
Original Paper Proceedings of Virtual Concept 2006
Cancún, Mexico, November 27th – December 1st, 2006

VC_InCo2006_P88 -1- Copyright Virtual Concept

VR-DeMo: a Tool-supported Approach Facilitating Flexible
Development of Virtual Environments using Conceptual

Modelling

Karin Coninx 1, Olga De Troyer 2, Chris Raymaekers 1, Frederic Kleinermann 2

(1) : Hasselt University,
Expertise Centre for Digital Media

and transnationale Universiteit Limburg
Wetenschapspark 2

3590 Diepenbeek, Belgium
+32 11 26 84 11

{karin.coninx,chris.raymaekers}@uhasselt.be

(2) : Vrije Universiteit Brussel
WISE research group

Pleinlaan 2
1050 Brussel, Belgium

+32 2 629 33 08
{olga.detroyer, Frederic.kleinermann}@vub.ac.be

Abstract: To improve the design of virtual environments,
we have developed an approach, called “VR-DeMo”, which
allows virtual environments to be defined using conceptual
modelling. The design of virtual objects with their behaviour is
realized through domain concepts. Exploratory interaction
design, with attention for usability, is facilitated through
model-based development of interaction techniques and
metaphors. This paper describes the development process and
the tools supporting the integration of this approach in order to
ease the developer’s task. The realization of an interactive tool
to model a park in its urban environment is presented as a case
study.

Key words: high level modelling; conceptual modelling;
model-based UI development

1- Introduction and related work

The development of virtual environments (VEs) is currently a
technical and time-consuming process. Although a number of
toolkits, such as VR Juggler [1] exist, developers often need to
define the virtual environment and the interaction and
behaviours within the virtual environment in a low-level
programming language. This increases the number of errors
that can occur and decreases the ease with which a VE
application can be defined or adapted.
The VR-DeMo (Virtual Reality: Conceptual Descriptions and
Models for the Realization of Virtual Environments) project
aims to ease the development process of VE applications by
defining applications on a higher level. These high-level
models have the advantage to provide a basis for discussing the
development of the VE application. Furthermore, by
automatically translating some models into source code and
interpreting other models at run time, the development time
can be minimised. This also allows the designer of the virtual
environment to flexibly change properties of the application.
There are a number of related research initiatives that also deal

with the design of VR applications from a more high-level
point of view. We review them briefly. The lack of high-
level design methodologies for VR development has also
been addressed in [2] with the presentation of VRID (Virtual
Reality Interface Design). In this paper, four key components
when designing VR interfaces are identified: object graphics,
object behaviours, object interactions and object
communications. The VRID methodology divides the design
process into a high-level and a low-level phase and uses a set
of steps to formally represent the environment. Although this
methodology helps the designer to split the design into
different steps and then refine them, it still does not allow the
designer to express the design using his own terminology and
relations.
James Willans et al. [3] have developed software that
separates the process of designing interaction techniques
from the process of building a specific virtual environment,
making it easier for developers to design realistic interaction
techniques and try them out on users. However, the way
behaviours are being designed is still very much an
engineering way and therefore, not intuitive for a non-
engineer person. The approach taken by the VR-DeMo
project is to make the design of the Virtual Environment
more domain oriented and therefore, more intuitive for
persons without engineering background.
The Rube methodology proposed by Fishwick et al. [4]
facilitates dynamic multi-model construction and reuse
within a 3D immersive environment. But this approach is
still not that intuitive for a non-VR expert.
Kim et al. [5], describe a software engineering approach for
designing Virtual Environments. This approach splits the
design into three main components namely ‘form’, ‘function’
and ‘behaviour’. They also extend the Unified Modelling
Language (UML) for helping the designer to specify the
design. Their approach is much more Software-Engineering
design and therefore, the designer must have a good
knowledge about software design,.

Virtual Concept 2006 VR-DeMo

VC_InCo2006_P88 -2- Copyright Virtual Concept

Conceptual Specification
Generator

(CSG)

