
Intuitively Specifying Object Dynamics in Virtual
Environments using VR-WISE

Bram Pellens
Vrije Universiteit Brussel

Pleinlaan 2
1050 Brussels

+32 2 629 5713

bram.pellens@vub.ac.be

Frederic Kleinermann
Vrije Universiteit Brussel

Pleinlaan 2
1050 Brussels

+32 2 629 5713

frederic.kleinermann@vub.ac.be

Olga De Troyer
Vrije Universiteit Brussel

Pleinlaan 2
1050 Brussels

+32 2 629 3504

olga.detroyer@vub.ac.be

ABSTRACT

Designing and building Virtual Environments is not an easy task,
especially when it comes to specifying object behavior where
either knowledge about animation techniques or programming
skills are required. With our approach, VR-WISE, we try to
facilitate the design of VEs and make this more accessible to
novice users. In this paper, we present how behavior is specified
in VR-WISE, as well as the prototype developed for the approach.

Categories and Subject Descriptors

H.5.1 [Information Interfaces and Presentation]: Multimedia
Information Systems – Artificial, augmented, and virtual realities,
Evaluation/methodology.

General Terms

Design.

Keywords

Virtual Reality, Conceptual Modeling, Design Phase, Behavior

1. INTRODUCTION
These days, Virtual Environments (VEs) are used for numerous
purposes. Despite the fact that its use has grown, the design and
development of VEs is only performed by experienced people
since the technology is not very accessible to novice users. This
situation is especially noticeable in the development of the
behavior. In the complete design process of a VE, specifying the
animations of the objects is usually the most difficult bit for
inexperienced people [5].

We have developed an approach, called VR-WISE, to support the
design phase in the development process of a VE and to enable
the specification of a VE at a high-level, free from any
implementation aspects. The aim of VR-WISE is to make the
design more intuitive, requiring less background and thus making
the technology available to a broader public. In this paper, we

show how behavior can be specified at a high level and by means
of a graphical language. The language is action-oriented; meaning
that it focuses on the different actions that an object must be able
to perform rather than on the states an object can be in. Specifying
behavior in such a way is much more intuitive for non-
professionals because the behaviors are specified in a way similar
as they would have in natural language.

In most animation models for VEs, the lifetime of the objects and
their visual representation are not explicitly specified. Usually, it
is assumed that the object already exists when the behavior starts;
also often the visual representation of the object remains the same
throughout the complete behavior. If one wants to go beyond this
and deal with such behavior, one needs to resort to programming
in order to do so. The graphical specification language proposed
here includes modeling constructs to specify changes in the
content of the VE over time (e.g., creating, modifying or deleting
objects). These modeling constructs complements the ones for
specifying the change of the poses of the objects in a VE as
available in most modeling tools.

The work presented here closely relates to [6] where the design of
behavior is also addressed using a graphical notation.
Unfortunately, for simple behaviors, the specification becomes
large and difficult to read and is therefore not very suitable for
novices. In [1] an icon-based approach is presented to specify
behaviors of objects in VRML. However, considerable knowledge
about the VRML language is required. Similar modeling concepts
as ours are introduced in [3]. However, these are limited in such a
way that no actual code can be generated for them. A commercial
development environment that closely relates to our research is
Virtools Dev [7]. Also Virtools allows constructing object
behavior graphically by combining a number of primitive building
blocks together. However, the function-based mechanism tends to
be less comprehensible for novices.

2. VR-WISE AND TOOL SUPPORT
The development process in the VR-WISE approach is divided
into three (mainly) sequential steps. The Specification step allows
the designer to specify the VE at a high level using domain
knowledge together with high-level modeling concepts. In this
step, the domain objects needed in the VE, the relationships
between them as well as their behaviors, the interactions with
other objects and with the user are specified. There is a strong

similarity between how one describes a VE in our approach and

how it would be done using natural language. The Mapping step

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

VRST'06, November 1–3, 2006, Limassol, Cyprus.

Copyright 2006 ACM 1-59593-321-2/06/0011...$5.00.

involves specifying the mappings from the higher conceptual level
into the lower implementation level. The purpose of the mapping
is to specify how a particular domain concept described in the first
step should be represented in the VE. The Generation step will
generate the actual source code for the VE specified in the
Specification step using the mappings defined in the Mapping
step. A detailed overview of the approach can be found in [4].

