the interface.

Overrides:
openMainWindow in class Agent

 closeWindows

 public void closeWindows()

Closes all the Windows opened during the session.

Overrides:
closeWindows in class Agent

 startServerConnection

 public boolean startServerConnection()

Tries to connect to another agent which is listening on a specific port. If successful, a server task is created which listens to messages
from the server agent.

Returns:
TRUE if connected sucessfully, FALSE otherwise.

Overrides:
startServerConnection in class Agent

 startClientConnection

 public boolean startClientConnection()

Tries to create a server socket and a task which listens for queries from other agents on a specific port.

Returns:
TRUE if connected sucessfully, FALSE otherwise.

Overrides:
startClientConnection in class Agent

 getImage

APPENDIX A. API REFERENCE 53

 public InputStream getImage(String requestedImage)

 sendRegistry

 protected boolean sendRegistry()

Registers the middle layer agent on the server with his port and IP-address.

 updateCache

 public void updateCache(String query,
 String answer)

 handleFetchAnswer

 public void handleFetchAnswer(Packet query,
 Packet answer,
 ClientConnection client)

 handlePrefetchAnswer

 public void handlePrefetchAnswer(Packet query,
 Packet answer)

APPENDIX A. API REFERENCE 54

Class agent.MiddleLayerAgentClientConnection
java.lang.Object
 |
 +----java.lang.Thread
 |
 +----agent.ClientConnection
 |
 +----agent.MiddleLayerAgentClientConnection

public class MiddleLayerAgentClientConnection
extends ClientConnection

 MiddleLayerAgentClientConnection

 public MiddleLayerAgentClientConnection(MiddleLayerAgent parent,
 Socket client_socket)

 run

 public void run()

Loop "forever" and wait for a query. The handling of the query will be initiated, and the ClientConnection waits for the next query to
arrive.

Overrides:
run in class ClientConnection

APPENDIX A. API REFERENCE 55

Class agent.MiddleLayerAgentClientListener
java.lang.Object
 |
 +----java.lang.Thread
 |
 +----agent.ClientListener
 |
 +----agent.MiddleLayerAgentClientListener

public class MiddleLayerAgentClientListener
extends ClientListener

 MiddleLayerAgentClientListener

 public MiddleLayerAgentClientListener(MiddleLayerAgent parent)

 run

 public void run()

Loop "forever" to accept new clients, start the client thread and wait for the next client.

Overrides:
run in class ClientListener

APPENDIX A. API REFERENCE 56

Class agent.MiddleLayerAgentQueryHandler
java.lang.Object
 |
 +----java.lang.Thread
 |
 +----agent.QueryHandler
 |
 +----agent.MiddleLayerAgentQueryHandler

public class MiddleLayerAgentQueryHandler
extends QueryHandler

 MiddleLayerAgentQueryHandler

 public MiddleLayerAgentQueryHandler(Packet query,
 MiddleLayerAgent parent,
 ClientConnection client)

 processAnswer

 public void processAnswer(Packet answer)

Overrides:
processAnswer in class QueryHandler

APPENDIX A. API REFERENCE 57

Class agent.Packet
java.lang.Object
 |
 +----agent.Packet

public class Packet
extends Object

Unique format for packets sent from one agent to another agent.

Version:
0.1, Dec 1998

Author:
Beat Signer

 Packet

 public Packet(long id,
 int type,
 int caching,
 long time,
 String data)

Costructs a new packet.

Parameters:
id - Packet ID.
type - Type of the packet.
caching - Caching strategy used by the packet.
time - Processing time of the packet.
data - Data field of the packet.

 toPacket

 public static Packet toPacket(String packetString)

Transforms a string format used to send the packets over the network to the packet format.

Returns:
Packed parsed from the string.

 getID

 public long getID()

Returns the ID of the packet.

Returns:
ID of the packet.

 getType

 public int getType()

Returns the type of the packet.

Returns:
Type of the packet.

APPENDIX A. API REFERENCE 58

 getCaching

 public int getCaching()

Returns the caching strategy of the packet.

Returns:
Caching strategy of the packet.

 getTime

 public long getTime()

Returns the processing time of the packet.

Returns:
Processing time of the packet.

 getData

 public String getData()

Returns the data field of the packet.

Returns:
Data field of the packet.

 toString

 public String toString()

Returns a string representation of the packet.

Returns:
String representation of the packet.

Overrides:
toString in class Object

APPENDIX A. API REFERENCE 59

Class agent.PersonalAssistant
java.lang.Object
 |
 +----java.lang.Thread
 |
 +----agent.Agent
 |
 +----agent.MiddleLayerAgent
 |
 +----agent.PersonalAssistant

public class PersonalAssistant
extends MiddleLayerAgent

Middle Layer component for regular users allowing them to improve response times by using intelligent caching strategies supported by
dynamicly generated user profiles. The personal assistant contains three different caches: an LRU session cache for short time caching, a
personal cache which can be defined by the user and a long time prefetching cache which dynamically generates a user profile and tries to
predict the data the user will need in the near future.

Version:
0.1, Nov 1998

Author:
Beat Signer

 prefetchingImageCache

 protected FileCache prefetchingImageCache

 prefetchingImageStatistic

 protected MemoryCache prefetchingImageStatistic

 PersonalAssistant

 public PersonalAssistant()

Constructs a new personal assistant.

 readPreferences

 public void readPreferences()

Reads the preferences like ports, directories etc.

Overrides:
readPreferences in class Agent

 openMainWindow

 protected void openMainWindow(boolean showMainWindow)

Starts up the caching interface.

Parameters:
showMainWindow - TRUE if the caching view should be shown, FALSE otherwise.

Overrides:

APPENDIX A. API REFERENCE 60

openMainWindow in class MiddleLayerAgent

 handleQuery

 public boolean handleQuery(Packet query,
 QueryHandler source)

Handles the queries received from a client

Parameters:
query - Query to be processed.
source - Client asking for the query to be processed.

Overrides:
handleQuery in class Agent

 updateCache

 public void updateCache(String query,
 String answer)

Puts a query result into the short time session cache.

Parameters:
query - Query which should be added to the session cache.
answer - Answer for the corresponding query which should be added to the session cache

Overrides:
updateCache in class MiddleLayerAgent

 getFromCache

 public Packet getFromCache(Packet query)

Checks is a specific query is in one of the three caches. If so, the answer will be fetched from the cache.

Parameters:
query - Query to look for in the cache.

Returns:
Answer for the specified query in case of a cache hit, FALSE otherwise.

 isInCache

 public boolean isInCache(String query)

Checks if a query is cached.

Parameters:
query - Query the cache has to be checked for.

Returns:
TRUE if the query is in the cache, FALSE otherwise.

 isInImageCache

 public boolean isInImageCache(String query)

Checks if an image is cached.

Parameters:
query - Image query the cache has to be checked for.

Returns:
TRUE if the image is in the cache, FALSE otherwise.

 killAgent

 public void killAgent()

Stores all parameters before leaving the agent.

Overrides:
killAgent in class Agent

 handleFetchAnswer

 public void handleFetchAnswer(Packet query,

APPENDIX A. API REFERENCE 61

 Packet answer,
 ClientConnection client)

Overrides:
handleFetchAnswer in class MiddleLayerAgent

 handlePrefetchAnswer

 public void handlePrefetchAnswer(Packet query,
 Packet answer)

Handles an answer to a prefetch which is used for active prefetching of queries.

Parameters:
query - Prefetch query sent to the server.
answer - Answer received from the server.

Overrides:
handlePrefetchAnswer in class MiddleLayerAgent

 prefetch

 public void prefetch(String query)

Prefetches query results for a defined query. The number of queries to be prefetched is defined by 'PREFETCH_WIDTH'.

Parameters:
query - Query for which the prefetching has to be done.

 prefetchImage

 public void prefetchImage(String query)

Prefetches images for a defined image query. The number of images to be prefetched is defined by 'PREFETCH_WIDTH'.

Parameters:
query - Image for which the prefetching has to be done.

 invalidateCache

 public void invalidateCache(String query)

Updates the specified query in the cache.

Parameters:
query - Query which has been invalidated.

Overrides:
invalidateCache in class Agent

 getSessionCache

 public FileCache getSessionCache()

Returns the session cache.

Returns:
Session cache.

 getSessionImageCache

 public FileCache getSessionImageCache()

Returns the session image cache.

Returns:
Session image cache.

 getPersonalCache

 public FileCache getPersonalCache()

Returns the personal cache.

Returns:

APPENDIX A. API REFERENCE 62

Personal cache.

 getPersonalImageCache

 public ReferenceFileCache getPersonalImageCache()

Returns the personal image cache.

Returns:
Personal image cache.

 getPrefetchingCache

 public FileCache getPrefetchingCache()

Returns the prefetching cache.

Returns:
Prefetching cache.

 getPrefetchingImageCache

 public FileCache getPrefetchingImageCache()

Returns the prefetching image cache.

Returns:
Prefetching image cache.

 getPrefetchImageWidth

 public int getPrefetchImageWidth()

Returns the prefetching image width indicating how much images have to be prefetched.

Returns:
Number of images to be prefetched.

APPENDIX A. API REFERENCE 63

Class agent.PrefetchImageThread
java.lang.Object
 |
 +----agent.PrefetchImageThread

public class PrefetchImageThread
extends Object
implements Runnable

Thread for prefetching of images.