OntoWorld

Scene
Graph
X3D

Code
C++

Run-time binary

CoGenIVE

Compiler

Code
Framework

<< linked with >>

<< source >>

<< generates >>

<< Interaction initialization >>

<<communicates with >>

<< generates >>

<< Initialization >>

Scene Generator Interaction Generator

<< generates >>

Resources
repository

metadataVRIXML

<< generates and uses >>

<< Initialization >>

Behaviour
LUA

Script

Figure 1 VR-DeMo approach

A commercial development environment that has similar goals
as our approach is Virtools Dev [6]. Virtools is not intended to
be a fully functional modelling environment. It only has some
basic support to compose the virtual scene. Virtools also
allows the designer to define behaviour for objects where
behaviours can be designed graphically by combining a
number of primitive building blocks. However, the function-
based mechanism tends to be less comprehensible for novices.
It also uses a graphical representation for behaviour (and
interaction), which shows the execution flow, together with
additional data-flow. We consider the approach taken by
Virtools as more low-level than the one taken by the VR-
DeMo project.
Furthermore, several models and description languages exist,
which can be used to define user interaction. Examples are
Petri nets [7], UML [8] and ICon [9]. Despite their focus on
interaction, these models are very generic and are often
cumbersome to use for describing interaction, particularly in
virtual environments. Other models, such as ICO [10] and
InTml [11], have been developed with interaction in virtual
environments in mind. These models have the drawback that
they are not easy to apply in a cognitive modelling approach,
where the specified models have to be interpreted at runtime by
the application. The Marigold toolset [12] can be compared to
the VR-DeMo approach for describing 3D interaction.
However, the flownets onto which this toolset is based can
currently not be executed at run-time. Similarly, on top of the
Cameleon framework [13] and the UsiXML process for
defining context-sensitive user interfaces [14], a method has
been created for designing 3D user interfaces [15]. However,
this method needs further experimental validation.

This paper elaborates on the VR-DeMo approach. First, the
general way of working when specifying and implementing a
virtual environment is sketched. Next, the models of the
different parts of a VE application are defined. Also, the
tools that support the VR-DeMo approach are explained.
Finally, we will detail a case study, an interactive tool to
model a park, and explain how this case study is realized
using the VR-DeMo approach and tools.

2- VR-DeMo approach

The VR-DeMo approach is based on a number of high-level
descriptions and conceptual models. These can be divided
into two logical parts, as depicted in figure 1. The first part,
the scene generator (left side of the figure), consists of the
definition of the virtual environment and the behaviour of the
objects within. The other part, the interaction generator,
defines the user interaction (right side of the figure). Both
logical parts are elaborated on in section 3.
On top of the VR-DeMo approach, two tools have been
created that translate the models and descriptions into source
code and resource files that are used by the resulting
application. Section 4 explains how these tools work.
As object behaviours can be triggered by user interaction, the
interaction generator also uses some of the files generated by
the scene generator. For instance, a light switch object can be
instrumented with the behaviour description of turning a light
on and off. When a user pushes the light switch, this
behaviour must be invoked.

Virtual Concept 2006 VR-DeMo

VC_InCo2006_P88 -3- Copyright Virtual Concept

3- Modelling of virtual environments

Virtual objects, behaviours of these objects and the interaction
with the user are important points of view on a virtual
environment. Therefore, the design of models and descriptions
for defining these aspects is a central activity in our research.
The next subsections explain how VE applications can be
defined with these models and descriptions and how they relate
to each other.

3.1 – Modelling of virtual worlds

In VR-DeMo, ontologies are not only used to incorporate
domain knowledge but they are at the same time used as
underlying representation formalism, i.e. to capture the
different description and models. The ontologies are
represented using OWL [16]. To model the virtual world, the
designer needs to perform two steps namely the specification
step and the mapping step (see figure 2).

Figure 2 Modelling the virtual world

• The specification step allows the designer to specify the

Virtual World at a high level using application domain
knowledge and without taking implementation details into
account. In the specification step, two levels are
considered namely the domain level and the world
specification level.

At the domain level, the designer will specify the
different concepts of the domain of which instances are
needed in the VE. Concepts are comparable to object types
in OO-design methods and they represent the different
type of concepts available in the domain under
consideration for the application. The concept
specifications are maintained in an ontology called the
Domain Ontology. This ontology describes the domain
concepts by means of their (real-life) properties and their
interrelationships. For example, for the case scenario (see
section 5), this ontology would contain concepts such as
Building, Tree, and Fountain. For each of these concepts,
the ontology will also contain properties such as colour,
material, depth, height, and width. These are properties

directly relevant for the creation of the VE. Note that
VR-DeMo can also import an existing ontology of
concepts originally created and used for other purposes.
Furthermore, for each concept, additional relevant
semantic properties and information can be specified
[17]. This extra semantic information can be used, later
on, to add semantic annotations to the virtual world and
to allow at run-time to search for locations in the virtual
world based on these semantic annotations.

The world specification level deals with the actual
conceptual description of the virtual world to be built. A
second ontology called the World Specification is used
to maintain the specifications of the objects that will
populate the virtual world. This is done by instantiating
concepts described in the Domain Ontology. These
instances represent the objects from the virtual world.
For instance, in the scenario case (see section 5), for the
concept Bench we will create multiple Bench-instances.
An instance inherits the properties of its concept; but the
values for the different properties must be specified here
(if the default is not appropriate). Also information about
the object’s location and orientation must be given, as
well as information specific for the world itself (e.g.,
gravity, lights…). Like for the domain level, extra
semantic information can be added to each instance
beside the semantic information already inherited from
their concepts.

