Database Wrappers Development: Towards Automatic Generation

Philippe Thiran Jean-Luc Hainaut
Technische Universiteit Eindhoven Universie de Namur
The Netherlands Belgium
ph.thiran@tue.nl jlh@info.fundp.ac.be

Geert-Jan Houben
Technische Universiteit Eindhoven
The Netherlands

g.j.houben@tue.nl

Abstract tal importance to new open environments like the Web and
to system integration in general.

Wrapping databases allows them to be reused in for- A Wrapper attempts to extend the usefulness of compo-
merly unplanned contexts, such as web-based applicationdl€nts of the existing data systems by facilitating their in-
or federated systems. Indeed, a wrapper can provide exter-tégration into modern (distributed) systems. A wrapper ad-
nal clients of an existing (legacy) database with a neutral in- dresses the challenge of database heterogeneity by provid-
terface and augmented Capab”ities_ However, except in Sim_ing a standard and common interface. This interface is made
plistic cases where the wrapper and the database schemas/P of: (1) awrapper schemaf the wrapped database, ex-
are similar, the wrapper must implement complex map- Pressed in a canonical data model and (2) a common query
pings: it must translate queries from the wrapper data ma- language which uses the semantics defined in the wrapper
nipulation language to the database primitives, and, con- Schema. Queries on the wrapper schema are also known as
versely, translate extracted data into the external wrap- Wrapper queries
per format. We have developed a generic schema mapping Basically, database wrapping involves two, generally
framework in which wrappers can be specified formally and different, models, namely the database model (e.g., rela-
generated automatically. This framework comprises a high- tional or standard files) and the wrapper model (e.g., object-
level generic data model and a set of schema transforma-oriented or XML). The main function of a wrapper is the
tions defined for this model. This reference model makestranslation of queries posed on the wrapper schema to the
it possible to specify different data models in a uniform database model, and, conversely, the translating of data
formalism. Mappings between schemas are expressed a§om the database model to the wrapper model.
sequences of reversible schema transformations. We show
how thesg transformations can be used to translate dataq 1 Proposal
and queries between two schemas and hence to generate

as much as possible of the code of the wrappers. The gen- tpig paper focuses on the aspects of query and schema
eration is supported by DB-MAIN, a wide-spectrum CASE y3ngation within wrappers. We consider a generic schema

tool. mapping framework in which wrappers can be speci-
fied formally and generated automatically. This frame-
work comprises a high-level generic data model and a set of
schema transformations defined for this model. This refer-

1. Introduction ence model makes it possible to specify query and schema
mappings in a uniform and unique formalism.

Existing data systems contain vital information that is In this paper, we extend the work in [16] and [17] on
embedded in existing (most often legacy) databases/ flatwrappers for legacy databases by exploring the query and
files and application code. In many cases, data systems inschema mappings of such wrappers. [16] introduces the
clude the only source of years of business rules and otherconcept of wrappers that enact complex database/wrapper
valuable information. Access to this information is of vi- schema mappings, and describes the general architecture

and functions of such wrappers. [17] addresses the problenor several constructs of lower-level models. This approach
of consistency control when wrappers are allowed to up- is qualifiedby specialization(or top-down) in that an op-
date data. The main contribution of this paper is the detailederational model and its transformational operators are de-
development of the mechanism through which schemasfined by specializing (i.e., selecting, renaming, restricting)
and queries are translated from the wrapper schema to theonstructs and transformations. A comparison of these ap-

database schema, and conversely. proaches is given in [7]. The key advantage of $pecial-
izationapproach is that the transformations within an oper-
1.2. Related Approaches ational model are those of the generic model which remain

meaningful whereas the constructive approach requires to

Several research projects have already investigated thiglefine specific transformations for each operational model.
issue related to query mappings. Unlike their approaches,
we investigate the problem from a model-independent and1.3. Paper organization

schema-oriented perspective: _ _ .
The paper is organized as follows. Section 2 presents the

e Model-independent perspectiv€urrent approaches generic mechanisms of query mappings within a transfor-
for wrapping databases rely on couples of models, mational approach. We then present in Section 3 the high-
such as those intended to produce XML views of re- |eye| generic data model that underpins our approach and
lational schemas ([2], [3] or [13]). In this work, We the primitive transformations on schemas defined in terms
use a general formalism to reversible schema transfor-qf this model. In Section 4, we show how the schema trans-
mations [7] based on a generic high-level data model. foymations that result from our framework can be used to
It provides a formal and uniform description of arbi- aytomatically translate queries. Section 5 deals with the de-
trary models and the use of schema conversions beejopment of databases wrappers based on schema trans-
tween two not necessarily equivalent models. Here formations and its CASE support. Section 6 presents some
we extend this work by using our schema transforma- metrics of the wrapper development cost. They illustrate the
tions to automatically wrap queries and data between necessity of the wrapper development/construction. Finally,
two schemas. Section 7 concludes this paper.

