
Towards Modeling Data Variability in Software

Product Lines

Lamia Abo Zaid1, and Olga De Troyer1

1 WISE Lab, Computer Science Department

Vrije Universiteit Brussel (VUB)

Pleinlaan 2, 1050 Brussel

Belgium

{Lamia.Abo.Zaid, Olga.DeTroyer}@vub.ac.be, http://wise.vub.ac.be/

Abstract. In this paper, we provide an approach for modeling data variability as

part of the overall software product line modeling approach. Modeling data

variability in software product lines allows tailoring the data to the variability of

a product. For this purpose, we have extended our Feature Assembly Modeling

technique with the concept of persistency feature. We explain how these

persistency features can be used to express the data variability, how they can be

created and how they relate to the other features of the software product line.

We also show how to derive a so-called variable data model from these

persistency features and how an actual data model for a product of the product

line can be derived. Additionally, annotations provide traceability between the

variability of the features and the variability in the data model.

Keywords: Data intensive SPLs, Variable Data Model, Database Variability

1. Introduction

Software product lines [1] allow organizations to deliver different variants of a

product to different customers in a structured way. Software Product lines are based

on the idea of creating different products from a set of shared features. These features

can be composed differently to create different products. Some features are common

to all products, while others exist only in some of the products (i.e. if the functionality

they provide is required by that product).

Software product lines have found their way in many application domains, for

example: eHealth systems [2], Mobile phones [3], Revenue Acquisition Management

solutions [4], and Web portals [5]. In all these examples, the product line deals with

data one way or another: processing data, generating and storing data, or simply

retrieving data. To differentiate software product lines that deal with a large amount

of persistent data and those that don’t, we will call the former data intensive product

lines. Although much attention has been given to specifying software features and

their variability, very little attention has been given to how the variability in product

lines affect the variability of the data.

Development of efficient data intensive software product lines requires an alignment

between the features of an individual product and the data on which these features

operate. Different features may require different parts of the data. For different

reasons, such as reducing the complexity of queries, increasing performance, or

ensuring security, data that is not needed by the features of a certain product could be

labeled to be discarded in some way or the other in the final product. For instance,

different features selected for a certain product may require different views on a

global database or different customized databases may be required for different

products. This motivates the need to provide variability specifications at the data level

and to have a link between the features of a product line and the data associated with

it. In this paper, we will focus on data-intensive software product lines that maintain

their data in a database. We call a data model (or schema) that supports variability a

variable data model (or schema). In this paper we propose an approach for modeling

data variability as part of the overall modeling of the software product line variability.

The proposed approach is based on extending our Feature Assembly Modeling

technique [6] with so-called persistency features. Persistency features are features that

represent persistent data within the application domain. We also show how the

corresponding variable data model can be defined from these persistency features.

This paper is organized as follows: in section 2, we provide a brief overview of

related work. In section 3, we present our approach for modeling data variability in

software product lines. We demonstrate the approach on an example. Next, in section

4, we show how this information can be translated to the corresponding variable data

model. In section 5 we show how this variable data model can be used to derive

databases tailored to the needs of the different products of the software product line.

Finally, section 6 provides the conclusion and future work.

2. Related Work

Tailoring the database to the specific needs of a database actor is a well-known issue

in database design. Often many views are created to suit the specific needs of

different users or user groups (i.e. actors). For example, in [7] schema tailoring was

proposed to meet the needs of different actors accessing different portions of data, in

different usage scenarios. Data views were tailored for different actors in different

contexts. It amounts to cutting out the appropriate data portion that fits each possible

actor-context.

In [8] a component based technique for creating Real Time Database Management

System (RTDBMS) was proposed to help resolve the complexity of creating different

types of automotive control systems. An aspect-oriented methodology was adopted to

relate the components to the functionality provided by them. The proposed platform

consists of a library of components and aspects, and is supported by a tool suite. The

tool suit assists system designers in configuring and analyzing different configurations

based on the specific requirements of the targeted automotive system.