To define the domain level as well as the world
specification, a number of high-level modelling concepts
are provided, e.g., spatial and orientation relationship
that can be used to position and orientate an object
relative to other objects. For some type of users, this is a
more intuitive method than the use of Cartesian
coordinates. Furthermore, a graphical notation has also
been developed to support the specifications. Details on
this graphical language can be found in [18-20].

• In the mapping step the designer will specify how
concepts and instances should be represented visually in
the virtual world. Following the separation between the
domain level and the world specification, there is the
domain mapping and the world mapping.

The domain mapping defines the mappings from the
concepts in the Domain Ontology to VR implementation
primitives. The purpose of this mapping is to specify
how the instances of a domain concept should be
represented (by default) in the virtual world. For
example, a simple rectangular building could be mapped
onto a VR primitive box. The low-level VR concepts
that can be used in the mappings are described in an
ontology called the Virtual Reality Language Ontology.

Although objects are instance of a certain concept,
different instances of the same concept may, in some
case, require different representations. For this reason,
the designer can override the default mapping of an
instance inherited from its concept. This is done in the
World Mapping.

3.2 – Modelling of object behaviour

Once the specification step and the mapping step have been
done (see section 3.1), the designer can then model and
attach behaviours to the different objects populating the

Virtual Concept 2006 VR-DeMo

VC_InCo2006_P88 -4- Copyright Virtual Concept

virtual world. With the VR-DeMo approach, behaviours are
defined independent of the structure of the object, and also
independent of how the behaviour will be triggered. This
improves reusability and enhances flexibility as the same
behaviour definition can be reused for different objects and/or
can be triggered in different ways. Furthermore with the VR-
DeMo approach, behaviours are modelled through the use of a
graphical notation [19-20]. The modelling of behaviour is done
in two separate steps: (1) the Behaviour Definition and (2) the
Behaviour Invocation.

• The first step consists of building Behaviour Definition

Models that allows the designer to define different
behaviours. To achieve this, a number of modelling
concepts are introduced.

(1) An actor can be seen as a kind of abstract object
that is used to specify behaviour, instead of the actual
object. An actor is used since we want the definition of a
behaviour to be separated from the actual definition of the
structure of the object.

(2) A behaviour is defined for an actor. We
distinguish between primitive behaviour and complex
behaviour. In terms of primitive behaviour, there is: move,
turn and roll. These primitive behaviours either change the
position of an object or its orientation. The move
behaviour can be used to express a change in the position
of an object. To express a change in the orientation of an
object, the turn can be used to express a rotation of the
object around its top-to-bottom axis while the roll is used
to express the rotation of an object around either its left-to-
right axis or its front-to-back axis.
To deal with modelling structural changes of objects, we
also provide a number of pre-built complex behaviours:
transform, disperse, combine, group and ungroup. More
on these pre-built complex behaviours can be found in
[20].

In order to cope with more complex situations, both
the primitive behaviours and the complex behaviours may
be associated with a (textual) script.

 (3) Operators are used for modelling more complex
behaviours. Operators allow combining simple and
complex behaviour to form new complex behaviour. There
are three types of operators: temporal, lifetime and
conditional operators. The temporal operators allow to
synchronize behaviours (example temporal operators are
before, meets, overlaps, starts, …). Lifetime operators
allow to control the lifetime of a behaviour (example
lifetime operators are enable, disable, …) and the
conditional operator allow to express a flow of behaviours
by means of conditions.

• The second step in the behaviour modelling process
consists of creating Behaviour Invocation Models. The
Behaviour Invocation step allows attaching the behaviours
defined in the Behaviour Definition step to the actual
objects, and to parameterize them according to the needs.

As for the Specification step (see section 3.1), a graphical
notation has been developed for the modelling of the
behaviours. For more details see [19- 20].
The main advantage of the VR-DeMo approach for designing
behaviours is that the designer does it more from a high-level
and he is not concerned with the low-level implementation

details. Furthermore, the VR-DeMo approach provides a
generic way in the sense that once a behaviour has been
defined, it can then be attached to different objects
populating the virtual world.

3.3 – Modelling of interaction

Once the designer has modelled the virtual world and the
different behaviours, the interaction can then be defined. The
VR-DeMo approach uses model-based user interface
development (MBUID) in order to define this. First, the
tasks that the user can perform in the application and the task
that the computer must execute accordingly are denoted
using the ConcurTaskTrees notation [21], which orders these
task in a hierarchical tree with time dependencies. This
model is then used to define the interaction between the user
and the system. Two different modes of interaction are
possible: dialog and menu-based interaction and direct
manipulation.
As we are developing VE applications, the menus and
dialogs are also positioned in the VE itself. We have
therefore created a description language, called VRIXML
[22], which is able to describe these menus and dialogs and
defines which events must be fired when the user interacts
with them. These events can pass through the application in
order to fire a certain functionality, some events, however,
are intercepted by the VRIXML renderer. One of the events
for instance indicates that a particular dialog must be shown.
This allows the application developer to abstract away from
the different menus and dialogs, which are defined by the
user interface designer. Figure 3 shows an example of a
dialog that has been activated by a menu. In this figure, the
visual appearance of the menu is faded in order to underline
that the dialog has become active.

