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Abstract. Designing and building Virtual Environments (VEs) has never
been an easy task and it is therefore often performed by experts in the
field. This problem arises even more when it comes to the design of be-
havior. To address this issue, an model-based approach called VR-WISE
has been developed. This approach aims at making the design of VEs
more accessible to users without or with little background in VE develop-
ment. This means that the VE is specified by means of high-level models
from which the actual VE can be generated. The purpose of this paper
is twofold. Firstly, the design environment, supporting the approach, is
described. We show how the models can be created in a graphical way.
We also discuss the ”Verbalizer”. This module provides a natural lan-
guage interface for the models, which enhances the intuitiveness of the
specification. Secondly, we explain how behavior models can be specified.

1 Introduction

Today, Virtual Environments (VEs) are used for different purposes. Despite the
fact that its use has grown, the design and development of VEs is only performed
by a limited number of persons (VR-experts). This is mainly due to the tech-
nology being not very accessible to novice users. Although software tools (such
as 3D Studio Max [4]) do assist the developer in creating a VE, they require
considerable knowledge about VR technology. Authoring tools are most of the
time used to create the static part. This static part is then imported in a toolkit
where the code of the behavior is added by means of dedicated programming.

We have developed an approach, called VR-WISE, to support the design
phase in the development process of a VE. It enables the specification of a VE
by means of high-level models. The aim of VR-WISE is to make the design
more intuitive, requiring less background and thus making the VR technology
available to a broader public.

The approach is supported by a toolbox that allows constructing the models
in a graphical way, i.e. by means of diagrams. To model behavior, the diagrams
are complemented with a textual language. The diagrams and the textual lan-
guage are designed in such a way that there is a close relation with natural
language. This allows to ”"read” the diagrams more easily, which increases the
understandability and makes them more intuitive. Furthermore, the models are
expressed in terms of concepts of the domain of the target application. This helps
users to bridge the gap between the problem domain and the solution domain.



In addition, a graphical notation has a number of well-known advantages. It
enhances the communication between designers, programmers and other stake-
holders. It is more efficient in its use. Tools can be developed that not only
prevent errors, but also provide views on the design from different perspectives
and on different levels of abstraction. On the other hand, a textual language
can be more expressive and is therefore better to cope with higher complexity.
However, the disadvantage of a textual language is that in general, it is more
difficult to learn and less intuitive to use. In VR-WISE, we combine the graphical
language with small textual scripts. These scripts allow specifying more complex
behaviors, while maintaining the intuitiveness of the graphical language.

The approach for modeling behavior is action-oriented, i.e. it focuses on the
different actions that an object must be able to perform rather than on the
states in which an object can be in. Specifying behavior in such a way is more
intuitive for non-professionals. To provide additional support for novice users,
the toolbox contains the Verbalizer module. This module generates a textual
formulation of the behavior specifications. Because our approach uses domain
terminology and intuitive modeling concepts that have a strong relation with
natural language, it is well suited for verbalization. The verbalization reduces
the time needed to learn the graphical notation and enhances the communication
with non-professionals. Furthermore, this Verbalizer is also useful in the context
of iterative design and code documentation, as explained later in the paper.

The paper is structured as follows. In the next section, we give a general
introduction of the VR-WISE approach. Section 3 describes the toolbox devel-
oped to create the models. Next, section 4 gives an overview of the models used
to describe object behavior within the VR-WISE approach. Section 5 discusses
related work concerning modeling of object behavior. The paper ends with a
conclusion and future work.

2 VR-WISE Approach

The development process in the VR-WISE approach is divided into three (mainly)
sequential steps, namely the Specification step, the Mapping step and the Gen-
eration step. An elaborated overview of the approach can be found in [6].

The Specification step allows the designer to specify the VE at a high level
by means of models. To create the models, domain knowledge together with
high-level modeling concepts are used. The models define the objects needed in
the VE, the relationships between them, their behaviors, the interactions with
other the objects and with the user. Due to the use of domain knowledge and in-
tuitive modeling concepts, there is a strong similarity between how one describes
its VE in our approach and how it would be done using natural language. The
Mapping step involves specifying the mappings from the conceptual level into
the implementation level. The purpose of the mapping is to specify how a par-
ticular domain concept described in the Specification step (first step) should be
represented in the VE. The Mapping step is needed to be able to transform the



models into implementation models and to generate code. This is done in the
Generation step.