 The issue of matching the database with each member of the product line was first

raised in embedded systems [9] [10] [11], where the hardware is diverse and only

limited resources exist. Therefore it is very important that the application and its

accompanying database, as well as the database management system are suitably

tailored to meet the different requirements. In [9] the tailoring process was done at

runtime to provide a configurable real-time database platform (database and DBMS).

In [10], a product line approach was adopted to develop both the application and the

suitable database management system (and also data) for each product. In that case, it

was crucial that with each product of the product line only the essential data

management requirements and essential data existed. The focus was given to the

variability of the DBMS features. The authors did not mention how the database

entities were affected by this variability in DBMS features. In [11], a feature oriented

programming approach for tailoring data management for embedded systems was

proposed in which a feature model describing the DBMS features and their variability

was created. Feature oriented programming was used to create a common architecture

and code base that allowed to configure different configurations of the DBMS (the

approach was applied to Berkeley DB).

In [12], the authors reported the need for a variable database schema to serve the

different needs of the product line. Neglecting this need leads to a gap between the

application and the database. The authors proposed to tailor database schemas

according to user requirements. Two methods were proposed, physically decomposed

schemas (i.e. physical views) and virtual decomposed schemas (i.e. virtual views) for

representing variability in the application and matching this variability with variability

in the corresponding database. Once a product is configured (i.e. the features of the

product are identified) the schema is tailored to meet the needs of the product

features. The proposed technique decomposes an existing database schema in terms

of features. It allows tracing of the schema elements to the program features at the

code level using a technique similar to the #ifdef statements of the C preprocessor.

In this paper we present an approach that allows modeling the variability of the data

according to the variability of the application. Variability of the application is

analyzed with respect to its influence on the corresponding data. Next, a variable data

model is created which takes into consideration the need for tailoring the database

based on the member features of each product at an early stage (i.e. data modeling

stage).

3. Extending the Feature Assembly Modeling Technique to Model

Data Variability

Feature oriented domain analysis [13] is used to analyze and model the capabilities of

a software product line in terms of features. A feature represents a distinctive logical

unit that represents a functionality, capability, or characteristic of the software. The

product line is represented by a feature model. A feature model specifies features,

their relationships, their dependencies, and how they relate to the variability of the

product line. In the last two decades several feature modeling methods were defined

for example: Feature-Oriented Reuse Method (FORM) [14], FeatureRSEB [15],

Product Line Use case modeling for Systems and Software engineering (PLUSS) [16],

Cardinality Based Feature Modeling (CBFM) [17], and Feature Assembly Modeling

(FAM) [6].

In this paper we extend Feature Assembly Modeling (FAM) technique [6] to model

variability for data intensive software product lines. Feature Assembly Modeling is a

multi-perspective feature-oriented modeling approach. The multi-perspective

approach adopted allows specifying software product lines from different

perspectives. Each perspective considers one point of view to describe the variability

of the software product line (e.g., the System perspective describes the variability

from a general system point of view, the Functional perspective describes the

variability from a functional point of view, the Graphical User Interface perspective

describes the variability from the viewpoint of the Graphical User Interface). The

purpose of using perspectives is to simplify the design process by adopting the

principle of “separation of concerns”. Each perspective only concentrates of the

features and the variability relevant for that perspective. Note that FAM provides a

variable and extensible set of perspectives. If a (pre-defined) perspective is not

relevant for a given software product line it should not be used. Also new perspectives

can be defined if necessary for a given software product line.

To allow modeling data intensive product lines, we have introduced a special

perspective, called the Persistency Perspective. The persistency perspective focuses

on describing the variability from the viewpoint of the persistent data. The features in

this perspective, called persistency features, are defined from the point of view of

their need for manipulating (creating, updating, deleting, querying) persistent data

required by the different members of the product line. In principle, the feature models

for the different perspectives considered are defined (modeled) independently.