e Schema-oriented perspecti@onsidering the issue of
mapping definition and according to [12], two mainba- 2. Transformational approach of query map-
sic approaches have been used to specify them. The ping
first and very widespread approach ([1], [2], [3], [4]
or [10]) is query-orientedin that it provides mech- Query translation is the core function of a wrapper.
anisms by which users define wrapper schema con-It refers to operations that translate queries between two
structs as views over source schema constructs, bukschemas (the database and wrapper schemas) and two lan-
do not focus on the semantics of the data sources. Inguages (the databdsand wrapper query languages).
contrast, the second approach ([11] or [14Bdhema- Considering the issue of translating queries from one
orientedin that mappings are defined as schema trans-language to another one, our idea is to use an intermedi-
formations that are used to automate the translationate level, independent of all the possible operational query
of queries. A comparison of these approaches is re-languages. We therefore use an internal abstract query lan-
ported in [12]. The schema-oriented approach has theguage as the bridge for the translation rather than directly
further advantage of decomposing the transformation translating wrapper queries into database queries.
of schemas into a sequence of small steps, whereas Considering the issue of schema mapping, our approach
the query-oriented approach requires to directly define is to use schema transformations that provide mechanisms
constructs in one schema in terms of those in the otherfor formally defining the schema correspondence between
schema. the database and wrapper schemas, and then, on using that
equivalence to automatically perform the query mappings.
Figure 1 shows the translation proces¥he wrapper
ueryQlis first stripped off, creating an internal for@2
at captures purely the semantics of the query. N@®t,

We differ from the approach of [11] in using a high-level
generic data model instead of a low-level one. [11] defines
data structures as semantics-free binary graphs (made u
of a very small set of nodes, edges and names). This ap-

proach isconstructive(or bottom-up) in that operational o <olv h S OMS) |
: : f 1 r more precisely the Data Management System (DMS) language,
models and transformations are built by assembling elemen generally called Data Manipulation Language. or DML for short,

tary t_)uilding blocks. The approgch we propose here is_ based For simplicity, we make the hypothesis that the wrapper query lan-
on high-level data model that includes a greater variety of guage and the internal query language are equivalent. We refer to [5]
constructs, each of them being a natural abstraction of one for @ discussion about the problem of query equivalence.

the proposed approach, database and wrapper schemas are

Wrapper Internal Database

Language Form Language expressed in a unique wide spectrum specification model,
the so-calledGeneric Entity-Relationship modéGER),
5 g I T from which the operational data models can be derived by
g2 e 2 specialization, that is, by selecting a subset of concepts and
=0 InterScherna Query by defining restrictive assembly rules. As a result, it pro-

vides an ideal support for our query translation approach
l R — based on schema transformations. Indeed, any transforma-
. Tg::j“f;% Q, tion can be used whatever their underlying data model. For
instance, the same schema transformation can be used in a
relational schema and in an ER schema.
This section gives a short overview of the model and of
the transformation techniques. More details of this approach
can be found in [14].

Schema
Transformation

Semantic
Transformation

Database
Schema

L 4

Syntactic Transformation

Figure 1. Language and schema mappings of
awrapper query Q1into a DML query O4. 3.1. Generic Entity-Relationship model

For the need of this paper, the GER can be per-

]) o) ceived as an enriched variant of the standard entity-
is derived by application of the schema transformations ON relationship model. It includes the concepts efitity

the constructs.oQZ 'Finally, Q3is translated into a query type attribute, value domainand relationship type At-
Q4 that complies with both the database schema and theyihutes can be atomic or compound, mandatory or op-

database DML. . . tional, single-valued or multivalued. The roles of a rela-
We can now state the three main successive steps ofionship type can be labelled; it has a cardinality constraint
query translation: (a pair of integers stating the range of the number of re-
e Language mappingsyntactic translation of the wrap- ~ lationships in which any entity can appear). An attribute
per query into an internal form. has a cardinality constraint too, that states how many val-
ues can be associated with each parent instance (default is
1-1 and does not appear in graphical schemas). In gen-
eral, several properties hold, and must be declared, among
the components of an entity type: uniqueness, refer-
ential and existence constraints are just some of them.
e Language mappings and optimizati@yntactic trans- Due the wide variety of such properties, the GER in-
lation of an internal form into a query based on the cludes the generic concept of propedyoup, or group
DBMS query language. Producing an efficient execu- for short. A group is any subset of components (at-
tion strategy depends on the syntax and expressivenesgibutes and/or roles) of an entity type on which one or sev-
of both the wrapper (or internal) and DBMS query pro- eral properties are defined. The label(s) of the group
cessing capabilities. Dealing with such issues is out of specifies its propertiesd| for identifier, ref for refer-
the scope of this paper however. In [16], we present ential, excl for exclusive, and so on). For example, a
some strategies for implementing query processors andgroup of attributes of entity typ& can be declared iden-
optimizers in wrappers dedicated to COBOL systems. tifier and referential. This group models such relational
In Section 3, we describe the formal framework of re- pgttern as a primary key that simultaneously is a for-
versible transformations based on a generic data model. Ire'9n Ifey.) . .
Section 4, we present the internal query language based on T_h|s generic data mod.el can be spec.|allze.d Into any op-
the same data model. As we will see through these Sec_gratlonal model. A specialized model is bwlt' by select-
tions, reversible transformations allow internal queries to ing generic constructs and structural constraints, and by

