
Journal of Web Engineering, Vol. 4, No.3 (2005) 205-223
© Rinton Press

A GENERIC FRAMEWORK FOR EXTRACTING XML DATA FROM LEGACY
DATABASES

PHILIPPE THIRAN

Technische Universiteit Eindhoven, The Netherlands
University of Namur, Belgium
philippe.thiran@fundp.ac.be

FABRICE ESTIEVENART

CETIC, Gosselies, Belgium
fe@cetic.be

JEAN-LUC HAINAUT

University of Namur, Belgium
jlh@info.fundp.ac.be

GEERT-JAN HOUBEN

Technische Universiteit Eindhoven, The Netherlands
g.j.houben@tue.nl

Received October 29, 2004

Revised April 29, 2005

This paper describes a generic framework of which semantics-based XML data can be derived from legacy
databases. It consists in first recovering the conceptual schema of the database through reverse engineering
techniques, and then in converting this schema, or part of it, into XML-compliant data structures. Both
steps heavily rely on generic schema transformation techniques, while all the schemas involved in the
whole process are expressed in a unique model, named GER. Transformations between schemas are
expressed as sequences of reversible transformation primitives. The reversed sequence can be used to
automatically translate query, data or updates posed on XML.

Keywords: XML, Legacy Database, Schema Transformation, Data Reverse Engineering

1 Introduction

The quantity of information available on the World Wide Web continuously increases, notably due to
local, isolated, databases being made accessible through Web technologies. Indeed, most of this
information is provided by Web information systems that combine traditional storage mechanisms,
e.g., relational databases, with the easy access mechanism that gave the Web its popularity. The term
deep Web is sometimes used to distinguish the wealth of information stored in these Web-accessible
information systems from the surface Web of explicitly linked HTML pages. However, the
information on the (deep) Web is placed there independently by different organizations. As a
consequence, data sources containing related information can appear at different Websites and
systems, in different formats, and for different purposes. Moreover, the current Web information

 206 A Generic Framework for Extracting XML Data From Legacy Databases

systems are lacking particularly in the area of semantics, for example in terms of relationships within
the data.

Currently, XML is becoming the de facto standard for publishing and exchanging data over the
Web. The use of XML as the common format for representing, exchanging, storing, and accessing data
poses new challenges to information systems. Since the majority of everyday data is still stored and
maintained in standard database and file systems, we expect that the needs to export stored data in
XML format will grow substantially. To this end, several projects recently investigated the issues of
converting database schema in XML ([1], [2], [3], [4], [5]).

1.1 Proposal

In this paper, we focus on extracting an XML Schema [6] from existing and legacy databases. As
mentioned, some research projects have already investigated issues related to schema conversion
between XML and database models. Unlike their approaches, we analyse the problem from a model-
independent, conceptual and generic perspective:

• Model-independent perspective. Current approaches for exporting databases into XML rely on
pairs of models, such as those intended to produce XML views of relational schemas. In this work,
we use a high-level formalism - named Generic Entity Relationship model (GER) - in which
schemas can be expressed whatever their underlying data model and their abstraction level. Such a
formalism defines a reference model on which transformational operators are built. Through a
specialization mechanism, arbitrary models (including XML Schema) as well as schema
transformations can be defined in a uniform way, even among schemas expressed in different
models. As a result, our approach is not limited to any specific pair of data models.

• Conceptual perspective. Most current transformation strategies consist in translating each
construct of the source database into the closest constructs of XML without attempting any
semantic interpretation. They capture the structures of the source schema and largely ignore the
implicit interconnection among data and the hidden semantic constraints implemented in the
program codes of the source applications. Our strategy consists in recovering the precise semantic
description, i.e., the conceptual schema, of the source database first, through reverse engineering
techniques, then in developing the XML Schema from this schema through a semi-automated
model translation.

• Generic perspective. The material developed in this paper is intentionally generic. Considering an
ideal scenario according to which the whole contents of an existing (possibly legacy) database is
migrated to XML documents, it addresses some of the most critical issues of database-to-XML
conversion. More specific, and therefore practical, scenarios, can be derived easily. Database
extraction for data warehouse loading, B2B messages generation, database migration or database-
to-Web publishing are some processes that require strong theoretical bases of similar nature. This
paper is a contribution to the development of such bases.

1.2 Paper Organization

This paper is organized as follows.

In Section 2, we present the GER model used to express all the data models involved in the XML
exportation process of legacy databases. We explain how any database model currently used (be it
physical or conceptual) as well as the XML Schema model can be represented by specializations of the
GER.

 Ph. Thiran, F. Estiévenart, J-L. Hainaut and G-J. Houben 207

In Section 3, we introduce the transformational approach based on the GER. We propose a set of
transformational operators addressing the translation of structured schemas into XML Schema. These
first two sections lead to the first technical contribution of the paper - providing a high-level reference
model for database and XML models and hence, the possibility of transforming data instances between
them.

