
1 

Developing Semantic VR-shops for e-
Commerce 
 

Olga De Troyer, Frederic Kleinermann, Haithem Mansouri, Bram Pellens, Wesley 
Bille, and Vladimir Fomenko  

 

Vrije Universiteit Brussel 
Pleinlaan 2 
1050 Brussel – Belgium 
Email : Olga.DeTroyer@vub.ac.be 
Tel : +32-2-6293504 
 

Abstract 

Increased bandwidth, cheaper and faster hardware, dedicated technology and the success of e-
commerce make VR-shops feasible. VR-shops are similar to the e-shops currently available on the 
Web, with this difference that the products are visualized as 3D objects in a virtual world. 
Although VR-shops do not require sophisticated VR technology, they should be very flexible: it 
should be easy to add, remove and rearrange products; and to add, change or remove functionality. 
Therefore, an appropriate approach that can be used by a non-VR expert and that provides a short 
development time and easy maintenance is necessary. Also usability is very important because this 
is crucial for the success of VR-shops. In this paper, we present an approach to develop VR-shops 
that meets these requirements. It allows specifying a VR-shop using high-level conceptual 
specifications and in terms of domain terminology; semantics are captured by ontologies; existing 
product information can be incorporated; and the actual code is generated.  
 

Keywords: VR-Shops, e-shops, Ontology, Semantics, Web Services, Semantic 
Annotation, Semantic Search Engine, Shop-WISE 

1 Introduction 
Over the last fifteen years, the Internet has evolved from a simple text-publishing 

platform into a powerful distributed software environment enabling development 

and deployment of complex interactive, multimedia applications. Currently, these 

applications range from information and entertainment services to complex e-

commerce, e-business, and e-government applications.  

 

During the same period, 3D computer graphics technologies have also evolved to 

a level that makes it possible to use them in a diversity of real-life applications 

including Web applications. This has been possible due to (1) significant progress 



2 

in hardware performance, including cheap 3D accelerators available in almost 

every contemporary computer and which enables faster rendering, (2) increased 

bandwidth of the networks, (3) VR standards specially dedicated for the Web 

(VRML/X3D), and (4) increased availability of 3D modeling tools and 

consequently also 3D content.  

 

Today, there are different e-commerce applications available on the Web, a lot of 

them are e-shops that allow people to buy or inspect products online (e.g., 

Amazon [1], Dell™ [2], IKEA® [3]). In these e-shops, products are displayed 

using text descriptions usually complemented with a photo and organized 

according to some criteria. A more appealing way would be to display the 

products using Virtual Reality (VR). In such a Virtual Reality shop (VR-shop), 

the products are visualized as 3D objects in a virtual world where the user can 

walk around, pick up, and inspect the products [4]. A study of Haubl and Figueroa 

[5] shows that buyers tend to spend a greater amount of time viewing 3D products 

than if the products are visualized as still images. Chittaro and Ranon [6] point out 

the following benefits of VR for E-Commerce: (1) it is closer to the real world 

shopping experience (and thus more familiar to the buyer); (2) it supports buyer’s 

natural shopping actions (like walking, looking around the store); (3) it can satisfy 

emotional needs of buyers by providing a more immersive, interactive, and 

visually attractive experience; (4) it can satisfy social needs of buyers by allowing 

them to meet and interact with people. 

Furthermore, VR-shops not only contribute much more to customer retention than 

ordinary e-shops, they also lend themselves better to incorporate well-proven 

marketing strategies. As visitors of a VR-shop are more likely to spend more time 

looking at items, there is also more chance that they will look at items they may 



3 

not have intended to look for when they entered the shop. Promotional displays 

can be used, and commercial techniques like “massification” are also possible 

with VR-shop [6]. Furthermore, as sophisticated as they may get, 2D e-shops 

could be considered as being nothing more than a Web site. With a few clicks, 

users can easily navigate to other sites and might even end up at a competitor’s 

site. VR-shops, on the other hand, give users the impression of being “emerged” 

in the world. Users are “transported” from their familiar Web environment where 

they follow their own navigation laws, to that of the shop owner. Within such an 

environment, users are forced to follow the shop owner’s navigation rules (or 

leave it altogether). Therefore, from a mental point of view, it may be more 

difficult for users to navigate away from the shop once they are in it. 

 
From the user’s perspective, VR-shops also offer many advantages compared to 

the traditional 2D ones. Users cannot only contemplate the displayed products 

from every angle but, depending on the possibilities of the application, they could 

also alter some of their features (like color or size) and immediately see the results 

of their actions [6]. Obviously, this facilitates product selection and 

customization. In the case of a virtual furniture shop for instance, the application 

could offer the possibility to display some chosen items together, e.g., in a single 

virtual room. Users would then be able to visualize how a specific combination of 

furniture would look like and if it would fit in a customized environment. They 

would also have the possibility to rearrange the different pieces of furniture 

according to their taste and they can experiment with different colors or types of 

furniture in order to choose the best combination according to their needs and 

taste. In the context of a clothing store, VR-techniques can be used to compose 

customized products (e.g., shirts or pants). 



4 

 

Although VR-shops do not require sophisticated VR technology, they should be 

very flexible, as they need to respond to the ongoing daily changes in terms of 

products and prices. Therefore, it must be easy to add and remove products, and to 

rapidly change product parameters like prices and delivery time. In addition, it 

should also be easy to add, adapt or remove functionality, e.g., adding the 

functionality of reserving products, changing or extending the payment method. 

And finally, it should be easy to adapt the virtual shop itself. Like real shops, they 

should be brushed-up regularly and products should be rearranged to fit special 

occasions or to draw attention to new promotional items for instance. Another 

important issue is their usability. This is a big challenge for VR-shops as they are 

targeting the Web community and therefore, they need to be usable by a large 

audience with very different backgrounds. This means that the navigation and the 

interaction must be easy and intuitive. 

 

For all of these reasons, an appropriate approach for the development of VR-

shops is needed. In addition, we believe it is important to target an approach that 

can be used by a non-VR expert because this will facilitate the development of 

VR-shops, as companies will no longer be forced to pass by a VR-expert to 

implement their ideas. In summary, this means that we are looking for an 

approach suitable for non-VR skilled people that provides short development 

times, results in systems that are easy to maintain and adapt, and makes provision 

for good usability and re-usability.  

 

In this paper, we present our approach to develop VR-shops, called Shop-WISE 

that was developed to meet the specified requirements. The approach allows the 



5 

developer to specify the VR-shop using high-level, conceptual specifications and 

in terms of concepts from the shop-domain. Semantics are captured by means of 

ontologies. Existing product information can be re-used. Finally, the actual code is 

generated from the high-level specifications. This means that in order to adapt a 

VR-shop, the modifications can be made at the conceptual specification level and 

the adapted shop can be easily re-generated. In this paper, the approach is 

illustrated by means of a furniture shop. The user can walk through the VR-shop, 

look at products, ask for information and buy or reserve products. In addition, a 

semantic search engine is provided to find products based on their semantic 

properties.  