be automatically translated in either direction between two "¢N3MiNg constructs to m?"_e them comply W't.h the con-
schemas. cept taxonomy of the specialized model. As an illustration,

the relational model, considered as an operational database
model, can be precisely defined as follows (standard ER,
UML class diagrams, IMS, Cobol, OO or XML DTD and

L . . Schemécan be defined in the same way):
Query translation is a process that relies on mappings be-

tween schemas that are built within different paradigms. In

¢ Inter-schema mappingsemantics translation of the
query using the schema transformation approach for
defining the mappings between the database and wrap
per schemas.

3. Generic transformational framework

e Selecting constructsWe select the following con-
structs: entity types, domains, attributes, identifiers
and reference attributes.

e Structural constraintsAn entity type has at least one

attribute. The valid attribute cardinalities di@1]
and[1-1] . An attribute must be atomic.

e Renaming construct#\n entity type is called a table,
an attribute is called a column, an identifier, a key and

RT-ET: Transforming a
relationship type into an
entity type.

Inverse: ET-RT

20>
—{=[z]

;

=]
z
=]
z

‘ :

1-1id: rB.B1 71-1

i i Att-ET/val: Transformi
a group of reference attributes, a foreign key. AR _A [a] Enz
type (value <4+—> 2L
representation). ﬁgla-b] E id: ‘Az
3.2. Mapping definition IR RS a-b— R >-1-N
. Disagg: Disaggregating a
A transformation consists in deriving a target sche&3ha compound attribute A [A] B
; ; : B1
from a source schenfby replacing construdt (possibly IR L "~ At B
empty) inS with a new construcC’ (possibly empty). ::; %ﬂ
More formally, considering instaneeof C and instance ab<R)—0N
c of C,a transformatiorjj can be completely defined by RT-FK: Transforming a
a pair of mappingsT,t> such thatC’ = T(C) andc’ ﬁ,'{’:;yfﬁﬁgﬂ".fﬁf type A B
= t(c) .T isthe structural mapping, that explains how to | mverse: Fk-RT “«—> Q:[a_b] Bt
replace construd® with constructC’ while t , the instance ref: B1_-tlid: B1
mapping, states how to compute instammte of C' from
any instance of C. ISA-RT: Materializing an A
ISA relationship type.
. i Inverse: RT-ISA @0-1 0-1@
3.2.1. Inverse transformation. Each transformation 5 A2 g
Y1 = <Ty,t 1> can be given an inverse transforma- |
tion X = <T,,t 5>, usually denoted~!, such that, for 5
any structureC, To(T 1(C)) = C .
MultiAtt-Serial: Replacing
. i . a multivaluated attribute A A: charA(1)
S_o far, 22 being the inverse ok, dqes not imply that Vith a series of single- A1: char (1) A21: char (5)
Y1 is the inverse of,. Moreover,Y, is not necessarily represents its instances. | | A2[1-3]: char (5 :gg[g-:l: c:ar (g)
reversible. These properties can be guaranteed only for g/verse:SerialMultiAt [0-1): char (5)
special variety of transformatiohsalled symmetrically re- g:;:;‘:;?;;ﬂ-,w A "
versible.X; is said to be a symmetrically reversible trans- | atiibute with a series of A1 A
. . 3 _ . atomic attributes that A2 < »
formation, or more simply semantics-preserving, if it is re- represent ts componen A21 zg_z;
. g . . . attributes.
versible and if its inverse is reversible too. e S B Az2 =
From now on, unless mentioned otherwise, we will work | Rename-ET or
. . RenameAtt: an entity A
on the structural part of transformations, so that we will de- [e or an attribute is AAT
note a transformation through itspart. LIEIEE E > a2
Inverse: Rename-ET or A3
Rename-Att

3.2.2. Some typical transformations.We propose in Fig-

ure 2 the most common transformational operators. In par-
ticular, these transformations are sufficient to carry out
the transformation of most ER schemas into the relational

schemas [6], and conversely. Experience suggests that a col-

lection of about thirty of such techniques can cope with

most database engineering processes, at all abstraction lev-

Figure 2. Major generic schema transforma-

tions with their inverse. Entity type and at-
tribute names as well as cardinalities
d must be replaced with actual values.

a,b,c,

els and according to all current modelling paradigms.