However, the feature model for the persistency perspective is derived from the feature

models of the other perspectives, i.e. the persistency features are derived by

inspecting the features in the other non-persistency perspectives modeling the product

line. If a feature needs persistent data, a corresponding persistency feature is defined.

Next, the persistency perspective model is completed by adding dependencies and

relations between features and the consistency and completeness of the overall model

should be validated. We will discuss each step in more details in the next sections. We

will use a running example: a Quiz Product Line (QPL) application [6], which is

variable software for making Quizzes and designed to meet the needs of multiple

customers and markets. A Quiz application is mandatory composed of a set of system

features namely: Question, Layout, License, Report Generator, Operation Mode and

Question Editor. When applying the Feature Assembly Modeling methodology to

QPL, the following perspectives were defined: a system perspective, a functional

perspective, a user perspective and a graphical user interface perspective1. In this

paper we focus on the persistency perspective.

3.1. Defining the Persistency Perspective

As indicated, the features in the persistency perspective are derived from features

defined in the various other perspectives. For the QPL example these perspectives are:

the system perspective, the functional perspective and the graphical user interface

perspective. Each perspective contains features that might or might not be associated

1 For more information on these perspectives please refer to [6] [18].

with persistency needs. If a feature has needs in terms of persistent data, a

corresponding persistency feature should be created in the persistency perspective (if

it does not already exist). So, this implies that the persistency perspective should be

created after the creation of the other perspectives, or while creating these other

perspectives. If a new perspective is added later, the derivation of persistency features

for this new perspective should also be performed. The following steps describe the

process of deriving persistency features:

1. Select a perspective: The starting point is the system perspective (bird’s eye view

of the product line), as it provides an overview of the key features composing the

product line and which are often associated with persistent information.

2. Inspect the perspective for features that represent or require persistent data:

For each such feature, define a corresponding persistency feature.

• For example in the QPL’s system perspective some features are directly

concerned with persistent data such as the Question feature that refers to the

set of possible question types. Therefore a corresponding Question

persistency feature will be defined in the persistency perspective.

Also the Report Generator feature manipulates persistent data. The Report

Generator requires the information about a certain quiz taken by a certain

user to generate a report. In this case, we have defined two persistency

features to represent this need, i.e. the Quiz feature (which represents the

information about a specific quiz) and the User-Quiz Info (which represents

the information about a certain quiz taken by a specific user). Additionally,

this analysis also indicates the need for a persistency feature called User that

represents the information about the user taking a quiz.

3. Define composition relations relating persistency features. These composition

relations represent whole-part relations between persistency features. They show

how features relate to each other from a compositional point of view.

Furthermore, these composition relations also allow expressing variability, as a

composition relation can be mandatory or optional.

• For example in the QPL example, the persistency feature Quiz is mandatory

composed of the following features: Question and Quiz Element Options

which define respectively the set of possible questions for a quiz and the

possible details about the quiz (such as passing score, passing feedback, etc.).

Additionally, this Quiz feature is optionally composed of a Question Media

feature that identifies the set of possible media associated with a question.

See figure 1(a) for the graphical representation.

4. Introduce or distinguish between abstract and concrete persistency features.

Sometimes it may be useful to introduce an abstract feature [6] to generalize

from a number of more specific features. In that case, the more specific features

are called option features [6]; they are linked to the abstract feature using a

generalization/specification relation. Abstract features must be associated with

cardinality rules that govern the maximum and minimum number of option

features that should be selected in a valid product configuration.

• For example in the QPL example, the persistency feature Question is defined

as an abstract feature that generalizes the features representing the different

types of questions. Therefore, the Question feature has the following option

features: Sequencing Question, True/false Question, Matching Question,

Multiple Choice Question, and Fill the Blank Question. We can specify that

at least one question type has to be selected and there is no maximum limit in

the number of question types used. So the cardinality is expressed as “1:-“

(see figure 1(a)).

5. Define the inter-perspective dependencies for the persistency perspective
features defined so far. Inter-dependencies express dependencies between

features belonging to one single perspective.