 

This paper is structured as follows. Section 2 discusses related work concerning 

VR-shops and VR semantics. Section 3 describes how a VR-shop is designed 

using the Shop-WISE approach. Section 4 explains how the approach makes 

provision for a semantic search engine. Section 5 describes an example furniture 

shop that we developed with the approach, while section 6 evaluates the approach 

and discusses further work. Section 7 presents conclusions.  

 

2 Related Work 
This section is divided into two parts. The first part gives an overview of related 

work on VR-shops. As our approach also provides the benefit of generating 

semantic information (called semantic annotations) usable at run-time, the second 

part of this section will review research work related to the use of semantic 

information for enhancing the usability of a VR-application in general.  



6 

2.1 VR-Shops 

Some research work oriented towards 3D VR-shops is already available. Here, we 

will discuss the work relevant to the work presented in this paper. 

 

The Alice project [7] is a relevant project, as it uses ontology for representing 

knowledge related to online shopping making it more like visiting a local corner 

shop than browsing or searching long lists. It uses ontologies for describing 

products, shopping task and customers. Alice provides way of making dynamic 

queries so that the user can quickly find relevant items by displaying the result of 

queries. The use of ontologies makes the interface more intuitive not only for the 

customer but also for the shop manager. Similar as in our approach, Alice uses 

ontologies to make online e-shopping, however it does not provide a 3D virtual 

environment like we do.  

 

The project 3D-dvshop (3D-dynamic virtual shop) [8] presents an approach to 

generate personalised VR-shops. In this work, the user can select 3D products 

from an existing list of products and a 3D VR-shop will then be generated 

automatically containing the selected products. In this approach, the end-user is 

only responsible for the generation of the content of his VR-shop. He cannot 

decide how the products are placed, or decide about the layout of the VR-shop, 

which is possible in our approach. Some additional information besides the 

properties related to the graphical representation of the virtual objects is held in a 

database. However, this information is not used within the virtual shop itself, it is 

only outside the shop area that these information items can be retrieved. 

Furthermore, this information is not used for searching virtual objects inside the 

virtual environment. In our approach, this kind of information is integrated in the 



7 

virtual environment and can be used for retrieving and searching products or 

locations.   

 

VRCommerce [9] is an integrated solution for creation, operation and navigation 

of 3D malls and stores. It tackles the problem of continuous navigation between 

separately designed and managed stores. However, it does not address the issue on 

how to design 3D malls and stores in an intuitive way. Although you can add 

products inside the shop, it is not clear how easy it is to position them inside the 

shop. Furthermore, there are no real explanations about the management of the 

shop.  

 

Chittaro and Ranon [10][11] present a set of guidelines for designing VR e-

commerce sites. They introduce the concept of walking products to aid the user to 

find products in the shop. They also talk about “Massification” and how to attract 

the attention of customers. In [6], Chittaro and Ranon present a general approach 

to build adaptive 3D websites called AWE3D. Its usefulness is illustrated by 

means of a 3D e-commerce case study. A so-called “VRML Content Database” is 

used to create a personalized VR-shop considering the user data. The approach 

includes a number of nice features (like navigation and interaction) that help the 

user to find what he is looking for inside the VR-shop. Although the parts of the 

shop are self-adapting according to the user’s behavior, the shop is actually pre-

defined and the adaptability only exists through modifying the parameters of the 

VRML PROTOS node. In our approach, each shop can be designed individually 

and the design as well as the maintenance is at a much higher level than the VR 

language used to the implementation. 

 



8 

Robles et al. [4] have also considered adaptive 3D online stores. They provide 

adapted versions of the e-shop for each user by means of a user mode and a set of 

rules. However, they do not address the issue on how to position products easily 

inside the shop and how quickly they can add (or remove) products. 

2.2 Semantic Annotations 

Semantic annotation is information that is added to some media to enrich it with a 

well-defined meaning. Semantic annotations are especially important in the 

context of the Semantic Web because they make the content of the Web machine-

processable and enable computers and people to work in cooperation. In the 

context of VR, semantic annotations can be very useful for enhancing the 

interaction and the usability of the VR application. Already some research has 

been performed dealing with annotations and semantics for VR.   

 

In [12], the world is annotated using information from the 3D structure of the 

virtual world. The annotations take into account:  viewpoints, areas of interest, 

objects, persons, and text. The annotations are used as semantic data to help the 

user to navigate inside the virtual world. Although the navigation improves, their 

annotation is mainly related to the 3D structure of the virtual world and they do 

not provide semantics of the real world objects like e.g., price, quality, or delivery 

time. In our approach, the semantics added during design are not related to the 3D 

structure of virtual world (these type of annotations are generated automatically) 

but are concerned with real-world semantics. These real-world semantics will be 

used to improve the usability of VR-shop. 

 

In [13], the notion of smart object is used to provide not only the geometric 

information necessary for drawing objects on screen, but also semantic 



9 

information useful for manipulation purposes. Here, the semantic information in 

the smart object is used by virtual characters to perform actions on/with the object 

e.g., grasping, moving, operating.  Using the semantic information, the user is 

much more aware of the sort of manipulation that he can perform. For this reason, 

our approach also provides these features by using the semantic information 

added at design time. However, in our approach, it is the domain expert (i.e. the 

shop builder) that specifies this information.  

 

In [14], the authors provide a semantic representation capturing the functions, 

characteristics and relationships between virtual objects. The model they propose 

is designed to turn the objects in a Virtual Environment into autonomous and 

reusable entities that they call digital items. Our approach exploits a similar idea 

by building a semantic layer, which will keep track of relations between the 

virtual objects. In our approach, this semantic layer will be exploited by a search 

engine for finding virtual objects inside the VR-shop. 

 

3 Developing VR-shops using the Shop-WISE 
approach 
Shop-WISE, the approach used for developing VR-shops is based on a more 

general approach for developing VR applications, which is called VR-WISE 

[15][16][17][18][19]. The development process in the VR-WISE approach 

consists of three (mainly) sequential steps, namely the Specification Step, the 

Mapping Step and the Generation Step. For the Specification Step, VR-WISE 

uses high-level modeling concepts and (domain) ontologies to specify a virtual 

world. The result of the specification step is a high-level description of the objects 

in the virtual world; how they are related to each other; and how they will behave 



10 

and interact with each other and with the end-user. In the mapping step, the 

conceptual specifications are mapped on VR-implementation primitives and in the 

generation step actual code is generated. The VR-WISE approach has been 

customized for the development of VR-shops. This means that a number of object 

(type)s and behaviors have been pre-defined (and provided in the form of (shop) 

domain-specific ontologies); also provision for plugging-in shopping functionality 

(e.g., buying, reserving products) has been added. In this section, we explain the 

different steps for the development of a VR-Shop using the Shop-WISE approach. 