Version:
0.1, Jan 1999

Author:
Beat Signer

 PrefetchImageThread

 public PrefetchImageThread(String query,
 PersonalAssistant parent)

Constructs a new prefetching thread.

Parameters:
query - Query for which the prefetching has to be done.
parent - Agent which initiated the prefetching.

 run

 public void run()

Prefetches the images for the specified query and adds them to the prefetching cache.

APPENDIX A. API REFERENCE 64

Class agent.QueryHandler
java.lang.Object
 |
 +----java.lang.Thread
 |
 +----agent.QueryHandler

public class QueryHandler
extends Thread

The Query Handler is a thread which is created to manage a query. If the query arrives from the client, the QueryHandler-thread is created. It
then places the query into the agents queue of queries to be processed. After doing this the thread will suspend its execution until the answer
arrives from the agent. If the answer is here, the QueryHandler wakes up and returns the answer to the client agent.

Version:
v1.0

Author:
Philip Ruser, '97

 query

 protected Packet query

 parent

 protected Agent parent

 client

 public ClientConnection client

 QueryHandler

 public QueryHandler(Packet query,
 Agent parent,
 ClientConnection client)

Constructor of the QueryHandler

Parameters:
packet - Query to be processed by the agent
parent - Agent which processes the packet
client - Client which waits for the packet

 run

 public void run()

Execution of the QueryHandler. The QueryHandler places the packet into the agents queue of queries to be processed. After doing this
the thread will suspend its execution until the answer arrives from the agent. If the answer is here, the QueryHandler wakes up and
returns the answer to the client agent.

Overrides:
run in class Thread

APPENDIX A. API REFERENCE 65

 answerIsHere

 public void answerIsHere(Packet answer)

As soon as the answer is returned by the agent, the QueryHandler resumes its execution.

Parameters:
answer - Answer returned by the Agent

 processAnswer

 public void processAnswer(Packet answer)

APPENDIX A. API REFERENCE 66

Class agent.RegisteredQuery
java.lang.Object
 |
 +----agent.RegisteredQuery

public class RegisteredQuery
extends Object

Stores the clients registered for a query.

Version:
0.1, Feb 1999

Author:
Beat Signer

 RegisteredQuery

 public RegisteredQuery()

Constructs a new registered query.

 RegisteredQuery

 public RegisteredQuery(ClientConnection client,
 long time)

Constructs a new registered query.

Parameters:
client - ClientConnection to be registerd.
time - Processing time.

 setTime

 public synchronized void setTime(long time)

Sets the processing time of the query.

Parameters:
time - New processing time.

 getTime

 public long getTime()

Returns the processing time for the query.

Returns:
Processing time for the query.

 add

 public synchronized boolean add(ClientConnection client,
 long time)

Adds a new client to the query.

Parameters:
client - ClientConnection to be registered.

APPENDIX A. API REFERENCE 67

time - Processing time.
Returns:

TRUE if client could be added, FALSE otherwise.

 remove

 public synchronized void remove(ClientConnection client)

Removes a clients registration for the query.

Parameters:
client - Client to be unregistered.

 clients

 public Enumeration clients()

Returns all the clients registered for this query.

Returns:
All the clients registered for this query.

 size

 public int size()

Returns the number of clients registered for the query.

Returns:
Number of clients registered for the query.

APPENDIX A. API REFERENCE 68

A.2 The cache Package

CLASS INTERFACE

CacheManager

ABSTRACT CLASS

LRUBCacheManager

LRUCacheManager

NORCacheManager

java.io

CacheEntry
Exception

Serializable

Cloneable

Object

java.lang cache

Cache FileCache

MemoryCache

ReferenceFileCache

NoPlaceException

SizeNotChangeableException

extends

implements

StatisticCache

Figure A.2: The cache package

APPENDIX A. API REFERENCE 69

Class cache.Cache
java.lang.Object
 |
 +----cache.Cache

public abstract class Cache
extends Object
implements Serializable

Cache allowing to use different caching strategies.

Version:
0.1, Nov 1998

Author:
Beat Signer

 currentSize

 protected int currentSize

 maxSize

 protected int maxSize

 Cache

 public Cache(int size,
 CacheManager cacheManager)

Constructs a new cache.

Parameters:
size - Maximun size of the cache (in kB).
cacheManager - Cache manager which should be used for this cache.

 getCacheManager

 public CacheManager getCacheManager()

Returns the used cache manager.

Returns:
Used cache manager.

 containsKey

 public abstract boolean containsKey(String key)

Checks if an element with a certain key is in the cache.

Parameters:
key - Key for which the cache has to be checked for.

Returns:
TRUE, if element with the corresponding key is in the cache, FALSE otherwise.

APPENDIX A. API REFERENCE 70

 isEmpty

 public abstract boolean isEmpty()

Checks if the cache is empty.

Returns:
TRUE if the cache is empty, FALSE otherwise.

 add

 public void add(Object data,
 String key) throws NoPlaceException

Adds an element to the cache.

Parameters:
data - The data to be cached.
key - Unique key for the storage in the cache.

Throws: NoPlaceException
There is no more place in the cache and no element can be removed.

 get

 public abstract Object get(String key)

Returns the element with the corresponding key from the cache. If the element is in the cache, the element is returned and 'hitCount'
respective 'lastHit' are updated.

Parameters:
key - Key for which the cache has to be checked for.

Returns:
Element for the corresponding key if it is in the cache, NULL otherwise.

 remove

 public abstract void remove(String key)

Removes the element with the corresponding key from the cache if present.

Parameters:
key - Key of the element which has to be removed.

 reset

 public void reset()

Resets the cache, i.e. removes all the elements.

 getProcessingTime

 public Date getProcessingTime(String key)

Returns the Time the query in the corresponding cache entry was processed.

Parameters:
key - Key for which the processing time has to be returned.

Returns:
Time the query in the corresponding cache entry was processed.

 keys

 public abstract Enumeration keys()

Returns an enumeration of the keys of all the elements currently in the cache.

Returns:
Keys of all the elemets which are currently in the cache.

 getKeys

 public Vector getKeys()

APPENDIX A. API REFERENCE 71

Returns a vector containing the keys of all the elements currently in the cache.

Returns:
Vector containg all the elemets currently in the cache.

 setMaxSize

 public void setMaxSize(int maxSize) throws SizeNotChangeableException

Changes the maximum space (in kB) the cache is allowed to use. If the new size is smaller than the overall size of the elements
currently in the cache, some elements will be removed.

Parameters:
maxSize - Maximum size (in kB) the cache is allowed to use.

Throws: SizeNotChangeableException
Not possible to change the size of the cache.

 getMaxSize

 public int getMaxSize()

Returns the maximum space (in Bytes) the cache is allowed to use

Returns:
Maximum size (in Bytes) the cache is allowed to use.

 setSize

 protected void setSize(int size)

Updates the current size of the cache.

Parameters:
size - New size of the cache (in Bytes).

 getSize

 public int getSize()

Returns the currently used space by the cache.

Returns:
Currently used space by the cache (in Bytes).

 getCacheEntry

 public abstract CacheEntry getCacheEntry(String key)

Special method to get an element for a correspondig key. This method doesnt't maintain the whole statistic of hits etc. and is only for
internal usage. To get an element from the Cache use 'get()'.

Parameters:
key - Key for which the cache has to be checked for.

Returns:
Element for the corresponding key.

 addChangeListener

 public void addChangeListener(ChangeListener listener)

Adds a new ChangeListener to the cache. The listener will be informed every time the data stored in the cache changes.

Parameters:
listener - ChangeListener to be added to the cache.

 removeChangeListener

 public void removeChangeListener(ChangeListener listener)

Removes a ChangeListener listening for changes to the data stored in the cache.

Parameters:

APPENDIX A. API REFERENCE 72

listener - ChangeListener to be removed.

 fireChange

 protected void fireChange()

Sends a 'ChangeEvent' to all the ChangeListeners listening for changes to the data stored in the cache.

 getContent

 public Vector getContent()

Returns additional cache data like 'hitCount' etc. as a vector of cache entry vectors. Usefull for the representation in tables.

Returns:
Vector containing a vector for each cache entry with the following data: key, processingTime, lastHitTime and hitCount.

 toString

 public String toString()

Returns a string representation of the class name and relevant attributes.

Returns:
String representation of the class name and relevant attributes.

Overrides:
toString in class Object

APPENDIX A. API REFERENCE 73

Class cache.CacheEntry
java.lang.Object
 |
 +----cache.CacheEntry

public class CacheEntry
extends Object
implements Serializable

A single cache entry.

Version:
0.1, Nov 1998

Author:
Beat Signer

 getData

 public Object getData()

Returns the data of the cache entry.

Returns:
Data of the cache entry.

 getKey

 public String getKey()

Returns the key which is used for this entry in the lookup-table of the cache.

Returns:
Key for lookup in the cache.

 updateLastHit

 public void updateLastHit()

Sets the date of the lastHit to the current date.

 getBirthdate

 public Date getBirthdate()

Returns the date and time the entry was inserted into the cache.

Returns:
Date an time the entry was inserted into the cache.

 getLastHit

 public Date getLastHit()

Returns the date and time of the last hit.

Returns:
Date an time of the last hit.

 getProcessingTime

 public Date getProcessingTime()

Returns the date and time the query was processed.

APPENDIX A. API REFERENCE 74

Returns:
Date and time the query was processed.

 incHitCount

 public void incHitCount()

Increases the number of cache hits.

 getHitCount

 public int getHitCount()

Returns the number of cache hits.