To support the VR-WISE approach, we developed a design
environment called OntoWorld. This software tool enables a
designer to firstly build a complete conceptual specification of the
VE, and then specify all the desired mappings after which a
number of code files are automatically generated. The prototype
tool has been extended with the Conceptual Specification Builder
(CSB), a diagram editor supporting the modeling of VEs. The
static structure of the VE as well as the behavior of its objects (as
will be described in this paper) can be specified using the CSB.
The OntoWorld tool has also been extended with a Verbalizer.
This module allows the automatically generation of a textual
formulation of the specifications. Adding this feature to the
modeling environment of the VR-WISE approach has a number of
interesting advantages:

♦ Interactive Design. The generation of textual formulations
will allow for an early detection of errors and results in a
more iterative design process.

♦ Code Documentation. In the same way as the textual
formulations are generated at design time, the code
generator can use these formulations to document the code.

3. MODELLING BEHAVIOR IN VR-WISE
In this section, we will discuss the different behavior modeling
concepts of the VR-WISE approach. They are illustrated by
means of a more elaborated example. Specifying the behaviors in
VR-WISE is done in two separate steps: (1) specifying the
Behavior Definition and (2) specifying the Behavior Invocation.

The first step consists of building Behavior Definition Diagrams,
which allows the designer to define the different behaviors for an
object. The behavior is defined independent of the structure of the
object, and independent of how the behavior will be triggered.
This improves reusability and enhances flexibility as the same
behavior definition can be reused for different objects and/or can
be triggered in different ways.

Figure 1 shows an extract of the Behavior Definition Diagram
defining the behaviors for the objects (buildings) inside an
environment representing a city. Basically, a Behavior Definition
Diagram consists of a number of actors (represented by a circle
e.g., City-Hall, Bridge) attached to behaviors (represented by
means of a rectangle and carrying an icon to represent the type of
behavior). An actor can be seen as a kind of abstract object.
Because we want the definition of a behavior to be separated from
the actual definition of the structure of the objects, actors are used
to specify behavior instead of actual objects. A behavior can be
either primitive or complex. Examples of primitive behavior are
move, turn, roll, position, orient,… Complex behaviors have an
additional area containing the diagram that describes the complex
behavior (see e.g., BuildMuseum, DestroyBridge). In order to
cope with complex situations, both the primitive behaviors and
the complex behaviors may have an optional area that holds a
(textual) script (see e.g., BuildStores). To specify complex
behavior, behaviors (primitive as well as complex) can be
combined by means of operators (represented by means of a
rounded rectangle and also carrying an icon to denote its type).
There are three types of operators: temporal, lifetime and
conditional operators. The temporal operators allow
synchronizing the behaviors (example operators are before, meets,
overlaps, starts, …). Lifetime operators control the lifetime of a
behavior (example operators are enable, disable, …) and the
conditional operator controls the flow by means of a condition.

Figure 1. Behavior Definition Diagram

As shown in the example, when the BuildMuseum behavior is
executed it starts the Cuboid-to-Hemi-Sphere behavior of the
City-Hall actor. This transformation behavior will trigger the
DestroyBridge behavior as soon as it finishes (expressed by the
meets operator). The Restructure behavior is executed 25 seconds
after the BuildMuseum behavior. This Restructure behavior is
running in parallel with the DestroyMuseum behavior. The
BuildStores behavior is running with an overlap of 10 seconds
with the DestroyMuseum behavior.

The second step in the behavior modeling process consists of
creating a Behavior Invocation Diagram for each Behavior
Definition Diagram. This type of diagram allows attaching the
behaviors defined in a Behavior Definition Diagram to the actual
objects, and to parameterize them according to the needs.
Furthermore, these diagrams also specify the events that may
trigger the behaviors of the objects. Due to space limitations, the
Behavior Invocation Diagram of the example is not included here.
More details on modeling the general behavior can be found in
[4]. In the remaining part of this section, a number of additional
modeling concepts for modeling object dynamics, i.e. to describe
structural changes in the VE (e.g. adding, modifying or deleting
objects) rather than just describing the different poses of the
objects, will be discussed.

3.1 Modeling the Creation and Removal
A first issue in building dynamic scenes is to cope with new
objects. The construct-behavior allows specifying how at run-time
new objects can be created and inserted into the VE. The
construct-behavior has at least one output actor, i.e. representing
the object that is created. Creating a new object is done by
instantiating a concept that has been described in the Domain
Specification. This concept is specified as output actor. The object
that is to be created also needs to be positioned and oriented in the
VE. This is specified by means of a so-called Structure Chunk.
This is a small Structure Diagram. Structure diagrams are used in
our approach to specify the structure of the environment at a high
level. Specifying structure is done by means of spatial
relationships and orientation relationships. Also connection
relations can be used for building complex objects. As these
relations have been described elsewhere [2], the paper will not
discuss them. Here, the structure chunk describes the positioning
of a particular object (in terms of an actor) at the time of the
instantiation. Note that after the creation has been completed, the
description given in the structure chunk might not be valid
anymore, depending on whether the objects involved have
performed some other behavior or not. The construct-behavior is
graphically represented in a similar way as the other behaviors
except that it has additional area to specify the structure chunk.

