
A Generic Approach for On-The-Fly Adding

of Context-aware Features to Existing Websites
William Van Woensel
Vrije Universiteit Brussel

Pleinlaan 2, 1000 Brussel, Belgium

+32 2 629 3754

William.Van.Woensel@vub.ac.be

Sven Casteleyn
Universitat Politècnica de València

Camino de Vera, 46022 Valencia, Spain

+34 963 873 576

Sven.Casteleyn@upv.es

Olga De Troyer
Vrije Universiteit Brussel

Pleinlaan 2, 1000 Brussel, Belgium

+32 2 629 3504

Olga.Detroyer@vub.ac.be

ABSTRACT

More and more, mobile devices act as personal information

managers and are able to obtain rich contextual information on the

user’s environment. Mobile, context-aware web applications can

exploit this information to better address the needs of mobile users.

Currently, such websites are either developed separately from their

associated desktop-oriented version, or both versions are created

simultaneously by employing methodologies that support multi-

platform context-aware websites, requiring an extensive engineering

effort. While these approaches provide a solution for developing

new websites, they go past the plethora of existing websites. To

address this issue, we present an approach for enhancing existing

websites on-the-fly with context-aware features. We first discuss the

requirements for such an adaptation process, and identify applicable

adaptation methods to realize context-aware features. Next, we

explain our generic approach, which is grounded in the use of

semantic information extracted from existing websites. Finally, we

present a concrete application of our approach that is based on the

SCOUT framework for mobile and context-aware application

development.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Techniques;

H.1.1 [Models and Principles]: Systems and Information Theory;

H.5.4 [Information Interfaces and Presentation]:

Hypertext/Hypermedia

General Terms: Design, Theory

Keywords

Mobile web, context-aware, client-side adaptation, semantic web

INTRODUCTION
In recent years, we have witnessed a rapid evolution of mobile

device capabilities. With improved processing power and memory,

better input capabilities and higher screen resolution,

today’s devices such as the iPhone or Blackberry are able to run

powerful mobile web browsers. Combined with an increased

availability of WiFi hotspots and high-speed cellular networks

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

HT’11, June 6–9, 2011, Eindhoven, The Netherlands.

Copyright 2011 ACM 978-1-4503-0256-2/11/06...$10.00.

(e.g., 3G/4G), this has lead to a continuous growth in market share

for mobile browsers (according to a study by NetMarketShare, the

market share has doubled in the last eleven months1). As a result,

there has been a significant shift in when, how and why websites are

being used. In particular, mobile users often consult websites to

quickly look up information needed for their current task (e.g., when

does the next train to the university leave) or information related to

their environment (e.g., where can I have lunch in this

neighborhood). Although mobile users can use existing desktop-

oriented websites to obtain such information, it results in a

suboptimal mobile experience, as it combines the limitations of

desktop websites with those of mobile devices.

At the same time, modern mobile devices increasingly serve as fully-

fledged personal information managers (e.g., contact information,

agenda), while also supporting location and sensing technologies

(e.g., location tracking, QR readers, RFID scanners). These new

capabilities enable websites to tailor content and services to an

individual user’s contextual information, thus making them better

suited for a mobile environment. Note that we consider the term

“contextual information” here in its broadest sense: i.e., including

personal information (e.g. preferences, characteristics, goals), device

information (e.g., type, capabilities), and environment information

(e.g., location, sensory data). Many of these websites are dedicated

context-aware mobile versions developed next to the mainstream

(desktop-oriented) website, or are realized using a multi-platform

development ethodology. These strategies are time-consuming and

costly, and only suitable for websites built from scratch.

We present an approach to enrich existing websites with context-

aware features to better satisfy the needs of mobile users. The

enrichment is done on-the-fly, while the user is consulting a

webpage, so no expensive re-engineering of a website is necessary.

Our main contribution is the automatic enhancement of existing

websites: currently, no guidelines or frameworks to add context-

aware features to existing websites are available.

We start by presenting related work (section 2). Then, we formulate

the requirements for the approach (section 3). Subsequently, in

section 4, we present adaptation methods for adding context-aware

features that are suitable to be applied on-the-fly to existing websites

in a mobile setting. We then present a three-step, semantics-based

approach for adding context-aware features to existing websites

(section 5 & 6). This approach is motivated by the increasing

availability of semantic information in websites, primarily due to the

use of semantic annotation languages (e.g., RDFa, microformats).

Such semantic information allows identifying relevant website

content that can be enhanced with context-aware features.

1http://www.netmarketshare.com/report.aspx?qprid=61&sample=37

(access date: 27th of January 2011)

Consequently, our approach consists of 1/ extracting this semantic

information from the website, 2/ matching this information with the

user’s context, in order to identify relevant website content, and 3/

adapting the webpage to realize the desired context-aware features.

In section 7, we show the feasibility of our approach by discussing a

proof-of-concept implementation based on the SCOUT framework

for mobile, context-aware application development. Finally, we

present conclusions and future work (section 8).

1. RELATED WORK
Most existing websites have been designed for access from desktop

computers with sufficient screen size, resources and input

capabilities. In order for these websites to be usable in a mobile

environment, webpages should be tailored to specific mobile

devices [14, 34] as well as to a user’s mobile context [29, 31].

Manually authoring new mobile websites (or transforming existing

desktop-oriented websites into mobile versions) is expensive and

time-consuming, especially if the specific requirements of mobile

users (e.g., context-awareness) are taken into account. For instance,

authors need to prepare multiple versions of the same website, in

order to suit different types of mobile devices (e.g., PDA, mobile

phone). Manually customizing the website to the user’s device and

context can for example be achieved by using dynamic web

templates (e.g., using languages such as PHP and JSP) and

Cascading Style Sheets (CSS).

As part of the field of Adaptive Hypermedia, multi-platform

context-aware methodologies have been developed that adapt a

website according to the user, his device and/or context. For this

purpose, the application design includes embedded conditions (e.g.,

in the form of queries [38]) or context-matching expressions [32], or

is complemented with ECA (Event-Condition-Action) rules [16] or

aspect-oriented specifications [8], each of which reference the user's

context in order to adapt the website to various contextual

parameters (e.g., device, preferences). Although such systems allow

for the adaptation specification to be hand-crafted towards the

specific content and functionality of the website, they require

extensive engineering at design time, and are not suitable for already

deployed, existing websites. In [4], context-aware browsing is

employed to navigate through hypermedia: by walking around,

information associated with the user's current context (i.e., location)

is actively pushed to the user. In physical hypermedia [10],

hypermedia nodes represent real (physical) objects with associated

digital information, which allows a user to directly view digital

content related to a nearby physical object. As was the case before,

such systems require an extensive engineering effort; also, they

typically focus on linking content to location, and do not allow more

complex matching of content to the user's general context.