Returns:
Number of cache hits.

 setSize

 public void setSize(int size)

Sets the size for the current representation of the object (in Bytes).

Parameters:
size - Size of the representation of the object.

 getSize

 public int getSize()

Returns the size of the current representation of the object (in Bytes).

Returns:
Size of the current representation of the object.

 toString

 public String toString()

Returns a string representation of the class name and relevant attributes.

Overrides:
toString in class Object

APPENDIX A. API REFERENCE 75

Interface cache.CacheManager

public interface CacheManager

Cache manager for a cache, deciding which element should be removed if there is no more place in the cache.

Version:
0.1, Nov 1998

Author:
Beat Signer

 getVictim

 public abstract String getVictim(Cache cache)

Returns the element which should be removed.

Parameters:
cache - The cache an element has to be removed from.

Returns:
Key of the element to be removed.

 getWinner

 public abstract String getWinner(Cache cache)

Returns the element with the best performance which will be the last one to be removed.

Parameters:
cache - The cache the winner has to be detected from.

Returns:
Key of the element with the best performance.

APPENDIX A. API REFERENCE 76

Class cache.FileCache
java.lang.Object
 |
 +----cache.Cache
 |
 +----cache.FileCache

public class FileCache
extends Cache

Cache which writes cached elements on a disk allowing to use different caching strategies by choosing a cache manager.

Version:
0.1, Nov 1998

Author:
Beat Signer

 FileCache

 public FileCache(int size,
 CacheManager cacheManager,
 String cacheDir)

Constructs a new cache.

Parameters:
size - Maximun size of the cache (in kB).
cacheManager - Cache manager which should be used for the cache.
cacheDir - Location where the cache should store it's files.

 load

 public static FileCache load(String cacheDir) throws IOException, ClassNotFoundException

Restores the cache.

Parameters:
cacheDir - Location of the cache index file.

Returns:
FileCache read from the file. NULL if file doesn't exist.

Throws: ClassNotFoundException
Class of a serialized object cannot be found.

Throws: IOException
Any of the usual Input/Output related exceptions.

 store

 public void store()

Stores the cache to a file.

 add

 public void add(Object data,
 String key) throws NoPlaceException

Adds an element to the cache. The element is stored in a file and only the name of the file is added to the cache index. For unique
filenames, the time in milliseconds since midnight GMT on January 1, 1970 is used. So there will be a naming problem in the year
292473178 due to an overflow of the LONG variable which can be simply resolved by resetting the cache :-)

APPENDIX A. API REFERENCE 77

Parameters:
data - Data which should be cached.
key - Unique key for the storage in the cache.

Throws: NoPlaceException
There is no more place in the cache and no element can be removed.

Overrides:
add in class Cache

 add

 public void add(InputStream data,
 String key,
 String extension) throws NoPlaceException

Adds an element to the cache. The element is stored in a file and only the name of the file is added to the cache index. For unique
filenames, the time in milliseconds since midnight GMT on January 1, 1970 is used. So there will be a naming problem in the year
292473178 due to an overflow of the LONG variable which can be simply resolved by resetting the cache :-)

Parameters:
data - Data which should be cached.
key - Unique key for the storage in the cache.

Throws: NoPlaceException
There is no more place in the cache and no element can be removed.

 get

 public Object get(String key)

Returns the element with the corresponding key from the cache. If the element is in the cache, the element is returned and 'hitCount'
respective 'lastHit' are updated.

Parameters:
key - Key for which the cache has to be checked for.

Returns:
Element for the corresponding key if it is in the cache, NULL otherwise.

Overrides:
get in class Cache

 getFileName

 public String getFileName(String key)

Returns the filename of the cache entry for a corresponding key. If the element is in the cache, the filename is returned and 'hitCount'
respective 'lastHit' are updated.

Parameters:
key - Key for which the cache has to be checked for.

Returns:
Filename of the cache entry for the corresponding key if it is in the cache, NULL otherwise.

 remove

 public void remove(String key)

Removes the element with the corresponding key from the cache if present.

Parameters:
key - Key of the element which has to be removed.

Overrides:
remove in class Cache

 containsKey

 public boolean containsKey(String key)

Checks if an element with a certain key is in the cache.

Parameters:
key - Key for which the cache has to be checked for.

Returns:
TRUE, if element with the corresponding key is in the cache, FALSE otherwise.

APPENDIX A. API REFERENCE 78

Overrides:
containsKey in class Cache

 isEmpty

 public boolean isEmpty()

Checks if the cache is empty.

Returns:
TRUE if the cache is empty, FALSE otherwise.

Overrides:
isEmpty in class Cache

 keys

 public Enumeration keys()

Returns an enumeration of the keys of all the elements which are currently in the cache.

Returns:
Keys of all the elemets which are currently in the cache.

Overrides:
keys in class Cache

 getCacheEntry

 public CacheEntry getCacheEntry(String key)

Special method to get an element for a correspondig key. This method doesnt't maintain the whole statistic of hits etc. and is only for
internal usage! To get an element from the Cache use 'get()'.

Parameters:
key - Key for which the cache has to be checked for.

Returns:
Element for the corresponding key.

Overrides:
getCacheEntry in class Cache

 toString

 public String toString()

Returns a string representation of the class name and relevant attributes.

Returns:
String representation of the class name and relevant attributes.

Overrides:
toString in class Cache

APPENDIX A. API REFERENCE 79

Class cache.LRUBCacheManager
java.lang.Object
 |
 +----cache.LRUBCacheManager

public class LRUBCacheManager
extends Object
implements CacheManager, Serializable

Cache manager which uses an LRU strategy but gives a bonus to elements with a high 'hitCount'. The weight of an entry is defined as follows:
weight = alpha*(1/log(time since last access)) + (1-alpha)*log(number of hits)

Version:
0.1, Jan 1999

Author:
Beat Signer

 LRUBCacheManager

 public LRUBCacheManager()

 getVictim

 public String getVictim(Cache cache)

Returns the element with the lowest value for the weighting function.

Parameters:
cache - The cache an element has to be removed from.

Returns:
Key of the element to be removed.

 getWinner

 public String getWinner(Cache cache)

Returns the element with the best condition which will be the last one removed from the cache.

Parameters:
cache - The cache the winner has to be detected from.

Returns:
Key of the element with the best condition.

APPENDIX A. API REFERENCE 80

Class cache.LRUCacheManager
java.lang.Object
 |
 +----cache.LRUCacheManager

public class LRUCacheManager
extends Object
implements CacheManager, Serializable

Cache manager which removes the element which was least recently used.

Version:
0.1, Nov 1998

Author:
Beat Signer

 LRUCacheManager

 public LRUCacheManager()

 getVictim

 public String getVictim(Cache cache)

Returns the element which was least recently used.

Parameters:
cache - The cache an element has to be removed from.

Returns:
Key of the element to be removed.

 getWinner

 public String getWinner(Cache cache)

Returns the element with the best condition which will be the last one removed from the cache.

Parameters:
cache - The cache the winner has to be detected from.

Returns:
Key of the element with the best condition.

APPENDIX A. API REFERENCE 81

Class cache.MemoryCache
java.lang.Object
 |
 +----cache.Cache
 |
 +----cache.MemoryCache

public class MemoryCache
extends Cache

Non persistent memory cache allowing to use different caching strategies by choosing a cache manager.

Version:
0.1, Dec 1998

Author:
Beat Signer

 cache

 protected Hashtable cache

 MemoryCache

 public MemoryCache(int size,
 CacheManager cacheManager)

Constructs a new cache.

Parameters:
size - Maximun size of the cache (in kB).
cacheManager - Cache manager which should be used for this cache.

 add

 public void add(Object data,
 String key,
 int size) throws NoPlaceException

Adds an element to the cache.

Parameters:
data - Data which should be cached.
key - Unique key for the storage in the cache.
size - Because in Java it isnt't possible to get the size of an object, the user has to explicitly specify the size of the object to be
added.

Throws: NoPlaceException
Exception is throwed if there is no more place in the cache and no element can be removed.

 get

 public Object get(String key)

Returns the element with the corresponding key from the cache. If the element is in the cache, the element is returned and 'hitCount'
respective 'lastHit' are updated.

APPENDIX A. API REFERENCE 82

Parameters:
key - Key for which the cache has to be checked for.

Returns:
Element for the corresponding key if it is in the cache, NULL otherwise.

Overrides:
get in class Cache

 remove

 public void remove(String key)

Removes the element with the corresponding key from the cache if present.

Parameters:
key - Key of the element which has to be removed.

Overrides:
remove in class Cache

 containsKey

 public boolean containsKey(String key)

Checks if an element with a certain key is in the cache.

Parameters:
key - Key for which the cache has to be checked for.

Returns:
TRUE, if element with the corresponding key is in the cache, FALSE otherwise.

Overrides:
containsKey in class Cache

 isEmpty

 public boolean isEmpty()

Checks if the cache is empty.

Returns:
TRUE if the cache is empty, FALSE otherwise.

Overrides:
isEmpty in class Cache

 keys

 public Enumeration keys()

Returns an enumeration of the keys of all the elements which are currently in the cache.

Returns:
Keys of all the elemets which are currently in the cache.