In Section 4, we develop a new approach for converting database structures into an XML Schema.
It comprises two steps: the first one consists in recovering the conceptual schema of the source
database through reverse engineering techniques, while the second one transforms this schema into
XML Schema compliant structures. Both steps rely on the schema transformation techniques built on
the GER. The approach is illustrated by a case study that points at different benefits of conversion.
This leads to the second technical contribution of the paper - providing a method for extracting the
XML Schema of databases which captures their hidden semantic structures.

Section 5 presents an operational CASE tool - DB-MAIN - that supports this entire approach. In
Section 6, we discuss related works. We give our concluding remarks in Section 7.

To focus the presentation on the translation problem, the paper has been written for a scenario in
which the whole database is to be translated into XML structures. In actual situations, usually only
selected parts have to be exported or transformed.

2 Data Structure Modelling

Constructs of data models such as Entity-relationship (ER for short) or XML can be defined in terms
of a unique wide spectrum variant of the Entity-relationship model, the GER. This reference model
makes it possible to specify different data models in a uniform formalism. In [7], we show that the
GER can represent any data structure whatever its underlying data model and its abstraction level. In
this section, we present the main concepts of the GER as well as three of its most important
specializations that are used in this paper, namely the standard Entity-relationship model, the relational
model, and the XML Schema model. Indeed, the approach described in this paper postulates that any
translation process includes the abstract, technology-independent, representation of the data to be
converted. Therefore, it is based on a three model architecture, comprising the source physical model
(typically, but not exclusively, the relational model), the technology-independent conceptual model
and the target logical model (here, the XML Schema model).

2.1 The Generic Entity-Relationship Model (GER)

For the need of this paper, the GER can be perceived as an enriched variant of the standard entity-
relationship model. It includes the concepts of entity type, is-a hierarchy, attribute, value domain and
relationship type. Attributes can be atomic or compound, mandatory or optional, single-valued or
multivalued. Each role of a relationship type can be labelled and associated with a cardinality
constraint, a pair of integers, such as 0-20, stating the range of the number of relationships in which
any entity can appear. An attribute has a cardinality constraint too, that states how many values can be
associated with each parent instance. Default constraint is 1-1 and does not appear in graphical
schemas.

In general, additional properties can be declared among the components of an entity type:
uniqueness, referential and existence constraints are just some of them. Due the wide variety of such
properties, the GER includes the generic concept of property group, or group for short. A group is any
subset of components (attributes and/or roles) of an entity type on which one or several properties are

 208 A Generic Framework for Extracting XML Data From Legacy Databases

defined. The tag(s) of the group specifies its properties (id for identifier, ref for referential, excl for
exclusion, and so on). For example, a group of attributes of entity type E can be declared both
identifier and referential. This group models such relational pattern as a primary key that
simultaneously is a foreign key. In XML representation, property groups will be used to model ID,
KEY, IDREF, sequence or choice constructs. However, they can also model constraints that cannot be
explicitly expressed in XML, and that will be translated in another way, through filters or procedural
components for example. Finally, GER includes extension mechanisms such as stereotypes and meta-
attributes, through which one can express specific characteristics or behaviour.

2.2 GER Expression of the Entity-relationship Model

Since the GER has been designed as an extension of the standard Entity-relationship model,
specializing the former to any conceptual model is fairly easy. Figure 1 shows a typical conceptual
schema made up of entity types, an is-a hierarchy, binary and N-ary relationship types, roles and
attributes with cardinalities, single-/multi-valued attributes, atomic/compound attributes,
mandatory/optional attributes, primary (id) and secondary (id') identifiers, and complex identifiers.

0-N

0-N

supply

1-1

0-N

place

0-N

0-N1-20

detail
Qty

P

SUPPLIER
Contact

PARTNER
PartID
Nam e
Address

Street
City

Phone[0-5]
id: PartID

PRODUCT
Reference
Label[0-1]
UnitPrice
id: Reference

ORDER
OrdNum ber
OrdDate
id: place.CUSTOMER

OrdNum ber

CUSTOMER
CustID
Account
id': Cus tID

Fig. 1. The GER representation of a typical Entity-relationship schema.

2.3 GER Expression of the Relational Model

Whatever the technology, a relational schema comprises tables, value domains, mandatory/optional
columns, candidate keys, including a primary key, and foreign keys. These concepts are modelled by
GER objects as defined in Table 1. The GER concepts that have not been mentioned in the right
column are not part of the Relational specialization of the GER. More detail on this mapping can be
found in [7].

 Ph. Thiran, F. Estiévenart, J-L. Hainaut and G-J. Houben 209

Table 1. The Relational specialization of GER.