On the other hand, so-called transcoding approaches enable the

adaptation of arbitrary existing websites at runtime. Although they

lack the accuracy of site-specific adaptation engineering (see above),

they allow any webpage to be tailored to the user. In such an

approach, a transcoding module transforms third-party webpages,

for instance to view them on mobile devices [14, 34]. However,

most transcoding approaches focus only on adapting to device

properties (e.g., small screen), and do not take into account the

user’s full context. More recently, the MIMOSA [29] platform has

been proposed, which takes the user’s full context into account. This

is work in progress, which (until now) only provides a HTML

parsing utility accessible by modules implementing the adaptation

logic. This means that modules can only adapt a small set of

supported websites, as the knowledge on a website’s HTML

structure and contents needs to be hard-coded in the module before

the website can be adapted. In contrast, our approach is based on the

high-level semantics of the website, which allows adaptation

strategies to be reused across arbitrary websites. Furthermore,

MIMOSA does not consider requirements arising in a mobile

environment while dealing with third-party websites.

Additionally, in most existing (automatic tailoring) approaches,

adaptation only takes place once, either when the page is being

generated (i.e., after an explicit user request) or after it has been

received by the client. In [9], an extension for WebML is presented,

where adaptation can also be triggered based on changes in context

(as is the case in our approach). Nevertheless, as for the AH systems

discussed earlier, the adaptation logic needs to be explicitly

engineered for each web application. In [35], current technologies

such as AJAX are exploited to dynamically replace certain parts of a

webpage by their adapted counterparts, which is called “instant

adaptation”. However, only the general possibilities of using

asynchronous technologies in AH systems are discussed, while we

present a generic approach for on-the-fly webpage adaptation

aiming at context-awareness.

Some works have proposed recommendations or guidelines for

building mobile and/or context-aware applications. In [22],

guidelines for designing new websites for small screen devices are

presented. In [31], these guidelines are repeated, and complemented

with a discussion of key aspects for the design of new mobile web

applications, also briefly mentioning context-awareness. In [19],

guidelines are proposed for the interaction- and user interface design

of context-aware applications. These guidelines focus on

applications to be built from scratch, and partly overlap with the

requirements formulated for our approach (see section 3). The W3C

also formulated a number of best practices to create web content and

applications suitable for mobile devices2,3. All these works present

guidelines that target new (web) applications; they do not address

issues arising when adding context-awareness on-the-fly to already

existing applications (in particular their a priori unknown content

and structure). To the best of our knowledge, there currently exist no

guidelines or generic approaches for on-the-fly adding of context-

awareness to arbitrary existing websites.

2. REQUIREMENTS
We start by discussing the requirements for our generic approach,

which are based on the fact that a priori unknown, third-party

websites need to be enhanced with features based on the user’s

context, in a mobile environment with volatile context and

constrained resources.

1. Availability of contextual information.

To add (personalized) context-aware features to a website, we need

specific information about the user (e.g., preferences, characteristics,

goals) [6], his device (e.g., type, characteristics) [23] and his context

& environment (e.g., location, sensory data) [13]. In this paper, we

consider all this information as contextual information. The range of

context-aware features that can be added will depend on the amount

and variety of contextual information available.

2 http://www.w3.org/TR/mobile-bp/ (access date: 31st of January 2011)

3 http://www.w3.org/TR/mwabp/ (access date: 31st of January 2011)

2. Suitability for a priori unknown, third-party websites.

2.1 Identifying relevant content.

Context-aware features need to be relevant for the user with respect

to his context, and added at a suitable location in the webpage.

Therefore, webpage content fragments need to be identified at a

sufficient fine-grained level, and matched with the user’s contextual

information with a sufficient degree of certainty. As our approach

targets third-party websites of which the structure and content is a

priori not known, identifying relevant content in a reliable way is

challenging.

2.2 Effect of adaptation on structure.

As we aim to realize context-aware features by adapting existing,

third-party websites with an a priori unknown structure, it is

impossible to estimate the effect of adaptation techniques on the

original structure. Therefore, the used adaptation techniques should

not overly interfere with or disrupt the original website structure

[42] (for instance, emphasizing/deemphasizing content elements

should be chosen over showing/hiding them [24]).

3. Deployable in a mobile environment.

3.1 Coping with dynamic context.

In a mobile setting, the user’s context is prone to frequent change. In

order to reflect this evolving context, the added context-aware

features should be kept up to date as the context changes (similar

issues are discussed in e.g., [9, 35]). For instance, in case the user is

walking around in the city, different parts of a tourist website

homepage (e.g., links, content fragments) become relevant as he

passes certain attractions. Therefore, after the initial adaptation of

the webpages at runtime, the pages should be dynamically re-

adapted as required by changes in context. However, frequently

adding and removing adaptations while the viewer is reading the

page might be confusing and irritating. Therefore, this should be

avoided in favor of altering existing adaptations to reflect the

changed context. This also strengthens the case against using

disruptive adaptation techniques (see req. 2.2: Effect of adaptation

on structure), as altering these kinds of adaptations will probably

confuse the user just as much.

3.2 Coping with device and connection restrictions

Extracting semantics from the website, identifying relevant content

(which also requires accessing the user’s context), and applying

adaptations to realize context-aware features can be very time-

consuming (see e.g., [29]). To be acceptable for the user, the on-the-

fly adaptation of a webpage should not delay the viewing of the

page. Therefore, the adaptation process should only be started after

the page has been fully loaded, and then proceed asynchronously

[35]. More specifically, adaptations of the page should be performed

dynamically, as more information on the user’s context becomes

available.

3. ADAPTATION METHODS FOR

CONTEXT AWARENESS
Based on a literature review of approaches for (pre-engineered)

context-awareness for mobile users, we extracted three suitable

adaptation methods to enhance existing websites with context-aware

features.

1. Context-aware recommendations. Based on the mobile user’s

context, relevant content items from the website can be

recommended to the user. A typical example includes an online

shop, where certain items, for example a souvenir, are

recommended based on the places of interest he has visited.

The information needs of the mobile user are often related to his

current context [31]. A mobile user frequently needs information

related to his profile (e.g., interests, preferences) and location

(e.g., nearby shops, visited buildings, etc). Also, mobile users

often have less time available [31], and employ mobile devices

with limited capabilities in terms of screen size and interaction

[14]. Therefore, it may be useful to recommend items on the

website that are related to the user’s context, so that he is

facilitated in finding them. Applications of (pre-engineered)

context-aware recommender systems can for example be found

in mobile tourism (e.g., [39]) and m-commerce (e.g., [21]).