3 OntoWorld: VR-WISE toolbox

To support the VR-WISE approach, a toolbox called OntoWorld has been devel-
oped. This toolbox enables a designer to build the models that form a complete
conceptual specification of the VE, and to specify the mappings. Based on this
information OntoWorld will generate a number of code files for the VE.

An important part in our toolbox is the Visual Designer (figure 1). This is
a graphical diagram editor that allows creating the models in a graphical way.
The models describing the static structure of the VE as well as the behavior
of its objects can be specified using the Visual Designer. The tool has been
implemented using Microsoft Visio. A number of stencils, one for each type
of diagram, are built containing the graphical representations of the different
modeling concepts available in our approach. Examples of graphical elements
can be found on the left side of figure 1. A discussion of the different modeling
concepts (and their graphical representation) to specify the static structure of the
VE is beyond the scope of this paper. We refer the reader to [2] for more details
on this. The modeling concepts available to model the behavior are discussed in
the following section. The graphical elements can be dragged from the stencils
and dropped onto the canvas and proper connections can be made. Properties
can be added, displayed and modified by the designer.
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From the specifications and the mappings, OntoWorld generates VRML/X3D
[11] and Java3D [8] (source code which can be compiled and launched either as
a local application or on the Web).

An additional interesting tool in the OntoWorld toolbox is the Verbalizer
(see figure 2). This module automatically generates a textual formulation for
the conceptual specifications. This provides the designer with natural language
descriptions of his models and this while making the models. A template-based
approach [7] is used to generate the textual formulation. Every semantic repre-
sentation (e.g., of a behavior) is associated with a (range of) template(s). So, the
graphical representation can be converted into a text-like representation. Adding
this feature to the design phase has a number of advantages:

— Interactive Design. Displaying a natural language-like formulation of the
behavior, that has been modeled, provides the designer with a better under-
standing of what he/she has actually modeled. The automatic generation of
textual formulations will allow for an early detection of design errors. The
textual formulations will also shorten the learning time.

— Code Documentation. After the design process has been completed, the
conceptual specifications are used to generate programming code. Generated
code is usually not or poorly documented. The code generator can use the
formulations generated at design time to document the code, and hereby fa-
cilitates the post-modeling phase and possible extensions and customization.
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Restructure. The DestrogMuseum deletes the Museum object from the scene. Both DestroyMuseum
and BuildStores have an overlap of 10 seconds. The BuildStores behavior creates multple Store
objects into the scene.

Fig. 2. Screenshot Verbalizer

4 Specifying Behavior by means of Models

Specifying the behaviors in VR-WISE is done in two separate steps: (1) speci-
fying the Behavior Definition and (2) specifying the Behavior Invocation.

The first step consists of building Behavior Definition Models. A Behavior
Definition Model allows the designer to define the different behaviors for an
object. The behavior is defined independent of the structure of the object, and
independent of how the behavior will be triggered. This improves reusability and
enhances flexibility, as the same behavior definition can be reused for different
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Fig. 3. Actor (a), Behavior (b), Complex Behavior (c), Operator (d)

objects and/or can be triggered in different ways. Because we want the definition
of a behavior to be separated from the actual definition of the structure of an
object, actors are used to specify behavior instead of actual object(s). An actor
can be seen as a kind of abstract object and represents an object that is involved
in a behavior. An actor is graphically represented by a circle containing the name
of the actor (see figure 3a).

We have made a distinction between primitive behavior and complex be-
havior. A behavior is graphically represented by means of a rectangle. Different
types of primitive behaviors are pre-defined. For primitive behavior (see figure
3b), the rectangle carries an icon denoting the type of primitive behavior as well
as some additional information (i.e. parameters). For complex behavior, a name
is specified and an additional area is used to contain the model that describes
the complex behavior (figure 3c).

In order to cope with complex situations, behaviors may have an optional
area that holds a (textual) script. The following flags can be specified:

— /speed denotes the necessary time for completing a behavior. The possible
values for this flag can be very slow, slow. normal, fast or very fast.

