
From Adaptation Engineering Towards
Aspect-Oriented Context-Dependency

Sven Casteleyn1, Zoltán Fiala2, Geert-Jan Houben1,3, Kees van der Sluijs3

1Vrije Universiteit Brussel
Pleinlaan 2

1050 Brussels, Belgium
+32 2 629 33 08

{Sven.Casteleyn,
Geert-Jan.Houben}@

vub.ac.be

2Dresden University of Technology
Chair for Multimedia Technology

01062 Dresden, Germany
+49 351 463 38516
Zoltan.Fiala@

inf.tu-dresden.de

3Technische Universiteit
Eindhoven

PO Box 513, 5600 MB Eindhoven,
The Netherlands
+31 40 2472733

{g.j.houben,k.a.m.sluijs}@
tue.nl

ABSTRACT
The evolution of the Web requires to consider an increasing
number of context-dependency issues. Therefore, in our research
we focus on how to extend a Web application with additional
adaptation concerns without having to redesign the entire
application. Based on a generic transcoding tool we illustrate here
how we can add adaptation functionality to an existing Web
application. Furthermore, we consider how an aspect-oriented
approach can support the high-level specification of such
additional concerns in the design of the Web application.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures –
Languages; H.5.2 [Information Interfaces and Presentation]:
User Interfaces – User-centered design; H.5.4 [Information
Interfaces and Presentation]: Hypertext/Hypermedia –
Architectures, Navigation.

General Terms
Design, Languages

Keywords
Web Engineering, Aspect-Oriented Programming, Adaptation,
Component-Based Web Engineering.

1. INTRODUCTION
The fast evolution and growing popularity of the WWW
necessitate to take various issues into account which were
previously less relevant: device-dependence, privacy, security,
accessibility, personalization etc. While all these issues require
the application to exhibit a certain user- or context-dependency,
existing methods typically provide only support for a few of them.
Furthermore, this support is often intertwined with both the
original application design (most often in the form of adaptation
conditions spread over the different models) and its corresponding
implementation. This is in sharp contrast with the desired
separation of concerns and also significantly complicates adding

additional adaptation concerns to a Web application.

In this paper we focus on extending an existing Web application
with new (adaptation) functionality without completely
redesigning/reimplementing it. Based on the key observation that
the generation of adaptive hypermedia applications is typically
implemented as a series of data transformations, we illustrate how
we can add adaptation to a Web application based on the Generic
Adaptation Component (GAC [1]). We exemplify this in the
context of an example from the model-driven Hera design
methodology [3]. Next to that, we indicate how an aspect-oriented
approach can support the high-level specification of additional
(design) concerns in Web application design.

2. APPLICATION SCENARIO
Based on the model-driven Hera specification framework, our
running example consists of (a part of) a research project’s Web
application. Figure 1 depicts its structure according to the visual
representation of a Hera application model (see [3]). The starting
page is the project homepage showing the project's name, its
introductory project description and the project members’ photos
as thumbnails. Clicking on a photo one can navigate to the
corresponding member's homepage containing the name, contacts,
CV, image, as well as a list of his publications. In this basic
application model there are no adaptations embedded yet.

Figure 1: Example Application Model
For our example, we consider one additional adaptation issue,
namely device-dependency. It implies to omit high-quality
graphical material, as well as detailed information (e.g. the list of
publications) on small-screen devices such as PDA’s.

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). Distribution of these papers is limited to
classroom use, and personal use by others.
WWW 2006, May 23–26, 2006, Edinburgh, Scotland.
ACM 1-59593-323-9/06/0005.

3. IMPLEMENTATION OF ADDITIONAL
ADAPTATION CONCERNS
For the implementation of additional adaptation issues we exploit
recent work from the AMACONT project that followed the key
observation that generating adaptive hypermedia presentations is
typically implemented as a series of data transformations. It
introduced the Generic Adaptation Component (GAC), a
transcoding tool aimed at adding adaptation to Web applications.
According to its rule-based configuration, it allows to perform
instance-level adaptation operations (omission, inclusion, sorting,
replacement etc.) on arbitrary XML input based on context
information maintained in its adaptation context data repository.
Thus, it is ideal for adding adaptation to the hypermedia
presentation generation for XML-based content. For more
information on the GAC the reader is referred to [1].

Figure 2: GAC-based Implementation

Based on a number of GAC components, Figure 2 illustrates our
data transformation pipeline aimed at the implementation of
additional adaptation issues. The original hypermedia presentation
generation process is extended by a series of GACs that each
perform a different adaptation on their XML-based input content.
Each GAC is configured by a number of adaptation rules
according to one of the given (independent) additional adaptation
concerns.

Based on this implementation, Figure 3 shows two versions of a
project member’s homepage from our running example. Note that
the generated presentations incorporate the device-dependency
concerns mentioned above.

Figure 3: Generated Member Page

4. TOWARDS ASPECT-ORIENTED
ADAPTATION DESIGN
The GAC-based implementation architecture illustrated above
allows to easily incorporate additional (independent) adaptation
concerns into the hypermedia presentation generation process.
Still, whereas the GAC supports powerful adaptation operations
on XML input at instance level, the complexity of Web
applications, and the typical distribution of adaptation throughout
the application, necessitates the high-level specification of such
adaptations at design level. Thus, extra support is needed to easily
extend an application design with additional context-dependent
design concerns.

Currently, adaptation is in most design methods specified in the
form of conditions that are embedded (intertwined) in the relevant
design models. Extending a design with one particular context-
dependency design concern therefore requires that the designer
transforms the current design (model) and embeds for relevant
design elements the new adaptation condition(s) that result in the
desired context-dependency. Though these conditions can occur at
one specific place in the design (e.g. to remove a link between two
concrete pages), it (more) frequently happens that they cannot be
pinpointed to one particular element (e.g. to hide for privacy
reasons all sensitive data) and need to be applied at distributed
places in the design (model).

A similar observation was made in the programming community,
when considering different design concerns of a software
application: some concerns cannot be localized to a particular
class or module; instead they are inherently distributed over the
whole application. Such a concern is called a cross-cutting
concern. To cleanly separate the programming code addressing
this concern from the regular application code, Aspect-Oriented
Programming [2] was introduced. An aspect captures the
functionality of a crosscutting concern and can be applied at
different parts of the application.

Therefore, our ongoing work concentrates on applying principles
of Aspect-Oriented Programming to Web design, thus separating
a given Web application design from the specification of
additional context-dependency design concerns. If we can easily
add such functionality, we can cleanly separate additional design
aspects and describe them independently from the base
application. We have observed that by translating high-level
design aspect descriptions to appropriate GAC rules (according to
the above described implementation), we are able to automatically
generate a component-based implementation.

5. REFERENCES
[1] Fiala, Z., Houben G.J. A Generic Transcoding Tool for

Making Web Applications Adaptive. In Proceedings of the
CAiSE'05 FORUM, Porto, Portugal, 2005, 15-20.

[2] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,
C.V., Loingtier, J., Irwin, J. Aspect-Oriented Programming.
In Proceedings of the 11th European Conference on Object
Oriented Programming (ECOOP’97), Jyväskylä, Finland,
1997, 220-242

[3] Vdovjak, R., Frasincar, F., Houben, G.J., Barna, P.
Engineering Semantic Web Information Systems in Hera.
Journal of Web Engineering, Vol. 2, No. 1&2, 2003, 3-26.