Figure 3 Example VRIXML elements

Since direct manipulation is the dominant interaction style in
virtual environments and since existing interaction
descriptions and notations do not suffice in order to describe

Virtual Concept 2006 VR-DeMo

VC_InCo2006_P88 -5- Copyright Virtual Concept

the rich interaction in virtual environments [23], we have
created a notation for describing interaction in virtual
environments, called NiMMiT, Notation for Multi-Modal
Interaction Techniques [24]. This notation combines a state-
driven approach with an event-driven and a data-driven
approach. The states in a NiMMiT diagram define which parts
of the interaction can be activated, while the actual activation
depends on the events that are fired by the system. These
events can be generated by the above-mentioned menus and
dialogs or can indicate the user has moved the input device, has
pressed a button or has used speech input. Finally, we can
share data throughout a NiMMiT diagram in order to be able to
save and retrieve certain state information. For instance, the
current position of the virtual camera can be stored when
beginning a travel technique. By restoring this camera position
while finished this technique, the user can automatically return
to the original position.
Finally, it is possible to hierarchically reuse a NiMMiT
diagram in another diagram. For instance, the VooDoo dolls
manipulation technique [25] can make use of different
common selection techniques in order to select the objects to
be manipulated. It is not necessary to redefine these selection
techniques. They can be reused in the VooDoo dolls NiMMiT
diagram.
Figure 4 shows how the virtual pointer selection technique can
be defined using NiMMiT. In this simple example, collision
detection is performed when the user moves the pointer. This is
repeated as long as no collision is found. When collision with
an object is detected, this object is selected and the selection
technique is finished.

Figure 4 Example NiMMiT diagram

One of the additional advantages of the NiMMiT notation is
that it abstracts away from the devices that are actually used.
Each possible device that the user wants to use must generate a
number of events, which can be understood by the NiMMiT
interpreter. In our current implementation, we realize this
abstraction by using VRPN, the Virtual Reality Peripheral
Network [26], in order to address as many devices as possible.
This library abstracts the implementation of different devices
away. The events generated by VRPN are translated into

NiMMiT events and collected, together with VRIXML
events, in a multi-modal melting pot [27]. For further
information and more examples, we refer the interested
reader to [24].

4- Tool support

As can be seen in figure 1, the VR-DeMo approach is
realized through two tools: the scene generator and the
interaction generator. This section explains how these tools
can be used for modeling VE applications.

4.1 –Scene Module

The scene generator deals with the design of the virtual
worlds (with its objects and their behaviours) based on the
approach explained in section 3.1 and 3.2. This module has
two sub modules.
The first sub module is the Conceptual Specification
Generator (CSG) and is a graphical diagram editor
supporting the modelling of the behaviour and the
specification of the static scene. This module has been
implemented as an extension to Microsoft Visio [28]. It
supports the graphical notation that has been developed for
the specification step (section 3.1) and the modelling of the
behaviour (section 3.2). The graphical elements can be
dragged and dropped onto a canvas and connections can be
made. Properties can be added, displayed and modified by
double-clicking on the graphical elements. The CSG is a
graphical interface for the specification phase. The
information collected (specifications) using this graphical
interface will be passed to the second module, OntoWorld,
which will store it in its ontologies. Consistency between the
diagrams and the ontologies in OntoWorld is maintained
automatically. OntoWorld can also import existing
ontologies (written in OWL) that define the concepts at the
domain level.
OntoWorld also comes with a library of predefined VR-
objects which can been modelled with other modelling
software package like 3D Studio Max. This library is used to
support the Mapping step. Concept and instances defined in
the specification step can be mapped directly on these VR-
objects. OntoWorld also provides a way to preview the static
virtual world. Furthermore, it also allows attaching additional
semantic information to the different concepts and instances
as described in section 3.1.
Based on the models and specification provided, the scene
generator module generates three files. The first file
represents the scene with the objects together with their
behaviours. The file is generated in X3D format [29]. The
second file contains the behaviour using LUA [30] script and
the third file contains the semantic annotation specified
during design-time and is given in an MPEG-7 format [32].
The X3D file and the LUA script are then given to the to the
second tool the interaction generator in order to attach
interaction to the virtual world.