— /type sets the type of movement that needs to be made. A movement can
be executed in different ways. Possible values here are smooth, lineair, slow
or fast.

— /condition states the conditions that need to be satisfied for the action to
be executed. An example could be that a door needs to be unlocked before
the OpenDoor behavior can be successfully executed.

— /repeat denotes the number of times that the behavior (or action) needs to
be executed.

— /variable specifies custom variables to be used within the action. These
variables are in fact placeholders for values. An un-typed system is used so
that variables can hold values of any type.

— /before allows specifying the expressions that need to be performed before
the actual operation is being executed.

— /after allows specifying the expressions that need to be performed once the
behavior has been fully executed.

In the expressions, either user-defined custom functions (or algorithms) or
a number of pre-defined functions can be used. Since the scripts only belong
to a single behavior, they will in general be small. For this reason, they are
easy to use, even for non-programmers. The scripts can be composed in the
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Fig. 4. Concept (a), Instance (b), Event (c)

Visual Designer through the built-in Script Editor. A large number of predefined
functions, constants and operators can be selected and easily used.

To specify complex behavior, behaviors (primitive as well as complex) can
be combined by means of the operators. There are three types of operators:
temporal, lifetime and conditional operators. The temporal operators allow syn-
chronizing the behaviors (example operators are before, meets, overlaps, starts,
...). Lifetime operators control the lifetime of a behavior (example operators are
enable, disable, ...) and the conditional operator controls the flow of a behav-
ior by means of a condition. In the Visual Designer, operators are graphically
represented by rounded rectangles (see figure 3d). The icon within the rectangle
indicates the type of operator.

The second step in the behavior modeling process consists of creating a Be-
havior Invocation Model for each Behavior Definition Model. This type of dia-
gram allows attaching the behaviors defined in a Behavior Definition Model to
actual objects, and to parameterize them according to the needs. Furthermore,
these models also specify the events that will trigger the behaviors attached
to the objects. The main modeling concepts for these models are concept and
instance, which can be compared to the concepts Class and Object in object-
oriented programming languages. They are represented by a rectangle (figure
4a) and an ellipse (figure 4b) respectively.

By assigning an actor to a concept, the behavior is coupled to the concept,
i.e. every instance of that concept will obtain all the behaviors defined for the
actor. By assigning an actor to an instance, only that particular instance will
obtain the behaviors of the actor.

In our approach, behaviors are triggered by means of ewvents. Events are
graphically represented by a hexagon with an icon denoting the type of the
event and possibly some additional information below the icon (see figure 4c).
There are four kinds of events: initEvent, timeEvent, userEvent and objectEvent.
The initEvent will be invoked at the moment the VE initializes. A timeEvent
allows triggering a behavior at a particular time. A userEvent triggers a behavior
upon an (inter)action of the user and an objectEvent does this when there is an
interaction with other objects. Details on the steps to model behavior as well
as the different concepts (to model animations of the objects) can be found in
[5]. In the remaining part of this section, we discuss the modeling concepts for
modeling object dynamics, i.e. to describe structural changes in the VE (e.g.
adding, modifying or deleting objects) rather than just describing the different
poses of the objects. Due to space limitations, the Behavior Invocation Models
will be discarded in the following examples and only the Behavior Definition
Models are given.



Fig. 5. Creation (a), Removal (b)

4.1 Modeling the Creation and Removal of Objects

A first issue in building dynamic scenes is to cope with new objects. To ad-
dress this, our approach uses the construct-behavior allowing new objects to be
added or inserted to the VE at run-time. Similar to the other types of behavior,
actors are used in the definition; later on, in the Invocation Models, concepts
are associated with the actors. The construct-behavior has at least one output
actor, i.e. representing the object that is created. Creating a new object is done
by instantiating a concept that has been described in the Domain Model (one
of the models created to specify the static structure of the VE). This concept
is specified as output actor. The object that is to be created also needs to be
positioned and oriented in the VE. This is specified by means of a so-called
Structure Chunk. This is a small Structure Model. Structure Models are used
in our approach to specify (at a high level) the structure of the VE. Specifying
structure is done by means of spatial relationships and orientation relationships.
They are used for placing the objects. Also connection relations can be used for
building complex objects. As these relations have been described elsewhere [2],
the paper will not discuss their graphical notation in details. For the construct-
behavior, the Structure Chunk describes the positioning of the new object (in
terms of an actor) at the time of the instantiation. Note that after the creation
has been completed, the description given in the Structure Chunk might not
be valid anymore, depending on whether the objects involved have performed
some other behavior or not. The construct-behavior is graphically represented
in a similar way as the other behaviors except that an additional area is used
for specifying the Structure Chunk (figure 5a).

