
Database Wrappers Development: Towards Automatic Generation

Philippe Thiran
Technische Universiteit Eindhoven

The Netherlands
ph.thiran@tue.nl

Jean-Luc Hainaut
Universit́e de Namur

Belgium
jlh@info.fundp.ac.be

Geert-Jan Houben
Technische Universiteit Eindhoven

The Netherlands
g.j.houben@tue.nl

Abstract

Wrapping databases allows them to be reused in for-
merly unplanned contexts, such as web-based applications
or federated systems. Indeed, a wrapper can provide exter-
nal clients of an existing (legacy) database with a neutral in-
terface and augmented capabilities. However, except in sim-
plistic cases where the wrapper and the database schemas
are similar, the wrapper must implement complex map-
pings: it must translate queries from the wrapper data ma-
nipulation language to the database primitives, and, con-
versely, translate extracted data into the external wrap-
per format. We have developed a generic schema mapping
framework in which wrappers can be specified formally and
generated automatically. This framework comprises a high-
level generic data model and a set of schema transforma-
tions defined for this model. This reference model makes
it possible to specify different data models in a uniform
formalism. Mappings between schemas are expressed as
sequences of reversible schema transformations. We show
how these transformations can be used to translate data
and queries between two schemas and hence to generate
as much as possible of the code of the wrappers. The gen-
eration is supported by DB-MAIN, a wide-spectrum CASE
tool.

1. Introduction

Existing data systems contain vital information that is
embedded in existing (most often legacy) databases/ flat
files and application code. In many cases, data systems in-
clude the only source of years of business rules and other
valuable information. Access to this information is of vi-

tal importance to new open environments like the Web and
to system integration in general.

A wrapper attempts to extend the usefulness of compo-
nents of the existing data systems by facilitating their in-
tegration into modern (distributed) systems. A wrapper ad-
dresses the challenge of database heterogeneity by provid-
ing a standard and common interface. This interface is made
up of: (1) awrapper schemaof the wrapped database, ex-
pressed in a canonical data model and (2) a common query
language which uses the semantics defined in the wrapper
schema. Queries on the wrapper schema are also known as
wrapper queries.

Basically, database wrapping involves two, generally
different, models, namely the database model (e.g., rela-
tional or standard files) and the wrapper model (e.g., object-
oriented or XML). The main function of a wrapper is the
translation of queries posed on the wrapper schema to the
database model, and, conversely, the translating of data
from the database model to the wrapper model.

1.1. Proposal

This paper focuses on the aspects of query and schema
translation within wrappers. We consider a generic schema
mapping framework in which wrappers can be speci-
fied formally and generated automatically. This frame-
work comprises a high-level generic data model and a set of
schema transformations defined for this model. This refer-
ence model makes it possible to specify query and schema
mappings in a uniform and unique formalism.

In this paper, we extend the work in [16] and [17] on
wrappers for legacy databases by exploring the query and
schema mappings of such wrappers. [16] introduces the
concept of wrappers that enact complex database/wrapper
schema mappings, and describes the general architecture

and functions of such wrappers. [17] addresses the problem
of consistency control when wrappers are allowed to up-
date data. The main contribution of this paper is the detailed
development of the mechanism through which schemas
and queries are translated from the wrapper schema to the
database schema, and conversely.

1.2. Related Approaches

Several research projects have already investigated this
issue related to query mappings. Unlike their approaches,
we investigate the problem from a model-independent and
schema-oriented perspective:

• Model-independent perspective.Current approaches
for wrapping databases rely on couples of models,
such as those intended to produce XML views of re-
lational schemas ([2], [3] or [13]). In this work, we
use a general formalism to reversible schema transfor-
mations [7] based on a generic high-level data model.
It provides a formal and uniform description of arbi-
trary models and the use of schema conversions be-
tween two not necessarily equivalent models. Here
we extend this work by using our schema transforma-
tions to automatically wrap queries and data between
two schemas.

• Schema-oriented perspective.Considering the issue of
mapping definition and according to [12], two main ba-
sic approaches have been used to specify them. The
first and very widespread approach ([1], [2], [3], [4]
or [10]) is query-orientedin that it provides mech-
anisms by which users define wrapper schema con-
structs as views over source schema constructs, but
do not focus on the semantics of the data sources. In
contrast, the second approach ([11] or [14]) isschema-
orientedin that mappings are defined as schema trans-
formations that are used to automate the translation
of queries. A comparison of these approaches is re-
ported in [12]. The schema-oriented approach has the
further advantage of decomposing the transformation
of schemas into a sequence of small steps, whereas
the query-oriented approach requires to directly define
constructs in one schema in terms of those in the other
schema.

We differ from the approach of [11] in using a high-level
generic data model instead of a low-level one. [11] defines
data structures as semantics-free binary graphs (made up
of a very small set of nodes, edges and names). This ap-
proach isconstructive(or bottom-up) in that operational
models and transformations are built by assembling elemen-
tary building blocks. The approach we propose here is based
on high-level data model that includes a greater variety of
constructs, each of them being a natural abstraction of one

or several constructs of lower-level models. This approach
is qualifiedby specialization(or top-down) in that an op-
erational model and its transformational operators are de-
fined by specializing (i.e., selecting, renaming, restricting)
constructs and transformations. A comparison of these ap-
proaches is given in [7]. The key advantage of thespecial-
izationapproach is that the transformations within an oper-
ational model are those of the generic model which remain
meaningful whereas the constructive approach requires to
define specific transformations for each operational model.