Relational concept GER construct
Table Entity type with stereotype «table»
Domain Domain
Column (nullable) Atomic attribute with cardinality [0-1]
Column (not null) Atomic attribute with cardinality [1-1]
Primary key Primary identifier
Other candidate key Secondary identifier
Foreign key Reference group

Figure 2 shows a relational schema that derives from a part of schema of Figure 1. The complex
cardinality constraint on role detail.ORDER cannot be expressed by pure relational structures and has
been stated through a semi-formal annotation.

card: 1-20

«table»
SUPPLIER

PartID
Contact
id: PartID

«table»
PRODUCT

Reference
Label[0-1]
UnitPrice
id: Reference

«table»
ORDER

PartID
OrdNum ber
OrdDate
id: PartID

OrdNum ber
ref: PartID

«table»
DETAIL

SupplierID
ProductREF
PartID
OrdNumber
Qty
id: SupplierID

ProductREF
PartID
OrdNum ber

ref: PartID
OrdNumber

ref: SupplierID
ref: ProductREF

«table»
CUSTOMER
PartID
Nam e
Cus tID
Account
id: PartID
id': Cus tID

Fig. 2. The GER representation of a typical relational schema.

2.4 GER Expression of the XML Schema Model

Expressing XML structures in terms of a reference model has already received much attention. The
most popular approach consists in using the ER model, or its variant in UML diagrams, for
representing XML or semi-structured data ([8] and [9]). However, due to the differences between these
models, such approaches cannot express all the concepts of the XML Schema model. Indeed, these
models often lack features to represent specific XML concepts such as sequences,
uniqueness/reference constraints, or built-in/derived data types. In [18], we have developed a
specialization of the GER that is able to represent the most important constructs of XML DTD. In this
paper, we extend this specialization to the much richer XML Schema model. In particular, it supports
advanced constructs such as precise cardinalities, complex uniqueness constraints, connectors between
elements and data types.

It is important to note that, due to the scope of the proposal, we target the subset of the XML
Schema specifications, as defined by the W3C Recommendation [10], that allows us to express the
semantics of any ER schema. Therefore, we will ignore the XML Schema constructs that are not used
to translate ER concepts. The effort would have been more important if we intended to express the
semantics of native XML Schemas, for instance in an XML reverse engineering process. We will
therefore ignore the following constructions:

 210 A Generic Framework for Extracting XML Data From Legacy Databases

• Namespaces,
• Abstract elements and types,
• Data types derived (by union, by extension or by restriction) from a non built-in type,
• Attribute groups,
• Substitution groups,
• Uniqueness constraints whose field has an Xpath with a depth greater than 2 (Section 2.4.4).

In the next sections, we explain how an XML Schema is expressed in terms of the GER. We
successively examine the concepts of Simple Element Type, Complex Element Type, Data Type and
Uniqueness/Reference Constraint. Table 2 summarizes the correspondences between the main XML
Schema concepts and their GER interpretation. The discussion that follows will be based on the
example “Catalog” describing orders and their products (Figure 3), the conceptual schema of which is
given in Figure 7.

Table 2. XML Schema specialization of the GER.

XML Schema concept GER construct
Element type Entity Type
Attribute type Attribute
Element content Binary relationship type
Occurrence constraints Role cardinalities
Sequence/Choice/All connector seq/choice/all group
Data type User-defined attribute type
Uniqueness/Reference constraints id/ref group

1-1

« p »
0-N

1-1« p »
0-N

« p »
0-1

1-1

« p »
1-1

1-1

« p »
1-N

1-1

1-1« p »
1-1

TOTAL
Currency: s tring
«content» : decimal

PRODUCT
Reference: s tring
Label[0-1]: s tring
UnitPrice: decim al
id: Reference

ORDER
OrderID: s tring
id: OrderID
seq: .CUSTOMER

.DATE

.TOTAL

.DETAIL[*]

DETAIL
Product: s tring
Quantity: integer
ref: Product

DATE
«content» : date

CUSTOMER
«content» : s tring

CATALOG
seq: .ORDER[*]

.PRODUCT[*]

Fig. 3. The GER expression of an XML Schema Catalog.

2.4.1 Simple Element Types

A simple element type has no attributes and its content is an elementary value. In the GER
representation, it appears as an entity type whose name translates that of the XML element type. A

 Ph. Thiran, F. Estiévenart, J-L. Hainaut and G-J. Houben 211

specific attribute with stereotype «content» is used to express the associated (built-in or derived)
content type.

Example. In the XML Schema of Figure 3, CUSTOMER and DATE are simple element types. They are
represented by eponym entity types.

2.4.2 Complex Element Types

A complex element type has attributes and/or its content references other element types. It is modelled
by a GER entity type with attributes and components organized as follows.

Attribute Types

XML attribute A associated with complex element type C is translated into GER attribute A associated
with the entity type that models C. XML attributes are single-valued and either mandatory or optional,
these properties being translated into GER attribute cardinality 1-1 or 0-1. Graphically, the cardinality
1-1 is default, and is not represented to simplify schemas. XML Schema prohibits multivalued
attributes.

Example. The attributes Reference and UnitPrice of element type PRODUCT in Figure 3 are mandatory
(cardinality 1-1) while Label is optional (cardinality 0-1).