3 In[15], we show how XML structures can be represented in terms of
the GER.

4 In[7], a proof system has been developed to evaluate the reversibility
of a transformation.

3.2.3. Structural analysis of schema transformations.
A transformation is known to replace constr@ith con-
structC’ in schemas, to yield new schem&’ . The ef-
fect of a transformatioff in schemaS can be specified as
follows. We define a schentas a set of constructs. There-

show how this sequence can be used to automatically trans-
late queries posed @R to queries posed 081.

4.1. Model and query language

fore, set-theoretic relations and operators apply on schemas. For simplicity and clarity, we consider a binary model

Let us consider the structural functio@s, C; andCy:
e C_ returns the constructs &that have disappeared in
S
e C, returns the new constructs that appea®in
e G, returns the constructs &that are concerned b,

but that are preserved by transformation (the catalytic

constructs off).

3.2.4. Transformation sequenceA transformation se-
guence is a list of primitive transformationsS1-to-S2

= (T1 T2 ... Tn) . For instance, the application of
S1-t0-S2 = (T1 T2) on a schem&1 consists of the
application ofT2 on the schema that results from the appli-
cation of T1, so that we obtais2.

As for schema transformation, a transformation can
be inverted. The inverse sequer82-to-S1 can be de-
rived from the sequenc81-to-S1 and can be defined
as follows: if S1-to-S2 = (T1 T2 ... Tn) then
S2t0-S1 = (Tn ~! .. T2 —! T17!) whereTi !
is the inverse ofi ;and henc&1l = S2-t0-S1(S2) .In
other wordsS2-to-S1 is obtained by replacing each ori-

gin schema transformation by its inverse and by reversing e, H

the operation order.

The concepts of sequence and its inverse are used for

defined as a sub-model of the generic data model described
above. This model is compliant with standard files, SQL2
and ER models. It is expressive and generic enough to de-
scribe all the main structures and constraints that are explic-
itly offered by these data models:

e Atomic or compound attributes; single-valued or mul-
tivalued attributes;

e Reference, identifier and access groups;

e Entity types with at least one attribute and one identi-
fier;

e Binary, non cyclic relationship types, without attribute;

e ISA relations.

We provide a simple query language based on this binary
model: a query (name@Query here below) is a conjunction
of schema constructs. A query answer is a set instances of
schema constructs. Any que@uery over a schem& is
an expression whose variables are construcg dhe syn-
tax of a query is:
Query ::= Construct | Predicate | [and, Query, Query {,
| [or, Query, Query {, Query }] | [not, Query]
Predicate ::= [eq, Atom, Atom] | [less, Atom, Atom]
Construct identifies a schema construct being

defining the mappings between two schemas. The transygded or deleted by a transformation. In other words,

formational approach then consists in defining a (re-

this is one of the constructs that take part in the defini-

versible) transformation sequence which, applied to thetion of a schema transformation signatu@onstruct

source schema, produces the target schema.

includes variable(s) used to instantiate instances of the con-

As an illustration, Figure 3 shows a sequence of three stryct and it takes one of the forms presented in Table 1. The
transformations often used in database engineering procesgnderscore character is an anonymous varisitiem rep-

The first one EK-RT) replaces a foreign key into a rela-
tionship type, the second on8drial-CompAtt) aggre-
gates two attributes and the third orse(ial-MultAtt)
transform a serie of single-value attributes into a multival-
ued attribute.

3.2.5. Model translation. A model translation is a partic-

resents a variable declared in a schema construct. When
eq refers two variables of the same query, we can sim-
plify the query and omit this predicate, e.g. we need only
to write [att, Person, Id, EP, 4] instead of
[and, [att, Person, Id, EP, ID], [eq,

[ID, 4]]1 . Intable 2, we illustrate th€onstruct rep-

ular case of schema conversions [9]. It consists in translat-resentations of three constructs of Figure 3.

ing a schema expressed in a data mddsinto a schema
expressed in another data modétl whereMs andMt are
two different submodels (i.e., subsets) of GER.

4. Schema and query mapping

4.2. Schema transformation and query substitu-
tion

Let us assume that a scher8a is transformed into a
schemaS2 and the queries posed &1 have to be trans-

In this section, we show how a schema transformation lated to queries posed @R. Consider first the case where
sequence can be used to automatically translate queries bes1 is transformed intd&52 by a single primitive transfor-
tween a pair of schemas. More precisely, for a schema transmationT. The only cases we need to consider in order to

formation sequence between two schei8dsandS2, we

translate a quer@l posed onS1 to an equivalent query

S, (relational model) S,

Person Department Person
Id Dname d Department
Name Location Name Dname
Acc_Number Phone Account _1.1.—0-N— Location
Acc_Bank Phone2[0-1] Number w Phones|[1-2]
I?jne:{;ne |d Dname Bank id: Dname
i id: Id
ref. Dname |
™) (T3) .
FK-RT RTFK Serial-MultAtt MultAtt-Serial
S, Ss
Person Department i -éTZ) Person Department
T Dname Serial-CompAtt ﬁ Dname
Name L _-_ | Location » lame Location
Acc_Number 1 @ O-NPhone Account _1'10_N_ Phone
Acc_Bank Phone2[0-1] «—— gumkbef Phone2[0-1]
— id- . an| P
idid id: Dname CompaAtt-Serial r id: Dname

Figure 3. Sequence of schema transformations: a foreign key transformation followed by an aggre-
gation transformation and a transformation of serial attributes into a multi-valued one.