To illustrate the construct behavior, an example is provided where a city is
expanding with new buildings (see figure 5a). In the Behavior Definition Model,
the creation of an actor Museum is defined. This behavior is called BuildMuseum.
The Structure Chunk specifies that the newly created object must be north of
the City-Hall with a distance of 150 meters and oriented with its right side to
the front side of this City-Hall.

Besides creating new objects, building dynamic scenes also includes the re-
moval of objects from the scene. Therefore, the destruct-behavior is introduced.
Note that destroying an object will not only make the object disappearing from
the environment, but it will also delete it from the scene-graph. When the ob-



ject that needs to be destroyed is part of a connectionless complex object, the
relationships in which this object was involved will be deleted too; when it is
part of a connected complex object, the connections in which the object is in-
volved will be deleted as well. In figure 5b, the destruct-behavior is defined for
a Museum actor, stating that any object that will be associated with this actor
could possibly be destroyed.

4.2 Modeling Visual Changes of Objects

An issue that still remains open is the modeling of the visual modifications that
an object may undergo. In section 2, it was explained that a concept (or an
instance) is given a specific representation in the VE using the mappings. When
creating animations stretching over a longer period of time, it could happen that
the representation of the concepts should change (during simulation). The first
type of modification we considered is the transformation-behavior. This type of
behavior will change the appearance of an object. Note that the concept itself
is not changed; only its representation in the VE is changed.

Figure 6a gives an example of a definition where the actor’s representation is
changed from a cuboid to a hemi-sphere. Changing the representation of an ob-
ject may also cause changes of the properties of the representation. These changes
can be described by means of transformation rules (specified in the middle area
of the graphical representation of the behavior). With a transformation rule, the
designer can describe for example, that the length in the original representation
(source) is being transformed into the radius of new representation (target) (e.g.,
radius = length/2). When no rules are given, a standard one-to-one transforma-
tion is performed for the corresponding properties when possible; otherwise the
defaults of the properties are taken.

To create VEs with a high degree of realism, we also have to consider objects
breaking or falling apart. This brings us to the second type of modification
supported by our approach, namely the disperse-behavior. A disperse-behavior
subdivides an object into two (or more) pieces. The disperse-behavior has one
input actor and two or more output actors. The input actor represents the object
that will be subdivided and the output actors represent the pieces. After such
a behavior has been executed, the input object is destroyed and the output
objects have been created. Like in the construct-behavior, the new objects that
result from such a behavior need to be positioned in the environment. Again,
a Structure Chunk is used for relating the newly created objects to each other
and for relating them to already existing objects. The positioning of the objects
can be done by means of spatial and orientation relations. When no relations
are expressed between the newly created objects and already existing objects,
then (the bounding box of) the new objects are positioned at the same location
as the original (input) object.

In the example in figure 6b the definition for the behavior DestroyBridge
is given. It specifies that the complete bridge will disperse in two objects, two
smaller pieces of the bridge. The Structure Chunk specifies that one of the pieces
(Left Part) is positioned left of the other one (Right Part).
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Fig. 6. Transform (a), Disperse (b), Grouping (c)

If a disperse-behavior is invoked on a complex object (connected or uncon-
nected), the disperse behavior will remove all the relations that exist between
the (parts of the) complex object. This implies that if the user moves one of the
objects, the others will not move accordingly since there is no physical connec-
tion anymore. In the disperse-behavior, all the information of the original object
can be used for the creation of the new objects.