Element Content

The content of a complex entity type is made up of element types according to complex assembly
rules. These components themselves are simple or complex element types. Recursive structures are
allowed, that is, an element type can be a direct or indirect component of itself.

The relation between a complex element type and each of its components is modelled in GER by a
one-to-many binary relationship type (called hierarchical relationship type) between the
corresponding entity types. The parent entity type plays the parent role (as opposed with the child
role) and is marked with stereotype «p».

Occurrence Constraints

The occurrence constraint of a component element type states the minimum (minOccurs) and
maximum (maxOccurs) numbers of component elements that can appear for each parent element. The
default values are 1-1. These constraints are translated into the cardinality constraint of the parent role
of the hierarchical relationship type.

Sequence/Choice/All Connector

The components of a parent element type can be organized according to three rules, namely sequential
(connector sequence), disjunctive (connector choice) or conjunctive (connector all). These rules are
declared in the GER representation through a property group comprising the components and tagged
with name seq, choice or all, respectively. A component appears in this group through the role it plays
in the hierarchical relationship type. The order of the components within a seq group is meaningful.

Example. In Figure 3, the element type modelled by entity type ORDER is made up of a sequence of
four components, namely CUSTOMER, DATE, TOTAL and DETAIL.

2.4.3 Data Types

One major initiative in XML Schema as compared with DTD is the large range of data types that can
be assigned to an attribute or an element value. The GER offers the basic data types (such as char,

 212 A Generic Framework for Extracting XML Data From Legacy Databases

boolean, numeric) but provides also user-defined types through which all the XML Schema data types
can be defined. As already stated, the contents of a simple element type is modelled by a GER
attribute, with stereotype «content» but left unnamed, as illustrated in Figure 3. The data type of the
element type is associated with this technical attribute. The XML Schema feature according to which a
new simple type can be derived, by restriction or extension, from existing simple types can be
modelled in the GER. However, it has not been included in the discussion since it is useless when
translating ER schemas into XML Schema structures.

2.4.4 Uniqueness/Reference Constraints

In contrast with global, document-wide, DTD identifiers, XML Schema provides constructs to define
uniqueness properties of attribute or element values within a certain context. Such a uniqueness
constraint is introduced by the element keya and is expressed by combination of (at least) two Xpath
expressions: one that defines the scope of the constraint (the element selector) and (at least) one that
identifies the attribute(s) or element(s) the value(s) of which must be unique (the element field) within
the scope. The scope always refers to an element while a field can be an attribute or an element.

According to the structural link between the element types targeted by the selector and the field (if
the field refers to an attribute, we consider the parent element type of that attribute), we distinguish
three types of uniqueness constraint:

(i) The element type referred by the selector is the element type referred by the field,

(ii) The element type referred by the selector is the parent of the element type referred by the field,

(iii) The element type referred by the selector is a higher ancestor (parent or ancestor of the parent)
of the element type referred by the field.

Standard Entity-relationship models include identifier patterns that obey to the first two types
described here above. Therefore, we discard the last one from the target constructs in the ER-to-XML
translation process. In the GER, a uniqueness constraint is expressed by means of a group labelled id.

In XML Schema, the element keyref translates a foreign key towards a key (or unique) construct.
Based on (at least) two Xpath expressions defining the scope and the fields concerned by the
constraint, its use is very similar to the use of the element key. Such a reference constraint is
represented, in a GER schema, by a ref group.

Example. In Figure 3, a uniqueness constraint is defined on the attribute Reference within the scope of
the element PRODUCT. That constraint appears in the GER schema as an id group associated with
entity type PRODUCT. The group comprises attribute Reference and is additionally the target of a
foreign key defined on the attribute Product of the element DETAIL.

3 Schema Transformation

The GER is the ideal support for schema transformations. Indeed, transformations can be used
whatever their underlying data model and their abstraction level. In [7], we define a set of
transformations for GER schemas. These transformations can be applied by a developer to formally
specify mappings between schemas expressed in the same or different data modelling languages.

a The element unique is used for optional (secondary) identifiers.

 Ph. Thiran, F. Estiévenart, J-L. Hainaut and G-J. Houben 213

3.1 Principles

A transformation consists in deriving a target schema S' from a source schema S by replacing
construct C (possibly empty) in S with a new construct C' (possibly empty). More formally,
considering instance c of C and instance c' of C', a transformation Σ can be completely defined by a
pair of mappings <T,t> such that C' = T(C) and c' = t(c). T is the structural mapping, that explains how
to replace construct C with construct C' while t, the instance mapping, states how to compute instance
c' of C' from an instance c of C.