Figure 1 illustrates the different steps and the different modules involved in each 

step. Subsection 3.2 explains the Specification Step, subsection 3.3 the Mapping 

Step and subsection 3.4 the Generation Step. We start with a short subsection 

about ontologies. 

 

VR-Shop
Ontology

Shopping Task
Ontology

VR-Shop
Mapping

Product
Ontology

World Specification

Product 
Mapping

Shopping Task
Mapping

World Mapping

VR-Shop code

Specification step Mapping step

Generation step  
Figure 1. Overview of the development process of Shop-WISE 
 



11 

3.1 Ontologies 

In the field of computer science, the term ontology is used in the context of 

knowledge representation. In [20], an ontology is defined as a formal, explicit 

specification of a shared conceptualization of a domain of interest. A 

conceptualization is an abstract, simplified representation of the world in terms of 

objects, concepts, and other entities that are assumed to exist and the relationships 

that hold among them. The term shared implies that the conceptualization is 

shared among different stakeholders i.e., they all must agree on a specific 

representation of the world. As it is the purpose of an ontology to represent 

knowledge (semantics) in a machine-readable and machine-interpretable manner, 

the conceptualization should be specified formally and explicitly. The semantics 

of concepts and relationships between these concepts should therefore be 

expressed in a formal language. Currently, different ontology languages are 

available. The best known is OWL [21], the W3C Recommendation language, 

which is the successor of DAML+OIL [22]. DAML+OIL was the result of the 

cooperation between the DAML project [23] and the OIL language group [24]. 

 

3.2 The Specification Step  

Specifying a VR-shop is done at two levels: the type level and the instance level. 

The type level allows specifying the different types of products (e.g., lamps, 

desks, beds) that will be available in the shop. At the instance level, the actual 

shop is composed: a virtual world in which the products can be placed is specified 

(i.e., the layout and the infrastructure of the shop); actual products (instances) are 

specified and placed in the world; and the shopping functionality that will be 

provided (e.g., buying products, reserving products, ordering products) is selected.  

 



12 

The specification typically starts with the type level. The specifications of the 

different types of products are captured in the Product Ontology. Next, the 

instance level is specified by means of the World Specification. To support and 

ease the specification of a VR-shop, two ontologies describing the VR-shop 

domain are provided. Useful VR-Shop concepts are pre-defined in the VR-Shop 

Ontology. Useful shopping tasks are pre-defined in the Shopping Task Ontology. 

Each of these ontologies is described into more detail in the following 

subsections. 

3.2.1 VR-Shop Ontology 

To support and ease the specification of a VR-shop, a number of concepts from 

the VR-shop domain are pre-defined. These are the concepts that can be used for 

building the actual shop environment (the shop infrastructure) as well as generic 

concepts useful for each VR-shop. As already indicated, they are defined and 

made available by means of an ontology.  

 

A first group of concepts in the VR-Shop Ontology groups concepts usable for 

specifying the infrastructure of the shop. Examples of these concepts are Wall, 

Floor, Ceiling, Area, and Rack. As an example we consider the Wall concept. The 

Wall concept has three properties for defining the size of individual wall-instances 

namely height, width and thickness. Wall also has additional properties like color 

and texture to be able to specify the type of material of a wall-instance. In a 

similar way, the concept Floor is defined. It also has three properties for defining 

its size namely a length, a width and a depth. As for the concept Wall, the 

properties color and texture can be used to specify the material of a floor. The 

concept Area can be used to define areas in the shop that have a specific purpose. 

Some areas are pre-defined like the Entrance. Another important concept for a 



13 

VR-shop is the shopping Cart concept used in almost all e-shops to collect the 

items the user wants to buy. If needed, new shop concepts can be added to this 

VR-Shop Ontology. 

Further on, each VR-shop will contain products. These are the products for sale. 

Therefore, in the VR-Shop Ontology, the (abstract) Product concept is provided. 

The concept Product is pre-defined with some (possible optional) properties that 

are usually applicable for products. Example properties are:  

 
• Name. Name of the product. 

• Description. General (textual) description of the product. 

• Category. The category (or categories) that can be used to classify this 

product. E.g., "electronics". A hierarchy of categories can be used to 

classify a product. E.g., "Computers" inside “Electronics”. 

• Origin. The region of origin of the product. E.g., “Belgium”. 

 Color. Color(s) in which the product is available. 

 Material. Materials of which the product is made. E.g. “leather”. 

 Weight. Weight of the product. 

 Quality. Quality label(s) attached to the product. 

 Price.  Regular price of the product. 

 Unit_of_Sale. The unit at which the product is sold. E.g.: “per kilogram” 

and “per piece”. 

 Price_Comment. Additional factors specifically affecting the price. 

 Sales_Term. Conditions that determine the type of sale. E.g., "Delivered 

sales", "F.O.B". 

 Season. The crop-year of the commodity, based on the harvest start date. 

 Packing. Container or package in which the product is sold.  E.g., 

"Cartons Tray Pack". 

 Storage. Storage or other external factors affecting the product. E.g., 

“Controlled Atmosphere Storage,” “Regular Storage” and “Unwashed”. 

 Compares-to. Other products that are comparable with the product. 

 Add-ons. Products that can be related to the product. E.g., wine and 

cheese. 



14 

 Demand. Represents the immediate or current desire for the product and 

the ability and willingness of the buyer to buy it. Can be useful for 

statistics. 

 Import_Export. Indicates whether the sale is for domestic consumption or 

for exporting only, or for both. 

 Only_for_Adults. Indicates if the product should only be available for 

adults. E.g., alcohol, cigarettes. 

 Visualization. This allows specifying the visual (3D) representation for 

the product  (see also section 3.3).  

 

All product types that will be available in the shop should be defined as subclasses 

of Product (see section 3.2.3). In this way, they will inherit the common 

properties defined for the concept Product.  

 

A third category concerns pre-defined types of behaviors, which may typically be 

available in VR-shops. For example, it may be useful for the user to be able to 

turn around a product or to select products and put them in the shopping cart or to 

remove them from the shopping cart. Therefore, behaviors like turn, changeColor, 

addToCart and removeFromCart are also pre-defined. These behaviors can later 

be associated with specific products. showContent and makeEmpty are also pre-

defined behaviors to allow showing the content of a shopping cart and to make it 

empty. Note that although these behaviors are pre-defined, the VR-Shop Ontology 

does not specify how they should be implemented (further explained in section 

3.3).  

3.2.2 Shopping Task Ontology 

Most e-shops provide the same kind of functionality: information about products 

can be requested; products can be bought; sometimes it is possible to reserve 

products; the user can register; he can ask to be informed about actions and 



15 

promotions; etc [7]. These different tasks are collected and defined in the 

Shopping Task Ontology. Examples of tasks defined are:  

 Get price. Get a product’s price. 

 Get info. Get a product’s description.  

 Choose currency. Allows the user to choose his preferred currency and 

use it from then on. 