1.3. Paper organization

The paper is organized as follows. Section 2 presents the
generic mechanisms of query mappings within a transfor-
mational approach. We then present in Section 3 the high-
level generic data model that underpins our approach and
the primitive transformations on schemas defined in terms
of this model. In Section 4, we show how the schema trans-
formations that result from our framework can be used to
automatically translate queries. Section 5 deals with the de-
velopment of databases wrappers based on schema trans-
formations and its CASE support. Section 6 presents some
metrics of the wrapper development cost. They illustrate the
necessity of the wrapper development/construction. Finally,
Section 7 concludes this paper.

2. Transformational approach of query map-
ping

Query translation is the core function of a wrapper.
It refers to operations that translate queries between two
schemas (the database and wrapper schemas) and two lan-
guages (the database1 and wrapper query languages).

Considering the issue of translating queries from one
language to another one, our idea is to use an intermedi-
ate level, independent of all the possible operational query
languages. We therefore use an internal abstract query lan-
guage as the bridge for the translation rather than directly
translating wrapper queries into database queries.

Considering the issue of schema mapping, our approach
is to use schema transformations that provide mechanisms
for formally defining the schema correspondence between
the database and wrapper schemas, and then, on using that
equivalence to automatically perform the query mappings.

Figure 1 shows the translation process2. The wrapper
queryQ1 is first stripped off, creating an internal formQ2
that captures purely the semantics of the query. Next,Q3

1 Or more precisely the Data Management System (DMS) language,
generally called Data Manipulation Language, or DML for short.

2 For simplicity, we make the hypothesis that the wrapper query lan-
guage and the internal query language are equivalent. We refer to [5]
for a discussion about the problem of query equivalence.

Wrapper
Language

Internal
Form

Database
Language

Wr
ap

pe
r

Sc
he

ma
Da

tab
as
e

Sc
he

ma

Q� Q�

Wrapper Query
Transformation

Internal Query
Transformation

Inter-Schema Query
Transformation

Syntactic Transformation

Se
ma

nti
c

Tr
an

sfo
rm

ati
onQ� Q�

Optimization

Sc
he

ma
Tr
an

sfo
rm

ati
on

Figure 1. Language and schema mappings of
a wrapper query Q1 into a DML query Q4.

is derived by application of the schema transformations on
the constructs ofQ2. Finally, Q3 is translated into a query
Q4 that complies with both the database schema and the
database DML.

We can now state the three main successive steps of
query translation:

• Language mappings:syntactic translation of the wrap-
per query into an internal form.

• Inter-schema mappings:semantics translation of the
query using the schema transformation approach for
defining the mappings between the database and wrap-
per schemas.

• Language mappings and optimization:syntactic trans-
lation of an internal form into a query based on the
DBMS query language. Producing an efficient execu-
tion strategy depends on the syntax and expressiveness
of both the wrapper (or internal) and DBMS query pro-
cessing capabilities. Dealing with such issues is out of
the scope of this paper however. In [16], we present
some strategies for implementing query processors and
optimizers in wrappers dedicated to COBOL systems.

In Section 3, we describe the formal framework of re-
versible transformations based on a generic data model. In
Section 4, we present the internal query language based on
the same data model. As we will see through these sec-
tions, reversible transformations allow internal queries to
be automatically translated in either direction between two
schemas.

3. Generic transformational framework

Query translation is a process that relies on mappings be-
tween schemas that are built within different paradigms. In

the proposed approach, database and wrapper schemas are
expressed in a unique wide spectrum specification model,
the so-calledGeneric Entity-Relationship model(GER),
from which the operational data models can be derived by
specialization, that is, by selecting a subset of concepts and
by defining restrictive assembly rules. As a result, it pro-
vides an ideal support for our query translation approach
based on schema transformations. Indeed, any transforma-
tion can be used whatever their underlying data model. For
instance, the same schema transformation can be used in a
relational schema and in an ER schema.

This section gives a short overview of the model and of
the transformation techniques. More details of this approach
can be found in [14].

3.1. Generic Entity-Relationship model

For the need of this paper, the GER can be per-
ceived as an enriched variant of the standard entity-
relationship model. It includes the concepts ofentity
type, attribute, value domainand relationship type. At-
tributes can be atomic or compound, mandatory or op-
tional, single-valued or multivalued. The roles of a rela-
tionship type can be labelled; it has a cardinality constraint
(a pair of integers stating the range of the number of re-
lationships in which any entity can appear). An attribute
has a cardinality constraint too, that states how many val-
ues can be associated with each parent instance (default is
1-1 and does not appear in graphical schemas). In gen-
eral, several properties hold, and must be declared, among
the components of an entity type: uniqueness, refer-
ential and existence constraints are just some of them.
Due the wide variety of such properties, the GER in-
cludes the generic concept of propertygroup, or group
for short. A group is any subset of components (at-
tributes and/or roles) of an entity type on which one or sev-
eral properties are defined. The label(s) of the group
specifies its properties (id for identifier, ref for refer-
ential, excl for exclusive, and so on). For example, a
group of attributes of entity typeE can be declared iden-
tifier and referential. This group models such relational
pattern as a primary key that simultaneously is a for-
eign key.