3.2 Inverse Transformation

Each transformation Σ1 ≡ <T1,t1> can be given an inverse transformation Σ2 ≡ <T2,t2>, usually denoted
by Σ-1, such that, for any structure C, T2(T1(C)) = C. So far, Σ2 being the inverse of Σ1 does not imply
that Σ1 is the inverse of Σ2. Moreover, Σ2 is not necessarily reversible. These properties can be
guaranteed only for a special variety of transformationsb, called symmetrically reversible. Σ1 is said to
be a symmetrically reversible transformation, or more simply semantics-preserving, if it is reversible
and if its inverse is reversible too.

3.3 Transformation Sequence

A transformation sequence is a list of n primitive transformations: S1-to-S2 = (T1 T2 ... Tn). For
instance, the application of S1-to-S2 = (T1 T2) on a schema S1 consists of the application of T2 on the
schema that results from the application of T1, so that we obtain S2.

As for schema transformations, a transformation sequence can be inverted. The inverse sequence
S2-to-S1 can be derived from the sequence S1-to-S1 and can be defined as follows: if S1-to-S2 = (T1
T2 ... Tn) then S2-to-S1 = (Tn-1 ... T2-1 T1-1) where Ti-1 is the inverse of Ti; and hence S1 = S2-to-
S1(S2). In other words, S2-to-S1 is obtained by replacing each original schema transformation by its
inverse and by reversing the operation order.

The concepts of sequence and its inverse are used for defining the mappings between two
schemas. The transformational approach then consists in defining a (reversible) transformation
sequence which, applied to the source schema, produces the target schema (Section 4).

3.4 Model Translation

A model translation is a particular case of schema transformation. It consists in translating a schema
expressed in a data model Ms into a schema expressed in another data model Mt where Ms and Mt are
two different specializations of GER.

A model translation is defined by a transformation plan, which is a high level semi-procedural
script that describes how to apply a set of transformations in order to fulfil a particular task or to meet
a goal. A model translation therefore consists in applying the relevant transformations on the relevant
constructs of the schema expressed in Ms in such a way that the final result complies with Mt. Section
4 includes a nice illustration of a complex model translation plan that explains how to transform a
conceptual schema into an XML Schema.

b In [7], a proof system has been developed to evaluate the reversibility of a transformation.

 214 A Generic Framework for Extracting XML Data From Legacy Databases

3.5 Transformation Operators

Transformations are operators that manipulate GER constructs. We propose in Figures 4 and 5 two
subsets of the transformational operators that will be used in this paper (Section 4.2). The first one is
made up of four standard transformations used in translation of relational schemas into conceptual
schemas (named hereafter standard transformations). The second comprises additional techniques
suited to derive an XML Schema from a conceptual schema (named hereafter XML-specific
transformations). These transformation operators are formally described in [7] and in [11].

RT-ET: Transforming a
relationship type into an
entity type.
Inverse: ET-RT

ISA-RT: Materializing an
ISA relationship type.
Inverse: RT-ISA

RT-FK: Transforming a
binary relationship type
into a foreign key.
Inverse: FK-RT

Att-ET/inst: Transforming
an attribute into an entity
type (instance
representation).
Inverse: ET-Att

RT-ET: Transforming a
relationship type into an
entity type.
Inverse: ET-RT

ISA-RT: Materializing an
ISA relationship type.
Inverse: RT-ISA

RT-FK: Transforming a
binary relationship type
into a foreign key.
Inverse: FK-RT

Att-ET/inst: Transforming
an attribute into an entity
type (instance
representation).
Inverse: ET-Att

A
A1
A2[a-b]
A3

A
A1
A2[a-b]
A3

B
B1
B2
id: B1

A
A1
B1[a-b]
ref: B1

B
B1
B2
id: B1

A
A1
B1[a-b]
ref: B1

1-1

0-1 c

1-1

0-1b

C
C1

B
B1

A
A1
A2

C

C1
B

B1

A
A1
A2

a-b 0-NR

B
B1
B2
id: B1

A
A1

a-b 0-NR

B
B1
B2
id: B1

A
A1

0-N0-N R

B1
B1

A
A1

1-1

0-N

rB1-1

0-N

rA
R

id: rB.B1
rA.A

B1
B1

A
A1

1-1a-b R

EA2
A2
id: R.A

A2

A
A1
A3

1-1a-b R

EA2
A2
id: R.A

A2

A
A1
A3

Fig. 4. Standard schema transformations.

4 Exporting XML Data From Legacy Databases

This section describes a conceptual approach for extracting the XML Schemas of legacy databases.
Normally, a precise and detailed documentation should be associated with any database, in such a way
that the XML Schema expression should be straightforward. However, the actual state of most
databases can be described, at best, as undocumented. Hence the need to rebuild the conceptual schema
of the source database when it is no longer available. This process is commonly called reverse
engineering.

