
Navigation Design Support Using Reusable Navigation Templates

Peter Barna, Geert-Jan Houben, Philippe Thiran, Ad Aerts, and Flavius Frasincar
Technische Universiteit Eindhoven

PO Box 513, NL-5600 MB Eindhoven, The Netherlands
{p.barna, g.j.houben, ph.thiran, a.t.m.aerts, f.frasincar}@tue.nl

Abstract

Reuse is a fundamental concept of software design. It
has many aspects and can be applied at various levels of
abstraction. In this paper we focus on the reuse of high
level (design model) specifications of software components
for the Web. Concretely, we discuss the reuse of (parts of)
navigation models that can be deployed in different appli-
cation domains based on different data sources: navigation
templates. At the same time, such components should be
specified in a way that allows easy deployment. In this pa-
per we propose a solution to this apparent contradiction
using a component specific conceptual model. By applying
a mapping from this model to a concrete domain model, an
automatic deployment of the navigation templates can be
performed. The process of navigation template design and
deployment (including the process of defining the mapping)
is explained and demonstrated on two examples using the
Hera design methodology.

1 Introduction and Related Work

One of the major concepts of software design is reuse of
software artifacts applied at different levels of abstraction
- from reuse of system requirements to reuse of software
code, and at different levels of granularity - from reuse of
software packages or whole applications through use of de-
sign patterns [4] to reuse of classes (concepts) organized in
hierarchies. The benefits of reuse are obvious, few major in-
clude saving software development effort (avoiding redun-
dant design), facilitating the maintenance of software sys-
tems, and making the design traceable and transparent.

Due to the specific nature of the Web extensions of tra-
ditional software design methods have been proposed for
development of web applications. Practically all software
design methods for the Web consider reuse, mostly at finer
levels of granularity (libraries of generic classes/concepts).
However, flawless and practical reuse of navigation struc-
ture specification (often referred to as ”Web Patterns” or
”Web Design Patterns”) seems to be still a challenging

problem. Good overview of common web patterns is pre-
sented in [10]. The description can serve as handy guide-
lines for web designers. Existing software libraries of-
fer a wide variety of useful generic primitives that can be
(re)used during building of web applications, but they rarely
contain larger navigation patterns. Since navigation models
are usually closely coupled with concrete domains specified
by Conceptual Models (CM), to achieve the domain porta-
bility is not an easy task.

Concrete existing methods for web design benefit from
the reuse concept in various ways. WebML [3] speci-
fies the navigation structure by means of different (prede-
fined) types of units. The method allows easy and convinc-
ing composition of different units, but the (data) units are
also associated with data they present or process. Object-
oriented approaches like OO-H [5], UWE [7], or OOWS [9]
show solid approach supporting object-oriented reuse tech-
niques like class abstractions. The problem of domain
portability of navigation models in object-oriented environ-
ment using the OOHDM method is discussed in [12]. Web
design frameworks introduced there represent abstract nav-
igation models or their parts that are isolated from con-
crete domains and can be instantiated to a concrete do-
mains. The deployment process consists of deriving a con-
crete OOHDM model from a OOHDM-frame.

In this paper we propose a practical approach for design
and deployment of reusable and (domain) portable navi-
gation patterns called Navigation Templates (NT). The ap-
proach uses a mapping from a Template Conceptual Model
(TCM) describing the structure of data used within a NT,
to a concrete domain conceptual model (CM). It allows not
only to relatively easily deploy a NT to a concrete domain,
but it also facilitates the specification of possible data ma-
nipulations in NT. The mapping is a data (schema) integra-
tion model, and we can benefit from existing knowledge in
this field of research. The process of deployment of such
NT to a concrete domain can be automated by using a NT
specification and an appropriate mapping to a concrete do-
main. We explain the basic concepts of the NT design and
deployment on two examples using the Hera methodology.

1



Despite using a concrete method the proposed approach of
mapping NT to concrete domains can be used for other
methods.