2. Injection of contextual information and aids. In order to further

enhance the mobile user’s browsing experience, contextual

information can be directly injected into the currently visited

webpage, or employed to provide contextual aids. For example,

certain content (e.g., locations) can be highlighted based on

proximity to the user, and/or the walking distance to that location

can be inserted. Note that in the latter case, the injected

contextual information can also denote why the content was

highlighted (i.e., within walking distance from the user).

Examples of adaptation techniques for injecting information are

plentiful in traditional Adaptive Hypermedia, where content is

often injected by making pre-defined fragments visible

depending on the user’s context (e.g., [16]). Many AH systems

also provide contextual aids (e.g., [41]). Additionally, context-

aware transcoding also relies on adding contextual information

and links; for instance, in [29] links are added next to addresses,

pointing to a map view of the address.

3. Guiding the user through the website. Not only the currently

visited webpage can contain relevant information; other (linked)

pages in the website can as well. To help the mobile user locate

relevant information, he can be guided towards certain parts of

the website. For instance, the user can be guided towards

webpages containing products corresponding to interests (i.e.,

profile), or places he has encountered (i.e., environment).

As mentioned for the first method, the information needs of a

mobile user often depend on his context, while the constraints of

mobile web access (e.g., less time available) also make it difficult

for the user to search through the website. Therefore, the user

should be guided towards webpages containing relevant

information. This is called (direct or global) guidance in

traditional Adaptive Hypermedia, and is for example applied in

[30] where links are recommended on the current page, and in

[27] where links pointing to the next “best” pages are added.

4. GENERIC APPROACH FOR ADDING

CONTEXT-AWARE FEATURES
Based on the requirements formulated in section 3, we now present

a generic approach that outlines a step-by-step solution on how

context-aware features, as defined by the above adaptation methods

(section 4), can be realized in existing websites. The proposed

approach is generic, as different techniques can be used to realize

each of the steps. As a key element, we rely on the extraction of

semantic information from webpages, in order to help us identify

locations in a webpage where context-aware features can be added.

Figure 1 provides an overview of the proposed approach. In section

7, we validate the feasibility of our approach with a proof-of-

concept implementation.

Fig. 1. Generic approach for adding context-aware features.

In a nutshell, the approach works as follows. First, semantic

information about the content of the website is extracted (step 1).

This includes the requested webpage, but optionally also the pages

linked by this requested page. By also investigating linked pages, it

becomes possible to guide the user through the website (see section

4, method 3), and for instance recommending content items from

other pages of the website (see section 4, method 1). The semantic

information extracted from a webpage is necessary to perform the

second step, in which the content is matched to the user’s current

context (step 2). The goal of the matching process is to find relevant

content that can be enhanced with context-aware features. Access

to context information is ensured by the Context Repository, which

possibly also communicated changes in context. In the third and

final step (step 3), one or several of the context-aware methods

introduced in section 4 are applied, in order to add context-aware

features to the existing webpage. This is achieved by applying

adaptation techniques on the requested page, using the results from

the matching process. In the following sections, we discuss each of

these steps in more detail.

To illustrate our approach, let us assume that a mobile user is

visiting Brussels and consults a tourist website about Brussels.

Using our approach, we would like to inject proximity information

into the website (see method 2, section 4). In our example, the

requested page describes several tourist attractions, such as the

Atomium and the European Parliament, in a bulleted list. Following

our approach, the semantics of the content are first extracted (step

1). These semantics can for example include unique identifiers for

the attractions. Subsequently, the extracted semantics are matched to

the user’s context. By employing an existing context-aware system

such as e.g., SOCAM [18], which provides a middleware integrating

various context providers, the user’s current location (e.g., via GPS)

and the positions of various points-of-interest in the city (e.g., from

a tourist service) can be obtained. Using this positional information,

together with the extracted unique identifiers, the matching process

determines the distance from the attractions found on the webpage

to the user’s current location (step 2). Finally, the webpage is

enhanced with context-aware features (step 3): in our case, the

proximity of each tourist attraction is injected, and the closest one is

emphasized. A more elaborate version of this example has been

implemented in our proof-of-concept implementation (see section

7).

4.1 Semantic Information Extraction
As mentioned before, no specific website content or structure can be

assumed, which makes the identification of content fragments

susceptible for adding context-aware features particularly

challenging (see req. 2.1, Identifying relevant content). Therefore,

the first step consists of analyzing the requested webpage, allowing

relevant content to be identified in the following step (see section

5.2). As mentioned before, by also analyzing pages linked to the

requested page, some of the proposed context-aware methods can be

better realized (e.g., guiding the user through the website; section 4,

method 3). The required analysis is achieved by extracting the

semantics of the content, which enables us to use automated

methods for matching page content to the user’s context in the

following step.

Our generic approach allows various existing techniques to be used

to extract semantic information from websites. For example, for

specific types of (structured) content fragments, e.g. phone numbers

or addresses, the type and subject can be obtained by analyzing the

format of the content [36] and by checking for certain keywords

near these fragments [28]. Although limited, such semantics can

already be useful in certain cases (e.g., to indicate proximity to an

address on the page). In [12], so-called wrapper induction

approaches are discussed, which allow the rapid generation of site-

specific data extractors (i.e., wrappers, for example described in [11,

26]), or deducing extraction rules to configure general-purpose

wrappers (e.g., [1, 33]). Some of these approaches are semi-

automatic, which means that semantics of the extracted data need to

be manually assigned in a UI [11, 1]. Moreover, the generation and

maintenance of a site-specific wrapper is known to be difficult and

does not handle exceptions well [12]. Other extraction techniques,

such as NLP, also suffer from serious problems [5]. As was

mentioned in req. 2.1 (Identifying relevant content), we require a

mechanism that is sufficiently reliable for arbitrary, a priori

unknown websites.

On the other hand, the increasing popularity of semantic annotations

embedded in webpages (e.g., microformats, RDFa and eRDF) is a

promising evolution. Such annotations serve our goal perfectly: they

are reliable and easily extractable, and thus avoid the problems of

the aforementioned techniques. Evidently, to be usable, such

embedded annotations need to be available in the first place.

Evidence shows that an increasing number of websites contains

semantic annotations: according to the Yahoo! BOSS search API4,

close to 896 million pages are currently annotated using RDFa.