Overrides:
keys in class Cache

 getCacheEntry

 public CacheEntry getCacheEntry(String key)

Special method to get an element for a correspondig key. This method doesnt't maintain the whole statistic of hits etc. and is only for
internal usage! To get an element from the Cache use 'get()'.

Parameters:
key - Key for which the cache has to be checked for.

Returns:
Element for the corresponding key.

Overrides:
getCacheEntry in class Cache

 toString

 public String toString()

Returns a string representation of the class name and relevant attributes.

APPENDIX A. API REFERENCE 83

Returns:
String representation of the class name and relevant attributes.

Overrides:
toString in class Cache

APPENDIX A. API REFERENCE 84

Class cache.NoPlaceException
java.lang.Object
 |
 +----java.lang.Throwable
 |
 +----java.lang.Exception
 |
 +----cache.NoPlaceException

public class NoPlaceException
extends Exception

Exception which is raised if there is no more place in the cache and an element can't be added because the cache manager doesn't return a
victim.

Version:
0.1, Dec 1998

Author:
Beat Signer

 NoPlaceException

 public NoPlaceException()

Constructs a new Exception.

 NoPlaceException

 public NoPlaceException(String text)

Constructs a new Exception with additional information.

Parameters:
text - Additional information.

APPENDIX A. API REFERENCE 85

Class cache.NORCacheManager
java.lang.Object
 |
 +----cache.NORCacheManager

public class NORCacheManager
extends Object
implements CacheManager, Serializable

Cache manager which removes no element from the cache.

Version:
0.1, Dec 1998

Author:
Beat Signer

 NORCacheManager

 public NORCacheManager()

 getVictim

 public String getVictim(Cache cache)

Returns allways NULL and no element will be removed.

Parameters:
cache - The cache an element has to be removed from.

Returns:
Allways NULL.

 getWinner

 public String getWinner(Cache cache)

Returns allways NULL.

Parameters:
cache - The cache the winner has to be detected from.

Returns:
Allways NULL.

APPENDIX A. API REFERENCE 86

Class cache.ReferenceFileCache
java.lang.Object
 |
 +----cache.Cache
 |
 +----cache.ReferenceFileCache

public class ReferenceFileCache
extends Cache

Cache which writes cached elements on a disk and allows to use different caching strategies by choosing a cache manager. For each entry
there exists a list containing the queries the element is used by (Reference counting). An element will only be deleted if there are no more
references to the element.

Version:
0.1, Jan 1999

Author:
Beat Signer

 ReferenceFileCache

 public ReferenceFileCache(int size,
 CacheManager cacheManager,
 String cacheDir)

Constructs a new cache.

Parameters:
size - Maximun size of the cache (in kB).
cacheManager - Cache manager which should be used for this cache.
cachDir - Location where the cache should store it's files.

 load

 public static ReferenceFileCache load(String cacheDir) throws IOException, ClassNotFoundExcept

Restore the cache.

Parameters:
cacheDir - Location of the cache index file.

Returns:
'Cache' Object read from the file. NULL if file doesn't exist.

Throws: ClassNotFoundException
Class of a serialized object cannot be found.

Throws: IOException
Any of the usual Input/Output related exceptions.

 store

 public void store()

Stores the cache to a file.

 add

 public void add(Object data,
 String key,
 String reference) throws NoPlaceException

APPENDIX A. API REFERENCE 87

Adds an element to the cache. If the element is already in the cache, a new reference to the element is stored in the 'referenceTable'.

Parameters:
data - Data which should be added to the cache.
key - Unique key for the storage in the cache.

Throws: NoPlaceException
There is no more place in the cache and no element can be removed.

 add

 public void add(Object data,
 String key) throws NoPlaceException

Adds an element to the cache. The element is stored in a file and only the name of the file is added to the cache index. For unique
filenames, the time in milliseconds since midnight GMT on January 1, 1970 is used. So there will be a naming problem in the year
292473178 due to an overflow of the LONG variable which can be simply resolved by resetting the cache :)

Parameters:
data - Data which should be cached.
key - Unique key for the storage in the cache.

Throws: NoPlaceException
Exception is throwed if there is no more place in the cache and no element can be removed.

Overrides:
add in class Cache

 add

 public void add(InputStream data,
 String key,
 String extension,
 String reference) throws NoPlaceException

Adds an element to the cache. If the element is already in the cache, a new reference to the element is stored in the 'referenceTable'.

Parameters:
data - Data which should be added to the cache.
key - Unique key for the storage in the cache.

Throws: NoPlaceException
Exception is throwed if there is no more place in the cache and no element can be removed.

 add

 public void add(InputStream data,
 String key,
 String extension) throws NoPlaceException

Adds an element to the cache. The element is stored in a file and only the name of the file is added to the cache index. For unique
filenames, the time in milliseconds since midnight GMT on January 1, 1970 is used. So there will be a naming problem in the year
292473178 due to an overflow of the LONG variable which can be simply resolved by resetting the cache :-)

Parameters:
data - Data which should be cached.
key - Unique key for the storage in the cache.

Throws: NoPlaceException
Exception is throwed if there is no more place in the cache and no element can be removed.

 get

 public Object get(String key)

Returns the element with the corresponding key from the cache. If the element is in the cache, the element is returned and 'hitCount'
respective 'lastHit' are updated.

Parameters:
key - Key for which the cache has to be checked for.

Returns:
Element for the corresponding key if it is in the cache, NULL otherwise.

Overrides:
get in class Cache

 getFileName

 public String getFileName(String key)

APPENDIX A. API REFERENCE 88

Returns the filename of the cache entry for a corresponding key. If the element is in the cache, the filename is returned and 'hitCount'
respective 'lastHit' are updated.

Parameters:
key - Key for which the cache has to be checked for.

Returns:
Filename of the cache entry for the corresponding key if it is in the cache, NULL otherwise.

 remove

 public void remove(String key,
 String reference)

Removes the element with the corresponding key from the cache if present. The element is only removed, if there are no more
references to the element!

Parameters:
key - Key of the element which has to be removed.

 remove

 public void remove(String key)

Removes the element with the corresponding key from the cache if present.

Parameters:
key - Key of the element which has to be removed.

Overrides:
remove in class Cache

 containsKey

 public boolean containsKey(String key)

Checks if an element with a certain key is in the cache.

Parameters:
key - Key for which the cache has to be checked for.

Returns:
TRUE if element with the corresponding key is in the cache, FALSE otherwise.

Overrides:
containsKey in class Cache

 isEmpty

 public boolean isEmpty()

Checks if the cache is empty.

Returns:
TRUE if the cache is empty, FALSE otherwise.

Overrides:
isEmpty in class Cache

 keys

 public Enumeration keys()

Returns an enumeration of the keys of all the elements which are currently in the cache.

Returns:
Keys of all the elemets which are currently in the cache.

Overrides:
keys in class Cache

 getCacheEntry

 public CacheEntry getCacheEntry(String key)

Special method to get an element for a correspondig key. This method doesnt't maintain the whole statistic of hits etc. and is only for
internal usage! To get an element from the Cache use 'get()'.

APPENDIX A. API REFERENCE 89

Parameters:
key - Key for which the cache has to be checked for.

Returns:
Element for the corresponding key.

Overrides:
getCacheEntry in class Cache

 toString

 public String toString()

Returns a string representation of the class name and relevant attributes.

Returns:
String representation of the class name and relevant attributes.

Overrides:
toString in class Cache

APPENDIX A. API REFERENCE 90

Class cache.SizeNotChangeableException
java.lang.Object
 |
 +----java.lang.Throwable
 |
 +----java.lang.Exception
 |
 +----cache.SizeNotChangeableException

public class SizeNotChangeableException
extends Exception

Exception which is raised if the cache size is changed to a size smaller than the size of all the entries but the cache manager doesn't allow to
remove any element at all.

Version:
0.1, Dec 1998

Author:
Beat Signer

 SizeNotChangeableException

 public SizeNotChangeableException()

Constructs a new exception.

 SizeNotChangeableException

 public SizeNotChangeableException(String text)

Constructs a new exception with detailed information.

Parameters:
text - Detailed information.

APPENDIX A. API REFERENCE 91

Class cache.StatisticCache
java.lang.Object
 |
 +----cache.Cache
 |
 +----cache.MemoryCache
 |
 +----cache.StatisticCache

public class StatisticCache
extends MemoryCache
implements Cloneable

Special Memory cache allowing to get the n winner elements.

Version:
0.1, Jan 1999

Author:
Beat Signer

 StatisticCache

 public StatisticCache(int size,
 CacheManager cacheManager)

Constructs a new Statistic Cache

Parameters:
size - Maximun size of the cache (in kB).
cacheManager - Cache manager which should be used for the cache.

 clone

 public Object clone()

Supports the cloning of a statistic cache.

Overrides:
clone in class Object

 getWinner

 public Enumeration getWinner(int n)

Return the n cache entries with the best condition.

Parameters:
n - Number of winners to be returned.

Returns:
n cache entries with the best condition.

APPENDIX A. API REFERENCE 92

A.3 The tools Package

DebugObject

FileHandler

Serialization

ImageTool

Sort

StringTool

CLASS extends

java.lang tools

Figure A.3: The tools package

APPENDIX A. API REFERENCE 93

Class tools.Debug
java.lang.Object
 |
 +----tools.Debug

public class Debug
extends Object

Tool for performing additional outputs. A good compiler will eliminate the method calls if the corresponding constant is set false.