Our strategy consists in recovering the precise semantic description of the source database before
converting it into XML Schema. It follows a semi-automated three-step method (Figure 6):

• Reverse-engineering: from the DDL code and from various other sources, the conceptual and the
physical schemas are extracted (GER PS, GER CS) through specific analysis techniques,

 Ph. Thiran, F. Estiévenart, J-L. Hainaut and G-J. Houben 215

• Model translation: the GER XML Schema (GER XS) is semi-automatically generated from the
conceptual schema (GER CS) by means of schema transformations,

• Schema exportation: the XML Schema (GER XS) is translated into an XML document (XML
Schema Code).

1-1

« p »
0-N

R2

1-1
« p »
0-N

R1
R

seq: R1.A[*]
R2.B[*]

B

A

1-1

« p »
0-1

R2

1-1
« p »
0-N R1

R
seq: R1.A[*]

R2.B

B

A

1-10-N R BA

1-1

0-N R21-1

0-N

R1

C

B

A
A1
id: A1

1-1

0-N R2

C

B
A1
ref: A1

A
A1
id: A1

XML-Att-to-CONTENT:
Converting the type of an
attribute into the
associated XML Schema
type and adding the
stereotype <<content>>.
Inverse: XML-CONTENT-
to-Att

XML-ET-Create-SEQ-
GROUP: Adding a seq
group to an entity type.
That group contains the
child roles played by its
children.
Inverse: XML-ET-Del-
SEQ-GROUP

XML-Sch-Create-
UNIQUE-ROOT: Adding a
unique root to the
schema.
Inverse: XML-Sch-Del-
ROOT

XML-RT-to-HIER:
Transforming a one-to-
many binary relationship
type into a hierarchical
relationship type.
Inverse: XML-HIER-to-RT

XML-ET-to-ROOT: Giving
an entity type the status of
natural root.
Inverse: XML-ROOT-to-
ET

B

A

A
A1: char (5)

A
«content» : string

1-1« p »
0-N

R BA

1-1

« p »
0-1

R2

1-1
« p »
0-N R1R

B

A

1-1

« p »
0-N

R2

1-1
« p »
0-N

R1
R

seq: R1.A[*]
R2.B[*]

B

A

1-1

« p »
0-1

R2

1-1
« p »
0-N R1

R
seq: R1.A[*]

R2.B

B

A

1-10-N R BA

1-1

0-N R21-1

0-N

R1

C

B

A
A1
id: A1

1-1

0-N R2

C

B
A1
ref: A1

A
A1
id: A1

XML-Att-to-CONTENT:
Converting the type of an
attribute into the
associated XML Schema
type and adding the
stereotype <<content>>.
Inverse: XML-CONTENT-
to-Att

XML-ET-Create-SEQ-
GROUP: Adding a seq
group to an entity type.
That group contains the
child roles played by its
children.
Inverse: XML-ET-Del-
SEQ-GROUP

XML-Sch-Create-
UNIQUE-ROOT: Adding a
unique root to the
schema.
Inverse: XML-Sch-Del-
ROOT

XML-RT-to-HIER:
Transforming a one-to-
many binary relationship
type into a hierarchical
relationship type.
Inverse: XML-HIER-to-RT

XML-ET-to-ROOT: Giving
an entity type the status of
natural root.
Inverse: XML-ROOT-to-
ET

B

A

A
A1: char (5)

A
«content» : string

1-1« p »
0-N

R BA

1-1

« p »
0-1

R2

1-1
« p »
0-N R1R

B

A

Fig. 5. Specific XML Schema transformations.

The goal of the first step is to recover a conceptual view of the legacy database [13] while the
second step form the standard forward engineering stream, targeting the XML Schema. All the schema
mappings are expressed by means of schema transformation sequences (PS-to-CS and CS-to-XS).

In the following sections, we describe the first two stepsc and illustrate them by a small example.
We consider a legacy database for order management. The DBMS is Oracle V5, which ignores the
concepts of primary and foreign keys.

c We omit the Schema Exportation process because of its simplicity.

 216 A Generic Framework for Extracting XML Data From Legacy Databases

4.1 Data Reverse Engineering

This step consists in recovering the most faithful description of the legacy database that captures the
intention, that is, the semantics, of the data structures. According to the DB-MAIN reverse engineering
methodology ([12], [13]), this recovery raises two families of problems, namely implicit constructs and
semantics translation. They are addressed in the following two processes.

GER PS

GER CS

GER XS

Reverse Engineering

Model Translation
CS-to-XS

PS-to-CS

Processes
Schemas and
Mappings in GER

Legacy
System

XML Schema Code

Schema Exportation Automated

Semi-automated

Semi-automated

GER PS

GER CS

GER XS

Reverse Engineering

Model Translation
CS-to-XS

PS-to-CS

Processes
Schemas and
Mappings in GER

Legacy
System

XML Schema Code

Schema Exportation Automated

Semi-automated

Semi-automated

Fig. 6. Database exportation to XML: processes, schemas and transformation sequences.