This generic data model can be specialized into any op-
erational model. A specialized model is built by select-
ing generic constructs and structural constraints, and by
renaming constructs to make them comply with the con-
cept taxonomy of the specialized model. As an illustration,
the relational model, considered as an operational database
model, can be precisely defined as follows (standard ER,
UML class diagrams, IMS, Cobol, OO or XML DTD and
Schema3 can be defined in the same way):

• Selecting constructs.We select the following con-
structs: entity types, domains, attributes, identifiers
and reference attributes.

• Structural constraints.An entity type has at least one
attribute. The valid attribute cardinalities are[0-1]
and[1-1] . An attribute must be atomic.

• Renaming constructs.An entity type is called a table,
an attribute is called a column, an identifier, a key and
a group of reference attributes, a foreign key.

3.2. Mapping definition

A transformation consists in deriving a target schemaS’
from a source schemaS by replacing constructC (possibly
empty) inS with a new constructC’ (possibly empty).

More formally, considering instancec of Cand instance
c’ of C’ , a transformationΣ can be completely defined by
a pair of mappings<T,t> such thatC’ = T(C) andc’
= t(c) . T is the structural mapping, that explains how to
replace constructCwith constructC’ while t , the instance
mapping, states how to compute instancec’ of C’ from
any instancec of C.

3.2.1. Inverse transformation. Each transformation
Σ1 ≡ <T1,t 1> can be given an inverse transforma-
tion Σ2 ≡ <T2,t 2>, usually denotedΣ−1, such that, for
any structureC, T2(T 1(C)) = C .

So far,Σ2 being the inverse ofΣ1 does not imply that
Σ1 is the inverse ofΣ2. Moreover,Σ2 is not necessarily
reversible. These properties can be guaranteed only for a
special variety of transformations4, called symmetrically re-
versible.Σ1 is said to be a symmetrically reversible trans-
formation, or more simply semantics-preserving, if it is re-
versible and if its inverse is reversible too.

From now on, unless mentioned otherwise, we will work
on the structural part of transformations, so that we will de-
note a transformation through itsT part.

3.2.2. Some typical transformations.We propose in Fig-
ure 2 the most common transformational operators. In par-
ticular, these transformations are sufficient to carry out
the transformation of most ER schemas into the relational
schemas [6], and conversely. Experience suggests that a col-
lection of about thirty of such techniques can cope with
most database engineering processes, at all abstraction lev-
els and according to all current modelling paradigms.

3 In [15], we show how XML structures can be represented in terms of
the GER.

4 In [7], a proof system has been developed to evaluate the reversibility
of a transformation.

RT-ET: Transforming a
relationship type into an
entity type.
Inverse: ET-RT

Rename-ET or
RenameAtt: an entity
type or an attribute is
renamed.
Inverse: Rename-ET or
Rename-Att

CompAtt-Serial:
Replacing a compound
attribute with a series of
atomic attributes that
represent its component
attributes.
Inverse: Serial-CompAtt

MultiAtt-Serial: Replacing
a multivaluated attribute
with a series of single-
valued attributes that
represents its instances.
Inverse: Serial-MultiAtt

ISA-RT: Materializing an
ISA relationship type.
Inverse: RT-ISA

RT-FK: Transforming a
binary relationship type
into a foreign key.
Inverse: FK-RT

Disagg: Disaggregating a
compound attribute
Inverse: Aggreg

Att-ET/val: Transforming
an attribute into an entity
type (value
representation).
Inverse: ET-Att

RT-ET: Transforming a
relationship type into an
entity type.
Inverse: ET-RT

Rename-ET or
RenameAtt: an entity
type or an attribute is
renamed.
Inverse: Rename-ET or
Rename-Att

CompAtt-Serial:
Replacing a compound
attribute with a series of
atomic attributes that
represent its component
attributes.
Inverse: Serial-CompAtt

MultiAtt-Serial: Replacing
a multivaluated attribute
with a series of single-
valued attributes that
represents its instances.
Inverse: Serial-MultiAtt

ISA-RT: Materializing an
ISA relationship type.
Inverse: RT-ISA

RT-FK: Transforming a
binary relationship type
into a foreign key.
Inverse: FK-RT

Disagg: Disaggregating a
compound attribute
Inverse: Aggreg

Att-ET/val: Transforming
an attribute into an entity
type (value
representation).
Inverse: ET-Att

A
A1
A2[a-b]
A3

A
A1
A2[a-b]
A3

1-Na-b R

EA2
A2
id: A2

A
A1
A3

1-Na-b R

EA2
A2
id: A2

A
A1
A3

A
A1
A2

A21
A22

A
A1
A2_A21
A2_A22

a-b 0-NR

B
B1
B2
id: B1

A
A1

a-b 0-NR

B
B1
B2
id: B1

A
A1

B
B1
B2
id: B1

A
A1
B1[a-b]
ref: B1

B
B1
B2
id: B1

A
A1
B1[a-b]
ref: B1

1-1

0-1 c

1-1

0-1b

C
C1

B
B1

A
A1
A2

C
C1

B
B1

A
A1
A2

A
A1
A2

A21
A22

A
A1: char (1)
A2[1-3]: char (5)

A
A1: char (1)
A21: char (5)
A22[0-1]: char (5)
A23[0-1]: char (5)

A
AA1
A2
A3

A
A1
A2
A3

a-b 0-NR

B
B1
B2
id: B1

A
A1

a-b 0-NR

B
B1
B2
id: B1

A
A1

�
�
��

�
� �

��

��

�

��

���

	�

�����

	�

�

�

������
��

�
�

��

��

�

Figure 2. Major generic schema transforma-
tions with their inverse. Entity type and at-
tribute names as well as cardinalities a,b,c ,
d must be replaced with actual values.