4.2 – Interactivity

To support the development of the user interaction with the
models as defined in section 3.3, the interaction generator
uses a tool called CoGenIVE, Code Generation for

Virtual Concept 2006 VR-DeMo

VC_InCo2006_P88 -6- Copyright Virtual Concept

Interaction Virtual Environments. This tool allows the user to
draw the different parts of the models. While a NiMMiT editor
will be integrated in CoGenIVE, the first validation has been
done with a Visio extension. Menus and diagrams are
visualized using the OpenGL-based VRIXML renderer, which
is also used by our application framework. Hence, the designer
can see these menus and dialogs as they will be visualized in
the final application (unless the application uses a different
renderer for VRIXML).
CoGenIVE not only allows the designer to define the different
models, but also allows to make connections between these
models. First, the designer must define the task model using a
ConcurTaskTree (CTT), as explained in section 3.3. From this
CTT model, a dialog model is generated by using the algorithm
from Luyten et al. [32]. This dialog model indicates when the
different tasks can be executed.
Next, the designer must indicate when the different menus and
dialogs must be shown by linking them to the different “states”
in the dialog model. Furthermore, the designer can indicate
when the different NiMMiT diagrams must be executed.
When the designer has finished modelling the interaction,
CoGenIVE generates the necessary XML files in order to
represent the NiMMiT diagrams and the VRIXML elements.
The CoGenIVE tool also generates the VE application based
on the VRment, our VE framework, and a number of code
templates. The application developers only need to code the
specific functionality in a number of predefined places and to
compile this code. If certain code files need to be regenerated
because the designer has added or changed the functionality,
the manual changes are automatically taken into account by the
CoGenIVE tool.

5- Case study: a city park designer

In order to assess the validity of the VR-DeMo approach and
the usefulness of the tools, we have elaborated on a case study:
a city park designer. This application allows users to design a
virtual city park. The user of this application can, in a first
phase, design the park by positioning objects, such as
buildings, and statues in the virtual environment.
When the virtual city park is designed, the user can simulate
certain behaviours. For instance, the different cars in the virtual
environment will move about. A simulation of the sun has also
been added, which allows the user to define the current time of
the day in order to view how different shadows are projected.
Alternatively, the current time of the day can also progress,
resulting in an animation of the shadows. This section will
elaborate on the different models used to define the application
in relation with the VR-DeMo approach as explained in section
3.

5.1 – Definition of the virtual world

To define the virtual world (see section 3.1), the designer must
start to specify the specification step and the mapping step.
The specification step starts with the domain level where the
different domain concepts with their properties are specified.
For the virtual city park, we have domain concepts such as
Building, Pine Tree, Bench, Park Block, City Block, RoadSign,
Streetlight, and Fountain. These concepts have properties. For
instance, the concept Pine Tree has the properties: name,
diameter, height, type, material, colour.

The world specification level is then used for instantiating
domain concepts. In the case of the virtual city park, the
concept Pine Tree is instantiated several times in order to
form the city park. Then, values are specified for the
properties (or defaults are used). For example, an instance of
Pine Tree has been given a value of 10 meters for the height
and a value of 1 meter for the diameter. It is also necessary to
position the instances inside the space representing the
virtual city park. Next to the traditional way of positioning
instances by means of coordinates and to orientate them by
means of angles, these instances can also be positioned using
high-level concepts which position and orientate them
relative to other instances (see section 3.1). In the case of the
virtual city park, we can state that instance “pinetree1” is
positioned left of the instance “birchtree2” with a distance of
5 meters. It is also positioned above the ground. Using
Conceptual Specification Generator (CSG), the designer can
specify this relation in a graphical notation way (see figure
5).

Figure 5. Specifying spatial relations using the CSG

editor

Once the specification step has been finished, the designer
should specify how the different instances should be
represented inside the virtual city park (mapping step).
Firstly, default mappings are specified for the different
domain concepts. This is done by mapping domain concepts
onto VR-objects (pre-defined in the VR Language
Ontology). Concept properties must be mapped onto
properties of the VR-objects. For instance, the concept Pine
Tree is mapped onto a VR-object VR-Tree with properties
height, width and depth. The properties of Pine-Tree are
mapped as follows:

VR-Tree.width = pine-Tree.diameter
VR-Tree.height = pine-Tree.height
VR-Tree.depth = pine-Tree.diameter

5.2 – Definition of object behaviour

Once the specification step and the mapping step have been
done, the virtual world at this stage is only described from a
static point of view. In order to make it dynamic, behaviours
must be modelled. To do this, the designer must model
different behaviours and attach them to the different objects

Virtual Concept 2006 VR-DeMo

VC_InCo2006_P88 -7- Copyright Virtual Concept

populating the virtual city park. Using the CSG editor, the
designer starts by making Behaviours Definition Diagram for
each of the behaviours that he wants to have in his virtual
world. In the case of the virtual city park, there will be
different behaviours. For instance we want the fountain to
squirt water (the Fountain behaviour); the sun should appear
and disappear (the Sun behaviour); the street light should go on
once the sun disappear (the street light behaviour); and the bus
should move and stop at different bus stops (the bus
behaviour). To give an example on how the designer models a
behaviour with the VR-DeMo framework, an illustration is
now given with the bus behaviour.