 Convert price. Convert a product’s price to a specific currency. 

 Check stock. Check the availability of a specific product. 

 Compare with similar products. This task should allow users to compare 

prices and features with other similar products in the same shop. 

 Post product review. Allows a user to write a small review about the 

product in question and/or his experience with it. 

 Calculate shopping cart total. Return the total amount to pay for all items 

in the shopping cart. 

 Calculate product-shipping cost. Calculate the shipping fee for one 

specific product. 

 Calculate total shipping cost. Calculate the total shipping cost for all the 

products in the shopping cart. 

 Buy. Buy one or more products in the shopping cart. 

 Order product. If a product is not available, order and reserve it.  

 

For these tasks, we have defined the required parameters and for complex tasks, 

we have defined how they are composed of other tasks. Similarly as for behaviors, 

it is not specified in the Shopping Task Ontology how they are implemented. 

3.2.3 Product Ontology 

Each type of product that may be for sale in the shop should be defined as a 

concept in the Product Ontology. For the VR furniture shop, we have defined 

concepts such as Cupboard, Chair, Lamp, Sofa, Bed and Table. As explained in 

section 3.2.1, these concepts should be defined as subtypes of the generic concept 

Product defined in the VR-Shop Ontology. In this way, they inherit the common 



16 

properties defined for Product. For each product type additional relevant semantic 

properties and information can be specified. In our example of the furniture shop, 

for the product Sofa the following additional properties have been defined: length, 

depth, height, numberOfPlaces. Depending on the products available, it may be 

useful to build a product hierarchy (next to the categorization-properties for 

Product). For example, a furniture shop will usually have different types of lamps 

like hanging-lamps, table-lamps and desk-lamps. They can be defined as subtypes 

of the product Lamp. This allows for automatically inheritance of properties. We 

will see that this kind of semantic information can be used by the end-user to 

search for products. Other types of semantic information can also be specified to 

allow, later on (in the actual VR-shop), more advanced searching. To support this, 

the notion of Rule is introduced. A rule provides some adjective together with a 

meaning so that products can be queried using this adjective. E.g., we can specify 

a rule to allow judging if ‘a study lamp is non-expensive’. A rule has four 

elements: an adjective (e.g., non-expensive), the property of the product on which 

this adjective applies (e.g., price), the comparison operator (e.g., less than) and a 

judgment value that provides some meaning for the comparison (e.g., 15 EUR). 

When a value is given to the properties involved in a rule, the rule will be 

evaluated and the appropriate semantic information (the adjective) will be 

associated with the product. Later on, a search engine for VR can use this 

information to answer end-user queries like ‘find all lamps that are non-

expensive’. In this way, only simple forms of rules can be expressed. However, it 

is possible to replace this rule concept by a mechanism that is more powerful, e.g., 

OWL Rule language [25] or SWRL [26]. 



17 

3.2.4 World Specification 

When the type level is defined, the designer can start to specify the VR-shop 

infrastructure together with its layout and place product instances inside it.  To 

create the virtual world that represents the shop, the designer should instantiate 

concepts from the VR-Shop Ontology that are relevant for the architecture of the 

shop.  For example, he may instantiate the concept Wall a number of times to 

create some walls (e.g., a BackWall and a LeftWall). Each of these Wall-instances 

will inherit the properties defined for the concept Wall. The designer should 

specify the values of the properties of these instances (or use the defaults). For 

instance, one of the Wall-instances was given a value for the height of 300 cm, for 

width, 1300 cm and for thickness, 20 cm. Also a Floor-instance was created. Then, 

the walls and the floor need to be positioned. Next to the traditional way of 

positioning instances by means of coordinates and to orientate them by means of 

angles, we also provide a more intuitive way in which objects are positioned and 

oriented with respect to other objects. At this moment, two kinds of high-level 

relations are provided namely spatial relations and orientation relations. A spatial 

relation uses one or more high-level concepts (LeftOf, RightOf, InFrontOf, 

BackOf, Above, Under, Middle and OnTopOf1) to position an object with respect 

to another object. Orientation relations are used to orientate an object with respect 

to another by specifying which part of which side of an object is oriented to which 

part of which side of the other object. More on these high-level positioning and 

orientation relations can be found in [17]. Using these relations for our example, it 

is easy to position the walls of our shop. E.g., we can position the BackWall 

Above the WorldFloor and the LeftWall LeftOf the BackWall. No distance is 

specified here for the spatial relations as the walls are touching each other.  The 

                                                 
1 Products have a left, a top and a front by default. 



18 

orientation can be specified by saying e.g., that the front side of the BackWall is 

directed towards the right side of the LeftWall. Although, this way of positioning 

and orienting may be less powerful and less precise than the use of coordinates 

and angles, it is more appropriate for novice users, not experienced with VR. 

 

Using the same principle, furniture can be created and placed inside the shop. 

Instances are given unique names for ease of reference. If only one instance per 

product type is created, it may be convenient to use the name of the product type 

as name of the instance too. In our example shop, an instance of DeskGustav was 

created and positioned against an internal wall created inside the shop room 

(DeskGustav Against InternalLeftWall). Also an instance of LampExpressivo was 

created. This lamp can be positioned with respect to the DeskGustav instance by 

using a spatial relation to express that the lamp is placed on top of the desk 

(LampExpressivo OnTopOf DeskGustav). These high-level relations also provide 

some kind of semantic relationships between the instances. The semantics of these 

relations can be used later on by the end-user of the shop to ask questions like 

‘what is left of DeskGustav?’. In the same way, the other furniture is placed in the 

furniture shop. 

 

Now that we have created the shop and placed all the products, it is possible to 

attach behaviors and tasks to instances. Remember that these were pre-defined in 

the VR-Shop Ontology and the Shopping Task Ontology. In this way, it is 

possible to specify different behaviors and tasks for different product instances 

e.g., some products can only be ordered while others can be bought directly. In 

principle, it is also possible to specify behavior that has not been pre-defined, 

however this is not very common for a VR-shop. More on this can be found in 



19 

[18][19]. When attaching behaviors and tasks to instances it must also be 

specified how it could be invoked. Invocation of a behavior or a task is usually 

done by means of user interaction. For example, the designer can specify that 

when the end-user points to a product-instance its product information should be 

displayed or when the end-user clicks on a RollingChair instance it will rotate. As 

most common user interactions for desktop VR are provided as primitive concepts 

(e.g., clicking, pointing to), the designer only has to select one (or several) and 

attach it together with the desired behavior or task to the instance. 

3.3 The Mapping Step 

In the Mapping Step, the second step in the development process, the mapping 

from the conceptual level to the implementation level must be specified. This 

means that we must specify how objects defined in the World Specification 

should be visualized using VR-implementation primitives and how the behaviors 

and tasks should be realized.  

 

How objects should be visualized is, in principle, specified by mapping each 

object to implementation primitives. However, to avoid having to define similar 

mappings for similar objects over and over, the mapping is defined at two levels. 