It is also possible to specify how the objects that should be created
need to be introduced in the VE. This is done by means of the
optional property method. The value for this property can be
either appear, fade-in, grow and zoom-in. When ‘appear’ is used,
the object will just appear as such. ‘fade-in’ allows the object to
gradually become visible. ‘grow’ and ‘zoom-in’ make the object
entering the VE by gradually expanding from nothing to the
actual size from either the ground (grow) or the center (zoom-in).

In the example (figure 1), the creation of an actor Museum is
defined in the BuildMuseum behavior. The structure chunk

specifies that the newly created object must be north of the City-
Hall with a distance of 150 meters and oriented with its right side
to the front side of this City-Hall. To handle the creation of
different objects, the construct-behavior can be repeated as can be
seen in the BuildStore behavior. This is done using a scripting
language. In this behavior definition, the output is a list of Store
actors. This is specified by the notation: {…}*. Such a list of
objects can be manipulated as a whole or the separated objects in
this list can be manipulated individually.

In addition to creating new objects, building dynamic scene also
include the removal of objects from the scene. Therefore, the
destruct-behavior has been introduced. Note that destroying an
object will not only make the object to disappear from the
environment but will also delete it from the scene-graph. When
the object that needs to be destroyed is part of a connectionless
complex object, the relationships in which this object was
involved will be deleted too; when it is part of a connected
complex object, the connections of the object will also be deleted.

Similarly as for the construction of objects, an optional method
property can be specified. The possible values for this property
are here: disappear, fade-out, shrink and zoom-out. When
‘disappear’ is used, the object just disappears at once. When
‘fade-out’ is taken as value, the object will gradually become
invisible. ‘Shrink’ and ‘zoom-out’ allows to remove the object by
gradually become smaller, either towards the ground or towards
the center of the object respectively.

In figure 1, the destruction-behavior called DestroyMuseum is
defined for a Museum actor, stating that any object implementing
this actor could possibly be destroyed. This \speed argument
specifies how fast the object should disappear. A high speed will
let the object disappear almost immediately while a low speed will
fade-out the object gradually.

3.2 Modeling Changing Objects
An issue that still remains open is the modeling of the structural
modifications that an object may undergo.

In section 2, it was explained that a concept (or an instance) is
given a specific representation in the VE using mappings. When
creating animations stretching over a longer period of time, it
could happen that also the representation of the concepts should
change (during simulation). The first type of modification we
considered is the transformation-behavior. This type of behavior
will change the appearance of an object. Note that the concept
itself is not changed; only its representation in the VE is changed.
Changing the representation of an object may also cause changes
of the properties of the representation. These changes can be
described by means of transformation rules (specified in the
middle area of the graphical representation of the behavior). With
a transformation rule, the designer can describe for example, that
the length in the original representation (source) is being
transformed into the radius of new representation (target) in a
certain way (e.g., radius = length/2). When no rules are given, a
standard one-to-one transformation is performed for the
corresponding properties when possible; otherwise the defaults of
the properties are taken.

In the example of our city evolution, the City-Hall actor has a
transformation behavior that changes the City-Hall’s
representation from a cuboid to a hemi-sphere.

To create VE with a high degree of realism, we also have to
consider objects breaking or falling apart. This brings us to the
second type of modification supported by our approach, namely
the disperse-behavior. A disperse-behavior subdivides an object
into two (or more) pieces. The disperse-behavior has one input
actor and two or more output actors. The input actor represents
the object that will be subdivided and the output actors represent
the pieces. After such a behavior has been executed, the input
object is destroyed and the output objects have been created. Like
in the construct-behavior, the new objects that result from such a
behavior need to be positioned in the environment. Again, a static
structure chunk is used for relating the newly created objects to
each other and for relating them to already existing objects.
Again, placing the objects can be done by means of spatial and
orientation relations.