Construct Syntax Semantics Construct Query Language Representation
Entity type [ent, Name, Et] represents an entity type called Entity typePerson [ent, Person, EP]
Name andEt can be instantiated Attributeld of Person [att, Person, Id, EP, ID]
with instances oName Relationshi Vorks.i L p Works.i
elationshi orks-in rel, Person, Works-in,
Attribute [att, OwnerName, represents an attributattName Piyp ! Department, EP, ED]
AttName, Owner, of a constructOwnerName The B
Att] type ofOwnerNamecan be either
an entity type or a compound at-
tribute. OwnerName contains the Table 2. Examples of construct representa-

name(s) of the parent(s) of the
attribute. Att can be instantiate
with a value of the attribute asso-
ciated with the instanc®wner of

tion (EP, EDand ID represent variables).

OwnerName
Relationship [rel, ET1Name, represents a relationshipTName
type RTName, ET2Name, between entitiesET1Name and T " i Si Substituti
ET1, ET2] ET2Name ET1 and ET2 can be ransformation Signature ubstitution
instantiate with entity instances in- RenameET (name’) Q2 = [name’/name] Q1
volved in the relationship — RenameET(name)
RenameAtt (name’) «— Q2 =
. . RenameAtt(ET,name) [ET,name’/ET,name] Q1
Table 1. Syntax and semantics of the main Other (S2) — T(S1) Q2 =
constructs of the generic data model. [C —(T)/query] Q1
Other (S2) — T~ (s1) Q1 =
(inverse) [C (T ~")query] Q2

Q2 on S2 are to apply renamings and to substitute occur-
rences of constructs &.(T) (Table 3). For transformation Table 3. Schema transformation and query
sequences, the substitutions are successively applied in or- g ,pstitution.

der to obtain the final quer@2

4.3. lllustration structs ofC_ can be recovered from the extents of the re-

. . . maining schema construdts .
We illustrate these notions by giving examples of query

and update translation between two schemas. We consider FOF @ny query org4, the table of Figure 4 can be used to
the primitive schema transformatioid, T2 and T3 and translate constructs &4 (the wrapper schema) into ones

their inverse between the pair of schenSdsandS4 illus- onS1 (the database schema), resulting in quergan

trated in Figure 3T1, T2, T3 and their inverse are defined Translation of a query from S4 to S1 (Figure 5).

in Figure 4 below by means of: (1) their name (2) their struc- "Find the persons that are reachable via phone number 040-
tural functionC_ expressed in thechema form; and (3) 303030” is translated into equivalent queriesSi#h and in

the queriesjuery that state how the extents of each con- S1 by applying the substitutiorl andB.

T4: FK-RT and its inverse T1-': RT-FK Query on $4 Query on 1
Direct i J o

C_(T1) direct Query / land, land,
[att, Person, Dname, EP, | land, E [att, Person, Id, EP, ID], [att, Person, Id, EP, ID], E

[rel, Person, Works-in, Department, EP, ED], [rel, Person, Works-in, Depariment, EP, ED], [att, Person, Dname, EP, X],

[att, Department, Dname, EP, X]] [att, Department, Phone, ED, ‘040-303030']] [att, Department, Dname, ED, X],
C_(T1) inverse Query [or,

[att, Department, Phone, ED, ‘040-303030°], n

[rel, Person, works-in, Department, EP, ED] [and, f v

[att, Person, Dname, P X], E [att, Department, Phone1, ED, '040-303030']]

[att, Department, Dname, ED, X]]]

T2: Serial-CompAtt and its inverse T2"': CompAtt-Serial

C_(T2) direct Query

fatt, Person, Acc_Number, EP. X o e £ A Figure 5. Example of a query translation from
[att, Accounll.Numbelr.A(I:.)q]l @ 84 tO Sl

[att, Person, Acc_Bank, EP, X] [and,

[att, Person, Account, EP, AC],
[att, Account, Number, AC, X]]