First, default mappings are specified for the object types (concepts). Next, these 

default mappings can be adapted or completely overwritten for particular 

instances (objects) of the object type. This principle is applied to the different 

ontologies specified in section 3.2. 

 

To ease the work of the designer, a lot of default mappings are pre-defined. For all 

concepts defined in the VR-Shop Ontology, a default mapping is given. For 

example, the default mapping for Wall is a box. The attributes of the Wall concept 



20 

are mapped on the attributes of the VR-primitive Box: height onto the attribute 

‘”height” of the VR-primitive Box, length onto the attribute “width” of the Box, 

and thickness is mapped onto the attribute “depth” of the Box. In this way, each 

instantiation in the World Specification of the Wall concept will by default be 

represented as a box. Note that we have tried to abstract from a specific VR-

implementation technology by providing VR-primitives that are available in 

(almost) all VR-implementation environments. It may be possible that a single 

concept cannot be mapped on a single VR-primitive. In this case, complex objects 

need to be used. More on this can be found in [17].  

 

What is left to the designer is the specification of the mappings for the Product 

Ontology, the Task Ontology and the World Specification. The mapping for 

specifying the visualization of the products is kept simple. The designer can add 

3D visualizations of its products in a library. Using this library, the designer can 

use the visualization property of a Product (see section 3.2.1) to point to the 

corresponding 3D object in the library, possibly together with a number of 

parameters to influence the visualization of the object (e.g., scale or color).  

 

The World Specification mainly contains two kinds of objects: the objects 

specifying the infrastructure of the shop and the products for sale. For the 

mapping of the infrastructure objects the designer can largely rely on the default 

mappings specified in the VR-Shop mapping. However, as already explained, 

such a default mapping can be overwritten. For example, the concept Wall has 

been mapped by default onto the VR-primitive Box. If the designer likes to have 

one of the walls in the shop as a curved wall, he can map this wall-instance onto 

the VR-Primitive “2D Curved Surface”. Here, some help from a VR-expert may 



21 

be needed if the designer wants to make non-trivial modifications. For product 

instances, the mappings specified for product types are used as default mapping.  

  

This leaves us with the mapping of the shopping tasks. Although, conceptually 

most shopping tasks available in an e-shop are the same, the way they should be 

realized and how they are implemented will be different. For example, the task 

Buy may be implemented differently in different VR-Shops. In some shops, it is 

only possible to buy goods by means of a credit card while in other shops other 

payment methods are also possible. To solve this issue and to abstract from 

implementation issues, tasks are mapped on web services [27]. We suppose that 

for each task that needs to be supported, a web service exists or can be built. The 

use of web services makes the system flexible (one service can easily be replaced 

by an equivalent one) and independently of how the underlying procedures (e.g., 

using a database system) are implemented. It also allows for personalization as 

e.g., the GetPrice task can be mapped on a web service that calculates the price 

depending on the discount assigned to the customer and on current promotions. 

Also publicly available web services can be used, e.g., to check credit card 

information, to calculate the shipping cost if shipping is handled by an external 

company, or to convert prices into different currencies.  

3.4 Code Generation 

The Generation Step generates the actual code for the virtual world specified in 

the Specification Step and using the mappings defined in the Mapping Step i.e., 

the conceptual specifications are converted into a working application by means 

of the mappings. This is done by the tool OntoWorld, developed to support the 

VR-WISE approach. More on OntoWorld can be found in [17] and [18]. Actually, 

OntoWorld generates two files. A first file contains the 3D scene structure with its 



22 

objects. This has an X3D format [28] or VRML format [29]. The second file 

contains the semantic annotations and is generated in an MPEG-7 format [30]. 

MPEG-7 is used, as it is an ISO/IEC standard supported by the industry [30] and 

it is readable by human and machine [31]. It also has a tree representation and 

therefore, it can easily be used to make a one-to-one mapping between the 3D 

scene structure generated by our tool and its semantic information. A fragment of 

such an MPEG-7 file for the virtual furniture shops is given below in figure 2. 

 

 
Figure 2. Example of MPEG-7 Description 
 

In the MPEG-7 file, each annotated object is represented as a 

‘MultimediaContent’ object type with a unique identifier (‘id’). This identifier 

corresponds to the object’s VRML node name. This id can be used to identify the 



23 

different objects in the description. Each annotation is composed of a keyword 

and a value. In this example, we can also see that spatial information is also 

automatically added (in this case, our ‘LampExpressivo’ is ‘Above’ the object 

‘DeskGustav’) as well as the information derived from the Product Type 

hierarchy (LampExpressivo is a Lamp). The result of validating the rules has also 

been added to the description. We can see for instance, that the label ‘Non-

expensive’ has been added. Moreover, all the properties, such as ‘MaxWatt’, 

‘Price’, defined for the object (by means of its concept type) are included. 

 

We have chosen to generate two files (one containing the 3D structure of the 

virtual world and one containing the semantic annotations) as it provides some 

advantages for the maintenance of the VR-Shops. For instance, if the (fixed) 

prices of the products for the VR-Shop have changed only the MPEG-7 needs to 

be updated. Finally, it is interesting to note that thanks to the MPEG-7 standard, 

such descriptions need not be confined to a single language. It is perfectly feasible 

to include different descriptions for the same keyword in order to support different 

languages. In this case, it suffices to change the language parameter of the 

”FreeTextAnnotation” tag to differentiate between the different languages and 

choose the correct one at run-time. 

 
The complete architecture of a generated VR-shop is given in figure 3. To make 

the VR shop available through a web browser, an applet has been created. It is 

embedded inside an html page along with a plug-in player like Cortona [32]. The 

applet communicates with the plug-in via EAI [29] and is also capable to 

communicate with a search engine (see section 3) developed for using the 



24 

semantic information stored in the MPEG-7. It also communicates with the web 

services, which take care of the shopping tasks.   

 

Java Applet

3D world player
plug-in

Web Services

MPEG-7
Semantic

Annotation

Virtual World
(VRML/X3D) Additional

Web Services

Web Page (HTML)

 
Figure 3. Architecture of a VR-Shop 
 

4 Searching in the VR-Shop 
Because usability will be crucial for the success of a VR-shop, it is important to 

provide alternatives for exploring the shop or looking for products through 

walking. One way to enhance usability is by providing a search engine. Because, 

all specifications were made at a conceptual level and using domain knowledge, 

we can exploit this semantic information by offering a semantic search engine. 

Indeed, we can allow the end-user to formulate semantic queries (based e.g., on 

the product information provided during design) in order to locate products 

quickly and this without the need to rely on any kind of Artificial Intelligence (as 

done in some VR search engines). This is possible because the semantic 

information explicitly provided during design as well as semantic information 

derived (from the product type hierarchy and the rules, as well as from positioning 

and lay-out information) is stored as semantic annotations in the MPEG-7 file.  