Figure 6 View of the Virtual City Park where the instance

of "pinetree 1" is positioned left of the instance
"birchtree2" with a distance 5 meters.

The bus behaviour makes the bus to move, stop for few
seconds and turn. This behaviour will allow the bus to follow
different routes. In our case scenario, this behaviour is called
Route66. The behaviour Route66 makes the bus at a certain
position moving forward (run) for 25 meters, then stopping for
a minute. After a minute, the bus runs again for another 25
meters, then turns right and it moves again for 50 meters. After
50 meters, it will then turn left and move forwards for 25
meters where it will stop for a minute. After a minute, it will
run for another 25 meters.

Figure 7. Behaviour Definition Diagram for the Bus

behaviour Route66

To model this sort of behaviour using the VR-DeMo
framework, the designer will use the CSG editor to define a

Behaviour Definition Diagram (see section 3.2) for that
behaviour. When creating a Behaviour Definition Diagram,
the designer will first create an actor. Here, the actor will be
called Bus. The designer will then state that this actor has a
behaviour called Route66 which represents the behaviour of
the Bus mentioned above. It is composed of different time
operators (before, meets and overlaps) combined with the
primitive behaviours move and turn (see section 3.1) in order
to make the bus moving, stopping and turning. Figure 7
shows the graphical specification of the Bus behaviour done
with the CSG editor.
Once the behaviour has been specified by a Behaviour
Definition Diagram, the designer will then determine to
which objects (instance) populating the virtual world, this
behaviour is attached to. To do this, he will create a
Behaviour Invocation Diagram which will allow him to
attach a behaviour to an object and which will also allow him
to specify how this behaviour will be invoked. Again with
the VR-DeMo approach, this will be done through the CSG
editor. In the virtual city park and for Route66, the designer
will attach the bus behaviour Route66 to the instance object
bus called bus_nr_41 using the Behaviour Invocation
Diagram shown in figure 8.

Figure 8. Behaviour Invocation Diagram for the Bus

behaviour

In that figure 8, it can be seen that the behaviour Route66 is
triggered every hour for the instance bus_nr_41. The
designer will do this sort of diagrams for each behaviour.
Once the virtual world with its behaviour has been modelled,
interaction can be attached.

5.3 – Definition of interaction

Interactivity in the city park designer application is supported
by means of a spacemouse, a six degree-of-freedom input
device. However, as the interaction is modelled in NiMMiT,
which abstracts device details away, this device can easily be
replaced by another one.
The interaction within the city park designer application can
be divided into two phases. During the design phase, direct
manipulation is the dominant interaction style. Users can
add different objects, such as trees to the virtual city park.
Figure 9 show the dialog containing the objects that can be
created in the virtual world.
The objects in the environment can also be selected in order
to be deleted or repositioned. A virtual hand is currently
used, as this kind of interaction technique is well suited for a
spacemouse. If another input device would be used, this can
easily be changed to another metaphor by applying another
NiMMiT diagram. For instance, the Go-Go interaction
technique [33] could be used when working with tracked
gloves.

Virtual Concept 2006 VR-DeMo

VC_InCo2006_P88 -8- Copyright Virtual Concept

Figure 9 Dialog for adding objects

The user also needs to be able to scale the objects. Otherwise,
all objects of the same type would have the same size. It is not
desirable, for instance, that all trees have the same height. If
the user has a second input device, two-handed scaling [34]
can be applied. With this technique, the scale of an object
depends on the distance between the user’s hands. If the user
moves his/her hands further away from each other, the
currently selected object grows bigger. Likewise, an object
can be shrunk by moving both hands together. Figures 10 and
11 shows an object before and after it was scaled using this
technique.

Figure 10 Two-handed scaling: before

Of course, the user of the city park design application is also
able to move around within the environment. For this purpose,
the flying vehicle metaphor [35] is used. We can distinguish
two modes of using this metaphor. The user can either freely
moves about the virtual city park in order to fully inspect it or
can restrict his/her motion to exploratory walking above the
ground plane.
During the simulation, the user cannot change the appearance
of the virtual world anymore. Navigation, on the other hand, is

still possible. The user can still use the navigation described
before. Furthermore, when the user comes near certain points
of interest, a corresponding behaviour is triggered from this
interaction. For instance, when the user approaches the
fountain, the fountain behaviour is activated. Likewise, a
statue will give some information about itself by playing an
audio fragment when the user approaches it.