;-n‘:‘"’ ferse ["mP’m — or standard files) are coped with, andatabase layethat is
ltt, Person, Account, EP, ACL, I dedicated to the specific database schema. While the model
e Accoumt Number A6, 2 2 layer is common to all the databases built in this model,
. rson. Acsount, £, AG), let, Person, Acc_Bank, EP, XI the wrapper/database schemas mapping is hardcoded rather
[t Account, Number, AC, X] than interpreted from mapping tables as it is the case in
T3: Serial-MultiAtt and its inverse T3-": MultAtt-Serial other approaches_
C.(T3) direct Query In this section, we will discuss the baselines of this ap-
[att, Department, Phone, ED, X] [att, Department, Phones, ED, X] @ proaCh .
[att, Department, Phone1, ED, X] [att, Department, Phones, ED, X]
C_(T3") inverse ue!
[a;(lne:ammphm,mx] T . 1] 5.1. Schema and mapping definition

i Demens et 2551 ™S

- merse 5.1.1. Model translation.In our generic approach,

model translation is defined as a model-driven transforma-
tion within the generic data model defined in Section 3. A

Figure 4. Example of schema transformations model-driven transformation applies on a schema. It can be
and the queries that state how the extents of defined bym(Ms, Mt) whereMsandMt are two differ-
each construct of C_ can be recovered from ent submodels, i.e., subsets of the generic data model. It
the extents of the remaining schema con- consists in applying the relevant transformations on the rel-
structs C'(T) . evant constructs of the schema expressellsrin such a

way that the final result complies wittit. A model-driven

transformation is expressed as a transformation plan made
5. Wrapper development up of a sequence ofcondition, action>_ o state-

ments and control structures, where condition is a structural
epredicate and action is a transformation. The meaning is ob-

Since the mapping between wrapper and databas) : 9
schemas is formally defined, we can expect them to be avious: apply actioraction on each construct that satisfies

sound basis to build the wrapper in a systematic way. In- € Predicateondition

deed, while the structural mappin§ of a transforma- As an illustration of model translation, we consider the
tion ciefines a rewriting rule that can be used to transform simplified transformation plan between the relational model

the input query, its instance mappibgstates how the in- and the.ER model (Figure 6). This transformatiop plan can
stance of the target construct can be derived from that of P& @Pplied to any schema expressed in the relational model

the source construct. Therefore, these mappings can bd/©r instance, schem&1 of Figure 3). Its execution pro-
used to define the query translation logic and the data trans9UCes tWwo result types: (1) a target schema expressed in the
formation rules of the wrapper that implements this trans- ER Model and equivalent to the source schema (in our ex-
formation. This analysis is still valid for transformation ample, the resulting target schemsE); and (2) a schema

sequences, so that complete wrappers can be formally Speé_ransformation sequence that reports all the transformations
ified by suc’h sequences applied by the transformation plan (in our example, the

Each wrapper is developed as a program componentSChema transformation sequence is made up of only one

dedicated to a specific database model and to a SpeciﬁéransformaﬂorFK-RT on Dnameof Person).
database. It comprises two parts, nametyp@adel layerin 5.1.2. Refinement transformations.Model transla-
which the aspects specific to a given data model (e.g., RDBtion provides automated mechanisms that consist in trans-

vanced processors such as DDL parsers, transformation
1- For each foreign key F of an entity type ETj that references another entity type ET, do: tOO'bOXES, reverse engineering processors and schema ana|_
apply FK-RT to F; ysis tools. In particular, DB-MAIN offers a rich set of
2 Foreachentiy type £, do: transformational operators (including semantics-preserving
. Fof:a?::fti:ﬁ;':?'i?"” OTETRT. 2pply ETRTI0 &; ones) that offers a rich set of transformational operators (in-
i E meets the preco;1 diion of ET-At, apply ET-At o E; cluding semantics-preserving ones) that allow developers to
4- For each RT relationship type R, do: define mappings in a systematic and formalized, though in-
if R meets the precondition of RT-ISA, apply RT-ISA to R; tuitive way. Another interesting feature of DB-MAIN is the
meta-CASE layer, which allows method engineers to cus-
tomize the tool and to add new concepts, functions, mod-
els and even new methods. In particular, DB-MAIN offers a
complete development languadeyager 2 through which
new functions and processors can be developed and seam-
lessly integrated into the tool. Further details on DB-MAIN
can be found in [8]. In the limited scope of this paper, we
describe the two maikloyager 2programs dedicated to the
wrapper code generation.
lating each construct of the source database into the Closesltiistory analyzer.DB-MAIN automatically generates and
constructs of another data model without attempting any Se-maintains a history log of all the transformations that are
mantic interpretation. It only captures the stru_cture of the applied when the developer carries out any engineering pro-
database schema and largely ignores the hidden semargsggs sych as wrapper schema definition. This history is com-
tic constructs. However, weakness of available databaseyetely formalized in such a way that it can be replayed, an-
models and information hiding programming practices g)y;ed and transformed. An history basically is a procedural
lead to incompleteness of database schemas that only congegcription of inter-schema mappings. The history analyzer
tains the structureexplicitly expressed in the DDL code. arses history logs and transforms them into non-procedural