Version:
0.1, Feb 1999

Author:
Beat Signer

 Debug

 public Debug()

 printMethod

 public static final void printMethod(String output)

Debugging output of method calls if METHOD_DEBUGGING is TRUE.

Parameters:
output - String to be printed.

 printException

 public static final void printException(String output)

Debugging output of exceptions if EXCEPTION_DEBUGGING is TRUE.

Parameters:
output - String to be printed.

 printInformation

 public static final void printInformation(String output)

Output of additional information if INFORMATION_DEBUGGING is TRUE.

Parameters:
output - String to be printed.

 printSecurity

 public static final void printSecurity(String output)

Output of security information if SECURITY_DEBUGGING is TRUE.

Parameters:
output - String to be printed.

APPENDIX A. API REFERENCE 94

Class tools.FileHandler
java.lang.Object
 |
 +----tools.FileHandler

public class FileHandler
extends Object

Tools for file handling.

Version:
0.1, Dec 1998

Author:
Beat Signer

 BUFFER_SIZE

 public static final int BUFFER_SIZE

 FileHandler

 public FileHandler()

 readFile

 public static String readFile(String path,
 String filename) throws OptionalDataException, IOException, Clas

Reads a String from the specified file from the specified location.

Parameters:
path - Location of the file containing the string.
filename - Name of the file containing the string.

Returns:
String read from the file.

Throws: IOException
Any of the usual Input/Output related exceptions.

Throws: OptionalDataException
Primitive data was found in the stream instead of objects.

Throws: ClassNotFoundException
Class of a serialized object cannot be found.

 writeFile

 public static void writeFile(String path,
 String filename,
 String data) throws IOException

Writes a string to a file at the specified location.

Parameters:
path - Location the file has to be written at.
filename - Name of the file the string has to be written in.
data - String to be written in a file.

Throws: IOException

APPENDIX A. API REFERENCE 95

Any of the usual Input/Output related exceptions.

 deleteFile

 public static void deleteFile(String path,
 String filename)

Deletes a file with the specified path and name.

Parameters:
path - Location of the file to be deleted.
filename - Name of the file to be deleted.

 readObject

 public static Object readObject(String path,
 String filename) throws OptionalDataException, IOException, Cl

Reads an object with the specified filename from specified location.

Parameters:
path - Location the file has to be read from.
filename - Name of the file to be read.

Returns:
Object read from the file.

Throws: IOException
Any of the usual Input/Output related exceptions.

Throws: OptionalDataException
Primitive data was found in the stream instead of objects.

Throws: ClassNotFoundException
Class of a serialized object cannot be found.

 writeObject

 public static void writeObject(Object object,
 String path,
 String name) throws IOException

Writes an object to a file with the specified filename and path.

Parameters:
object - Object to be written to a file.
path - Path the file has to be written at.
name - Name of the file the Object has to be written in.

Throws: IOException
Any of the usual Input/Output related exceptions.

APPENDIX A. API REFERENCE 96

Class tools.ImageTool
java.lang.Object
 |
 +----tools.ImageTool

public class ImageTool
extends Object

Tools for image processing.

Version:
0.1, Jan 1999

Author:
Beat Signer

 PIXEL_SIZE

 public static int PIXEL_SIZE

 ImageTool

 public ImageTool()

 sizeOf

 public static int sizeOf(Image image)

Computes the size of an image.

Parameters:
image - Image the size has to be computed for.

APPENDIX A. API REFERENCE 97

Class tools.Serialization
java.lang.Object
 |
 +----tools.Serialization

public class Serialization
extends Object

Tools for serialisation.

Version:
0.1, Dec 1998

Author:
Beat Signer

 Serialization

 public Serialization()

 toString

 public static final String toString(Serializable object)

Serializes an Object to a string.

Parameters:
object - Object to be serialized.

Returns:
String containing the serialized object.

 toObject

 public static final Object toObject(String string) throws IOException, ClassNotFoundException

Deserializes an Object from a String.

Parameters:
string - String the object has to be build from.

Returns:
Object deserialized from the string.

Throws: ClassNotFoundException
Class of a serialized object cannot be found.

Throws: IOException
Any of the usual Input/Output related exceptions.

 vectorToString

 public static final String vectorToString(Vector data,
 String delimiter)

Writes a vector to a string.

Parameters:
data - Vector to be written to a string.
delimiter - Used for the separation of two elements.

Returns:
String containing the elements of the vector.

APPENDIX A. API REFERENCE 98

Class tools.Sort
java.lang.Object
 |
 +----tools.Sort

public class Sort
extends Object

Tool to sort a vector of strings.

Version:
0.1, Dec 1998

Author:
Beat Signer

 Sort

 public Sort()

 processVector

 public static final Vector processVector(Vector unsorted)

Sorts the elements of a vector. Uses a simple selection sort.

Parameters:
unsorted - Vector to be sorted.

Returns:
Vector containing the sorted elements.

APPENDIX A. API REFERENCE 99

Class tools.StringTool
java.lang.Object
 |
 +----tools.StringTool

public class StringTool
extends Object

Tool for string manipulation.

Version:
0.1, Feb 1999

Author:
Beat Signer

 StringTool

 public StringTool()

 shorten

 public static final String shorten(String string,
 int length)

Shortens a string to a specified length. If the string is smaller than the desired length, the string is returned without any manipulation.

Parameters:
string - string to be shorten.
length - Desired size of the string.
String - of the size less or equal to 'length'.

APPENDIX A. API REFERENCE 100

A.4 The views Package

Object

Runnable

EmptyView

JButton

JPanel

JFrame

javax.swing

ChangeListener

javax.swing.event

ABSTRACT CLASS

INTERFACE extends

implements

CLASS

Layout

DynamicButton

UpdateThread

Component

Dialog

Frame

java.awt

ActionListener

MouseListener

java.awt.event

Picture

WarningDialog

BasicFrame

AgentView

CacheContentView

DatabaseAgentView

FrontEndAgentView

MiddleLayerAgentView

PersonalAssistantView

LogView

ControlView

CacheView

ParameterView

StatisticView

FrontEndAgentCacheView

java.lang views

Figure A.4: The views package

APPENDIX A. API REFERENCE 101

Interface views.AgentView

public interface AgentView

Interface for all agent views.

Version:
0.1, Feb 1999

Author:
Beat Signer

 getCaller

 public abstract Agent getCaller()

Returns the agent which generated the view.

Returns:
Agent which generated the view.

 setLog

 public abstract void setLog(String text)

Sets the text in the log view.

Parameters:
text - Text to be set in the log view.

 addToLog

 public abstract void addToLog(String text)

Adds the message to the log view.

Parameters:
text - Message to be added to the log view.

 getLog

 public abstract String getLog()

Parses the log from the log view.

Returns:
Log parsed from the log view.

 setListenPort

 public abstract void setListenPort(String port)

Sets the listen port view.

Parameters:
port - Value to be shown in the listen port view.

 getListenPort

 public abstract int getListenPort()

Parses the listen port from the listen port view.

Returns:
Listen port parsed from the listen port view.

APPENDIX A. API REFERENCE 102

 setServerHost

 public abstract void setServerHost(String host)

Sets the server host view.

Parameters:
host - Value to be shown in the server host view.

 getServerHost

 public abstract String getServerHost()

Parses the server host from the server host view.

Returns:
Server host parsed from the server port view.

 setServerPort

 public abstract void setServerPort(String port)

Sets the server port view.

Parameters:
port - Value to be shown in the server port view.

 getServerPort

 public abstract int getServerPort()

Parses the server port from the server port view.

Returns:
Server port parsed from the server port view.

 setImageBase

 public abstract void setImageBase(String base)

Sets the image base view.

Parameters:
base - Value to be shown in the image base view.

 getImageBase

 public abstract String getImageBase()

Parses the image base from the image base view.

Returns:
Image base parsed from the image base view.

 setHelpURL

 public abstract void setHelpURL(String url)

Sets the helpURL view.

Parameters:
url - Value to be shown in the helpURL view.

 getHelpURL

 public abstract String getHelpURL()

Parses the helpURL from the helpURL view.

Returns:
HelpURL parsed from the helpURL view.

APPENDIX A. API REFERENCE 103

 setClientCount

 public abstract void setClientCount(String count)

Sets the client count.

Parameters:
count - Value to be shown in the client count view.

 setStatus

 public abstract void setStatus(String status)

Sets the status message.

Parameters:
status - Message to be shown in the status line.

 setQueryCount

 public abstract void setQueryCount(String count)

Sets the query count.

Parameters:
count - Value to be shown in the query count view.

 setCacheHit

 public abstract void setCacheHit(String hitRate)

Sets the cache hit rate.

Parameters:
hitRate - Value to be shown in the hit rate view.

 setMeanQueryTime

 public abstract void setMeanQueryTime(String queryTime)

Sets the mean query time.

Parameters:
queryTime - Value to be shown in the mean query time view.

 setQueryTime

 public abstract void setQueryTime(String queryTime)

Sets the query time.

Parameters:
queryTime - Value to be shown in the query time view.

 setImageQueryTime

 public abstract void setImageQueryTime(String queryTime)

Sets the image query time which is the time needed to return the address of the image and NOT the time to transfer the image itself!.

Parameters:
queryTime - Value to be shown in the image query time view.

 startClicked

 public abstract void startClicked()

Handles a pressed start button.

 stopClicked

 public abstract void stopClicked()

APPENDIX A. API REFERENCE 104

Handles a pressed stop button.

 setVisible

 public abstract void setVisible(boolean visible)

Sets the visible state of the agent view.