• For example within the QPL persistency perspective, if we consider the

Question feature (figure 1.a) and the Quiz feature (figure 1.b), we want to

express the constraint that for a Question feature, selecting the Assessment

Media feature also requires selecting the Question Media feature. This

translates into the following inter-perspective dependency: Assessment
Media requires Question Media.

6. Define the intra-perspective dependencies, i.e. dependencies between the

features of the perspective selected in step 1 and the features of the persistency

perspective.

• For example in the QPL example, selecting the Self Assessment feature (from

the system perspective) implies that the data for the questions assessment

should also be selected, i.e. the Question Assessment persistency feature

should also be selected. This translates into the following intra-perspective

dependency: System. Self Assessment requires Persistent.

Question Assessment

7. Repeat steps 1 to 6 to extract persistency features from all existing perspectives

(Functional perspective, User’s perspective, etc.).

 In this way, the persistency perspective is incrementally created.

3.2. Validating the Consistency and Completeness of the Overall Model

Due to the often-tangled relation between data and functionality, a validation for the

persistency perspective generated in the previous step is recommended. This is a two-

step process motivated by the work in [19] [20], as follows:

1. Validate the consistency of the persistency perspective and its associated inter-

dependencies and refine when necessary. This means verifying the following:

a. Check if no persistency features are unintentionally missing, i.e. the defined

persistency features provide an overview of the data concepts required by

features of the product line (in all perspectives). This missing of features may

be due to errors made during the definition of the persistency perspective or

due to missing features in the other perspectives. In this way, this validation

is also to some extent a validation of the completeness of the other

perspectives.

a. Check for duplication of persistency features or redundant persistency

features, i.e. whether some features have the same semantics (based on their

decomposition hierarchy) and actually represent the same persistency feature

(this can occur because the same persistency features may originate from

different perspectives). In case there is a need for this duplication the “same”

[21] dependency should be used to treat these redundant features as one.

b. Validate the consistency of the defined inter-dependencies between features

of the persistency perspective by checking whether conflicts exist among

them (taking into account features related by “same” dependency) yielding to

conflicts within the one perspective.

2. Validate the intra-dependencies between the persistency perspective and the other

perspectives. This is to some extent a validation of the overall model, it means

verifying the following:

a. The intra-dependencies between features of the different perspectives and the

persistency perspective are complete. For this purpose the overall global

model needs to be inspected. The global model is created by using the

“same” dependency as a merge operator that enables merging perspectives

based on their common features. This merging of common features allows

linking together the different perspectives based on their feature

commonality. Furthermore the intra perspective dependencies link features

of one perspective to their related features in other perspectives. This linking

of related features as well as merge of common features allows gluing

together the different perspectives and therefore obtaining a global model.

b. Within the global model identify and resolve any conflicts found within the

intra-perspective dependencies defined.

Fig. 1. Persistency perspective for the QPL.

Figure 12 shows the result of applying this process to the Quiz product line, Figure 1.a

shows the Quiz persistency feature, Figure 1.b shows the Question persistency feature,

Figure 1.c shows the User persistency feature (this was mainly derived from features

in the User perspective and the Functional perspective), and Figure 1.d shows the

User-Quiz Info persistency feature which represents information about a specific quiz

taken by a specific user. Figure 1 also shows the (inter-perspective) dependencies

between the features of this persistency perspective.

• System.Exam requires Persistent.Termination Page

• System.Muliuser requires Persistent.User

• Users.School requires Persistent.School

• Users.Bussiness requires Persistent.Bussiness

• System.Self Assessment requires Persistent.Question Assessment

Listing 1. Intra-perspective feature to feature dependencies for the persistency perspective.

As already mentioned, it is also important to identify how features affect each other,

in terms of intra-perspective feature-to-feature dependencies which tie together the

different (related) perspectives to create a global model of the system. The set of intra-

perspective feature-to-feature dependencies for the persistency perspective of the quiz

product line is given in Listing 1.