For example, in Figure 3, the schen®l, being ex- snnotations that define the inter-schema object mappings.
pressed according to the relational model, exhibits a se-

quence of attributesAcc _Number and Acc _Bank of

Person) that seemingly are originated from a com-
pound attribute which was decomposed in order to com-
ply with the relational model. Another frequent example
of hidden construct elicitation is the recovery of for-
eign keys that were not explicitly declared in legacy

relational databases based on, say, old version of Ora-)
cle or Sybase. 6. Experiment

This process of semantic interpretation consists in iden-
b b The approach described in this paper has been applied

tifying and extracting all the relevant concepts underly- | actual svst ¢ fth briefly d ibed
ing a database schema. To accomplish this, we build on a2 several actual systems, two of them are brietly describe

proven approach, namely tf2B-MAIN reverse engineer- in this section. The first applicatiorA{COB) is a small

ing methodology6]. This approach has been already inte- size CQBOL test bed we have developed 0 precisely Ch(.aCk
grated in the wrapper development methodology presente&he various versions of our generator. It mcludgs a 3-file
in [16] and [17] and will not be discussed further in this pa- database that comprises examplgs of complex h|dde_n st.ruc—
per. Its key feature is twofold. First all the schemas, what- tures and constraints, together w ith a 4O.O'LOC appl'|cat|on
ever their modelling language, are expressed in the GERPrograms. The second applicatidRDB) is a (collection

Secondly, it uses the same transformational approach thar?]c similar) INFORMI_X relatlor_lal datal_aa_se(_s) dedicated to
that of this paper. taxes management in a Belgian municipality. Wrappers of

applicationB-RDB have been integrated into a database

federation controlled through a light mediator developed in
5.2. Wrapper generation support JAVA/HTML. The latter provided some functions to arbi-

trate among conflicting data from the taxes databases.

The wrapper generation is supported by the DB-MAIN We have also migrated each of them in the other tech-
tool, a general-purpose database engineering CASE anchology, which was a straightforward process, since both
meta-CASE environment that offers sophisticated databasedatabases comprises flat files/tables only. This provides
application engineering toolsets. DB-MAIN includes ad- us with two additional case studies, namé&yRDB and

Figure 6. Transformation plan between the re-
lational model and the ER model (simplified
version).

Wrapper encodersThe wrappers are automatically gen-
erated from the mapping annotations. Two wrapper inter-
faces are provided, namely SQL-based through a variant of
JDBC, and object-based. At the current time, wrapper en-
coders for COBOL files and relational data structures are
available.

B-COB. According to the architecture described in [16] and
recalled in this paper, the size of a wrapper is the sum of the | 40000
LOC of the model layer and of that of the database layer. | 35000 1
The first layer has a constant size, which is, for the current | 300001
version of the generators, of 7,500 LOC for RDB wrappers z:zzz] = Database Layer

and 4,400 LOC for COBOL wrappers. Evaluating the cost] 0 Model Layer

. . . 15000
of the database layer is more complex, since it depends of 10000

several factors: 5000 ﬂ |
0

¢ the underlying DBMS on which the wrapper is dedi- A-COB \ BCOB | ARDB \ B-RDB
cated; COOBL Wrapper

RDBMS Wrapper

¢ the size of the database and wrapper schemas;

e the number and the type of schema transformations of ~ Figure 7. LOC sizes of model and database
the sequence. layers of wrappers of the four case studies.

Table 4 specifies, for applicatio®sand B, the compo-

sition of the wrapper schema (number of entity types and The size of the wrappers can be computed from these ta-
attributeS), the number of transformations that define the bles. They are illustrated in Figure 7. The differences be-

mappings and the number of implicit constructs that have tween both technologies stem from the way the database
been elicited. Note that, due to the SlmpIICIIy of the database|ayers are generated_ In COBOL wrappers, each construct
schemas (ﬂat structures Only), th.ese figures are valid forof the wrapper schema is managed by a Specific code frag_
both COBOL and SQL technologies, and therefore apply ment (in some sense, the schema is hard-coded in the wrap-

to the four case studies. per). In RDB wrappers, thanks to the use of the ODBC in-
terface, the schema is described by a table, so that each

Wrapper Schema Transformation Implicit schema construct requires much less LOC than the COBOL

Application Size Sequence Size Constructs approach.

A 3 entity types 3 transformations 2 implicit
15 attributes structures A

B 30 entity types 60 transformations 35 implicit 7 COﬂC'USIOnS
120 attributes structures

Data wrapping is one of the most powerful techniques to
bridge existing (most often legacy) databases with modern
architectures. Its main goal is model conversion, that ad-
dresses two inverse streams, namely query translation and
data transformation.

Table 5 gives the size of the code fragment (COBOL for In this paper, we have focused on the query transla-
applicationsA and C for applications®) that is generated tion process in database wrappers. This process relies on
for each of the following constructs of the wrapper schema: a special kind of inter-schema mapping, namely sequences
entity type, attribute, implicit compound attribute and im- of transformations. By replacing the schemas constructs
plicit multivalued attribute. The table should be augmented names in the wrapper query with their database equivalent,
with the score of additional constructs for other case stud-we produce a database query that can be executed on the

Table 4. The two case studies and their size.