Section 2 explains the requirements on NT and context
of their usage. The core of the paper is Section 3 explain-
ing the approach in details using the Hera methodology and
two examples. Possible mapping (data integration) prob-
lems and solutions are also discussed here. The current
work on software tools supporting the design and deploy-
ment of NT for Hera is briefly explained in Section 4 and
the text is concluded by Section 5.

2 Navigation Templates Overview

Navigation Template (NT) is a specification of a part of
navigation structure that can be reused for a class of (sim-
ilar) applications. A NT defines a navigation structure and
its basic business logic (functionality). A NT is in general
a (non-trivial) building block of a web application that can
be reused for many similar applications and even used mul-
tiple times in a single application in different context. An
example can be a user selection device (virtual shopping
basket) that is used in a single web application for online
shops once as a classical shopping basket for customers,
while that same NT is also used for the selection of prod-
uct categories of the customers interest (facilitating product
search).

A NT is a software component specification that:

• define navigation structure and its basic business logic
(functionality),

• is domain data independent, and

• can be deployed as a software executable.

Every NT contains a simple conceptual data model, the
Template Conceptual Model (TCM). This is a minimal
model that describes the structure of information presented
and processed by the NT. When a concrete NT is being de-
ployed, a mapping from TCM to a concrete domain is de-
fined. The structure of a concrete domain data is specified
in a concrete Conceptual Model (CM).

Figure 1 sketches how NT can be deployed within a navi-
gation model. Thick arrows represent hyperlinks (possibly)
carrying parameters (the internal structure of NT do not re-
flect any real structure and is sketched only for illustration
purposes). Thin arrows show the deployment process with
transformation of a NT specification to a concrete (part of)
navigation model based on CM. This transformation is au-
tomatic, but uses TCM to CM mapping. The situation in
Figure 1 requires two mappings, since the same shopping
basket NT is used for different data concepts (though within
the same domain). Because of the NT specification and

Page 1

Page 2 Page 3

     Navigation TemplateSB
Instance (Shopping Basket1)

 Navigation TemplateSB
Instance (Shopping Basket2)

In
(all Products1)

Out
(selection of Products1)

In
(all Products2)

Out
(selection of
Products2)

Library of
Navigation Templates

NT ToNav.
Model

Transformer

Mapping 1 Mapping 2

Nav. TemplateSB

Deployment Process

Figure 1. An example of a navigation model
with deployed NT

deployment techniques may depend on concrete methodol-
ogy/method used, in the following text we will explain prin-
ciples of NT specification and deployment using a concrete
(Hera) methodology and two examples. The first example
will demonstrate multiple use of simple NT (guided tour) in
a single application, and the second will highlight possible
problems associated with mapping of TCM to a concrete
domain and their solution.

3 Navigation Templates in Hera

For better explanation of NT we demonstrate its basic
concepts using the Hera method and two examples. In the
Hera design cycle, NT can be generated from a more ab-
stract process model, or can be designed manually. The
whole picture of the method and models is show in Figure 2.
As aforementioned, a NT contains a TCM describing the
structure of the information that is presented and processed
by the NT, and contains an appropriate Template Applica-
tion Model (TAM) that actually represents the navigation
view over TCM. TheArticulations(see [15]) represent the
mapping from the TCM to a concrete CM, ”binding” the
TCM to the concrete domain. The NT specification together
with theArticulationsis used by theNT2AM Transformerto
generate a concrete (part of) AM describing the navigation
structure and functionality of the concrete web application.
The AM is then directly used by a Hera engine for online
page generation for the web application. The architecture
of a Hera system deploying NT is in Figure 2.

2



3.1 Brief Overview of Hera

Within the Hera project [6, 15] we investigate methods
for specification of (dynamic) hypermedia presentations.
The methodology determines a number of design steps re-
sulting in a set of models. The conceptual design phase
results in constructing a Conceptual Model (CM) defining
the structure of source data used in presentations, the ap-
plication design phase results in constructing an Applica-
tion Model (AM) defining a navigation structure over the
CM and eventual data manipulation associated with user ac-
tions, and the presentation design phase produces a Presen-
tation Mode (PM) specifying the layout of presentations in a
device-independent way. All models are in Hera expressed
in RDFS [2].