This means that the properties specified for the different products, the spatial 

information about where products are located, and the annotations provided by the 



25 

rules can be combined with logical operators to formulate queries such as ‘find a 

non-expensive sofa for 3 or 4 persons, made of leather, and located in the living 

room area’ (see section 4 for the formulation of such a query).  The search engine 

can also be used to jump to a specific area (defined as such in the shop) like the 

kitchen area. In addition, because all the product information is available for each 

product, it can be obtained easily (e.g., by pointing to or clicking on the product2). 

Also the behavior and tasks associated with the product can be provided, e.g., the 

end-user can be informed that the Rolling Chair will rotate when clicking on it. 

5 An Example: a VR Furniture Shop 
This section presents a VR-shop elaborated with the prototype tool OntoWorld. It 

concerns a fictitious furniture shop. It should be taking into consideration that it 

concerns a prototype, built to show the feasibility of the approach and that the 

user interface provided is basic and can be enhanced a lot (see also further 

research). For this same reason, the applet for the regular user interface and the 

applet for the semantic search engine are not yet integrated. In figure 4, a view on 

our VR furniture shop is given. As it can be seen, the VR-shop contains walls and 

has products such as tables, lamps, chairs, beds, and so on. At the top of this 

figure, the GUI provided by means of the applet is visible. Currently, the window 

of this applet is horizontally divided into two panes. The top pane contains four 

columns. The first column provides the name of all products in the VR furniture 

Shop3. The second column provides the behaviors associated with each product. 

The third column gives the different shopping tasks that can be performed and the 

                                                 
2 Specified by the designer when defining behavior for products 
 
3 Currently, also the shopping cart is listed here. From a user point of view this is strange. It will be adapted in 

the next version (see also further work). 



26 

fourth column is only relevant when a behavior or a shopping task is selected in 

the second or third column. The bottom pane provides feedback to the user. 

 

 
Figure 4. View of the VR furniture shop 
 

5.1 Walking in the shop and obtaining information 

The user can walk around in the shop (using the mouse or the interface provided 

by the VR-player). In this shop, the designer has opted for displaying the 

information associated with the product (and specified by means of the Product 

Ontology) when the user points to a product, e.g., in figure 5 the information 

related to the RollingChair is displayed inside the virtual world because the user 

has pointed to the RollingChair. At the same time, the product is highlighted in 



27 

the first column of the GUI, the behaviors available for this product are shown in 

the second column, and its tasks in the third column.  

 

 
Figure 5. Information related to the RollingChair is displayed 
 

At this moment, a task is available to convert the price into a different currency 

(ConvertPrice). When the user selects this task, a web service for converting the 

price into different currencies (see [33] for this web service) is called. Using this 

web service, the price of a product can be converted in any currency and in real-

time.  

 

 



28 

 
Figure 6. Calling the task “ConvertPrice” for converting the price of the RollingChair in British 
Pounds  
 

In Figure 6, you can see the result of converting the price of the RollingChair to 

British Pounds. As can be seen, also the price displayed inside the virtual world is 

updated.  

5.2 Buying products 

To buy products, the user first needs to select those products and add them to the 

shopping cart (one by one). At any moment, the user can inspect the content of his 

shopping cart. Currently, this has to be done using the GUI. To do this, the user 

should select the ShoppingCart object in the GUI (first column). In the feedback 

pane, the products in the shopping cart will be listed. If the user wants to know the 

total amount for these products, he should select the task CalculateTotalAmount, 



29 

specify the currency in the fourth column and the result will be displayed in the 

feedback pane (see figure 7).  

 

 
Figure 7.Calling the task “CalculateTotalAmount” to know the total amount for the products in the 
ShoppingCart 
 

Once the user has decided to buy the products in his shopping cart, he can invoke 

the shopping task ‘Buy’ by selecting this task in the GUI. The user will enter his 

name and address. Furthermore, in this shop, this task allows for a number of 

options:  

(1) The user can select the type of delivery: ‘Start Day Express’ or ‘Mid Day 

Daily Express’; 

(2) The user can select the payment method: credit card or bank transfer. When a 

credit card is used, a web service (see [34] for this web service) is called to 



30 

check the validity of the credit card. In figure 8, we can see that the web 

service detected that the credit card number entered was invalid. 

 

 
Figure 8. During the buying task operation, the credit card number is being checked. Here, the 
credit card number is invalid. 

 

In figure 9, a valid credit number was entered and therefore, the buying task could 

be performed (see the feedback pane). Note that the buying task also checks the 

stock to verify if all (and enough of) the products are available. This is also done 

by means of a web service. If (some) of the products are not available the user can 

order them. The registration of a sale or an order, and the update of the stock are 

also done by means of web services.  

 



31 

 
Figure 9. The credit card entered is valid; the buy task was successfully completed. 

5.3 Using the semantic search engine  

In figure 10, the GUI of the semantic search engine is shown. It allows the user to 

specify queries with the logic operators ‘AND’ and ‘OR’. The products that match 

the query are displayed in the ‘results’ list. The user can select a product from this 

list. Using the ‘Info’ button, the semantic information associated with the selected 

item will be displayed in the list on the right. Using the ‘Go’ button, the user will 

be transported inside the VR furniture shop to the selected product. Instead of 

using the ‘Info’ button, the user can also obtain the product information by 

pointing to the product once he was transported to the place in the shop where the 

product is displayed.  

 



32 

 
Figure 10. Finding a non-expensive lamp 
 

The search engine is illustrated with two examples: 

• Finding a non-expensive lamp 

In figure 10, the user has specified a query to find a non-expensive lamp. 

Here, only one product ‘LampExpressivo’ is matching the user’s query.  

• Finding products in a particular area of the shop 

During design, our VR furniture shop was subdivided into a number of 

sections or area’s (like in a real IKEA® shop): an area with furniture for the 

study room (like desks and rolling chairs), an area containing furniture for the 

living room (like sofas), an area with furniture for the bedroom, and so on. All 

of these areas have been stored in the MPEG-7 and therefore, the user can use 

the semantic search engine to be transported to such a specific area in the VR 



33 

furniture shop. In figure 11, we can see that the user has formulated a query to 

see all the sofas in the Livingroom area. The result is shown in the Result-list 

of the GUI: 3 sofas were found. The user has selected the ThreeSeatCouch and 

is then transported (by using the ‘Go’ button) to this sofa. 

 

 
Figure 11. Finding products by means of their location in the VR furniture shop 

 

These two examples show that the semantic information can be exploited and 

used for enhancing the usability e.g., by means of a semantic search engine.   

6 Discussion & Further Research 
In the introduction we argued that an appropriate approach for designing VR-

shops was needed that (1) is suitable for non-VR skilled people; (2) provides short 



34 

development times; (3) results in systems that are easy to maintain and adapt; and 

(4) make provision for good usability.  