Once the persistency perspective is defined and all perspectives are consistent, the

next step is to use this information in the database modeling process to obtain a

variable data model, which can serve for tailoring the different databases required for

the different possible product line members (i.e. products). We describe this in the

next section.

4. Establishing a Variable Data Model

The persistency perspective is used to steer the database modeling process in

producing a variable data model, i.e. a data model that reflects the different variability

needs of the product line.

In general, two scenarios exist for defining a data model: a centralized design and a

decentralized design [22]. In centralized database design, the database model is

defined in one step, and as a result one global database model is defined. In

decentralized database design, a data model is defined for each user view resulting in

a number of data model views. In case a global data model is required, it can be

derived via a view integration process where the different segments of the database

design are combined to create one global model.

How the database model is defined does not affect how the link between the

variability model (which is represented by the Feature Assembly Models) and the data

2 The legend shown in figure 1 is applicable for all subsequent figures showing Feature

Assembly Models

model is achieved. In either case, variability information is associated with the data

model to instruct how to derive the possible different data models for the different

products of the product line. The data model incorporating variability information is

called the variable data model. There are basically two options for tailoring a variable

data model to the needs of each product: the materialized view and the virtual view

[23]. A materialized view means that the required data model elements are actually

extracted from the variable data model and are stored physically. This allows creating

a tailored database for the final product composed of tables materialized by these

views. While with the virtual view, a central database exists, and each individual

product has its own view (or sets of views) on this common database.

Modeling a variable data model is a two-step process; first persistency features are

mapped into data concepts. Secondly, the variability of these data concepts is

explicitly specified in the defined data model.

4.1. Mapping Persistency Features to Data Concepts

The persistency perspective provides the information about the required persistent

data and their variability. Therefore, features in the persistency perspective are

mapped to data concepts. To illustrate the mapping, we will use the EER model [24]

to represent the data model. However, any other data modeling techniques (such as

ORM [25] or UML [26]) can also be used.

All features in the persistency perspective should map to a corresponding data

concept. As we are using EER, a data concept can be either an entity or an attribute.

We have defined two annotation to represent this mapping, namely <<maps_to>> and

<<relates_to>>.

<< maps_to>> establishes a one-to-one mapping between a feature and a data concept

(i.e. entity or attribute).

For example:
• Persistent.Question <<maps_to>> Data_Model.Question

• Persistent.Passing_Score <<maps_to>>
Data_Model.Quiz.Passing_Score

It should be noted that data concepts could be related to any feature within any of the

existing perspectives. To describe this kind of relationship we use the

<<relates_to>> notation. << relates_to>> identifies an association relation between a

feature and a data model concept (i.e. entity or attribute). These association relations

are important to establish a link between features in general and the data model.

For example:

• Functional.Question Category <<relates_to>> Data_Model.Category

Basically, persistency features map to either entities or attributes in the data model.

Guidelines are:

a. Key features (i.e. features that represent a concrete concept or object) map to

entities. For example Persistent.Question maps to a Question entity in the data

model.

b. Features expressing details of key features are in general mapped to attributes

rather than entities. For example Persistent.Passing_Score maps to the

Passing_Score attribute of the Quiz entity.

We now explain how we can indicate the variability of the data model.

4.2. Representing Variability in Data Models

To specify variability of a data model, it was necessary to extend the model notation.

For the EER model, this has been done as follows: we introduced annotations that are

used to mark the variability of the concepts, i.e. entities, attributes, and relations. A

data concept that originated form a variable persistency feature (i.e. optional feature)

should be a variable concept in the database model. To denote variability of an entity

or attribute, it is annotated with <<variable>> and we call it a variable concept, i.e. its

existence is dependent on the selection of the corresponding feature in the product

line. For example, a Question feature can be optionally composed of Question

Options (e.g., time out, weight …etc.). In this case, the Question entity is linked to an

entity named Question Options that is marked as variable, i.e. Question Options is

marked with the <<variable>> annotation to indicate this variability.