3.2.3. Structural analysis of schema transformations.
A transformation is known to replace constructCwith con-
struct C’ in schemaS, to yield new schemaS’ . The ef-
fect of a transformationT in schemaS can be specified as
follows. We define a schemaS as a set of constructs. There-
fore, set-theoretic relations and operators apply on schemas.
Let us consider the structural functionsC−, C+ andC0:

• C− returns the constructs ofS that have disappeared in
S’ ;

• C+ returns the new constructs that appear inS’ ;

• C0 returns the constructs ofS that are concerned byT,
but that are preserved by transformation (the catalytic
constructs ofT).

3.2.4. Transformation sequence.A transformation se-
quence is a list ofn primitive transformations:S1-to-S2
= (T1 T2 ... Tn) . For instance, the application of
S1-to-S2 = (T1 T2) on a schemaS1 consists of the
application ofT2 on the schema that results from the appli-
cation ofT1, so that we obtainS2.

As for schema transformation, a transformation can
be inverted. The inverse sequenceS2-to-S1 can be de-
rived from the sequenceS1-to-S1 and can be defined
as follows: if S1-to-S2 = (T1 T2 ... Tn) then
S2-to-S1 = (Tn −1 ... T2 −1 T1−1) whereTi −1

is the inverse ofTi ; and henceS1 = S2-to-S1(S2) . In
other words,S2-to-S1 is obtained by replacing each ori-
gin schema transformation by its inverse and by reversing
the operation order.

The concepts of sequence and its inverse are used for
defining the mappings between two schemas. The trans-
formational approach then consists in defining a (re-
versible) transformation sequence which, applied to the
source schema, produces the target schema.

As an illustration, Figure 3 shows a sequence of three
transformations often used in database engineering process.
The first one (FK-RT) replaces a foreign key into a rela-
tionship type, the second one (Serial-CompAtt) aggre-
gates two attributes and the third one (Serial-MultAtt)
transform a serie of single-value attributes into a multival-
ued attribute.

3.2.5. Model translation. A model translation is a partic-
ular case of schema conversions [9]. It consists in translat-
ing a schema expressed in a data modelMs into a schema
expressed in another data modelMt whereMs andMt are
two different submodels (i.e., subsets) of GER.

4. Schema and query mapping

In this section, we show how a schema transformation
sequence can be used to automatically translate queries be-
tween a pair of schemas. More precisely, for a schema trans-
formation sequence between two schemasS1 andS2, we

show how this sequence can be used to automatically trans-
late queries posed onS2 to queries posed onS1.

4.1. Model and query language

For simplicity and clarity, we consider a binary model
defined as a sub-model of the generic data model described
above. This model is compliant with standard files, SQL2
and ER models. It is expressive and generic enough to de-
scribe all the main structures and constraints that are explic-
itly offered by these data models:

• Atomic or compound attributes; single-valued or mul-
tivalued attributes;

• Reference, identifier and access groups;

• Entity types with at least one attribute and one identi-
fier;

• Binary, non cyclic relationship types, without attribute;

• ISA relations.

We provide a simple query language based on this binary
model: a query (namedQuery here below) is a conjunction
of schema constructs. A query answer is a set instances of
schema constructs. Any queryQuery over a schemaS is
an expression whose variables are constructs ofS. The syn-
tax of a query is:
Query ::= Construct | Predicate | [and, Query, Query {,

Query }] | [or, Query, Query {, Query }] | [not, Query]

Predicate ::= [eq, Atom, Atom] | [less, Atom, Atom]

Construct identifies a schema construct being
added or deleted by a transformation. In other words,
this is one of the constructs that take part in the defini-
tion of a schema transformation signature.Construct
includes variable(s) used to instantiate instances of the con-
struct and it takes one of the forms presented in Table 1. The
underscore character is an anonymous variable.Atom rep-
resents a variable declared in a schema construct. When
eq refers two variables of the same query, we can sim-
plify the query and omit this predicate, e.g. we need only
to write [att, Person, Id, EP, 4] instead of
[and, [att, Person, Id, EP, ID], [eq,
[ID, 4]] . In table 2, we illustrate theConstruct rep-
resentations of three constructs of Figure 3.

4.2. Schema transformation and query substitu-
tion

Let us assume that a schemaS1 is transformed into a
schemaS2 and the queries posed onS1 have to be trans-
lated to queries posed onS2. Consider first the case where
S1 is transformed intoS2 by a single primitive transfor-
mationT. The only cases we need to consider in order to
translate a queryQ1 posed onS1 to an equivalent query

S�(relational model)

(T1)
FK-RT RT-FK

S�

CompAtt-Serial

(T2)
Serial-CompAtt

MultAtt-Serial
S�

S�

1-1 0-NWorks-in

Person
Id
Name
Account
Number
Bank

id: Id

Department
Dname
Location
Phones[1-2]
id: Dname

1-1 0-NWorks-in

Person
Id
Name
Account
Number
Bank

id: Id

Department
Dname
Location
Phone
Phone2[0-1]
id: Dname

1-1 0-NWorks-in

Person
Id
Name
Acc_Number
Acc_Bank
id: Id

Department
Dname
Location
Phone
Phone2[0-1]
id: Dname

Person
Id
Name
Acc_Number
Acc_Bank
Dname
id: Id
ref: Dname

Department
Dname
Location
Phone
Phone2[0-1]
id: Dname

(T3)
Serial-MultAtt

Figure 3. Sequence of schema transformations: a foreign key transformation followed by an aggre-
gation transformation and a transformation of serial attributes into a multi-valued one.