These models are used by a Hera engine (a software
module running as a servlet under a Web server) perform-
ing data retrieval (possibly from multiple different sources),
and data transformations resulting in a presentation pagesin
different formats (Hera supports HTML, WML, and SMILE
for presentations without data manipulations, HTML for
presentations allowing forms and data manipulations). The
bottom part of Figure 2 shows a Hera pipeline transforma-
tions, where retrieved data is transformed subsequently to
a CM instance (CMI), AM instance (AMI), and a presen-
tation in a concrete format (e.g. HTML). All intermediate
data chunks are internally represented in RDF [8].

The Hera application modelling method is capable of ex-
pressing more advanced functionality than only a naviga-
tion view over a static data content. It supports modelling
user inputs (by means of forms) and their processing (by
means of data manipulation queries). Forms allow users
to enter arbitrary information that can be used in data ma-
nipulation queries. Hera uses SeRQL [1] RDFS query lan-
guage with slight modifications (queries are pre-processed
by the Hera engine). The modifications include a default
sessionnamespace with a number of default parameters
(e.g. sliceid for getting an instance of the root concept of
the last constructed slice,conceptidfor the name of the last
constructed slice’s root concept, etc.) that can be used in
queries. Moreover new session parameters can be declared
in AM (within QueryResultAM concepts). Theform is a
default namespace determining the form associated with a
concrete query. Examples of queries are in Sections 3.3.2
and 3.3.4.

Examples of CM in a common graphical notation (with
added multiple cardinality property expressed as a star
along concept property arrows) are in Figures 4, 6, and 8.
An AM contains basic building blocks called slices that de-
scribe the structure of navigation pages (or they parts since
they can be nested), and their linking. Slices can have root
concepts (from CM) notated as large ovals in the slice upper
part. If a slice does not have the root concept, it is a constant

Process
Model

PM2NT
Transformer

NT2AM
TransformerArticulations

Concrete
CM

Concrete
AM

CMI AMI

Concrete
PM

PresCMI Creator AMI Creator Pres. Creator

Hera Pipeline (online)

Design Process and Model Transformations (offline)

Navigation Template

TAMTCM

reffers to
to

from

used in

Data

Navigation Template
Instance

nav. view on

Figure 2. Architecture of a Hera system using
NT

slice and can then have arbitrary content. If a target of a
link is non-constant slice, the link then carries parametriza-
tion determining instantiation of the target slices (the anchor
determines what instance of the target slice root concept is
used for the target slice instantiation). A slice can contain
attributes (literal properties in CM) from a root concept and
attributes from concepts related to the root concept (bottom
part of the slice shape) connected with the root concept by
CM properties. Examples of AM are shown in Figures 5, 7,
and 9.

3.2 Guided Tour Example

On the first example we demonstrate the multiple use of
very simple NT (on purpose we chose here a very simple
one to explain the principle). The NT represents a guided
tour - step-by-step (one per web page) presentation of mul-
tiple concept instances. This concrete NT we deploy twice
in a simple museum application. Once for the presentation
of painters, and once for the presentation of paintings. For
every concrete deployment we will show a set of articula-
tions (mapping from TCM to CM).

Figure 3 shows the TCM and TAM of the guided tour
NT. It uses a special type of slice (iterator) that allows easy
implementation of guided tour. A slice of typeIterator
comes with defaultIteratorFormproviding a navigation fa-
cility through a collection of theIteminstances and allowing
to exit the iteration using theOut button. In the case of exit
the instance of the last viewedItemis provided as the output
parameter. The concrete data source containing information
about painters and paintings is specified by its CM shown
in Figure 4. Figure 5 contains an AM deploying the two
instances of the Guided Tour NT. They contain attributes

3



(Item set)

  Details
(Iterator)

Next

Item

Prev Out

title

In

Guided Tour

Out
(Item)

Set

figure

Item StringImage titlefigure

IteratorForm

Figure 3. Guided Tour NT, TCM on top, and
TAM on bottom

Technique Painting Painter
painted_by

paints

examplified_by

exemplifies

String

tname

String Integer

Image

String

String Date

title year

picture

name

biography bdate

* *

String

description

*

Figure 4. A concrete CM describing the struc-
ture of a data source containing paintings and
painters information

based on mapping from TCM to CM and also attributes not
appearing in the original NT, but are added by the designer.