Furthermore, the use of RDFa annotations by industry giants as

Yahoo! (i.e., SearchMonkey) and Google (i.e., RichSnippets) for

enriching web search results strongly encourages widespread use of

semantic annotations. Finally, more and more website tool

developers are now supporting RDFa generation in their web

development tools (e.g., Adobe Dreamweaver), content management

systems (e.g., Drupal) and web application frameworks (e.g., Ruby

on Rails), thus providing the means for web developers to easily

integrate semantic annotations into their websites.

In essence, an RDFa annotation adds explicit meaning to webpage

elements, by utilizing (X)HTML attributes to insert keywords or

vocabulary terms into the webpage elements. For instance, consider

the RDFa code snippet below:

 <li about=”http://www.atomium.be”

 property=”rdfs:label”>Atomium

4
http://developer.yahoo.com/search/boss/boss_guide/Web_Search.html

(access date: 27th of January 2011)

This annotation denotes that the content of the element (i.e., the

string “Atomium”) is actually the label (i.e., rdfs:label) of the

resource <http://www.atomium.be>, which represents the Atomium

monument. In other words, it represents the RDF subject-predicate-

object triple <http://www.atomium.be> rdfs:label “Atomium”. As

such, it reflects the semantics of the content of the page element, and

allows third party software components to understand its meaning.

Finally, as mentioned before, the extraction process can (optionally)

also be applied to pages linked to the requested webpage. This is

done by crawling the website and performing the extraction process

for each linked page. The crawling process can be limited for

performance reasons, for example by limiting the maximum amount

of levels, or optimized by caching extracted semantics for later re-

use. This is in accordance with req. 3.2 (Coping with device and

connection restrictions). For the requested webpage, and for each of

the crawled pages, the matching process described below is

executed.

4.2 Content Matching
In the second step, the content that is relevant to the mobile user is

identified, by matching the extracted semantic information to the

user’s current context. Therefore, it is clear that we first need access

to the user’s context information (see req. 1, Availability of

contextual information). First, we discuss the issues related to this

access; next, we discuss issues that arise when matching this context

to the extracted semantics of the website.

Access to the user’s context

As shown in fig. 1, the mobile user's context information is obtained

from the Context Repository, which maintains the context model

and provides access to its information. In the literature, a variety of

context information modeling approaches is described (e.g., key-

value, object-role, ontology-based, etc.) [3], as well as frameworks

implementing context acquisition, context aggregation /

interpretation, and provisioning of context to applications [2].

Context information can range in complexity from simple/low-level

(e.g., raw GPS coordinates, key-value user preferences) to more

complex/high-level (e.g., ontology models, for instance representing

the room the user is in), where the latter is mostly derived from the

low-level data (e.g., [25]). In our generic approach, any existing

solution that is capable of maintaining and providing access to

context information can serve as context repository, and no specific

format for the used context model is assumed. Instead, the

requirements for the context model primarily depend on the

contextual information required for the desired context-aware

features. For instance, when emphasizing currently nearby

buildings, access to the user’s current position is needed; when

highlighting interesting products, a context model containing the

user’s interests is required. As such, the range of context-aware

features that can be added not only depends on the available

semantics of the website content, but also on the richness of the

user’s contextual information. Finally, it can be noted that the choice

of context model, and how well it corresponds with the format of the

extracted semantics, also influences the complexity of matching (see

next section).

As our approach adds context-aware features on-the-fly, efficient

access to the context model is important, in accordance with req. 3.2

(Coping with device and connection restrictions). Also, in order to

keep adaptations up to date over time (to fulfil req. 3.1: Coping with

dynamic context), the adaptation process should be aware of context

changes, as these changes could lead to repeating the matching step.

Depending on the capabilities of the Context Repository, this can be

achieved via push-based notifications (as in e.g., [18]), or by

continuously polling the Context Repository (pull-based

notification; e.g., [15]). In fig. 1, this is represented by the Context

Updates arrow.

Matching content to the user’s context

The goal of the matching process is to identify webpage content that

is relevant to the user’s current context. The actual process logic of

this step depends on the desired context-aware feature. For instance,

in case interesting products need to be highlighted, extracted

semantic information needs to be matched (utilizing one of the

matching techniques described below) to the user’s interests.

In general, matching identifies content of which the subject (e.g.,

<http://www.atomium.be>) either directly corresponds to specific

context model elements (e.g., user’s interests) or that is context-

relevant according to other criteria (e.g., has an absolute position

nearby the user’s current position). Existing techniques can be

applied to realize this matching, or a custom matching algorithm can

be deployed. For instance, in [17] techniques are discussed to

determine semantic relations (e.g., equivalence) between objects,

while e.g., [37] provides a survey of existing schema-based

matching approaches. The complexity of this matching also depends

on the correspondence between the format of the extracted

semantics on the one hand, and the choice of context model on the

other hand. For example, in case an object-role based context model,

as in [20], is used, matching with RDF triples extracted from RDFa

annotations will require homogenizing the data first. On the other

hand, in case Semantic web technology is used in both cases, URI

identifiers can be used to directly establish equivalence between two

resources (as in our prototype implementation, see section 7), and

RDF properties can be employed to find relations between the data.

However, it should be noted that in practice, different Semantic web

datasets tend to use different vocabularies and URIs to denote the

same domains, objects and concepts. To remedy this, the Linked

Data5 initiative encourages the re-use of well-known vocabularies,

and the use of equivalence relations such as owl:sameAs to denote

that two different resource URIs denote the same entity, or

owl:equivalenceProperty to denote equivalence between properties.

For instance, an automated linking algorithm was used to detect

equivalence relations between the resources in the DBPedia and

Geonames datasets, which were then added to both datasets using

owl:sameAs. The EquivalenceMining6 project lists existing tools for

the automated linking of Semantic web datasets.

4.3 Adding Context-aware Features
After the (semantics of the) content has been matched to the user’s

context, the requested webpage can be enhanced with context-aware

features, in order to realize the methods identified in section 4:

offering context-aware recommendations, injecting contextual

information, or guiding the user through the website. To implement

these features, adaptation techniques are applied on the requested

page. These adaptation techniques, according to [24] (which builds

on the well-known taxonomy described by Brusilovsky in [7]), can

be divided into three general categories: content adaptation (e.g.,

showing/hiding/altering content, emphasizing/de-emphasizing

5 http://linkeddata.org/

6http://esw.w3.org/TaskForces/CommunityProjects/LinkingOpenData/Equ

ivalenceMining (access date: 24th of January 2011)

content, dimming, stretchtext), adaptive navigation (e.g., link

annotation/generation/hiding, adaptive guidance) and adaptive

presentation (e.g., layout changes, sorting/ordering). The chosen

adaptation techniques, and how they are used, depend on the

context-aware feature to be added. In accordance with req. 2.2

(Effect of adaptation on structure), we recommend non-intrusive

techniques, such as emphasizing/de-emphasizing, stretchtext, link

and fragment annotation, link generation, and adaptive guidance, as

opposed to intrusive techniques such as layout changes, re-ordering

links or link hiding. Note that for some of these techniques, such as

inserting/altering content, the degree of intrusion depends on their

use; if only minor changes occur, such techniques are still

applicable. As an example of the use of non-intrusive adaptation

techniques, consider the previously mentioned tourist scenario,

where content annotation can be used to emphasize the places the

user is currently close to, while stretchtext can be employed to inject

the proximity of each place. Note that these adaptations can also

reflect the degree of relevance. For instance, places nearby the user

are more relevant to him than faraway places, and can thus be

emphasized more. In section 7.3, we present some examples of the

use of adaptation techniques to realize useful context-aware features.