Fig. 2. The variable EER data model for the Quiz product line

A data concept that originates from an option persistency feature should also be a

variable concept in the data model. To denote variability that is due to a specialization

relationship (i.e. option feature), the annotation <<variant>> is used. For example in

the QPL persistent perspective, there are five different option features of Question:

Sequencing, True-False, Matching, Fill the Blank, and Multiple Choice. These

Question option features are mapped to entities (each feature is represented by an

entity) and each entity is annotated with <<variant>> to indicate their variability and

the fact that they are derived from option features (see figure 2).

 Please note that the resulting data model may not be complete. Features defined in

the persistency perspective may not completely define all entities, attributes,

relationships and constraints of the data model. Rather they only define those

concepts related to variability of the product line. Therefore, it is up to the data

designer to complete the data model.

Figure 2 shows the variable EER data model for the QPL example. Figure 2 shows

that attributes as well as entities can be annotated as variable database concepts. Note

that when an attribute is marked as variable it should not be used as a primary key

because it is not guaranteed to exist in all variants of the schema. For the same reason,

when using it as a foreign key care should be taken as in some schema variants it may

not be used. (Note that if no non-variable key is available an artificial key can be

introduced.) Also it may be useful to consider putting variable attributes in a separate

entity than the primary entity they are attributes of. This will allow easier tailoring of

the data model when the variable attributes are not selected. Quiz Preferences is an

example of such practice.

5. Deriving Tailored Product Data Schemas

As we have

explained, a variable

data model defines

the variability of the

concepts involved in

the variability of a

software product

line. However, it

does not only define

the variability of the

concepts, it also

links the variability

of these concepts to

the variability of the

application features.

This enables

traceability, i.e. it

makes it possible to

trace the variability

Fig. 3. System perspective of Quiz product 1

from application to database and vice versa. This allows tailoring the data schema of

each product to match the data requirements of its features.

Fig. 4. EER data model for product 1

To demonstrate this, we defined two possible products of the quiz product line, Quiz

product 1 is a simple quiz, that contains the following system features [Quiz, License

{Single User}, Layout {Simple}, Questions {True/False, Multiple Choice}, Operation

Mode {Basic}, and Question Editor {Basic Editor}], figure 3 shows in grey shade

these selected features . Figure 4 shows the EER data model (view) for Quiz product

1. In listing 2, the relevant mappings are shown, which express the link between the

data model and the features.

System.Quiz Application <<relates_to>> Data_Model.User

System.Quiz Application <<relates_to>> Data_Model.Quiz

Persistent.Questions <<maps_to>> Data_Model.Questions

Persistent.True/False <<maps_to>> Data_Model.True/False

Persistent.Multiple Choice Single Answer <<relates_to>> Data_Model.Multiple Choice

Persistent.Multiple Choice Multi Answer <<relates_to>> Data_Model.Multiple Choice

Listing 2. Feature Assembly-to-data model mappings of Quiz product 1

Quiz product 2 shows a more complex example. It is a Quiz and Exam application,
and it contains the
following system
features [Quiz,
License {Multi
User}, Layout
{Simple, layout,
Template Based},
Questions
{Sequencing,
Matching, Multiple
Choice}, Operation
Mode {Quiz, Exam},
and Question Editor
{Rich text editor},
Report Generator].
Figure 5 shows the
selected features (in
grey shade) that

Fig. 5. System perspective of Quiz product 2

represent Quiz product 2. Figure 6 shows the EER data model (view) for Quiz product
2, and listing 3 contains the relevant mappings.