Parameters:
vivible - TRUE if the agent view should be shown, FALSE otherwise.

APPENDIX A. API REFERENCE 105

Class views.BasicFrame
java.lang.Object
 |
 +----java.awt.Component
 |
 +----java.awt.Container
 |
 +----java.awt.Window
 |
 +----java.awt.Frame
 |
 +----views.BasicFrame

public class BasicFrame
extends Frame
implements ActionListener

Basic frame which allows to close the frame, add componenets to a container and generate new buttons with an optional action listener.

Version:
0.1, Dec 1998

Author:
Beat Signer

 BasicFrame

 public BasicFrame()

Constructs new BasicFrame with the name of the class as default title.

 close

 public void close()

Closes the frame.

 getButton

 public Button getButton(String name,
 boolean action)

Generates an new button with a defined name and an optional action listener.

Parameters:
name - Name to be displayed on the Button.
action - TRUE if the user wishes an action listener to be added to the button.

Returns:
New Button with an optional actionListener.

 addComponent

 public static void addComponent(Container container,
 Component component,
 int top,
 int left,
 int bottom,
 int right)

Adds a component to a container with a GridBagLayout.

APPENDIX A. API REFERENCE 106

Parameters:
container - The container the component should be added.
component - The Component to be added.
top - Border at the top.
left - Border at the left.
bottom - Border at the bottom.
right - Border at the right

See Also:
GridBagConstraints

 addComponent

 public static void addComponent(Container container,
 Component component,
 int gridx,
 int gridy,
 int gridwidth,
 int gridheight,
 int top,
 int left,
 int bottom,
 int right,
 int anchor,
 int fill)

Adds a component to a container with a GridBagLayout.

Parameters:
container - The container the component should be added.
component - The Component to be added.
gridx - Speciefies the cell at the left of the component's display area, where the leftmost cell has 'gridx = 0'.
gridy - Specifies teh cell at the top of the component's display area, where rhe topmost cell has 'gridy =0'.
gridwidth - Specifies the number of cells in a row for the component's display area.
gridheight - Specifies the number of cells in a colum for the component's display area.
top - Border at the top.
left - Border at the left.
bottom - Border at the bottom.
right - Border at the right
anchor - Used when the component is smaller than its display area. It determines where to place the component.
fill - Used when the component's display area is larger than the componenet's requested size. It determines wheter to resize the
component, and if so, how.

See Also:
GridBagConstraints

 actionPerformed

 public void actionPerformed(ActionEvent event)

Invoked if an action occurs.

Parameters:
event - Generated action event.

APPENDIX A. API REFERENCE 107

Class views.CacheContentView
java.lang.Object
 |
 +----java.awt.Component
 |
 +----java.awt.Container
 |
 +----java.awt.Window
 |
 +----java.awt.Frame
 |
 +----javax.swing.JFrame
 |
 +----views.CacheContentView

public class CacheContentView
extends JFrame

View showing teh following cache contents: key, processing time, last hit time and hit count.

Version:
0.1, Feb 1999

Author:
Beat Signer

 CacheContentView

 public CacheContentView(Cache cache,
 String title)

Constructs a new cache view.

Parameters:
cache - The modell containig the data.

 update

 public synchronized void update()

Updates the cache view.

APPENDIX A. API REFERENCE 108

Class views.CacheView
java.lang.Object
 |
 +----java.awt.Component
 |
 +----java.awt.Container
 |
 +----javax.swing.JComponent
 |
 +----javax.swing.JPanel
 |
 +----views.CacheView

public class CacheView
extends JPanel
implements ChangeListener

View showing relevant cache parameters.

Version:
0.1, Jan 1999

Author:
Beat Signer

 CacheView

 public CacheView(Cache cache,
 String title,
 boolean imageButton)

Constructs a new cache view.

Parameters:
cache - The modell containing the data.
title - Title for the cache view.
imageButton - TRUE if images should be shown on the buttons, FALSE otherwise.

 updateProgress

 public void updateProgress(int newSize)

Updates the progress bar.

Parameters:
newSize - Value to be shown in the progress bar.

 updateSize

 public void updateSize(String newSize)

Updates the cache size view.

Parameters:
newSize - Value to be shown i the cache size view.

 stateChanged

 public void stateChanged(ChangeEvent event)

APPENDIX A. API REFERENCE 109

Invoked if the data in the modell changed. A new thread is generated which will update the view.

Parameters:
event - Change event invokin the method.

 update

 public void update()

Updates the whole cache view.

APPENDIX A. API REFERENCE 110

Class views.ControlView
java.lang.Object
 |
 +----java.awt.Component
 |
 +----java.awt.Container
 |
 +----javax.swing.JComponent
 |
 +----javax.swing.JPanel
 |
 +----views.ControlView

public class ControlView
extends JPanel

Button line containing a status line and buttons to control the agent view.

Version:
0.1, Jan 1999

Author:
Beat Signer

 ControlView

 public ControlView(AgentView parent,
 boolean imageButton)

Constructs a new control view.

Parameters:
imageButton - TRUE if images should be shown on the buttons, FALSE otherwise.

 setStart

 public void setStart()

Disables the start button and enables the stop button.

 setStop

 public void setStop()

Disables the stop button and enables the start button.

 setStatus

 public void setStatus(String status)

Shows a message in the status line.

Parameters:
status - Message to be shown in the status line.

APPENDIX A. API REFERENCE 111

Class views.DatabaseAgentView
java.lang.Object
 |
 +----java.awt.Component
 |
 +----java.awt.Container
 |
 +----java.awt.Window
 |
 +----java.awt.Frame
 |
 +----javax.swing.JFrame
 |
 +----views.DatabaseAgentView

public class DatabaseAgentView
extends JFrame
implements AgentView

Database agent view showing the caches and other relevant parameters.

Version:
0.1, Feb 1999

Author:
Beat Signer

 DatabaseAgentView

 public DatabaseAgentView(DatabaseAgent caller)

Constructs a new database agent view.

Parameters:
caller - Database agent generating the view.

 getCaller

 public Agent getCaller()

Returns the agent which generated the view.

Returns:
Agent which generated the view.

 setLog

 public void setLog(String text)

Sets the text in the log view.

Parameters:
text - Text to be set in the log view.

 addToLog

 public void addToLog(String text)

Adds the message to the log view.

APPENDIX A. API REFERENCE 112

Parameters:
text - Message to be added to the log view.

 getLog

 public String getLog()

Parses the log from the log view.

Returns:
Log parsed from the log view.

 setListenPort

 public void setListenPort(String port)

Sets the listen port view.

Parameters:
port - Value to be shown in the listen port view.

 getListenPort

 public int getListenPort()

Parses the listen port from the listen port view.

Returns:
Listen port parsed from the listen port view.

 setServerHost

 public void setServerHost(String host)

Sets the server host view.

Parameters:
host - Value to be shown in the server host view.

 getServerHost

 public String getServerHost()

Parses the server host from the server host view.

Returns:
Server host parsed from the server port view.

 setServerPort

 public void setServerPort(String port)

Sets the server port view.

Parameters:
port - Value to be shown in the server port view.

 getServerPort

 public int getServerPort()

Parses the server port from the server port view.

Returns:
Server port parsed from the server port view.

 setImageBase

 public void setImageBase(String base)

Sets the image base view.

Parameters:

APPENDIX A. API REFERENCE 113

base - Value to be shown in the image base view.

 getImageBase

 public String getImageBase()

Parses the image base from the image base view.

Returns:
Image base parsed from the image base view.

 setHelpURL

 public void setHelpURL(String url)

Sets the helpURL view.

Parameters:
url - Value to be shown in the helpURL view.

 getHelpURL

 public String getHelpURL()

Parses the helpURL from the helpURL view.

Returns:
HelpURL parsed from the helpURL view.

 setClientCount

 public void setClientCount(String count)

Sets the client count.

Parameters:
count - Value to be shown in the client count view.

 setStatus

 public void setStatus(String status)

Sets the status message.

Parameters:
status - Message to be shown in the status line.

 setQueryCount

 public void setQueryCount(String count)

Sets the query count.

Parameters:
count - Value to be shown in the query count view.

 setCacheHit

 public void setCacheHit(String hitRate)

Sets the cache hit rate.

Parameters:
hitRate - Value to be shown in the hit rate view.

 setMeanQueryTime

 public void setMeanQueryTime(String queryTime)

Sets the mean query time.

Parameters:
queryTime - Value to be shown in the mean query time view.

APPENDIX A. API REFERENCE 114

 setQueryTime

 public void setQueryTime(String queryTime)

Sets the query time.

Parameters:
queryTime - Value to be shown in the query time view.

 setImageQueryTime

 public void setImageQueryTime(String queryTime)

Sets the image query time.

Parameters:
queryTime - Value to be shown in the image query time view.

 startClicked

 public void startClicked()

Handles a pressed start button.

 stopClicked

 public void stopClicked()

Handles a pressed stop button.

APPENDIX A. API REFERENCE 115

Class views.DynamicButton
java.lang.Object
 |
 +----java.awt.Component
 |
 +----java.awt.Container
 |
 +----javax.swing.JComponent
 |
 +----javax.swing.AbstractButton
 |
 +----javax.swing.JButton
 |
 +----views.DynamicButton

public class DynamicButton
extends JButton
implements MouseListener

Image Button changing its border on rollovers.