We also provide a JavaScript library of the discussed adaptation

techniques, which can be re-used by any implementation following

our generic approach.

As mentioned in the previous section, since the mobile user’s

context is constantly changing, page adaptations need to be kept up

to date over time to fulfil req. 3.1 (Coping with dynamic context). In

case relevant context has been updated while the user is still viewing

the page, the matching step needs to be repeated, possibly leading to

new adaptations being applied, or existing adaptations being altered

(instead of simply being removed: see req. 3.1, Coping with

dynamic context). If, as recommended, non-intrusive adaptation

techniques were used, these changes will only have a minimal effect

on the webpage.

5. DEPLOYMENT
The different steps of the approach can be deployed either on the

client-side (i.e. the mobile device), or on an intermediary proxy or

server-side. A number of issues arise from the choice of the

deployment location, as discussed below.

The main advantage of deploying the semantic extraction process

on the server-side or on a proxy is that it relieves the mobile user’s

device from the resource-intensive process of crawling the website

and extracting semantics. Additionally, it allows the extracted

semantic information to be re-used by different clients. On the other

hand, client-side extraction works for any existing website, and does

not require additional software on the web server or proxy. In order

to perform the matching process, any chosen location needs to have

access to the user’s (dynamic) context, as provided by the mobile

device (e.g., location). In case the matching process is executed on

the client-side, the user’s context is thus directly available. On the

other hand, if this step is performed on a proxy or on the server-side,

the user’s dynamic context needs to be continuously communicated.

Finally, applying the adaptations at the server-side (or proxy) is

certainly possible when initially adapting the page (i.e., before

sending it to the client). However, keeping the page adaptations up-

to-date would require the server or proxy to regularly send updated

versions of the page, while the adaptation process at the client-side

can directly manipulate the webpage’s DOM tree, removing the

need for additional bandwidth usage.

To summarize, both client and server (or proxy) locations have

advantages and disadvantages. A hybrid deployment, where the core

process is distributed across these locations, might be a good

compromise. For instance, the server or proxy could be contacted

for the extraction of website semantics, which avoids having the

client perform the resource-intensive extraction process (including

the related crawling process); at the same time, the client, having

direct access to the user’s context and the downloaded webpage’s

DOM, could be responsible for performing the matching process

and applying the adaptation techniques.

6. PROOF-OF-CONCEPT
To validate the feasibility of our approach, we have developed

COIN (COntext-aware INjection). COIN is a client-side solution,

where all steps (semantic information extraction, the matching

process, and page adaptation) are performed on the user’s mobile

device. COIN utilizes the SCOUT (Semantic COntext-aware

Ubiquitous scouT) framework [40] to access the user’s context

information, comprising both user information (e.g., name, gender,

interests) and environment information (e.g., current location,

encountered places, etc.). In order to extract the semantics of

webpage content, COIN exploits semantic annotations (RDFa)

present in websites. As mentioned before, with an increasing

number of websites containing semantic annotations (alongside

increased support for these annotations), this does not overly limit

our application.

SCOUT is an application framework that enables the development

of context-aware mobile applications, and is written for the Android

platform. Its decentralized nature, where each client is responsible

for constructing and maintaining an individual view of the user’s

environment, is perfectly suited for the client-side deployment

approach, since all necessary context information is locally

available. SCOUT employs sensing and detection technologies (e.g.,

GPS, RFID/NFC, QR codes) to detect physical entities in the user’s

vicinity (e.g., places, buildings or other persons), and to obtain a

reference to an online data source describing the entity (e.g., some

online RDF data). Based on this online metadata, and the user’s own

profile information, SCOUT provides an integrated view of the

user’s context called the Environment Model (see fig. 2). As can be

seen, such a model resembles an undirected graph, where the nodes

represent physical entities (e.g., the Atomium, a particular

restaurant, or a souvenir shop) identified by a URI, and the edges

represent time-stamped positional relations between the user and

these entities (e.g., the user is currently nearby an entity, or was

nearby an entity from 14h30 to 14h42). Additional information

about the physical entities, obtained from their online RDF source

(e.g., containing a description, product catalog information), as well

as SCOUT-specific metadata (e.g., absolute position of encountered

entity) can also be referenced in this model. The Environment

Model is stored in RDF format.

Fig. 2. An example Environment Model.

SCOUT provides access to the Environment Model via a Query

Service, which allows an application to perform SPARQL queries

over the Environment Model. It also allows applications to register

for certain changes in the environment, using the Notification

Service. The COIN application makes use of both of these services,

in order to access and be reactive to the user’s context. For more

information on SCOUT we refer to [40].

Fig. 3. COIN architecture.

Figure 3 provides an overview of the overall COIN architecture. The

COIN webpage component (1) is a JavaScript program, and is

responsible for the extraction of content semantics represented by

RDFa annotations, which are then passed to the COIN application

in the form of RDF triples. The COIN application (2) runs on top of

the SCOUT framework, and matches the extracted semantics to the

user’s context. Subsequently, it returns a set of adaptation

commands to the webpage component, which realizes the

corresponding adaptation techniques on the current webpage. As

such, the COIN webpage component performs the “Semantic

Information Extraction” and “Adding Context-aware Features” steps

shown earlier in fig. 1; the COIN application performs the “Content

Matching” step. In addition, the COIN application receives context

updates from SCOUT, which are used to keep page adaptations up

to date (see req. 3.1, Coping with dynamic context). Finally, the

webpage component also crawls website pages linked to the current

page to check whether they contain relevant content, and therefore

also performs the “Crawling” step in fig. 1. By performing this

crawling asynchronously, and caching previously extracted

semantics, the component adheres to req. 3.2 (Coping with device

and connection restrictions).