EER data model for product 2

6. Conclusion and Future Work

In this paper we have discussed the need for modeling data variability as well as

application variability when designing software product lines. We have extended the

System.Quiz Application <<relates_to>> Data_Model.User

System.Quiz Application <<relates_to>> Data_Model.Quiz

Persistent.Questions <<maps_to>> Data_Model.Questions

Persistent.Multiple Choice Multi Answer <<relates_to>> Data_Model.Multiple Choice

Persistent.Matching <<maps_to>> Data_Model.Matching

Persistent.Sequencing <<maps_to>> Data_Model.Sequencing

System.Multi User <<relates_to>> Data_Model.Admin

System.Multi User <<relates_to>> Data_Model.Question Options

System.Multi User <<relates_to>> Data_Model.Quiz Element Options

Persistent.User <<relates_to>> Data_Model.User

System.Exam <<relates_to>> Data_Model.Sound Effects

System.Multi User <<relates_to>> Data_Model.Question Media

Listing 3. Feature Assembly-to-data model mappings of Quiz product 2

Feature Assembly Modeling technique used for feature modeling to also support data

variability. For this purpose, we have defined a persistency perspective in which

features are defined from the point of view of their need for manipulating persistent

data in the product line. This persistency perspective is derived from the other

perspectives defining the product line. We have also shown how the persistency

perspective can be used to define a variable data model. A variable data model is a

data model annotated with variability information. As such, the actual data model for

a product of the product line can be tailored to meet only the requirements of this

specific product. This may simplify the process of accessing data, resulting in simpler

queries and avoids dummy values in insert and update queries. Another advantage is

that it optimizes storage space and allows for different implementation (e.g., for a

simple product a full fledged DBMS may not be needed) In addition, the link between

the features of the product line and the variable data model is maintained, such that

automatic derivation of the actual data model for an individual product is possible.

In this paper, we used and extended EER to express the variable data model, however

in a similar way, other data modeling techniques (e.g., UML, ORM) can be used.

Future work includes tool support for the modeling the persistency perspective (this is

part of the tool support for the overall feature assembly modeling approach) and for

supporting the mapping to the variable data model. We also plan to apply the

approach to an industrial case to validate it further.

8. Acknowledgement

This research is sponsored by IRSIB through the VariBru project (www.varibru.be).

9. References

1. Bosch, J.: Design and Use of Software Architectures: Adapting and Evolving a Product-

Line Approach. Addison-Wesley, Boston (MA), 2000.

2. Bartholdt, J., Oberhauser, R., Rytina, A.: An Approach to Addressing Entity Model

Variability within Software Product Lines. In: ICSEA 2008, pp. 465-471, 2008.

3. Bosch, J.: Software Product Families in Nokia. In: SPLC 2005 , pp.2-6, 2005.

4. Clements, P. C., Northrop, L. M.: A Software Product Line Case Study. Technical Report

CMU/SEI-2002-TR-038, November 2002

5. Pettersson, U., Jarzabek, S.: Industrial Experience with Building a Web Portal Product

Line using a Lightweight, Reactive Approach. In: ESEC-FSE'05, European Software

Engineering Conference and ACM SIGSOFT Symposium on the Foundations of Software

Engineering, ACM, 2005.

6. Abo Zaid, L., Kleinermann, F., De Troyer, O.: Feature Assembly: A New Feature

Modeling Technique. In: 29th International Conference on Conceptual Modeling, Lecture

Notes in Computer Science, Vol. 6412/2010, pp. 233-246, 2010.

7. Bolchini, C. , Quintarelli, E., Rossato, R.: Relational Data Tailoring Through View

Composition. In: ER 2007, pp. 149-164, 2007.

8. Nyström, D., Tesanovic, A., Nolin, M., Norström, C., Hansson, J.: COMET: A

Component-Based Real-Time Database for Automotive Systems. In Proceedings of the

Workshop on Software Engineering for Automotive Systems at 26th International

Conference on Software engineering (ICSE'04), IEEE Computer Society Press, May 2004.

9. Tesanovic, A., Sheng, K., Hansson, J.: Application-Tailored Database Systems: a Case of

Aspects in an Embedded Database. In: Proceedings of the 8th International Database

Engineering and Applications Symposium (IDEAS'04), IEEE Computer Society, July

2004.