4.1.1 Data Structure Extraction

The DDL code provides us with the data structures that actually were declared when the database was
built (the raw physical schema or GER PS). Due to the intrinsic weaknesses of the DDL of the legacy
DBMS, but also as a result of poor programming techniques, most database schemas translate only a
part of the intention of the designer. The missing constructs are called implicit. The goal of this process
is to identify them through specific analysis methods. In particular, program source code inspection,
for instance by dependency analysis or program slicing, can show us the exact structure of a record
type, uniqueness constraint or implicit foreign key. Data analysis can be used, either to identify
specific patterns and relationships, or to evaluate hypotheses on such constructs. In the example of
Figure 7, the physical schema translates the DDL code in terms of tables, columns, indexes (acc tag
for access keys) and storage space (FileCatalog). No keys have been declared. The main goal of the
extraction process is to identify primary keys and foreign keys. Source code and data analysis show
that the primary keys of tables ORDER, DETAIL and PRODUCT are, respectively, OrderID, (OrderID,
Reference), and Reference. In addition, columns Tot_Currency and Tot_Amount are characteristics of a
same (hidden) common concept total that suggests an implicit compound attribute (Total). Finally, data
analysis suggests that every ORDER row is referenced by at least one DETAIL row.

4.1.2 Data Structure Conceptualization

The goal of the second process is to interpret the physical structures in terms of the application domain
concepts. We consider that the (enriched) physical schema results from the lossy translation of the
conceptual schema and from optimization restructuring techniques. The problem is to identify which

 Ph. Thiran, F. Estiévenart, J-L. Hainaut and G-J. Houben 217

techniques were applied for translating and optimizing. The DB-MAIN approach is based on
transformational techniques to reverse the effect of the translation and optimization processes. For
instance, in the example of Figure 7, the implicit foreign key Reference is replaced with a relationship
type (transformation FK-RT in Figure 4), then the table Detail is interpreted as (replaced by) many-to-
many relationship type Detail (transformation ET-RT).

The schema GER CS (Figure 7) is the result of the conceptualization process. It is assumed to
explicitly express all the semantics of the legacy database, and is a sound source for the generation of
the XML structures.

1-1

« p »
0-N

1-1« p »
0-N

« p »
0-1

1-1

« p »
1-1

1-1

« p »
1-N

1-1

1-1« p »
1-1

TOTAL
Currency: string
«content» : decimal

PRODUCT
Reference: string
Label[0-1]: string
UnitPrice: decimal
id: Reference

ORDER
OrderID: string
id: OrderID
seq: .CUSTOMER

.DATE

.TOTAL

.DETAIL[*]

DETAIL
Product: string
Quantity: integer
ref: Product

DATE
«content» : date

CUSTOMER
«content» : string

CATALOG
seq: .ORDER[*]

.PRODUCT[*]

GER PS

DETAIL
OrderID: char (5)
Reference: char (5)
Quantity: char (1)
acc: Reference

OrderID

PRODUCT
Reference: char (5)
Label[0-1]: varchar (50)
UnitPrice: num (3,2)
acc: Reference

ORDER
OrderID: char (5)
Customer: varchar (50)
Date: date (8)
Tot_Currency[0-1]: char (2)
Tot_Amount[0-1]: num (3,2)
acc: OrderID

FileCatalog

PRODUCT
ORDER
DETAIL

0-N1-N DETAIL
Quantity: integer

PRODUCT
Reference: char (5)
Label[0-1]: varchar (50)
UnitPrice: num (3,2)
id: Reference

ORDER
OrderID: char (5)
Customer: varchar (50)
Date: date (8)
Total[0-1]: compound (5)

Currency: char (2)
Amount: num (3,2)

id: OrderID

GER CS

GER XS

PS
-to-C

S

CS-to-XS

Fig. 7. Example of database exportation: physical, conceptual and XML schemas and the
transformation sequences between them.

4.2 Model Translation

In this section, we describe a specific case of model translation that is to transform a conceptual
schema (GER CS) into an equivalent XML Schema (GER XS). Model translation is expressed by
means of schema transformations and consists, in that case, of applying relevant transformations on the
constructs of the GER CS that are not compliant with the XML Schema model. Its execution produces
two result types: (1) a target schema expressed in GER XS; and (2) a schema transformation sequence
CS-to-XS that is made up of all the transformations applied on the source schema to get the target one.
This includes standard as well as specific XML Schema transformations (Section 3.5). These model-
specific transformations are illustrated in Figure 5.

The five steps composing the transformation process are the following:

• Schema binarisation: a flat binary schema is obtained by transformation of is-a relations, non-
functional (i.e., not purely one-to-many) relationship types and complex attributes. This step
produces a simplified schema.

• Hierarchical structure creation: a hierarchical organization between entity types is built by
choosing the main concepts and the most natural relations between them according to the
modelled application domain.

• Attribute type conversion: abstract attribute types defined in the GER CS are converted into an
equivalent XML Schema type.

 218 A Generic Framework for Extracting XML Data From Legacy Databases

• Attributes representation: attributes become either XML attributes or XML elements.

• Ordering definition: each entity type is given a position relative to its respective parent.