Before we discuss the implementation of each step, we first

elaborate on the example introduced in section 5. In this scenario,

the tourist is visiting Brussels and wants to visit tourist attractions.

To find out which attractions exist, he visits Brussels’ website and

arrives at the tourist page. This page does not contain directly

relevant information, but contains a link to a page with a listing of

the major tourist attractions in Brussels. COIN has emphasized this

link (see fig. 4), as it points to a page containing relevant

information. More specifically, this linked page contains elements

representing various monuments and points-of-interest the user is

currently nearby (or has recently visited), which are considered as

context-relevant elements by the matching process (see section 7.2).

This is an example of the third method for providing context-

awareness, namely Guiding the user through the website. On this

linked page, the various attractions have been semantically

annotated with their subject (e.g., <http://www.atomium.be>) using

RDFa annotations. Based on this semantic information, COIN

searches the user’s context (in our case, his Environment Model) to

check whether he is currently nearby one of these attractions, or has

visited any of them in the recent past. Subsequently, attractions

currently (and previously) nearby the user are emphasized, while

context-sensitive information is inserted as well: the distance and

estimated travel time for currently nearby attractions, and the

visitation time and duration for previously nearby attractions (see

fig. 5). This is an example of the second method to add context-

awareness, namely Injection of contextual information and aids.

In the evening, the tourist wants to have dinner. In order to find

nearby restaurants, he visits an online travel guide. In this case, he

searches for the information using the website’s search function. On

the restaurants page, each restaurant fragment is annotated with their

concrete subject (e.g., <http://latruffenoire.be>) and their

served cuisines (e.g., Italian cuisine). COIN exploits the first piece

of semantic information, together with the fact it is near dinner time,

to emphasize restaurants that are currently nearby and inserts the

distance and estimated travel time (see method 2: Injection of

contextual information and aids). Additionally, it uses the second

part of the semantic information to recommend restaurants that serve

the tourist’s favorite cuisine, by inserting a contextual aid (see fig.

6); this realizes the first context-aware method, Context-aware

recommendations.

The sections below discuss the implementation of each step of the

general approach, and illustrate how scenarios like the one above

can be realized using COIN.

6.1 Semantic Information Extraction
The extraction of page (RDFa) annotations is performed by the

webpage component, which then forwards the found RDF triples to

the COIN application. The component uses the W3C RDFa library

to perform the extraction, and communicates with the COIN

application over HTTP via the TCP loopback interface. An example

of an HTML+RDFa snippet related to our scenario can be found

below:

<ul xmlns:rdfs="..">

<li about="http://www.atomium.be">

 <div property="rdfs:label">Atomium</div>

..

This snippet contains the necessary semantic information for the

first part of our scenario (i.e., emphasizing current and past nearby

attractions), namely, the attraction’s subject

(<http://www.atomium.be>). Other properties, such as served

cuisines for restaurants, can be annotated in a similar way. The

following RDF triple is extracted from the above snippet:

<http://www.atomium.be> rdfs:label “Atomium” .

The webpage component also implements the aforementioned

crawling process, by looking for embedded anchor tags and loading

the linked pages. This process is started after the semantics of the

initial page have been extracted and sent to the COIN application.

This implements the proposed asynchronous process (see req. 3.2,

Coping with device and connection restrictions), where adaptations

are applied as the semantics of linked pages are extracted and

matched to the user’s context.

6.2 Content Matching
The COIN application receives the extracted RDF triples from the

COIN webpage component, and starts a matching process to

determine whether the page contains context-relevant elements. It

makes use of the SCOUT Query Service in order to access the user’s

context.

We employ a custom matching process in order to match the

extracted semantics to the user’s context, relying on equivalence

between subject resources found on the page (e.g.,

<http://www.atomium.be>) and resources present in the user’s

context. As both the page semantics and context model are

represented using RDF, this equivalence can be checked directly by

comparing resource URIs (relying on the linked data principle). The

SPARQL query implementing this strategy can be found below.

More specifically, the query checks whether subject resources found

on the page correspond to attractions that are currently nearby or

were nearby less than 24 hours ago (scout:nearby; FILTER clause).

Note that this part references the positional relations present in the

user’s Environment Model (denoted by properties like

scout:nearby), which link the user to currently or past nearby

entities (see fig. 2). Furthermore, we return the time at which the

attractions were previously visited (and duration of the visit;

scout:nearbyFrom and scout:nearbyTo), together with the

coordinates of the user and the attractions (geo:lat and geo:long)

as obtained from Environment Model. This information is required

for the context-sensitive information we want to add to the webpage

(e.g., absolute distance). The generated SPARQL query looks as

follows (namespaces are omitted, [current] denotes the current time

in ms since epoch):

SELECT ?attr ?from ?to ?uLat ?uLong ?aLat ?aLong

WHERE {

?user rdf:type em:User . ?user scout:nearby ?attr .

?attr scout:nearbyFrom ?from . ?attr scout:nearbyTo ?to .

?user geo:lat ?uLat ; geo:long ?uLong .

?attr geo:lat ?aLat ; geo:long ?aLong .

FILTER (?from >= [current] - 86400000 && //24 hours

(sameTerm(?attr, <http://www.atomium.be>)

|| sameTerm(..))

};

A second example query realizes the second part of the scenario,

where the tourist is looking for a nearby restaurant serving one of

his favorite cuisines. Although the user’s context (i.e., Environment

Model) does not contain information on served cuisines, this

information was present in annotated form on the webpage, and is

thus included in the extracted semantics (in addition to the

restaurants’ subject resources). The query below extends our custom

matching process by also matching these found cuisines to the user’s

preferences, and thus illustrates further personalization. More

specifically, this query checks whether resources found on the

webpage correspond to restaurants currently nearby the user

(scout:currentlyNearby; FILTER clause) serving (one of) his

favorite cuisines (em:prefersCuisine):

SELECT ?restaurant ?cuisine ?uLat ?uLong ?rLat ?rLong

WHERE

{

 ?user rdf:type em:User ;

 em:prefersCuisine ?cuisine .

 ?user scout:currentlyNearby ?restaurant .

 ?restaurant rdf:type resto:Restaurant .

 ?user geo:lat ?uLat ; geo:long ?uLong .

 ?restaurant geo:lat ?rLat ; geo:long ?rLong .

 FILTER(

 (sameTerm(?restaurant, <http://latruffenoire.be>) &&

 sameTerm(?cuisine, <http://gaia.fdi.ucm.es/ontologies/

restaurant.owl#ItalianCuisine>) || ..) ||

 (..))