Construct Syntax Semantics

Entity type [ent, Name, Et] represents an entity type called
Name, andEt can be instantiated
with instances ofName

Attribute [att, OwnerName,
AttName, Owner,
Att]

represents an attributeAttName
of a constructOwnerName. The
type ofOwnerNamecan be either
an entity type or a compound at-
tribute. OwnerNamecontains the
name(s) of the parent(s) of the
attribute. Att can be instantiate
with a value of the attribute asso-
ciated with the instanceOwner of
OwnerName

Relationship
type

[rel, ET1Name,
RTName, ET2Name,
ET1, ET2]

represents a relationshipRTName
between entitiesET1Name and
ET2Name. ET1 and ET2 can be
instantiate with entity instances in-
volved in the relationship

Table 1. Syntax and semantics of the main
constructs of the generic data model.

Q2 on S2 are to apply renamings and to substitute occur-
rences of constructs ofC (T) (Table 3). For transformation
sequences, the substitutions are successively applied in or-
der to obtain the final queryQ2.

4.3. Illustration

We illustrate these notions by giving examples of query
and update translation between two schemas. We consider
the primitive schema transformationsT1, T2 andT3 and
their inverse between the pair of schemasS1 andS4 illus-
trated in Figure 3.T1, T2, T3 and their inverse are defined
in Figure 4 below by means of: (1) their name (2) their struc-
tural functionC− expressed in theschema form; and (3)
the queriesquery that state how the extents of each con-

Construct Query Language Representation

Entity typePerson [ent, Person, EP]

Attribute Id of Person [att, Person, Id, EP, ID]

Relationship typeWorks-in [rel, Person, Works-in,
Department, EP, ED]

Table 2. Examples of construct representa-
tion (EP, EDand ID represent variables).

Transformation Signature Substitution

RenameET (name’) Q2 = [name’/name] Q1
← RenameET(name)

RenameAtt (name’) ← Q2 =
RenameAtt(ET,name) [ET,name’/ET,name] Q1

Other (S2) ← T(S1) Q2 =
[C−(T)/query] Q1

Other (S2) ← T−1(S1) Q1 =
(inverse) [C−(T −1)/query] Q2

Table 3. Schema transformation and query
substitution.

structs ofC− can be recovered from the extents of the re-
maining schema constructsC’ .

For any query onS4, the table of Figure 4 can be used to
translate constructs ofS4 (the wrapper schema) into ones
onS1 (the database schema), resulting in query onS1.

Translation of a query from S4 to S1 (Figure 5).
”Find the persons that are reachable via phone number 040-
303030” is translated into equivalent queries inS4 and in
S1 by applying the substitutions1 and 3 .

����������	
��
�
�������
�������

�����
�����
�������

������
��
�
 !
�

�����
��"��������

������
��
�
 !!

���#�
�������$��

%�&'��
��"��������

��
�
��!

�����
���#�
�������

(��%�&'��
��"��������

��
�
��!
�

�����
��"��������

������
��
�
 !!

�����
�������

������
��
�
 !

)*��+,
-
.����/ 0123453

)*��+,
-
.��/ 604378

����������	
��
�
�������
�������

�����
�����
�������

������
��
�
 !
�

�����
��"��������

������
��
�
 !!

���#�
�������$��

%�&'��
��"��������

��
�
��!

�����
���#�
�������

(��%�&'��
��"��������

��
�
��!
�

�����
��"��������

������
��
�
 !!

�����
�������

������
��
�
 !

)*��+,
-
.����/ 0123453

)*��+,
-
.��/ 604378

�����
�������

9::
;
<��%�

��
�
 !�����

�����
�������

9::�=���
��
�
9>!
�

�����
9::�=���

?=�@���
9>
�
 !!

�����
�����
�������

9::�=���
��
�
9>!
�

�����
9::�=���

?=�@���
9>
�
 !!

�����
�������

9::
;
<��%�

��
�
 !

�A�B��
�C�,DEFG����	
��
�
�����A�
��,DEFG���B��
�C

�����
�������

9::
;
?=�@���

��
�
 !�����

�����
�������

9::�=���
��
�
9>!
�

�����
9::�=���

?=�@���
9>
�
 !!

�����
�����
�������

9::�=���
��
�
9>!
�

�����
9::�=���

?=�@���
9>
�
 !!

�����
�������

9::
;
?=�@���

��
�
 !

)*��+,
-
.�A��/0123453

)*��+,
-
.�A/604378

�����
�������

9::
;
<��%�

��
�
 !�����

�����
�������

9::�=���
��
�
9>!
�

�����
9::�=���

?=�@���
9>
�
 !!

�����
�����
�������

9::�=���
��
�
9>!
�

�����
9::�=���

?=�@���
9>
�
 !!

�����
�������

9::
;
<��%�

��
�
 !

�A�B��
�C�,DEFG����	
��
�
�����A�
��,DEFG���B��
�C

�����
�������

9::
;
?=�@���

��
�
 !�����

�����
�������

9::�=���
��
�
9>!
�

�����
9::�=���

?=�@���
9>
�
 !!

�����
�����
�������

9::�=���
��
�
9>!
�

�����
9::�=���

?=�@���
9>
�
 !!

�����
�������

9::
;
?=�@���

��
�
 !