3.3 Publications Example

On this example we demonstrate possible problems with
mapping from TCM to a concrete CM. This is basically a
problem of data integration. We will show some typical
cases appearing in RDFS schema integration and present
some practical solutions covering the needs of our method
(including rewriting of selection and data manipulation
queries). Most of the problems are recognized and stud-
ied in [11, 13]. The example application is a publication
database that stores publications, authors (researchers), and
research groups. The Publications NT is specified in Hera
and later deployed to existing data source with different data
structure. A set of articulations is defined.

3.3.1 Template Conceptual Model

TCM contains only these concepts, concept properties, and
literal properties that are necessary for describing the core
navigation structure and functionality (we show only adding

TechniquesList

Set

  Details
(Iterator)

Next

Painting

PrevOut

GD-Paintings
Set

IteratorForm

TechniquesList

Set

Technique

exemplified_by

Technique

tname

tname

description

Painting

title

year picture

Painter

  Details
(Iterator)

Painter
Set

GD-Painters

Set

painted_by

NextPrevOut
IteratorForm

name

bdate

biography

Painting
titleSet

paints

In

Out

In

Out

Concepts, Attributes, and Relationships added for a concrete NT instance

Concepts, Attributes, and Relationships based on mapping from TCM to CM

Figure 5. A concrete AM (paintings and
painters) deploying instances of the Guided
Tour NT

a publication) associated with a concrete NT. Figure 6
shows the CM.

3.3.2 Template Application Model

A TAM plays the role of navigation model and can
contain specification of input forms and their processing.
The Publication TAM is shown in Figure 7. The TAM
consists of three slices presenting a (list of) groups (the
Group slice), list of researchers in a particular group (the
Group.Researcherslice), and a list of publications of a re-
searcher (theResearcher.Publicationsslice). TheAddPaper
slice allows adding a publication created by a concrete (only
one in our example) researcher. For the sake of simplic-
ity the application is not complete, we omitted here more
comprehensive data manipulations, like removing of pub-
lications, adding a new researcher, management of groups,
etc. TheAddPaperquery is activated when theAddPaper
form is submitted and is:

CONSTRUCT DISTINCT
{P}rdf:type{tcm:Paper};

tcm:ptitle(Title);
tcm:url{URL};
tcm:published_at{Published};
tcm:author{Author};
tcm:year{Year}

FROM

4



{form:AddPaper}<form:Iptitle>{Title},
{form:AddPaper}<form:Iurl>{URL},
{form:AddPaper}<form:Ipub>{Published},
{session:session}<session:resID>{Author},
{form:AddPaper}<form:Iyear>{Year}

In this query a new instance of a paper is created where its
properties are taken from theAddPaperform inputs. The
value assigned to theAuthorvariable is the URI of the root
concept instance of theResearcher.Publicationslice. The
URI of the current researcher is set by theSetResearcher
query that sets the value of theresIDsession variable. Note
thesessionnamespace indicating the session default or de-
fined properties (of the uniquesessionconcept instance),
and theform namespace indicating the form concept (in-
stances) and its properties.