}

Queries like these are fired at the Environment Model using the

SCOUT QueryService. Note that as the crawling process ensues (for

pages linked to the requested page), new extracted triples will be

sent to this component asynchronously, triggering a new matching

process for the crawled page. Based on the results of the matching

process, adaptation commands are sent to the webpage component,

which adapts the current webpage accordingly (see next section).

Furthermore, a similar query is registered with the Notification

Service, so the COIN application is made aware of changes in the

user’s context that are related to (any) page elements. If so, new

adaptation commands are issued, which may lead to new adaptations

or the alteration of existing ones.

Developers can add support for other matching strategies by

encapsulating their strategy in a SPARQL query and providing it to

the COIN API. Future work includes making the specification of

matching strategies more user-friendly, so users themselves can add

new matching strategies or fine-tune existing ones.

Fig 4. (screenshot 1) Tourist page of Brussels’ website.

6.3 Adding Context-aware Features
When the matching process for a webpage is complete, the matching

results are used to issue adaptation commands to the COIN webpage

component. These commands perform the necessary adaptations on

the currently visited webpage.

In our implementation, we have chosen to apply link and content

annotation, fragment insertion and stretchtext (expandable text). We

realize the link and content annotations by drawing borders around

the relevant webpage elements. To denote the degree of relevance

(as mentioned in section 5.3), the color of the annotation border and

the background of the border’s rectangle are varied. For instance, in

our example, the degree of relevance of visited places depends on

the time elapsed since the visit. If a user is currently nearby the

place, green is used; less than 4 hours, orange; and for more than 4

hours ago, red is used (see fig. 5 and 6 for examples). In case the

link was annotated because it points to a page with relevant content

(i.e., to achieve method 3 of section 4), annotation occurs by

inserting a recognizable icon next to the link (see fig. 4). Stretchtext

is implemented by inserting a “more” keyword next to related

webpage elements, which is replaced by a “less” when the text is

stretched (see fig. 5 and 6). Finally, we employed fragment insertion

to recommend certain restaurants to the mobile user. This is done by

inserting an icon, specifying that the place is a restaurant, together

with the served cuisine that matched the user’s interests (see fig. 6).

Fig. 5. (screenshot 2) Page on Brussels’s attractions.

Fig. 6. (screenshot 3) List of restaurants in Brussels.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a generic approach for adding context-

aware features to existing websites in a mobile setting. Our work

considers three basic requirements, which take into account the

mobile setting, and the fact that we are dealing with a priori un-

known, third-party websites. We then present three methods for

realizing context-aware features, which were synthesized from the

literature on existing context-aware systems. Our generic approach

consists of three steps: extracting semantics from the requested

website, matching these semantics to the user’s context, and

applying adaptation to realize the desired context-aware features.

Although our work is not solely dependent on the use of semantic

annotation languages in websites (e.g., RDFa, micro-formats), they

are a strong enabling factor. To the best of our knowledge, there is

no other work described in literature that adds rich, semantics-based

context-aware features to existing websites.

As a proof-of-concept for our approach, we implemented a concrete

realization called COIN. This realization uses SCOUT, a framework

for mobile context-aware application development, to access the

user’s contextual information, and exploits RDFa annotations to

extract webpage semantics. In order to match these extracted

semantics to the user’s context, COIN applies a custom query-based

matching process. Finally, the adaptations, realizing the desired

context-aware features, are implemented by a generic JavaScript

library, which is re-usable by third party developers following our

approach.

Future work consists of implementing support for other annotation

languages (such as microformats and eRDF) and experimenting with

site-specific wrappers, in order to find out to what extent they can be

employed to extract semantic information from non-annotated

websites. Finally, we plan to investigate more user-friendly ways of

specifying matching strategies, such as an extended API or a visual

interface.

8. ACKNOWLEDGMENTS
Sven Casteleyn is supported by a European Commission Marie

Curie Intra-European Fellowship for Career Development (IEF),

FP7-PEOPLE-2009-IEF, N° 254383 (SeMaRi).

9. REFERENCES
[1] Adelberg, B. 1998. Nodose - a tool for semi-automatically

extracting structured and semistructured data from text

documents. SIGMOD Rec. 27, 2, 283-294.

[2] Baldauf, M., Dustdar, S., and Rosenberg, F. 2007. A survey on

context-aware systems. Int. J. Ad Hoc Ubiquitous Comput. 2, 4,

263-277.

[3] Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas,

D., Ranganathan, A., and Riboni, D. 2010. A survey of context

modelling and reasoning techniques. Pervasive Mob.

Comput. 6, 2 (Apr. 2010), 161-180.

[4] Bouvin, N. O., Christensen, B. G., Grønbæk, K., and Hansen, F.

A. 2003. HyCon: A framework for context-aware mobile

hypermedia. New Rev. Hyperm. Multim., 9, 1, 59-88.

[5] Brants, T. 2004. Natural language processing in information

retrieval. In Proceedings of the 14th Meeting of Computational

Linguistics in the Netherlands. 1-13.

[6] Brusilovsky, P. 1996. Methods and techniques of adaptive

hypermedia. User model. and user-adapted inter., 6, 2, 87-129.

[7] Brusilovsky, P. 2001. Adaptive hypermedia. User model. and

user-adapted inter., 11 (1-2), 87-110.

[8] Casteleyn, S., Van Woensel, W., and Houben, G.-J. 2007. A

semantics-based aspect-oriented approach to adaptation in web

engineering. In Proceedings of the 18th conference on

Hypertext and hypermedia. ACM, New York, USA, 189-198.

 [9] Ceri, S., Daniel, F., Facca, F. M., and Matera, M. 2007. Model-

driven engineering of active context-awareness. World Wide

Web 10, 4, 387-413.

[10] Challiol, C., Rossi, G., Gordillo, S., and De Cristófolo, V.

2006. Designing and implementing physical hypermedia

applications. In Proceedings of the International Conference

on Computational Science and Its Applications. Springer, 148-

157.

[11] Chang, C.-H., Hsu, C.-N., and Lui, S.-C. 2003. Automatic

information extraction from semi-structured web pages by

pattern discovery. Decis. Support Syst. 35, 1, 129-147.

[12] Chang, C.-H., Kayed, M., Girgis, M. R., and Shaalan, K. F.

2006. A survey of web information extraction systems. IEEE

Trans. on Knowl. and Data Eng. 18, 10, 1411-1428.

[13] Chen, H., Finin, T., and Joshi, A. 2003. An ontology for

context-aware pervasive computing environments. Knowl. Eng.

Rev. 18, 3, 197-207.

[14] Chen, Y., Xie, X., Ma, W.-Y., and Zhang, H.-J. 2005.