)*��+,
-
.�A��/0123453

)*��+,
-
.�A/604378

����
�����
��"��������

�H����
��
�
 !
�

�����
��"��������

�H���I�
��
�
 !!

�����
��"��������

�H�����
��
�
 !

�J�B��
�C�K*C�
G����	
��
�
�����J�
��K*C�G���B��
�C

)*��+,
-
.�J��/0123453

�����
��"��������

�H�����
��
�
 !�����

��"��������
�H����

��
�
 !

�����
��"��������

�H�����
��
�
 !�����

��"��������
�H���I�

��
�
 !

)*��+,
-
.�J/604378

����
�����
��"��������

�H����
��
�
 !
�

�����
��"��������

�H���I�
��
�
 !!

�����
��"��������

�H�����
��
�
 !

�J�B��
�C�K*C�
G����	
��
�
�����J�
��K*C�G���B��
�C

)*��+,
-
.�J��/0123453

�����
��"��������

�H�����
��
�
 !�����

��"��������
�H����

��
�
 !

�����
��"��������

�H�����
��
�
 !�����

��"��������
�H���I�

��
�
 !

)*��+,
-
.�J/604378

1

2

3

3

2

1

�'��:������L�����'���

M�N���������L�����'���

Figure 4. Example of schema transformations
and the queries that state how the extents of
each construct of C can be recovered from
the extents of the remaining schema con-
structs C’(T) .

5. Wrapper development

Since the mapping between wrapper and database
schemas is formally defined, we can expect them to be a
sound basis to build the wrapper in a systematic way. In-
deed, while the structural mappingT of a transforma-
tion defines a rewriting rule that can be used to transform
the input query, its instance mappingt states how the in-
stance of the target construct can be derived from that of
the source construct. Therefore, these mappings can be
used to define the query translation logic and the data trans-
formation rules of the wrapper that implements this trans-
formation. This analysis is still valid for transformation
sequences, so that complete wrappers can be formally spec-
ified by such sequences.

Each wrapper is developed as a program component
dedicated to a specific database model and to a specific
database. It comprises two parts, namely amodel layer, in
which the aspects specific to a given data model (e.g., RDB

�����
�����
���	
��

��
�
��
�
�
�
�

�����
���	
��

�����
��
�
��
�

�����

����������

�����
�

�
��
�

�
��
�����

����������

��
���
�

�
��������������

�����

����������

��
����
�

�
��������������

�

�����
�����
���	
��

��
�
��
�
�
�
�

�����
���	
��

�
��	����

����������

��
�
�
�
�

�����

����������

��
���
�

�
��������������

�� !"#$%&�� !"#$%'

�����
�����
���	
��

��
�
��
�
�
�
�

�����
���	
��

�����
��
�
��
�

�����

����������

�����
�

�
��
�

�
��
�����

����������

��
���
�

�
��������������

�����

����������

��
����
�

�
��������������

�

�����
�����
���	
��

��
�
��
�
�
�
�

�����
���	
��

�
��	����

����������

��
�
�
�
�

�����

����������

��
���
�

�
��������������

�� !"#$%&�� !"#$%'

1

3

Figure 5. Example of a query translation from
S4 to S1.

or standard files) are coped with, and adatabase layerthat is
dedicated to the specific database schema. While the model
layer is common to all the databases built in this model,
the wrapper/database schemas mapping is hardcoded rather
than interpreted from mapping tables as it is the case in
other approaches.

In this section, we will discuss the baselines of this ap-
proach.

5.1. Schema and mapping definition

5.1.1. Model translation. In our generic approach,
model translation is defined as a model-driven transforma-
tion within the generic data model defined in Section 3. A
model-driven transformation applies on a schema. It can be
defined bym(Ms, Mt) whereMs andMt are two differ-
ent submodels, i.e., subsets of the generic data model. It
consists in applying the relevant transformations on the rel-
evant constructs of the schema expressed inMs in such a
way that the final result complies withMt . A model-driven
transformation is expressed as a transformation plan made
up of a sequence of<condition, action> state-
ments and control structures, where condition is a structural
predicate and action is a transformation. The meaning is ob-
vious: apply actionaction on each construct that satisfies
the predicatecondition .

As an illustration of model translation, we consider the
simplified transformation plan between the relational model
and the ER model (Figure 6). This transformation plan can
be applied to any schema expressed in the relational model
(for instance, schemaS1 of Figure 3). Its execution pro-
duces two result types: (1) a target schema expressed in the
ER model and equivalent to the source schema (in our ex-
ample, the resulting target schema isS2); and (2) a schema
transformation sequence that reports all the transformations
applied by the transformation plan (in our example, the
schema transformation sequence is made up of only one
transformationFK-RT onDnameof Person).

5.1.2. Refinement transformations.Model transla-
tion provides automated mechanisms that consist in trans-

1- For each foreign key F of an entity type ET�that references another entity type ET�do:
apply FK-RT to F;

2- For each entity type E, do:
If E meets the precondition of ET-RT, apply ET-RT to E;

3- For each entity type E, do:
if E meets the precondition of ET-Att, apply ET-Att to E;

4- For each RT relationship type R, do:
if R meets the precondition of RT-ISA, apply RT-ISA to R;

Figure 6. Transformation plan between the re-
lational model and the ER model (simplified
version).

lating each construct of the source database into the closest
constructs of another data model without attempting any se-
mantic interpretation. It only captures the structure of the
database schema and largely ignores the hidden seman-
tic constructs. However, weakness of available database
models and information hiding programming practices
lead to incompleteness of database schemas that only con-
tains the structuresexplicitly expressed in the DDL code.
For example, in Figure 3, the schemaS1, being ex-
pressed according to the relational model, exhibits a se-
quence of attributes (Acc Number and Acc Bank of
Person) that seemingly are originated from a com-
pound attribute which was decomposed in order to com-
ply with the relational model. Another frequent example
of hidden construct elicitation is the recovery of for-
eign keys that were not explicitly declared in legacy
relational databases based on, say, old version of Ora-
cle or Sybase.