Figure 11 Two-handed scaling: after

Before the simulation is started, the user must fill-in some
parameters. If the user wants the see a simulation of the sun
and the corresponding shadows, the current time of day must
be indicated along with the speed of the simulation. Also, the
user must indicate if certain behaviours, such as the bus
behaviour must be active. These parameters can be set by
means of dialogs defined in VRIXML.
Furthermore, during the whole run of the designer
application, some menus can be accessed in order to set
parameters or to change the design phase to the simulation
and back. It is not required that a 3D device, such as a
spacemouse is used for this task since the city park designer
also supports speech input.

6- Conclusions

This paper elaborated on the VR-DeMo approach for flexibly
defining VE applications by using high-level conceptual
models. We focused on the different steps of the VR-DeMo
approach and explained how they are supported by two
software development tools. Finally, using a case study, we
demonstrated that the designer can model a VE application
from a high-level away from any implementation details
using the VR-DeMo approach. Using high-level models and
notations, a city park design application. This case has shown
that, compared to the traditional coding of VE applications,
the VR-DeMo approach allows to more rapidly create VR
applications with the additional benefit of being to more
easily change parts of the virtual environment, the behaviour
of the objects and the interaction with the end user.

7- Acknowledgements

The VR-DeMo project is directly funded by the IWT, a
Flemish subsidy organization (IWT 030248).

Virtual Concept 2006 VR-DeMo

VC_InCo2006_P88 -9- Copyright Virtual Concept

The authors would like to thank Erwin Cuppens, Joan De
Boeck, Tom De Weyer and Bram Pellens for their work in this
project.

8- References

[1] Bierbaum A., Just C., Hartling P., Meinert K., Baker A. and
Cruz-Neira C. VR Juggler: A Virtual Platform for Virtual
Reality Application Development. In Proceedings of IEEE
Virtual Reality Conference 2001, Yokohama - Japan, 2001
[2] Tanriverdi V. and Jacob R.J.K. VRID: A Design Model and
Methodology for Developing Virtual Reality Interfaces. In
Proceedings of ACM Symposium on Virtual Reality Software
and Technology, Alberta - Canada, 2001
[3] Willans J.S., Harrison M.D. and Smith S.P. ‘Implementing
virtual environment object behavior from a specification’ In
User Guidance in Virtual Environments, Shaker Verlag,
Aachen - Germany, pp. 87 – 97, 2000
[4] Fishwick P., Lee J., Park M. and Shim H. RUBE: a
customized 2d and 3d modelling framework for simulation. In
Proceedings of the 35th Conference on Winter Simulation:
Driving Innovation, New Orleans -USA, 2003
[5] Kim G.J., Kang K.C., Kim H. and Lee J. Software
Engineering of Virtual Worlds. In Proceedings of the ACM
Symposium on Virtual Reality Software & Technology, Taipei
- Taiwan, 1998
[6] Virtools Dev, http://www.virtools.com/, Accessed August
2, 2006
[7] Palanque P. and Bastide R. Petri net based design of user-
driven interfaces using the interactive cooperative objects
formalism. In Proceedings of Interactive Systems: Design,
Specification, and Verification 1994, Carrara - Italy, 1994
[8] Ambler S. Object Primer, The Agile Model-Driven
Development with UML 2.0. Cambridge University Press,
2004
[9] Dragicevic P. and Fekete J.D. Support for input
adaptability in the ICON toolkit. In Proceedings of the 6th
international conference on multimodal interfaces, State
College - USA, 2004
[10] Navarre D., Philippe Palanque P., Bastide R., Schyn A.,
Winckler M., Nedel L. and Freitas C. A Formal Description of
Multimodal Interaction Techniques for Immersive Virtual
Reality Applications. In Proceedings of Tenth IFIP TC13
International Conference on Human-Computer Interaction,
Rome – Italy, 2005
[11] Figueroa P., Green M. and Hoover H.J. InTml: A
Description Language for VR Applications. In Proceedings of
Seventh international conference on 3D Web technology,
Tempe, USA, 2002
[12] Willans J. and Harrison M. A toolset supported approach
for designing and testing virtual environment interaction
techniques. In International Journal of Human-Computer
Studies, 55(2): 145-165, 2001.
[13] Calvary G., Coutaz J., Thevenin D., Limbourg Q.,
Bouillon L. and Vanderdonckt J.. A Unifying Reference
Framework for Multi-Target User Interfaces. In Interacting
with Computers, 15(3): 289–308, 2003.