TheSetResearcherquery is very simple:

SELECT
R

FROM
{session:session}<session:sliceid>{R}

Thesession:sliceidis a default session variable containing
the URI of the root concept instance of the last completely
instantiated slice (thats why it is attached to theAddPaper
slice and not toResearcher.Publicationsslice, although it
contains an URI of the currentResearcher). The value of
the R variable is in the RDFS TAM specification assigned
to session:resID. It is not visible from the TAM diagram,
but together with the query definition it in RDFS file is:

<rdfs:Class rdf:ID="Query_ID101"
slice:execute="Once">

<rdfs:subClassOf rdf:resource=
"http://wwwis.win.tue.nl/
˜hera/ns/slice#Query"/>

<slice:queryString>
SELECT R
FROM {session:session}

<session:sliceid>{R}
</slice:queryString>

</rdfs:Class>

<rdfs:Class rdf:ID="QueryResult_ID101"
slice:resultName="resID"
slice:useAsSessionVar="Yes">

<rdfs:subClassOf rdf:resource=
"http://wwwis.win.tue.nl/
˜hera/ns/slice#QueryResult"/>

</rdfs:Class>

3.3.3 Mapping NT to Concrete Domains

A necessary condition for automated transformation of a
NT to AM for a concrete CM is existence of a mapping from

Paper

Researcher

Group

members

*

String

papers

*

Stringpublished_atString ptitle

nameString email

Integer

year

Stringgname

String url

Figure 6. Template Conceptual Model

Groups

Set

Researchers

Set

Group

Researcher

members

Details

Set

papers

ToAddPaper

AddPaper

AddPaper

iT iyear

iT iptitle

iT iurl

iT ipub

SetResearcher

AddPaper

Group

gname

Researcher

name

gname

name

email

Paper
ptitle year

url

Publications

Start

URL

Figure 7. Template Application Model

5



Person

Member Contributor

Project

Paper

Publication

Proceedings Journal Thesis

Topic

created_by contributed_by

String

String

String

String

String

String String

String

String

String

String

String

String

fname surname

* *

*

role

members

pname

* topics

title

link

yeartname published_as

ctitle location jtitle issue mark

Figure 8. Concrete domain CM

the abstract CM to a concrete domain model. We demon-
strate the specification of such mapping on an example and
show (some of) possible situations and solutions. Figure 8
presents a concrete CM describing similar domain of the
publications and researchers. This CM is slightly modi-
fied (for the purpose of highlighting of possible problems)
version of the CM for a Publications application prototype
running on the Hera engine. There are two categories of
mapping. The first one is concept-to-concept that facili-
tates determination of root concepts and data manipulation
queries during transformation of TAM slices into concrete
AM slices, and the second is the attribute-to-attribute map-
ping that allows the transformation of slice attributes andis
also used in query transformations.

We define now mappings of type concept-to-concept
and attribute-to-attribute. We use path expressions
specifying concept-properties chains in the form
{Concept1}property{Concept2}.... Inverse prop-
erties are notated as{Concept}property−1. If a
value(s) of a TCM property is constructed from values
of more properties in CM (concatenation) we write it
{Concept1}property1 ⊙ {Concept2}property2. The
fact that a value(s) of a TCM property is (are) retrieved
possibly from more different CM properties is captured
as {Concept1}property1 ∪ {Concept2}property2. In
this case the mapping is a union of values of given path
expressions. In this example the mappings for concepts are:

• tcm:Group has no mapping (see mapping of its at-
tribute further in the text)

• tcm:Researcheris mapped tocm:Person

• tcm:Paperis mapped tocm:Paper

For mapping of attributes we define articulations contain-
ing pairs of path expressions for TCM and corresponding
CM path expressions, the main items (bullets) mean TCM
path expressions, and subitems are corresponding CM path
expressions:

• {Group}gname, the mapping does not exist. We will
use constant mapping here

– CM: a constant string

• {Researcher}name:

– CM: {Person}fname

⊙
{Person}surname

• {Researcher}email, the mapping does not exist (the
attribute is not present in the target domain model)

• {Researcher}papers:

– CM: {Member}created by−1

∪
{Contributor}contributed by−1

• {Paper}ptitle:

– CM: {Paper}ptitle

• {Paper}published at:

– CM: {Paper}published as{Proceedings}ctitle
∪
{Paper}published as{Journal}jtitle

• {Paper}year:

– CM: {Paper}year

• {Paper}year:

– CM: {Paper}link

• {Paper}url:

– CM: {Paper}link

Further details of mappings are explained in Section 3.4.