If a disperse-behavior is invoked on a complex object (connected
or unconnected), the disperse behavior will remove all the
relations that exist between the (parts of the) complex object. This
implies that if the user moves one of the objects, the other objects
will not move accordingly since there is no physical connection
anymore. Note that the disperse-behavior could be replaced by a
behavior that executes the destruction of the input object
immediately followed by the construction of the output objects.
However, in the disperse-behavior, all the information of the
original object can be used for the creation of the new objects.
In the behavior definition in figure 1, the definition for a behavior
DestroyBridge is given. It specifies that the complete bridge will
disperse in two objects, two smaller pieces of the bridge. The
structure chunk specifies that one of the pieces (the Left Part) is
positioned left of the other one (the Right Part).

Opposed to objects breaking or falling apart, modeling VEs with
dynamic objects also requires having means of joining objects
together. In other words, we need to be able to specify that objects
can be created by combining objects or assembling objects at
runtime hereby creating either complex connected or complex
unconnected objects. To support this, we have the grouping

behavior. This kind of behavior allows creating spatial
relationships or orientation relationships (for unconnected
objects) and making connections (for connected objects) at
runtime. Such a behavior definition has two (or more) input actors
and one output actor. The output actor represents the newly
created (complex) object that is built up of the pieces represented
by the input actors. Also here, a static structure chunk is used to
describe the structure of the new object, which should be based on
the part-objects. Note that in this case, the static structure chunk is
used to express a complex object and therefore the relationships
that will be created at run-time, will be fixed relationships. This
means that after the behavior has been performed for a number of
objects, the newly created object will behave as a complex object
and therefore if one of its parts or the object itself is for example
moved, the relations will ensure that other parts are also moved.

In the definition in figure 1, the HQ actor and the Factory actor
represent the input objects of the Restructure behavior. These
actors are being taken together according to the relations that are
specified between them to form a site (the Site actor).

Both the disperse- and the grouping-behavior have counterparts,
namely combine and ungrouping respectively. The combine

behavior will merge a number of objects together in the same way
as the grouping but with this difference that the input objects do
not exist anymore once the behavior has been performed. The
ungrouping-behavior is the reverse of the grouping and removes
connections that were made during this grouping. Here, the
difference with the disperse-behavior is that the output objects are
not created but already exist. We will not give examples for these
behaviors, as they are similar to those already discussed.

4. CONCLUSIONS
In this paper, we have introduced our approach for modeling
object dynamics in a VE. The approach is based on high level,
implementation independent specifications and intuitive modeling
concepts. Usually, animation techniques are used to specify how
certain aspects of objects should change. More advanced object
behavior like the ones described here cannot be specified and are
usually implemented using a programming language. In this
paper, we discussed how it is possible to specify object dynamics
at a high level and using intuitive modeling concepts. A prototype
tool has been developed to support the VR-WISE approach. A
verbalizer, which automatically generates textual explanations for
the diagrams, has been added. This greatly improves the
understanding of the diagrams.

5. ACKNOWLEDGMENTS
This work is carried out in the context of the VR-DeMo project
(IWT 030284) and is directly funded by the IWT.

6. REFERENCES
[1] Arjomandy, S. and Smedley, T.J. Visual Specification of

Behaviours in VRML Worlds. In Proceedings of the ninth

International Conference on 3D Web Technology, ACM
Press, California, USA, pp.127 – 133, 2004

[2] Bille, W., De Troyer, O., Pellens, B., Kleinermann, F.
Conceptual Modeling of Articulated Bodies in Virtual
Environments, In Proceedings of the 11th International

Conference on Virtual Systems and Multimedia, pp. 17 –
26, Publ. Archaeolingua, Gent, Belgium, 2005

[3] Campos, J., Hornsby, K., Egenhofer, M., A temporal model
of virtual reality objects and their semantics, In Proceedings

of International Conference on Distributed Multimedia

Systems, San Francisco, USA, pp. 581 – 588, 2002

[4] Pellens, B., De Troyer, O., Bille, W., Kleinermann, F.,
Conceptual Modeling of Object Behavior in a Virtual
Environment, In Proceedings of Virtual Concept 2005, pp.
93 – 94 + CD-ROM, Springer-Verlag, Biarritz, France,
2005

[5] Terra, S. and Metoyer, R. Performance Timing for
Keyframe Animation. In Proceedings of the ACM

Symposium on Computer Animation, France, pp. 253 – 258,
2004

[6] Willans J.S., Integrating behavioural design into the virtual

environment development process, Phd thesis, University of
York, UK, 2001

[7] --, Virtools Dev, http://www.virtools.com/, Accessed
August 2, 2006