Version:
0.1, Feb 1999

Author:
Beat Signer

 DynamicButton

 public DynamicButton(String label,
 ImageIcon image)

Constructs a new dynamic button.

Parameters:
label - Label of the button.
image - Image to be shown on the button.

 DynamicButton

 public DynamicButton(String label)

Constructs a new dynamic button without an image.

Parameters:
label - Label of the button.

 mouseEntered

 public void mouseEntered(MouseEvent event)

Handles an entering of the cursor in the button area.

Parameters:
event - Associated mouse event.

 mouseExited

 public void mouseExited(MouseEvent event)

Handles a leaving of the cursor from the button area.

APPENDIX A. API REFERENCE 116

Parameters:
event - Associated mouse event.

 mouseClicked

 public void mouseClicked(MouseEvent event)

Handles a clicked button.

Parameters:
event - Associated mouse event.

 mousePressed

 public void mousePressed(MouseEvent event)

Handles a pressed button.

Parameters:
event - Associated mouse event.

 mouseReleased

 public void mouseReleased(MouseEvent event)

Handles a released button.

Parameters:
event - Associated mouse event.

APPENDIX A. API REFERENCE 117

Class views.EmptyView
java.lang.Object
 |
 +----views.EmptyView

public class EmptyView
extends Object
implements AgentView

Empty view for agents without a view.

Version:
0.1, Feb 1999

Author:
Beat Signer

 EmptyView

 public EmptyView(Agent caller)

Constructs a new empty view.

Parameters:
caller - Agent generating the view.

 getCaller

 public Agent getCaller()

Returns the agent which generated the view.

Returns:
Agent which generated the view.

 setLog

 public void setLog(String text)

Sets the text in the log view.

Parameters:
text - Text to be set in the log view.

 addToLog

 public void addToLog(String text)

Adds the message to the log view.

Parameters:
text - Message to be added to the log view.

 getLog

 public String getLog()

Parses the log from the log view.

Returns:

APPENDIX A. API REFERENCE 118

Log parsed from the log view.

 setListenPort

 public void setListenPort(String port)

Sets the listen port view.

Parameters:
port - Value to be shown in the listen port view.

 getListenPort

 public int getListenPort()

Parses the listen port from the listen port view.

Returns:
Listen port parsed from the listen port view.

 setServerHost

 public void setServerHost(String host)

Sets the server host view.

Parameters:
host - Value to be shown in the server host view.

 getServerHost

 public String getServerHost()

Parses the server host from the server host view.

Returns:
Server host parsed from the server port view.

 setServerPort

 public void setServerPort(String port)

Sets the server port view.

Parameters:
port - Value to be shown in the server port view.

 getServerPort

 public int getServerPort()

Parses the server port from the server port view.

Returns:
Server port parsed from the server port view.

 setImageBase

 public void setImageBase(String base)

Sets the image base view.

Parameters:
base - Value to be shown in the image base view.

 getImageBase

 public String getImageBase()

Parses the image base from the image base view.

Returns:
Image base parsed from the image base view.

APPENDIX A. API REFERENCE 119

 setHelpURL

 public void setHelpURL(String url)

Sets the helpURL view.

Parameters:
url - Value to be shown in the helpURL view.

 getHelpURL

 public String getHelpURL()

Parses the helpURL from the helpURL view.

Returns:
HelpURL parsed from the helpURL view.

 setClientCount

 public void setClientCount(String count)

Sets the client count.

Parameters:
count - Value to be shown in the client count view.

 setStatus

 public void setStatus(String status)

Sets the status message.

Parameters:
status - Message to be shown in the status line.

 setQueryCount

 public void setQueryCount(String count)

Sets the query count.

Parameters:
count - Value to be shown in the query count view.

 setCacheHit

 public void setCacheHit(String hitRate)

Sets the cache hit rate.

Parameters:
hitRate - Value to be shown in the hit rate view.

 setMeanQueryTime

 public void setMeanQueryTime(String queryTime)

Sets the mean query time.

Parameters:
queryTime - Value to be shown in the mean query time view.

 setQueryTime

 public void setQueryTime(String queryTime)

Sets the query time.

Parameters:
queryTime - Value to be shown in the query time view.

APPENDIX A. API REFERENCE 120

 setImageQueryTime

 public void setImageQueryTime(String queryTime)

Sets the image query time.

Parameters:
queryTime - Value to be shown in the image query time view.

 startClicked

 public void startClicked()

Handles a pressed start button.

 stopClicked

 public void stopClicked()

Handles a pressed stop button.

 setVisible

 public void setVisible(boolean visible)

Sets the visible state of the agent view.

Parameters:
vivible - TRUE if the agent view should be shown, FALSE otherwise.

APPENDIX A. API REFERENCE 121

Class views.Layout
java.lang.Object
 |
 +----views.Layout

public class Layout
extends Object

Tool for layouting with a grid bag layout.

Version:
0.1, Jan 1999

Author:
Beat Signer

 Layout

 public Layout()

 addComponent

 public static void addComponent(Container container,
 Component component,
 int top,
 int left,
 int bottom,
 int right)

Adds a component to a container with a GridBagLayout.

Parameters:
container - The container the component should be added.
component - The Component to be added.
top - Border at the top.
left - Border at the left.
bottom - Border at the bottom.
right - Border at the right

See Also:
GridBagConstraints

 addComponent

 public static void addComponent(Container container,
 Component component,
 int gridx,
 int gridy,
 int gridwidth,
 int gridheight,
 int top,
 int left,
 int bottom,
 int right,
 int anchor,
 int fill,
 double weightx,
 double weighty)

Adds a component to a container with a GridBagLayout.

Parameters:

APPENDIX A. API REFERENCE 122

container - The container the component should be added.
component - The Component to be added.
gridx - Speciefies the cell at the left of the component's display area, where the leftmost cell has 'gridx = 0'.
gridy - Specifies teh cell at the top of the component's display area, where rhe topmost cell has 'gridy =0'.
gridwidth - Specifies the number of cells in a row for the component's display area.
gridheight - Specifies the number of cells in a colum for the component's display area.
top - Border at the top.
left - Border at the left.
bottom - Border at the bottom.
right - Border at the right
anchor - Used when the component is smaller than its display area. It determines where to place the component.
fill - Used when the component's display area is larger than the componenet's requested size. It determines wheter to resize the
component, and if so, how.

See Also:
GridBagConstraints

APPENDIX A. API REFERENCE 123

Class views.LogView
java.lang.Object
 |
 +----java.awt.Component
 |
 +----java.awt.Container
 |
 +----javax.swing.JComponent
 |
 +----javax.swing.JPanel
 |
 +----views.LogView

public class LogView
extends JPanel

Log view showing the contents of the logfile.

Version:
0.1, Jan 1999

Author:
Beat Signer

 LogView

 public LogView(boolean imageButton)

Constructs a new log view.

Parameters:
imageButton - TRUE if images should be shown on the buttons, FALSE otherwise.

 add

 public void add(String text)

Adds some text to the log view.

Parameters:
text - Text to be added to the log view.

 set

 public void set(String text)

Sets some text to the log view.

Parameters:
text - Text to be shown in the log view.

 get

 public String get()

Returns the text in the log view.

Returns:
Text parsed from the log view.

APPENDIX A. API REFERENCE 124

Class views.MiddleLayerAgentView
java.lang.Object
 |
 +----java.awt.Component
 |
 +----java.awt.Container
 |
 +----java.awt.Window
 |
 +----java.awt.Frame
 |
 +----javax.swing.JFrame
 |
 +----views.MiddleLayerAgentView

public class MiddleLayerAgentView
extends JFrame
implements AgentView

Middle layer agent view showing the caches and other relevant parameters.

Version:
0.1, Feb 1999

Author:
Beat Signer

 MiddleLayerAgentView

 public MiddleLayerAgentView(MiddleLayerAgent caller)

Constructs a new middle layer agent view.

Parameters:
caller - Middle layer agent generatin the view.

 getCaller

 public Agent getCaller()

Returns the agent which generated the view.

Returns:
Agent which generated the view.

 setLog

 public void setLog(String text)

Sets the text in the log view.

Parameters:
text - Text to be set in the log view.

 addToLog

 public void addToLog(String text)

Adds the message to the log view.

APPENDIX A. API REFERENCE 125

Parameters:
text - Message to be added to the log view.

 getLog

 public String getLog()

Parses the log from the log view.

Returns:
Log parsed from the log view.

 setListenPort

 public void setListenPort(String port)

Sets the listen port view.

Parameters:
port - Value to be shown in the listen port view.

 getListenPort

 public int getListenPort()

Parses the listen port from the listen port view.

Returns:
Listen port parsed from the listen port view.

 setServerHost

 public void setServerHost(String host)

Sets the server host view.

Parameters:
host - Value to be shown in the server host view.

 getServerHost

 public String getServerHost()

Parses the server host from the server host view.

Returns:
Server host parsed from the server port view.

 setServerPort

 public void setServerPort(String port)

Sets the server port view.

Parameters:
port - Value to be shown in the server port view.

 getServerPort

 public int getServerPort()

Parses the server port from the server port view.

Returns:
Server port parsed from the server port view.

 setImageBase

 public void setImageBase(String base)

Sets the image base view.

Parameters:

APPENDIX A. API REFERENCE 126

base - Value to be shown in the image base view.

 getImageBase

 public String getImageBase()

Parses the image base from the image base view.