10. Rosenmüller, M., Siegmund, N., Schirmeier, H., Sincero, J., Apel, S., Leich, T., Spinczyk,

O. , Saake, G.: FAME-DBMS: Tailor-made Data Management Solutions for Embedded

Systems. In: Proceedings of EDBT Workshop on Software Engineering for Tailor-made

Data Management (SETMDM), pages 1–6. ACM Press, March 2008.

11. Rosenmüller, M., Apel, S., Leich, T., Saake, G.: Tailor-made data management for

embedded systems: A case study on Berkeley DB. Data & Knowledge Engineering ,Vol

68, Issue 12, pp. 1493-1512, 2009.

12. Siegmund, N., Kästner, C., Rosenmüller, M., Heidenreich, F., Apel, S., Saake, G.:

Bridging the Gap between Variability in Client Application and Database Schema. BTW

2009, pp. 297-306, 2009.

13. Kang, K., Cohen, S., Hess, J. Novak, W., Peterson, A.: Feature-oriented domain analysis

(FODA) feasibility study. Technical Report CMU/SEI-90-TR-021, Software Engineering

Institute, Carnegie-Mellon University, 1990.

14. Kang, K., Kim, S., Lee, J. Kim, K. Shin, E., Huh, M.: FORM: A Feature-Oriented Reuse

Method with Domain-Specific Reference Architectures, In: J. Annals of Software

Engineering. vol. 5, pp. 143-168, 1998.

15. Griss, M., Favaroand, J., d’Alessandro, M.: Integrating Feature Modeling with the RSEB.

In: Fifth International Conference on Software Reuse, pp. 76–85, 1998.

16. Eriksson, M., Börstler, J., Borg, K.: The PLUSS Approach - Domain Modeling with

Features, Use Cases and Use Case Realizations. In: Obbink and Pohl (eds), SPLC 2005,

LNCS 3714, pp. 33–44, pp. 33- 44, 2005.

17. Czarnecki, K. , Kim, C. H. P.: Cardinality-Based Feature Modeling and Constraints: A

Progress Report., In: OOPSLA’05 International Workshop on Software Factories, 2005.

18. Abo Zaid, L., Kleinermann, F., De Troyer, O.: Feature Assembly Modelling: A New

Technique for Modelling Variable Software. In: 5th International Conference on Software

and Data Technologies Proceedings, Vol. 1, pp: 29 - 35, eds: Cordeiro, J., Virvou, M.,

Shishkov, B., SciTePress, 2010.

19. Abo Zaid, L., Houben, G-J., De Troyer, O., Kleinermann, F.: An OWL- Based Approach

for Integration in Collaborative Feature Modelling. In: 4th Workshop on Semantic Web

Enabled Software Engineering - SWESE2008, October 2008

20. Sabetzadeh, M., Nejati, S. Liaskos, S. Easterbrook, S., Chechik, M.: Consistency Checking

of Conceptual Models via Model Merging. In: 15th IEEE International Requirements

Engineering Conference (RE'07), October 2007.

21. Abo Zaid, L., Kleinermann, F., De Troyer, O.: Applying Semantic Web Technology to

Feature Modeling. In: The 24th Annual ACM Symposium on Applied Computing, The

Semantic Web and Applications (SWA) Track, March 2009.

22. Connolly, T. M. , Begg, C. E.: Database Systems: A Practical Approach to Design,

Implementation and Management. Addison-Wesley, 2009

23. Gupta A., Mumick, I. S.: Materialized views: techniques, implementations, and

applications. MIT Press, ISBN: 978-0262571227, 1999
24. Thalheim, B.: Extended Entity-Relationship Model. Encyclopedia of Database Systems

2009: pp.1083-1091, 2009

25. Morgan. T., Information Modeling and Relational Databases, Second Edition, Morgan

Kaufmann Publishers, ISBN: 978-0-12-373568-3, 2008.

26. Fowler, M.: UML distilled: a brief guide to the standard object modeling language,

Addison-Wesley, ISBN-13: 978-0-321-19368-1, 2004