[14] Limbourg Q., Vanderdonckt J., Michotte B., Bouillon
L., Florins M. and Trevisan D. UsiXML: A User Interface
Description Language for Context-Sensitive User Interfaces.
In Proceedings of the ACM AVI'2004 Workshop
"Developing User Interfaces with XML: Advances on User
Interface Description Languages", Gallipoli - Italy, 2004
[15] Gonzalez J.M., Vanderdonckt J. and Arteaga J.M. A
Method for Developing 3D User Interfaces of Information
Systems. In Proceedings of 6th Int. Conf. on Computer-
Aided Design of User Interfaces CADUI’2006, Bucharest -
Romania, 2006
[16] OWL, http://www.w3.org/2004/OWL/, Accessed
August 24th, 2006
[17] Kleinermann F., De Troyer O., Mansouri H., Romero
R., Pellens B. and Bille W. Designing Semantic Virtual
Reality Applications, In Proceedings of the 2nd INTUITION
International Workshop, Senlis - France, 2005
[18] Bille W., De Troyer O., Pellens B. and Kleinermann F.
Conceptual Modelling of Articulated Bodies in Virtual
Environments Virtual Environments. In Proceedings of the
11th International Conference on Virtual Systems and
Multimedia, Gent - Belgium, 2005
[19] Pellens B., De Troyer O., Bille W., Kleinermann F. and
Romero R. An Ontology-Driven Approach for Modelling
Behavior in Virtual Environments. In Ontology Mining and
Engineering and its Use for Virtual Reality workshop, Agia
Napa - Cyprus, 2005
[20] Pellens B., Kleinermann F., De Troyer O. and Bille, W.
Model-Based Design of Virtual Environment Behavior, In
Proceedings of the 12th International Conference on Virtual
Systems and Multimedia, Xi'an - China, 2006
[21] Paternò F. Model-Based Design and Evaluation of
Interactive Applications, Springer, 2000
[22] Cuppens E., Raymaekers C. and Coninx K.. VRIXML :
A User Interface Description Language for Virtual
Environments. In Proceedings of Developing User Interfaces
with XML: Advances on User Interface Description
Languages, Gallipoli - Italy, 2004
[23] De Boeck J., Raymaekers C. and Coninx K. Comparing
NiMMiT and Data-Driven Notations for Describing
Multimodal Interaction. In Proceedings of 5th workshop on
TAsk MOdels and DIAgrams for user interface design,
Hasselt – Belgium, 2006
[24] Vanacken D., De Boeck J., Raymaekers C. and Coninx
K. NiMMiT: a Notation for Modelling Multimodal
Interaction Techniques. In Proceedings of International
Conference on Computer Graphics Theory and Applications,
Setúbal – Portugal, 2006
[25] Pierce J., Stearns B. and Pausch R. Voodoo Dolls:
seamless interaction at multiple scales in virtual
environments. In Proceedings of symposium on interactive
3D graphics, Atlanta – USA, 1999
[26] Taylor R.M, Hudson T.C., Seeger A., Weber W.,
Juliano J. and Helser, A.T. VRPN: A Device-Independent,
Network-Transparent VR Peripheral System. In Proceedings
of ACM Symposium on Virtual Reality Software &
Technology 2001, Banff – Canada, 2001

Virtual Concept 2006 VR-DeMo

VC_InCo2006_P88 -10- Copyright Virtual Concept

[27] Nigay L. Coutaz J. A Generic Platform for Addressing the
Multimodal Challenge. In Proceedings of ACM CHI'95
Conference on Human factors in Computing Systems, Denver
– USA, 1995
[28] Walker M., Eaton N.J. and Eaton N. (2003) ‘Microsoft
Office Visio 2003 Inside Out’, Microsoft Press, ISBN:
0735615160
[29] X3D, X3D International Standards,
http://www.web3d.org/x3d/specifications/, Accessed May 31,
2006
[30] LUA Language, http://www.lua.org/, Accessed 24th
August, 2006
[31] Salembier P and Smith J R (2001) MPEG-7 Multimedia
Description Schemes. IEEE transactions on circuits and
systems for video technology. 11(6): 748-759
[32] Luyten K., Clerckx T., Coninx K. and Vanderdonckt J.
Derivation of a Dialog Model from a Task Model by Activity
Chain Extraction. In Proceedings of Interactive Systems:
Design, Specification, and Verification, 2003
[33] Poupyrev I, Billinghurst M., Weghorst S. and Ichikawa T.
The Go-Go Interaction Technique: Non-linear Mapping for
Direct Manipulation in VR. In Proceedings of the 196 ACM
Symposium on User Interface Software and Technology
(UIST), Seattle - USA, 1996
[34] Mine M. and Brooks F.P. Moving Objects in Space:
Exploiting Proprioception in Virtual Environment Interaction.
In Proceedings of the SIGGRAPH 1997 annual conference on
Computer graphics, Los Angeles – USA, 1997
[35] Ware C. and Osborne S. Exploration and Virtual Camera
Control in Virtual Three Dimentional Environments. In
Computer Graphics, 24(2), 1990