Adapting web pages for small-screen devices. IEEE Internet

Computing 9, 1, 50-56.

[15] Cheverst, K., Mitchell, K., and Davies, N. 2002. The role of

adaptive hypermedia in a context-aware tourist GUIDE.

Commun. ACM 45, 5, 47-51.

[16] Garrigos, I., Cruz, C. and Gomez, J. 2007. A prototype tool for

the automatic generation of adaptive websites. In Proceedings

of the 2nd International Workshop on Adaptation and

Evolution in Web Systems Engineering. CEUR-WS, 267.

[17] Giunchiglia, F., Yatskevich, M., and Shvaiko, P. 2007.

Semantic matching: algorithms and implementation. J. Data

Semantics IX, 1-38.

[18] Gu, T., Pung, H.K., and Zhang, D.Q. 2004. A middleware for

building context-aware mobile services. In Proceedings of

IEEE Vehicular Technology Conference. IEEE, 2656-2660.

[19] Häkkilä, J. and Mäntyjärvi, J. 2006. Developing design

guidelines for context-aware mobile applications. In

Proceedings of the 3rd international conference on Mobile

technology, applications & systems. ACM, New York, USA,

24.

[20] Henricksen, K., Indulska, J., and Rakotonirainy, A. 2002.

Modeling context information in pervasive computing systems.

In Proceedings of the 1st International Conference on

Pervasive Computing. Springer, 167-180.

[21] Hosseini-Pozveh, M., Nematbakhsh, M. A., and

Movahhedinia, N. 2009. A multidimensional approach for

context-aware recommendation in mobile commerce. CoRR

abs/0908.0982.

[22] Kärkkäinen, L. and Laarni, J. 2002. Designing for small display

screens. In Proceedings of the 2nd Nordic conference on

Human-computer interaction. ACM, New York, USA, 227-

230.

[23] Klyne, G., Reynolds, F., Woodrow, C., Ohto, H., Hjelm, J.,

Butler, M. H., Tran, L. 2004. Composite Capability/Preference

Profiles (CC/PP): structure and vocabularies 1.0. W3C

Recommendation, W3C, http://www.w3.org/Mobile/CCPP/.

[24] Knutov, E., De Bra, P., and Pechenizkiy, M. 2009. Ah 12 years

later: a comprehensive survey of adaptive hypermedia methods

and techniques. New Rev. Hyperm. Multim. 15, 1, 5-38.

[25] Korpipaa, P., Mantyjarvi, J., Kela, J., Keranen, H., and Malm,

E.-J. 2003. Managing context information in mobile devices.

IEEE Pervasive Computing 2, 3, 42-51.

[26] Liu, L., Pu, C., and Han, W. 2000. XWRAP: an XML- wrapper

construction system for web information sources. In

Proceedings of the 16th International Conference on Data

Engineering. IEEE, Washington, DC, USA, 611-621.

[27] Lutkenhouse, T., Nelson, M. L., Bollen, J. 2005. Distributed,

real-time computation of community preferences. In

Proceedings of the 16th ACM Conference on Hypertext and

Hypermedia. ACM, New York, USA, 88-97.

[28] Magnanelli, M. M. 2001. An extensible framework for web

information agents. Doctoral Thesis. Eidgenössische

Technische Hochschule Zürich, Switzerland.

[29] Malandrino, D., Mazzoni, F., Riboni, D., Bettini, C., Colajanni,

M., and Scarano, V. 2010. MIMOSA: context-aware adaptation

for ubiquitous web access. Personal and Ubiquitous

Computing 14, 4, 301-320.

[30] Mladenic, D. 1996. Personal webwatcher: design and

implementation. Technical report IJS-DP-7472. J. Stefan

Institute, Department for Intelligent Systems.

[31] Murugesan, S. and Venkatakrishnan, B. A. 2005. Addressing

the challenges of web applications on mobile handheld devices.

In Proceedings of the International Conference on Mobile

Business. IEEE, Washington, DC, USA, 199-205.

[32] Nebeling, M., Grossniklaus, M., Leone, S. and Norrie, M.

2010. Domain-specific language for context-aware web

applications. In Proceedings of the 11th International

Conference on Web Information Systems Engineering.

Springer, 471-479.

[33] Pasternack, J. and Roth, D. 2009. Extracting article text from

the web with maximum subsequence segmentation. In

Proceedings of the 18th international conference on World

Wide Web. ACM, New York, USA, 971-980.

[34] Paternò, F. and Zichittella, G. 2010. Desktop-to-mobile web

adaptation through customizable two-dimensional semantic

redesign. In Proceedings of the 3rd International Conference

on Human-Centered Software Engineering. Springer, 79-94.

[35] Putzinger, A. 2007. Towards asynchronous adaptive

hypermedia: An unobtrusive generic help system. In Workshop

Proceedings of Lernen - Wissen – Adaption. Martin-Luther-

University Halle-Wittenberg, 383-388.

[36] Schilit, B. N., Trevor, J., Hilbert, D. M., and Koh, T. K. 2001.

m-links: an infrastructure for very small internet devices. In

Proceedings of the 7th international conference on mobile

comp-uting and networking. ACM, New York, NY, USA, 122-

131.

[37] Shvaiko, P. and Euzenat, J. 2005. A survey of schema-based

matching approaches. J. Data Semantics IV, 146-171.

[38] Sluijs, K. van der, Houben, G.-J., Broekstra, J., and Casteleyn,

S. 2006. Hera-S: web design using sesame. In Proceedings of

the 6th International Conference on Web Engineering. ACM,

New York, USA, 337-344.

[39] van Setten, M., Pokraev, S., and Koolwaaij, J. 2004. Context-

aware recommendations in the mobile tourist application

compass. In Proceedings of the 3rd International Conference

on Adaptive Hypermedia and Adaptive Web-Based Systems.

Springer, 235-244.

[40] Van Woensel, W., Casteleyn, S., and Troyer, O. 2009. A

framework for decentralized, context-aware mobile applications

using semantic web technology. In Proceedings of the

Confederated International Workshops and Posters On the

Move to Meaningful Internet Systems. Springer, 88-97.

[41] Weber, G. and Brusilovsky, P. 2001. Elm-art: An adaptive

versatile system for web-based instruction. International

Journal of Artificial Intelligence in Education 12, 351-384.

[42] Wobbrock, J. O., Forlizzi, J., Hudson, S. E., and Myers, B. A.

2002. Webthumb: interaction techniques for small-screen

browsers. In Proceedings of the 15th symposium on user

interface software and technology. ACM, New York, USA,

205-208.

http://www.w3.org/Mobile/CCPP/