Opposed to objects breaking or falling apart, modeling VEs with dynamic
objects also requires having means of joining objects together. In other words,
we need to be able to specify that objects can be created by combining objects
or assembling objects at runtime hereby creating either complex connected or
complex unconnected objects. To support this, we have the grouping-behavior.
This kind of behavior allows creating spatial relationships or orientation relation-
ships (for unconnected objects) and making connections (for connected objects)
at runtime. Such a behavior definition has two (or more) input actors and one
output actor. The output actor represents the newly created (complex) object
that is built up of the pieces represented by the input actors. Also here, a Struc-
ture Chunk is used to describe the structure of the new object, which should be
based on the part-objects. Note that in this case, the Structure Chunk is used
to express a complex object and therefore the relationships that will be created
at run-time will be fixed relationships. This means that after this behavior has
been performed for a number of objects, the newly created object will behave as
a complex object and therefore if one of its parts or the object itself is moved
for example, the relations will ensure that the other parts are moved as well.

In figure 6¢, an example is shown on how some objects are grouped to create a
new unconnected complex object. The HQ actor and the Factory actor represent
the input objects and are being taken together to form a site (represented by
the Site actor).

Both the disperse- and the grouping-behavior have counterparts, namely
combine and ungrouping respectively. The combine-behavior will merge a num-
ber of objects together in the same way as the grouping but with this difference
that the input objects do not exist anymore once the behavior has been per-



formed. The ungrouping-behavior is the reverse of the grouping and removes
connections that were made during this grouping. Here, the difference with the
disperse-behavior is that the output objects are not created but already exist.
We will not give examples for these behaviors, as they are similar to the ones
that were already discussed.

5 Related Work

Most of the work on the specification of object behavior is concerned with textual
definitions as in [3]. However, these textual languages are not easily accessible
by untrained users.

The design of Virtual Environment behavior has also been addressed in [9].
The Flownet formalism is being used as a graphical notation for specifying the
behavior. However, even for simple behaviors, the specification becomes large
and difficult to read and is therefore not very suitable for non-experts. The VR-
WISE approach allows specifying the behavior also through a graphical language
but the terminology and modeling concepts used are closely related to how one
would describe behavior in natural language.

In [1], an icon-based approach is presented to specify behaviors of objects in
VRML. The designer can drag icons, representing VRML nodes, from a palette
onto a workspace and create the connections between outputs and inputs of the
nodes. Also here, considerable knowledge about the VRML language is required
to build a behavior specification.

A commercial development environment that closely relates to our research is
Virtools Dev [10]. Also Virtools allows constructing object behavior graphically
by combining a number of primitive building blocks (which are pre-made scripts)
together. However, the function-based mechanism (where the designer needs to
take into account the frame-to-frame basis way of processing the behaviors by
the behavior engine) tends to be less comprehensible for novices.

6 Conclusion

In this paper, we have described a model-based approach to specify behavior for
VEs. We also introduced the OntoWorld toolbox that supports the approach.
The Visual Designer module of the toolbox allows specifying the models by
means of diagrams. The Verbalizer module that generates textual explanations
for the models was added to improve the understanding of the models and to
make documenting of the code possible.

The modeling language for the behavior has evolved to a kind of hybrid mix
between a graphical language and a textual scripting language. The behaviors
are mainly specified in a graphically way, but a simple scripting language can
be used for more complex cases. This way, we offer the advantages of both
worlds; the comprehensiveness of the graphical language and the ability to cope
with increasing complexity by means of a textual language. The combination



of a model-based approach with the use of an intuitive graphical language may
seriously reduce the complexity of building dynamic and interactive VEs.

At the time of writing, we are implementing a debugger within the Visual
Designer which checks the models for errors. Furthermore, our approach uses a
formalization of the different relations and concepts used for modeling behavior.
One of the benefits of having a formalization is that errors made by the designer
can then be checked at design time. This gives the advantage of accelerating the
modeling of behaviors as designers can quickly see where the errors are. This
formalization is currently being implemented. The future work will consist of
conducting a number of experiments in order to evaluate the modeling power
and intuitiveness of the developed tools and the different modeling concepts
proposed. Next, we will investigate how we can extend our models with patterns
coming from game design research in order to come to a richer set of modeling
concepts.
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