6



3.3.4 Deployed Navigation Template

The deployed AM (an AM generated from a NT using ap-
propriate articulations) is shown in Figure 9. Some relation-
ships semantically connecting different concepts and deter-
mining data instances to be presented are replaced by more
complex queries, for instance thePaperQueryis a union of
the two queries:

SELECT X
FROM {P}contributed_by{X}

and

SELECT X
FROM {P}created_by{X}

whereP is the instance of thePersonconcept given by the
Perosn.Detailsslice instance. TheAddPaperquery is trans-
formed into two sets of queries:

CONSTRUCT DISTINCT
{P}rdf:type{cm:Paper};

cm:created_by{M}
FROM

{session:session}<session:resID>{M}

CONSTRUCT DISTINCT
{Proc}rdf:type{cm:Proceedings};

cm:ctitle{Title};
cm:link{URL};
cm:year{Year};
cm:ptitle{Published},

{P}cm:published_at{Proc}
FROM

{form:AddPaper}<form:Iptitle>{Title},
{form:AddPaper}<form:Iurl>{URL},
{form:AddPaper}<form:Ipub>{Published},
{form:AddPaper}<form:Iyear>{Year}

and

CONSTRUCT DISTINCT
{P}rdf:type{cm:Paper};

cm:created_by{M}
FROM

{session:session}<session:resID>{M}

CONSTRUCT DISTINCT
{Proc}rdf:type{cm:Journal};

cm:title{Title};
cm:link{URL};
cm:year{Year};
cm:jtitle{Published},

{P}cm:published_at{Proc}
FROM

Groups Researchers

Set

Person

Details

ToAddPaper

AddPaper

AddPaper

iT iyear

iT iptitle

iT iurl

iT ipub

SetResearcher

AddPaper1

Person

fname

fname

sname

Publications

Start

URL

ConstLink
sname

AddPaper2

Paper

Details

Set

PaperQuery

Details

Paper

title

year link

Publication

Details

published_as

Publication

Details

Proceedings

Details

ctitle

Journal

Details

jtitle

Figure 9. Deployed Publications NT

{form:AddPaper}<form:Iptitle>{Title},
{form:AddPaper}<form:Iurl>{URL},
{form:AddPaper}<form:Ipub>{Published},
{form:AddPaper}<form:Iyear>{Year}

These two sets of queries are automatically generated (as
well as two buttons in theAddPaperform - one for con-
ference and one for journal papers) due to the different at-
tribute structure for journals and conference papers. All
models are simplified (and not entirely correct). We do not
show all queries for adding papers forMemberandContrib-
utor types of authors (we show only forCreator). Really
generated models would have two specializations of the the
Perosn.DetailsandAddPaperslices.

3.4 Major Problems in TCM to CM Mapping

Considering even the simple example we showed few
typical situations, where the mapping from TCM to CM
is not trivial (like for instance the naming conflicts natu-
rally solved by paired path expressions explained in Sec-
tion 3.3.3). Most of possible situations are discussed and
classified in [13]. Concretely we name:

• data representation conflict, where corresponding lit-
eral properties in TCM and a concrete CM have dif-
ferent data types. An example is the{Paper}year

property (StringandIntegertypes).

7



• missing literal property conflict, when a TCM concept
attribute does not have its counterpart in CM. An ex-
ample would be the{tcm : Researcher}tcm : email

attribute.

• concept-property and property-concept conflicts that
can appear if a concept in TCM is modelled as a (lit-
eral) property in CM and vice versa.

• a few cases of schema isomorphism conflicts:

– a TCM concept does not have its counterpart in
CM. An example would be thetcm:Groupcon-
cept.