In this section, we first discuss our approach with regard to these requirements:  

(1) Suitable for non-VR skilled people 

The use of pre-defined ontologies combined with high-level modeling 

concepts to compose the VR-shop and position products in it provides a 

development environment for which one does not need to be skilled in VR. 

The VR-shop can be specified using the terminology of a shop builder (given 

by means of the VR-Shop Ontology and the Shopping Task Ontology) and the 

product terminology used by the shop owner (specified by means of the 

Product Ontology) and without having to know much about VR-technology 

and about low-level implementation issues. 

(2) Provides short development times 

Next to the fact that a lot of concepts and functionality has been pre-defined 

by means of the VR-Shop Ontology (and associated mappings) and the 

Shopping Task Ontology, the actual code for the virtual world is generated 

from the specification. All this provides a considerable gain of time. 

(3) Results in systems that are easy to maintain and adapt 

Adding a new product to the VR-Shop, is quite simple: first a new product 

type must be specified in the Product Ontology and (at least one) instance of 

this product type should be positioned in the shop, next the file containing the 

3D model of the product should be specified in the mapping and then the code 

should be re-generated. To remove a product, the product only has to be 

removed from the Product Ontology and the code can be re-generated. 

Similar, for updating product information, only the Product Ontology needs to 

be updated and code can be re-generated.  



35 

Adding, adapting or removing functionality is easy because it usually only 

involves attaching or detaching available tasks and/or adapting the task 

mapping, which means replacing one web service by another.  

To rearrange products in the shop, only the spatial relations used to position 

the products should be adapted. For example, if the Lamp was placed 

OnTopOf the Desk and we would now like to place it on top of the table, this 

specification should be changed into ‘Lamp OnTopOf Table’. We do not have 

to deal with fixed coordinates anymore.  

Changing the infrastructure of the shop should be done in the same way as 

defining it.  

(4) Make provision for good usability 

The approach allows exploiting the semantic information provided explicitly 

as well as implicitly during design to enhance the VR-application with 

semantic annotations. The semantic annotations are generated automatically 

from the specifications without additional cost. This means that semantic 

properties for concepts, instances and behaviors as well as the spatial 

positioning and orientation of the objects are automatically provided in the 

description by means of annotations and can be used to enhance the usability 

of the VR-shop. These semantic annotations can be exploited by many 

different applications or for many different purposes, e.g., a semantic search 

engine (as illustrated) or a Google-type of search engine to find VR-shops (on 

the Web) that satisfy certain semantic criteria; the semantic information may 

also be useful when different shops need to cooperate.  

 

Although, our approach was developed to ease the development of VR-shops, it 

also offers some added value to the end-user. As indicated in (4), the usability of 



36 

shops developed with this approach will be higher, mainly due to the 

incorporation of semantics.  Firstly, different sorts of product information can be 

provided to the end-user. Secondly, a semantic search engine is incorporated that 

end-user can apply to search for products based on their semantic properties or to 

navigate quickly to certain locations (also identified by means of semantic 

properties). And thirdly, at any time and for each product, the end-user can ask 

what kind of interactions and tasks this object supports. Furthermore, the semantic 

information can be translated in different languages so that the end-user can 

express his queries (or see information related to the products) in his native 

language.  

 

Although the current approach is already quite powerful, further research is still 

necessary. It may be interesting to investigate how the shop can be adapted 

without having to re-generate the complete shop. We should also investigate how 

to deal with large shops that would take too long to download completely over the 

Internet when the shop is requested. It would also be interesting to study the 

accessibility of the shop for software agents. Also localization (towards different 

markets) and personalization of the VR-shop (to the preference of the individual 

users) are interesting research issues. Furthermore, from a usability point of view 

at lot can be improved and added e.g., spotlights and sound could be added for 

instance, to draw attention to promotional products. We would also like to 

investigate the possibility to eliminate the need for a classical GUI (now provided 

by an applet) by integrating it completely in the virtual world, by preference using 

3D interface elements. Also different types of shops can be studied. Different 

strategies for displaying and organizing products may be needed for different kind 

of shops e.g., in a furniture shop it is sufficient to show only one instance of each 



37 

product, however in a food store it would not be a good idea to show only one can 

of cola or one orange.   

 

At the time of writing this paper, the prototype is re-built. It has changed in 

several respects. First of all, a better and more appealing GUI is designed. Also 

the implementation architecture is changed. The X3D loader of Xj3D [35] is used 

to load the complete scene into Java3D [36]. All the objects in the scene are 

linked to OdeJava [37] objects in order to give the user the feeling of being in a 

real physical environment. The application is loaded in an ordinary Web browser 

via WebStart [38]. In such a way, no applications or plug-ins need to be installed 

by the user in order to visit the shop. 

 

Furthermore, we are investigating how to adapt the system such that existing 

product catalogs can be used. The simplest solution here is to provide an import 

facility to convert the existing product catalog into the format required by the 

Product Ontology.  

 

Finally, we are also searching for a way to include marketing strategies into the 

design process of the VR-shop. These strategies will then allow to automatically 

place the products according to some well-specified rules to give a more 

profitable result.  

7 Conclusion 
This paper has presented the Shop-WISE approach, an approach to develop VR-

shops for the Web. The approach specially targets developers not skilled in VR.  

The VR-shop is specified at a conceptual level and using the terminology of a 



38 

shop builder and the shop owner. The actual VR-shop can be generated from the 

conceptual specifications. The approach provides the flexibility necessary for VR-

shops. Products can be easily added, updated or removed because they are 

maintained separately and described by means of the Product Ontology. The 

layout of the shop can easily be defined or changed because common VR-shop 

infrastructure concepts are pre-defined and the virtual world itself can be specified 

by means of high-level and intuitive spatial and orientation relations. Also 

functionality is easily added and changed due to the use of web services. 

Furthermore, this paper has also explained how the usability of a VR-shop can be 

enhanced by allowing exploiting at run time the semantic information collected 

during design time. To illustrate the approach, a simple furniture shop has been 

built. 

8 Acknowledgements 

This research is carried out in the context of the Ontobasis and the VR-DeMo projects; both 
projects are funded by the ‘Institute for the Promotion of Innovation by Science and Technology in 
Flanders’ (IWT). It is also partially funded by the FWO (Fund of Scientific Research – Flanders). 