Ies. actual data. This systematic approach can be automated, in
such a way that wrappers can be generated based on the
Explicit constructs COBOL Wrapper RDBMS Wrapper schema mappings. A SpECiﬁC pluQ'in has been deve|0p6d
, for the DB-MAIN CASE tool. Considering two schemas
Entity Type 380 125 . .
Attribute 120 0 and their mappings, expressed by a sequence of transfor-
Implicit Compound Attribute 150 0 mations, it generates wrappers for COBOL files and rela-
Implicit Multivalued Attribute 220 55 tional databases. The approach and the tool have been ap-

plied, among others, for building federated databases mix-
ing both legacy and modern technologies.

One problem we encountered when building wrappers
is coping with non standard constructs. Indeed, the generic
model, despite its power, cannot express all integrity con-

Table 5. LOC size of explicit or implicit con-
structs.

straints. When a specific constraint is found in the reverse[13] J. Shanmugasundaram, J. Kiernan, E. J. Shekita, C. Fan, and

engineering process, it is expressed as a generic constraint,
described by a free text annotation. The wrapper genera-
tor includes in the wrapper code a skeleton that documentd14]

the constraint. It is up to the programmer to write the spe-
cific code for this constraint. Therefore, our approach can

be qualified semi-automatic. The technology we have de-[15
veloped is being integrated into a development environment

for business-to-customer applications that are built on top
of legacy databases.

References

(1]

(2]

(3]

(4]

(5]
(6]
(7]

(8]

&

(10]

(11]

(12]

S. Bergamaschi, S. Castano, D. Beneventano, and M. Vinci.
Retrieving and integrating data for multiple sources: the
momis approach. Data and Knowledge Engineerin@6,
2001.

M. J. Carey, D. Florescu, Z. G. Ives, Y. Lu, J. Shanmugasun-
daram, E. J. Shekita, and S. N. Subramanian. XPERANTO:
Publishing object-relational data as XML. WebDB (Infor-
mal Proceedings)pages 105-110, 2000.

M. Fernandez, W. Tan, and D. Suciu. Silkroute: Trading be-
tween relations and XML. IProceedings of the Ninth Inter-
national World Wide Web Conferen@900.

H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Ra-
jaraman, Y. Sagiv, J. D. Ullman, V. Vassalos, and J. Widom.
The TSIMMIS approach to mediation: Data models and
languages. Journal of Intelligent Information Systems
8(2):117-132, 1997.

G. Graefe. Query evaluation techniques for large databases.

ACM Computing Survey25(2):73-170, 1993.

J.-L. Hainaut. Introduction to database reverse engineering.
Technical report, University of Namur, 2002.

J.-L. Hainaut. Transformation of Knowledge, Information
and Data: Theory and Applicationshapter Transformation-
based Database Engineering. IDEA Group, 2005.

J.-M. Hick, V. Englebert, J. Henrard, D. Roland, and J.-L.
Hainaut. The DB-MAIN database engineering CASE tool
(version 6.5) - functions overview. Db-main technical man-
ual, Institut d’'informatique, University of Namur, 2002.

D. Lee, M. Mani, F. Chiu, and W. W. Chu. NeT and CoT:
Translating relational schemas to XML schemas using se-
mantic constraints. IACM International Conference on In-
formation and Knowledge Managemgp002.

I. Manolescu, D. Florescu, and D. K. Kossmann. Answering
{XML } queries over heterogeneous data source¥.LDB,
pages 241-250, 2001.

P. McBrien and A. Poulovassilis. Automatic migration and
wrapping of database applications - a schema transforma-
tion approach. Irinternational Conference on Conceptual
Modeling / the Entity Relationship Approagtages 96-113,
1999.

P. McBrien and A. Poulovassilis. Schema evolution in het-
erogeneous database architecturesCMSE Proceedings
Springer-Verlag, 2002.

J. Funderburk. Querying XML views of relational data. In
Proceedings of the 27th VLDB Conferen2601.

P. Thiran. Legacy Database Federation - A Combined
Reverse-Forward ApproachPhd thesis, University of Na-
mur, October 2003.

P. Thiran, F. Estievenart, J.-L. Hainaut, and G.-J. Houben.
Exporting databases in XML a conceptual and generic ap-
proach.Proc. of CAISE Workshops (WISMQ2p04.

P. Thiran and J.-L. Hainaut. Wrapper development for legacy
datareuse. Inl. C. Press, editd?/ CRE Proceeding2001.

P. Thiran, G.-J. Houben, J.-L. Hainaut, and D. Benslimane.
Updating legacy databases through wrappers: Data consis-
tency management. In I. C. Press, editMCRE Proceed-
ings, 2004.