– a TCM concept literal property has only re-
versed counterpart in CM. An example is{tcm :

Researcher}tcm : papers that can be mapped
into {cm :Member}cm : created by−1 (or even
{cm :Contributor}cm :contributed by−1)

– a TCM literal property is mapped (composed
of) to multiple attributes in CM. An example is
{tcm : Researcher}tcm : name that is mapped
into concatenation of{cm : Person}cm :

fnamname and{cm :Person}cm :surname

• generalization conflicts, when a TCM concept is
mapped into CM concept with more specializa-
tions. An example of this would be the{tcm :

Paper}tcm :published at literal property that can be
mapped into{cm : Paper}cm : published as{cm :

Proceedings}cm : ctitle and into{cm : Paper}cm :

published as{cm :Journal}cm :jtitle

We do not mention all possible conflicts as for example in-
tegrity constraints conflicts that can arise when a more so-
phisticated constraints are put to concepts and their proper-
ties.

3.4.1 Data Representation Conflicts

In this case data types of corresponding literal properties
are not compatible. A simple type conversion is made,
concretely the type of a conflicting TCM attribute is trans-
formed (possible during the model transformation since we
can transform schemata) to the data type of correspond-
ing CM attribute. Applied to our example the{tcm :

Paper}year at type Integer in the TAM is changed to
String in the resulting AM.

3.4.2 Missing Literal Property Conflict

In this case such literal property (attribute) is omitted inre-
sulting concrete AM. The example is theemailattribute of
the Researcher.Detailsin TAM that does not appear in the
resulting AM (see Figures 7 and 9).

3.4.3 Concept-property and property-concept conflicts

If a concept in TCM is modelled as a literal property in CM
or vice versa, in our example it is not present, but the second
reversed problem property-concept would be the mapping
of {tcm :Paper}tcm : published at to {cm :Paper}cm :

published as. This conflict is discussed in Section 3.4.5.

3.4.4 A TCM Concept Does not Have its Counterpart
in CM

In this case theNT2AM Transformermust replace the miss-
ing concept with a single (virtual) constant concept, so
every its attributes are constants. In our example the de-
signers of the concrete domain model aimed it just for sin-
gle (our) group. The group name then will be replaced with
a constant string. The replacement by a constant is needed
due to the fact that some top-level slices can be based on
(non-existing) concepts. These slices are during the trans-
formation process replaced by constant slices.

3.4.5 Generalization Conflict

This problem can typically occur when the TCM concept
has specializations with different structure of its proper-
ties. The example is mapping of the{tcm : Paper}tcm :

published at attribute that can be mapped into{cm :

Paper}cm : published as{cm : Proceedings}cm : ctitle,
but also into{cm : Paper}cm : published as{cm :

Journal}cm : jtitle depending on the type of the publi-
cation (Proceedingsor Journal).

The solution to this problem should be considered for
two situations (as well as for other problems, but they ap-
pear to be simpler):

• Transformation of slices for presentation purpose (i.e.
transformation of SELECT queries). In this case the
result should the union of two queries containing both
path expressions.

• Transformation of data manipulation queries. For the
data consistency reasons the type of the manipulated
(especially when new instances are created) concept
should be determined, despite the fact there is no no-
tion of these specializations in TCM. One of existing
solutions we propose is the automated generation of
the selection input field that allows the user to choose
the type of concept to be created. In the example it
would be selection between theProceedingsandJour-
nal concepts when adding new publication.

3.4.6 A TCM Concept Property Has Only Reversed
CM Counterpart

This situation occurs when a TCM property does not have
direct counterpart in CM, but there is a CM property with

8



inverse semantics. There is no direct example, but{tcm :

Researcher}tcm : papers can be mapped to inversion of
the union of{cm : Paper}cm : created by and {cm :

Paper}cm :contributed by.

3.4.7 A TCM Literal Property is Mapped to a Con-
catenation of Multiple CM Literal Properties

This is a case when an attribute is mapped to a concatena-
tion of multiple literal properties. An example is the con-
catenation of{cm : Person}cm : fnamname and{cm :

Person}cm : surname for the{tcm : Researcher}tcm :

name. The solution is replacing of one TAM slice attribute
in TAM by more attributes in the resulting AM

4 Software Tools

The usefulness of the approach described in this text re-
lies in large extent on availability of tools supporting the
NT design and automated deployment. The most essential
tool is theNT2AM Transformer(Figure 2) that transforms
NT specification using the mapping to a concrete domain
CM to a concrete Hera AM or its part. This tool is a single
Java application that reuses some classes from Hera Media-
tor [15] for the processing of articulations.