Returns:
Image base parsed from the image base view.

 setHelpURL

 public void setHelpURL(String url)

Sets the helpURL view.

Parameters:
url - Value to be shown in the helpURL view.

 getHelpURL

 public String getHelpURL()

Parses the helpURL from the helpURL view.

Returns:
HelpURL parsed from the helpURL view.

 setClientCount

 public void setClientCount(String count)

Sets the client count.

Parameters:
count - Value to be shown in the client count view.

 setStatus

 public void setStatus(String status)

Sets the status message.

Parameters:
status - Message to be shown in the status line.

 setQueryCount

 public void setQueryCount(String count)

Sets the query count.

Parameters:
count - Value to be shown in the query count view.

 setCacheHit

 public void setCacheHit(String hitRate)

Sets the cache hit rate.

Parameters:
hitRate - Value to be shown in the hit rate view.

 setMeanQueryTime

 public void setMeanQueryTime(String queryTime)

Sets the mean query time.

Parameters:
queryTime - Value to be shown in the mean query time view.

APPENDIX A. API REFERENCE 127

 setQueryTime

 public void setQueryTime(String queryTime)

Sets the query time.

Parameters:
queryTime - Value to be shown in the query time view.

 setImageQueryTime

 public void setImageQueryTime(String queryTime)

Sets the image query time.

Parameters:
queryTime - Value to be shown in the image query time view.

 startClicked

 public void startClicked()

Handles a pressed start button.

 stopClicked

 public void stopClicked()

Handles a pressed stop button.

APPENDIX A. API REFERENCE 128

Class views.ParameterView
java.lang.Object
 |
 +----java.awt.Component
 |
 +----java.awt.Container
 |
 +----javax.swing.JComponent
 |
 +----javax.swing.JPanel
 |
 +----views.ParameterView

public class ParameterView
extends JPanel

View showing the relevant paramters of an agent.

Version:
0.1, Jan 1999

Author:
Beat Signer

 ParameterView

 public ParameterView()

Constructs a new parameters view.

 setListenPort

 public void setListenPort(String port)

Sets the listen port view.

Parameters:
port - Value to be shown in the listen port view.

 getListenPort

 public int getListenPort()

Parses the listen port from the listen port view.

Returns:
Listen port parsed from the listen port view.

 setServerHost

 public void setServerHost(String host)

Sets the server host view.

Parameters:
host - Value to be shown in the server host view.

 getServerHost

 public String getServerHost()

APPENDIX A. API REFERENCE 129

Parses the server host from the server host view.

Returns:
Server host parsed from the server port view.

 setServerPort

 public void setServerPort(String port)

Sets the server port view.

Parameters:
port - Value to be shown in the server port view.

 getServerPort

 public int getServerPort()

Parses the server port from the server port view.

Returns:
Server port parsed from the server port view.

 setImageBase

 public void setImageBase(String base)

Sets the image base view.

Parameters:
base - Value to be shown in the image base view.

 getImageBase

 public String getImageBase()

Parses the image base from the image base view.

Returns:
Image base parsed from the image base view.

 setHelpURL

 public void setHelpURL(String url)

Sets the helpURL view.

Parameters:
url - Value to be shown in the helpURL view.

 getHelpURL

 public String getHelpURL()

Parses the helpURL from the helpURL view.

Returns:
HelpURL parsed from the helpURL view.

 setEditable

 public void setEditable(boolean editable)

Enables and disables the editing of the parameter fields.

Parameters:
editable - True if the fields should be editable, FALSE otherwise.

APPENDIX A. API REFERENCE 130

Class views.Picture
java.lang.Object
 |
 +----java.awt.Component
 |
 +----views.Picture

public class Picture
extends Component

Container for images.

Version:
0.1, Dec 1998

Author:
Beat Signer

 Picture

 public Picture(Image image)

Constructs a new container for an image. param image The image to be displayed in the image container.

 Picture

 public Picture(String imgSrc)

Constructs a new container for an image.

Parameters:
imgSrc - URL of the image to be displayed in the image container.

 paint

 public void paint(Graphics g)

Paints the Picture.

Parameters:
The - graphics context to use for painting.

Overrides:
paint in class Component

 getPreferredSize

 public Dimension getPreferredSize()

Gets the preferred size of this picture.

Returns:
Dimension object representing the preferred size of this picture.

Overrides:
getPreferredSize in class Component

 getMinimumSize

 public Dimension getMinimumSize()

Gets the minimum size of this picture.

APPENDIX A. API REFERENCE 131

Returns:
Dimension object representing the minimum size of this picture.

Overrides:
getMinimumSize in class Component

APPENDIX A. API REFERENCE 132

Class views.StatisticView
java.lang.Object
 |
 +----java.awt.Component
 |
 +----java.awt.Container
 |
 +----javax.swing.JComponent
 |
 +----javax.swing.JPanel
 |
 +----views.StatisticView

public class StatisticView
extends JPanel

View for statistics like cache hit rate, query time etc.

Version:
0.1, Jan 1999

Author:
Beat Signer

 StatisticView

 public StatisticView()

Constructs a new statistic view.

 setClientCount

 public synchronized void setClientCount(String count)

Sets the client count.

Parameters:
count - Value to be shown in the client count view.

 setQueryCount

 public synchronized void setQueryCount(String count)

Sets the query count.

Parameters:
count - Value to be shown in the query count view.

 setCacheHit

 public synchronized void setCacheHit(String hitRate)

Sets the cache hit rate.

Parameters:
hitRate - Value to be shown in the hit rate view.

 setMeanQueryTime

 public synchronized void setMeanQueryTime(String time)

APPENDIX A. API REFERENCE 133

Sets the mean query time.

Parameters:
queryTime - Value to be shown in the mean query time view.

 setQueryTime

 public synchronized void setQueryTime(String time)

Sets the query time.

Parameters:
queryTime - Value to be shown in the query time view.

 setImageQueryTime

 public synchronized void setImageQueryTime(String time)

Sets the image query time which is the time nedded to return the address of the image and NOT the time to transfer the image itself!

Parameters:
queryTime - Value to be shown in the image query time view.

APPENDIX A. API REFERENCE 134

Class views.UpdateThread
java.lang.Object
 |
 +----views.UpdateThread

public class UpdateThread
extends Object
implements Runnable

Thread for updating the CacheView.

Version:
0.1, Feb 1999

Author:
Beat Signer

 UpdateThread

 public UpdateThread(CacheView parent)

Constructs a new update thread.

Parameters:
parent - CacheView to be updated.

 run

 public void run()

Updates the CacheView.

APPENDIX A. API REFERENCE 135

Class views.WarningDialog
java.lang.Object
 |
 +----java.awt.Component
 |
 +----java.awt.Container
 |
 +----java.awt.Window
 |
 +----java.awt.Dialog
 |
 +----views.WarningDialog

public class WarningDialog
extends Dialog

Show a modal warning dialog to the user.

Version:
0.1, Dec 1998

Author:
Beat Signer

 WarningDialog

 public WarningDialog(Frame parent,
 String warning)

Constructs a new warning dialog.

Parameters:
parent - Parent Frame.
warning - String of the message to be displayed. the '#' is the representative for the beginning of a new line.

Bibliography

[EN97] Antonia Erni and Moira C. Norrie. Agent Based Internet
Database Services. 4th Doctoral Consortium in Conjunction
with 9th Conf. on Advanced Information Systems Engineering
(CAiSE’97), Barcelona, Spain, 1997.

[ENK98] Antonia Erni, Moira C. Norrie, and Adrian Kobler. Generic agent
framework for internet information systems. In Proceedings of
IFIP WG 8.1 98 Conference, Bejing, China, 1998.

[Fla97] David Flanagan. Java in a Nutshell: A Desktop Quick Reference.
A Nutshell handbook. O’Reilly & Associates, Inc., 101 Morris
Street, Sebastopol, CA 95472, second edition, 1997.

[Fra96] Michael J. Franklin. Client Data Caching: A Foundation for
High Performance Object Database Systems. Kluwer Academic
Publishers, 101 Philip Drive, Norwell, MA 02061, 1996.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995.

[GM97] David M. Geary and A. L. McClellan. Graphic Java: Mastering
the AWT. Prentice-Hall, 2550 Garcia Avenue, Mountain View,
CA 94043-1100, first edition, 1997.

[HC97] Cay S. Horstmann and Gary Cornell. Core Java 1.1: Volume 1:
Fundamentals. Prentice-Hall, 2550 Garcia Avenue, Mountain
View, CA 94043-1100, third edition, 1997.

[HC98] Cay S. Horstmann and Gary Cornell. Core Java 1.1: Volume 2:
Advanced Features. Prentice-Hall, 901 San Antonio Road, Palo
Alto, CA 94303, first edition, 1998.

[Rus97] Philip Ruser. Agent-Based Product Data Information System.
Diploma thesis, Institute for Information Systems, ETHZ, 1997.

[SG94] Avi Silberschatz and Peter Galvin. Operation System Concepts.
Addison-Wesley, 1994.

136

BIBLIOGRAPHY 137

[Tan92] Andrew S. Tanenbaum. Modern Operating Systems. Prentice-
Hall, Upper Saddle River, NJ 07458, 1992.

[Wue95] Alain Wuergler. Object Model System: An Object Database
Management System for the OM Data Model. Master’s thesis,
Institute for Information Systems, ETHZ, 1995.