This process of semantic interpretation consists in iden-
tifying and extracting all the relevant concepts underly-
ing a database schema. To accomplish this, we build on a
proven approach, namely theDB-MAIN reverse engineer-
ing methodology[6]. This approach has been already inte-
grated in the wrapper development methodology presented
in [16] and [17] and will not be discussed further in this pa-
per. Its key feature is twofold. First all the schemas, what-
ever their modelling language, are expressed in the GER.
Secondly, it uses the same transformational approach than
that of this paper.

5.2. Wrapper generation support

The wrapper generation is supported by the DB-MAIN
tool, a general-purpose database engineering CASE and
meta-CASE environment that offers sophisticated database
application engineering toolsets. DB-MAIN includes ad-

vanced processors such as DDL parsers, transformation
toolboxes, reverse engineering processors and schema anal-
ysis tools. In particular, DB-MAIN offers a rich set of
transformational operators (including semantics-preserving
ones) that offers a rich set of transformational operators (in-
cluding semantics-preserving ones) that allow developers to
define mappings in a systematic and formalized, though in-
tuitive way. Another interesting feature of DB-MAIN is the
meta-CASE layer, which allows method engineers to cus-
tomize the tool and to add new concepts, functions, mod-
els and even new methods. In particular, DB-MAIN offers a
complete development language,Voyager 2, through which
new functions and processors can be developed and seam-
lessly integrated into the tool. Further details on DB-MAIN
can be found in [8]. In the limited scope of this paper, we
describe the two mainVoyager 2programs dedicated to the
wrapper code generation.

History analyzer.DB-MAIN automatically generates and
maintains a history log of all the transformations that are
applied when the developer carries out any engineering pro-
cess such as wrapper schema definition. This history is com-
pletely formalized in such a way that it can be replayed, an-
alyzed and transformed. An history basically is a procedural
description of inter-schema mappings. The history analyzer
parses history logs and transforms them into non-procedural
annotations that define the inter-schema object mappings.

Wrapper encoders.The wrappers are automatically gen-
erated from the mapping annotations. Two wrapper inter-
faces are provided, namely SQL-based through a variant of
JDBC, and object-based. At the current time, wrapper en-
coders for COBOL files and relational data structures are
available.

6. Experiment

The approach described in this paper has been applied
on several actual systems; two of them are briefly described
in this section. The first application (A-COB) is a small
size COBOL test bed we have developed to precisely check
the various versions of our generator. It includes a 3-file
database that comprises examples of complex hidden struc-
tures and constraints, together with a 400-LOC application
programs. The second application (B-RDB) is a (collection
of similar) INFORMIX relational database(s) dedicated to
taxes management in a Belgian municipality. Wrappers of
applicationB-RDB have been integrated into a database
federation controlled through a light mediator developed in
JAVA/HTML. The latter provided some functions to arbi-
trate among conflicting data from the taxes databases.

We have also migrated each of them in the other tech-
nology, which was a straightforward process, since both
databases comprises flat files/tables only. This provides
us with two additional case studies, namelyA-RDB and

B-COB. According to the architecture described in [16] and
recalled in this paper, the size of a wrapper is the sum of the
LOC of the model layer and of that of the database layer.
The first layer has a constant size, which is, for the current
version of the generators, of 7,500 LOC for RDB wrappers
and 4,400 LOC for COBOL wrappers. Evaluating the cost
of the database layer is more complex, since it depends of
several factors:

• the underlying DBMS on which the wrapper is dedi-
cated;

• the size of the database and wrapper schemas;

• the number and the type of schema transformations of
the sequence.

Table 4 specifies, for applicationsA andB, the compo-
sition of the wrapper schema (number of entity types and
attributes), the number of transformations that define the
mappings and the number of implicit constructs that have
been elicited. Note that, due to the simplicity of the database
schemas (flat structures only), these figures are valid for
both COBOL and SQL technologies, and therefore apply
to the four case studies.

Wrapper Schema Transformation Implicit
Application Size Sequence Size Constructs

A 3 entity types 3 transformations 2 implicit
15 attributes structures

B 30 entity types 60 transformations 35 implicit
120 attributes structures

Table 4. The two case studies and their size.

Table 5 gives the size of the code fragment (COBOL for
applicationsA and C for applicationsB) that is generated
for each of the following constructs of the wrapper schema:
entity type, attribute, implicit compound attribute and im-
plicit multivalued attribute. The table should be augmented
with the score of additional constructs for other case stud-
ies.

Explicit constructs COBOL Wrapper RDBMS Wrapper

Entity Type 380 125

Attribute 120 40

Implicit Compound Attribute 150 40

Implicit Multivalued Attribute 220 55

Table 5. LOC size of explicit or implicit con-
structs.