9 References 
1. --, Amazon: http://www.amazon.com. Accesses 10 January 2005 
2. --, Dell: http://www.dell.com. Accessed 10 January 2005 
3. --, IKEA: http://www.ikea.com//. Accessed 10 January 2005 
4. Robles A, Molina, J P, López Jaquero V, and García A S (2005) Even Better Than Reality: The 

Development of a 3-D Online Store that Adapts to Every User and Every Platform. HCI 
International 2005, Las Vegas, Nevada, USA, July, 2005. Volume 7 - Universal Access in 
HCI: Exploring New Interaction Environments. 10-20 

5. Haubl G and Figueroa P, (2002) Interactive 3D Presentations and Buyer Behaviors. In: 
Extended abstracts of the 2002 Conference on Human Factors in Computing Systems, CHI 
2002, ACM, Minneapolis, Minnesota, USA, April 20-25, 744-745 

6. Chittaro L and Ranon R (2002) New Directions for the Design of Virtual Reality Interfaces to 
E-Commerce Sites. In: AVI 2002: 5th International Conference on Advanced Visual 
Interfaces, ACM Press. 308-305 

7. Domingue J, Stutt J, Martins M, Tan J, Petursson H and Motta E (2003) Supporting Online 
Shopping through a Combination of Ontologies and Interface Metaphors. International Journal 
of Human-Computer Studies. 59: 699-723 

8. Sama A, Montrucchio B, Montushi P and Demartini C (2001) 3D-dvshop : a 3D dynamic 
virtual shop. In: The 6th Eurographics Workshop on Multimedia.  23-32 

9. Mass Y, Herzberg A (1999) VRCommerce - Electronic Commerce in Virtual Reality. In: The 
1st ACM Conference on Electronic Commerce,  November 03-05, Denver, Colorado, United 
States. 103-109 



39 

10. Chittaro L, Ranon R (2000) Virtual Reality stores for 1-to-1 e-commerce. In: The CHI2000 
Workshop on Designing Interactive Systems for 1-to-1 E-Commerce, The Hague, The 
Netherlands. 

11. Chittaro L and Ranon R (2000) Adding adaptive features to Virtual Reality interfaces for e-
commerce. In: the AH2000: International Conference on Adaptive Hypermedia and Adaptive 
Web-based Systems, Lecture Notes in Computer Science 1892, Springer-Verlag, Berlin. 85-96 

12. Ballegooij A and Eliens A (2001) Navigation by query in virtual worlds, Virtual Reality 
Modeling Language Symposium. In:The sixth international conference on 3D Web technology, 
Paderbon (Germany), ACM Press. 77-83 

13. Abaci T, Mortara M, Patane G, Spagnuolo M, Vexo F and Thalmann D (2005) Bridging 
Geometry and Semantics for Object manipulation and Grasping. In: The Workshop towards 
Semantic Virtual Environment (SVE), Switzerland. 110-119  

14. Gutierrez M, Vexo F and Thalmann D (2005) Semantics-based representation of virtual 
environments. International Journal of Computer Applications in Technology. 23(2): 229-238 

15. Bille W, Pellens B, Kleinermann F and De Troyer O (2004) Intelligent Modelling of Virtual 
Worlds Using Domain Ontologies. In: The Workshop of Intelligent Computing (WIC), Mexico 
City, Mexico. 272-279 

16. Bille W, De Troyer O, Kleinermann F, Pellens B and Romero R (2004) Using Ontologies to 
build Virtual Worlds for the Web. In: The IADIS International WWW/Internet 2004 
Conference, Madrid, Spain. 683-690 

17. Bille W, De Troyer O, Pellens B and Kleinermann F (2005) Conceptual Modeling of 
Articulated Bodies in Virtual Environments. In: The 11th International Conference on Virtual 
Systems and Multimedia. Publ. Archaeolingua, Gent, Belgium. 17-26 

18. Pellens B, De Troyer O, Bille W and Kleinermann F (2005) Conceptual Modeling of Object 
Behavior in a Virtual Environment. In: 3rd International Virtual Concept Conference, Biarritz, 
France. Springer-Verlag. 93-94 + CD-ROM 

19. Pellens B, De Troyer O, Bille W, Kleinermann F and Romero R (2005) An Ontology-Driven 
Approach for Modeling Behavior in Virtual Environments. In:On the Move to Meaningful 
Internet Systems 2005: OTM Workshops: OTM Confederated International Workshops and 
Posters, AWeSOMe, CAMS, GADA, MIOS+INTEROP, ORM, PhDS, SeBGIS, SWWS, and 
WOSE 2005, Agia Napa, Cyprus, October 31 - November 4. 1215-1224  

20. Gruber T R (1993) A translation approach to portable ontologies. Elsevier. 5(2): 199-220 
21. --, OWL: http://www.w3.org/2004/OWL. Accessed 10 June 2005 
22. --, DAML+OIL:  http://www.daml.org/2000/12/daml+oil. Accessed 10 June 2005 
23. --, DAML Project: http://www.ksl.stanford.edu/projects/DAML. Accessed 10 June 

2005 
24. --, OIL language group: http://www.ontoknowledge.org/oil/. Accessed 16 January 2006 
25. --, http://www.cs.man.ac.uk/~horrocks/DAML/Rules. Accessed 10 June 2005 
26. --, http://www3.org/Submission/2004/SUBM-SWRL-20040521. Accessed 10 June 2005 
27. --, Web services: http://www.w3.org/2002/ws/. Accessed 16 October 2005 
28. Walsh A E and Sevenier M (2005) Core Web3D. Prentice Hall, Upper Saddle River: USA. 

ISBN: 0130857289 
29. Hartman J and Wernecke J (1998) The VRML 2.0 Handbook. Addisson-Wesley Publishing. 

ISBN: 0-201-47944-3 
30. Salembier P and Smith J R (2001) MPEG-7 Multimedia Description Schemes. IEEE 

transactions on circuits and systems for video technology. 11(6): 748-759 
31. Ucelli G, De Amicis R, Conti G (2005) Shape Semantics and Content Management for 

industrial Design and virtual Styling. In: The Workshop towards Semantic Virtual 
Environment (SVE), Switzerland. 127-137 

32. --, Cortona: http://www.parallelgraphics.com. Accessed 10 June 2005 
33. --, Currency Exchange: http://www.web servicex.net. Accessed 4 January 2006 
34. --, Credit Card Checking: http://www.cdyne.com/account. Accessed 4 January 2006 
35. --, Xj3D: http://www.xj3d.org. Accessed 10th December 2005 
36. --, Java3D: http://java.sun.com/products/java-media/3D. Accessed 10th December 2005 
37. --, odejava: https://odejava.dev.java.net. Accessed 10th December 2005 
38. --, WebStart: http://java.sun.com/products/javawebstart. Accessed 10th December 

2005 
 



40 

Figure 1. Overview of the development process of Shop-WISE 
 
Figure 2. Example of MPEG-7 Description 
 
Figure 3. Architecture of a VR-Shop 
 
Figure 4. View of the VR furniture shop 
 
Figure 5. Information related to the RollingChair is displayed 
 
Figure 6. Calling the task “ConvertPrice” for converting the price of the RollingChair in British 
Pounds  
 
Figure 7.Calling the task “CalculateTotalAmount” to know the total amount for the products in the 
ShoppingCart 
 
Figure 8. During the buying task operation, the credit card number is being checked. Here, the 
credit card number is invalid. 
 
Figure 9. The credit card entered is valid; the buy task was successfully completed. 
 
Figure 10. Finding a non-expensive lamp 
 
Figure 11. Finding products by means of their location in the VR furniture shop 