A design support tool for the graphical specification of
mappings (articulations) is currently under development,
and is based on an extended version of the EROS RDFS
Explorer [14] that offers a convenient interface for building
SeRQL queries, and thus also supports the building of path
expressions which are the essential part of articulations.It
will allow rapid and easy specification of needed articula-
tions. The NT graphical design tool are based on existing
CM and AM Builders (for construction of TCM and TAM)
that are also used for graphical design of regular Hera ap-
plications (not using NT), the tools are being updated for
specifications of NT interfaces.

5 Conclusion

In this paper we showed principles for building domain
portable navigation templates reusing existing modelling
techniques (from Hera in our case), existing knowledge
(from the field of data integration), and also existing soft-
ware (from the Hera Mediator). Although we chose a con-
crete method for demonstrating the approach, we believe
that the idea of mapping from TCM to a concrete CM is
rather universal. The advantage of our method compared to
some other approaches lies in the possibility of accurately
specifying data manipulations within a NT that are auto-
matically transformed into proper data manipulation for a
concrete domain where the NT is deployed.

References

[1] Openrdf, the serql query language, rev. 1.1.http://www.
openrdf.org/doc/users/ch06.html .

[2] D. Brickley and R. V. Guha. Rdf vocabulary description lan-
guage 1.0: Rdf schema.W3C Recommandation 10 February
2004.

[3] S. Ceri, P. Fraternalli, A. Bongio, M. Brambilla, S. Comai,
and M. Matera.Designing Data-Intensive Web Applications.
Morgan Kaufmann Publishers Inc., 2003.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns. Addison Wesley, Reading, MA, 1995.

[5] J. Gomez and C. Cachero. Oo-h method: Extending uml to
model web interfaces.Idea Group Publishing, pages 144–
173, 2003.

[6] G. Houben, F. Frasincar, P. Barna, and R. Vdovjak. Mod-
eling user input and hypermedia dynamics in hera. InIn-
ternational Conference on Web Engineering (ICWE 2004),
Munich, Germany, 2004.

[7] N. Koch, A. Kraus, and R. Hennicker. The authoring process
of the uml-based web engineering approach. InProceedings
of The First International Workshop of Web-Oriented Soft-
ware Technology, 2001.

[8] F. Mannola and E. Miller. Rdf primer.W3C Recommanda-
tion 10 February 2004.

[9] O. Pastor, J. Fons, and V. Pelechano. Oows: A method
to develop web applications from web-oriented conceptual
models. InProceedings of International Workshop on Web
Oriented Software Technology (IWWOST), 2003.

[10] G. Rossi, . Lyardet, F, and D. Schwabe. Patterns for e-
commerce applications. InProceedings of Europlop 2000,
2000.

[11] K. Sattler, S. Conrad, and G. Saake. Interactive example-
driven integration and reconciliation for accessing database
federations.Inf. Syst., 28(5):393–414, 2003.

[12] D. Schwabe, G. Rossi, L. Esmeraldo, and F. Lyardet. Engi-
neering web applications for reuse.IEEE Multimedia, pages
2–12, Spring 2001.

[13] A. Sheth and V. Kashyap. So far (schematically) yet so near
(semantically). InProceedings of the IFIP WG 2.6 Database
Semantics Conference on Interoperable Database Systems
(DS-5). North-Holland, 1993.

[14] R. Vdovjak, P. Barna, and G. J. Houben. Eros: A user inter-
face for the semantic web. In7th World Multiconference on
Systemics, Cybernetics and Informatics, 2003.

[15] R. Vdovjak, F. Frasincar, G. J. Houben, and P. Barna. En-
gineering semantic web information systems in hera.Jour-
nal of Web Engineering (JWE), Rinton Press, 2(1-2):3–26,
2002.

9