�

����

�����

�����

�����

�����

�����

�����

�����

�
�
�	

�
�	
 �

�
��

�
��

�		

������� ��
���������

��������
����

�����
����

Figure 7. LOC sizes of model and database
layers of wrappers of the four case studies.

The size of the wrappers can be computed from these ta-
bles. They are illustrated in Figure 7. The differences be-
tween both technologies stem from the way the database
layers are generated. In COBOL wrappers, each construct
of the wrapper schema is managed by a specific code frag-
ment (in some sense, the schema is hard-coded in the wrap-
per). In RDB wrappers, thanks to the use of the ODBC in-
terface, the schema is described by a table, so that each
schema construct requires much less LOC than the COBOL
approach.

7. Conclusions

Data wrapping is one of the most powerful techniques to
bridge existing (most often legacy) databases with modern
architectures. Its main goal is model conversion, that ad-
dresses two inverse streams, namely query translation and
data transformation.

In this paper, we have focused on the query transla-
tion process in database wrappers. This process relies on
a special kind of inter-schema mapping, namely sequences
of transformations. By replacing the schemas constructs
names in the wrapper query with their database equivalent,
we produce a database query that can be executed on the
actual data. This systematic approach can be automated, in
such a way that wrappers can be generated based on the
schema mappings. A specific plug-in has been developed
for the DB-MAIN CASE tool. Considering two schemas
and their mappings, expressed by a sequence of transfor-
mations, it generates wrappers for COBOL files and rela-
tional databases. The approach and the tool have been ap-
plied, among others, for building federated databases mix-
ing both legacy and modern technologies.

One problem we encountered when building wrappers
is coping with non standard constructs. Indeed, the generic
model, despite its power, cannot express all integrity con-

straints. When a specific constraint is found in the reverse
engineering process, it is expressed as a generic constraint,
described by a free text annotation. The wrapper genera-
tor includes in the wrapper code a skeleton that documents
the constraint. It is up to the programmer to write the spe-
cific code for this constraint. Therefore, our approach can
be qualified semi-automatic. The technology we have de-
veloped is being integrated into a development environment
for business-to-customer applications that are built on top
of legacy databases.

References

[1] S. Bergamaschi, S. Castano, D. Beneventano, and M. Vinci.
Retrieving and integrating data for multiple sources: the
momis approach. Data and Knowledge Engineering, 36,
2001.

[2] M. J. Carey, D. Florescu, Z. G. Ives, Y. Lu, J. Shanmugasun-
daram, E. J. Shekita, and S. N. Subramanian. XPERANTO:
Publishing object-relational data as XML. InWebDB (Infor-
mal Proceedings), pages 105–110, 2000.

[3] M. Fernandez, W. Tan, and D. Suciu. Silkroute: Trading be-
tween relations and XML. InProceedings of the Ninth Inter-
national World Wide Web Conference, 2000.

[4] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Ra-
jaraman, Y. Sagiv, J. D. Ullman, V. Vassalos, and J. Widom.
The TSIMMIS approach to mediation: Data models and
languages. Journal of Intelligent Information Systems,
8(2):117–132, 1997.

[5] G. Graefe. Query evaluation techniques for large databases.
ACM Computing Surveys, 25(2):73–170, 1993.

[6] J.-L. Hainaut. Introduction to database reverse engineering.
Technical report, University of Namur, 2002.

[7] J.-L. Hainaut. Transformation of Knowledge, Information
and Data: Theory and Applications, chapter Transformation-
based Database Engineering. IDEA Group, 2005.

[8] J.-M. Hick, V. Englebert, J. Henrard, D. Roland, and J.-L.
Hainaut. The DB-MAIN database engineering CASE tool
(version 6.5) - functions overview. Db-main technical man-
ual, Institut d’informatique, University of Namur, 2002.

[9] D. Lee, M. Mani, F. Chiu, and W. W. Chu. NeT and CoT:
Translating relational schemas to XML schemas using se-
mantic constraints. InACM International Conference on In-
formation and Knowledge Management, 2002.

[10] I. Manolescu, D. Florescu, and D. K. Kossmann. Answering
{XML } queries over heterogeneous data sources. InVLDB,
pages 241–250, 2001.

[11] P. McBrien and A. Poulovassilis. Automatic migration and
wrapping of database applications - a schema transforma-
tion approach. InInternational Conference on Conceptual
Modeling / the Entity Relationship Approach, pages 96–113,
1999.

[12] P. McBrien and A. Poulovassilis. Schema evolution in het-
erogeneous database architectures. InCAiSE Proceedings.
Springer-Verlag, 2002.

[13] J. Shanmugasundaram, J. Kiernan, E. J. Shekita, C. Fan, and
J. Funderburk. Querying XML views of relational data. In
Proceedings of the 27th VLDB Conference, 2001.

[14] P. Thiran. Legacy Database Federation - A Combined
Reverse-Forward Approach. Phd thesis, University of Na-
mur, October 2003.

[15] P. Thiran, F. Estievenart, J.-L. Hainaut, and G.-J. Houben.
Exporting databases in XML a conceptual and generic ap-
proach.Proc. of CAiSE Workshops (WISM04), 2004.

[16] P. Thiran and J.-L. Hainaut. Wrapper development for legacy
data reuse. In I. C. Press, editor,WCRE Proceedings, 2001.

[17] P. Thiran, G.-J. Houben, J.-L. Hainaut, and D. Benslimane.
Updating legacy databases through wrappers: Data consis-
tency management. In I. C. Press, editor,WCRE Proceed-
ings, 2004.