In this approach, model translation can be considered as a non-deterministic process. Some steps
are completely automated while others require some design choices from a database expert in charge
of the model translation. These choices depend on the goal assigned to the target XML structures.

In some cases, transformations used in model translation may not preserve semantics, resulting in
a GER XS that is not semantically equivalent to the source conceptual schema. A typical case is the
transformation into a foreign key of a functional relationship type with both minimum cardinalities
equal to 1.

In the following, we give more details on each step of the transformation process and illustrate
them by processing the conceptual schema GER CS of Figure 7.

4.2.1 Schema Binarisation

The schema simplification process uses standard schema transformations (Figure 4) to remove is-a
relations, N-ary (N>2) and many-to-many relationship types, multivalued and compound attributes.
The result is a flat binary schema, i.e., a schema whose relationship types are binary and one-to-many
or one-to-one and in which all attributes are atomic and single-valued.

Example. In Figure 7 (GER CS), the many-to-many relationship type DETAIL is transformed into an
entity type (RT-ET) and the multivalued attribute PRODUCT.Supplier becomes an entity type (ATT-
ET/instance).

4.2.2 Hierarchical Structure Creation

In that step, the structure formed by the entity types and the relationship types is transformed into a
tree by choosing the natural root entity type(s), solving the parent conflict(s) and, eventually, if
necessary, adding an unique root. Those three subtasks mainly use two transformations: RT-FK (a
standard transformation) and XML-RT-to-HIER.

XML-RT-to-HIER (Figure 5) is a XML-specific transformation that is applied on a binary
relationship type in order to make it hierarchical. That transformation introduces an explicit parent-
child relation between the two concerned entity types according to the cardinality of their role. The
child entity type plays the role with cardinality 1-1. In case of both roles having this cardinality, the
child role must be chosen by the designer.

 Root(s) Election

Some entity types naturally appear to be roots, when they do not depend on any other entity types.
Typically, all their roles, if any, have a cardinality 0-j. Besides these natural roots, other roots can be
identified. Among the other entity types, those which represent a significant concept in the application
domain, can be declared user-defined roots by the designer. The XML-specific transformation XML-
ET-to-ROOT (Figure 5) gives the status of root to any entity type in the schema.

For example, entity type A is a natural root in the source schema of Figure 5. The entity type B is
considered to be important by the designer and is therefore given the status of user-defined root
through the XML-ET-to-ROOT transformation.

 Ph. Thiran, F. Estiévenart, J-L. Hainaut and G-J. Houben 219

Parent Conflicts Resolution

A parent conflict occurs as soon as an entity type has more than one parent, which leads to a non-
hierarchical structure. The parent conflict resolution consists in choosing one entity type A among the
potential parents of the problematic entity type B, in a such a way that the relationship type between A
and B gets the status of hierarchical relationship type. The other relationship types for which B is a
child become inter-hierarchy relationship types. In practice, the relationship type between the entity
type and the elected parent is made hierarchical (XML-RT-to-HIER) and all other concerned
relationship types become foreign keys (RT-FK).

Unique Root Addition

If the current schema contains more than one root, one particular entity type (called technical root)
is added as the unique root of the schema. The XML-specific transformation XML-Sch-Create-
UNIQUE-ROOT (Figure 5) adds that technical root that becomes the parent of all the natural and user-
defined roots.

Example. The entity types ORDER and PRODUCT are two natural roots; no other roots have been
elected. DETAIL has two parents. The relationship type between ORDER and DETAIL is declared
hierarchical, so that the relationship type between PRODUCT and DETAIL has to be transformed into a
foreign key.

Finally, a unique technical root (entity type CATALOG) is added to get the targeted tree organization.

4.2.3 Attribute Types Conversion

In GER, abstract data types, such as char, numeric or boolean, are assigned to attributes. To be
valid against our XML target model, these types are automatically mapped and transformed to the
XML Schema built-in types. For example, a GER char type is converted into an XML Schema string
while a GER numeric type becomes an XML Schema byte, short, int or long, according to its initial
length.

4.2.4 Attributes Representation

At this point, attributes can be handled in two different ways. They can either keep their status of
attribute or be promoted to a simple element type. That decision is a pure design choice. In the latter
case, the attribute is transformed into an entity type (Att-ET/Inst) and a hierarchical relationship type
binds both related entity types. Logically, the content type of the new entity type is determined by the
initial attribute type.

Example. The attributes ORDER.OrderID, PRODUCT.Reference, DETAIL.Product, PRODUCT.Label,
PRODUCT.UnitPrice, TOTAL.Currency keep their initial status of attribute while all other attributes of
the schema become entity types.

4.2.5 Ordering Definition

In the final step, a seq group is added to all entity types having more than one child. The current
XML-specific transformation XML-ET-Create-SEQ-Group (Figure 5) arbitrarily adds an explicit notion
of order between the different children of a same entity type. This order can be manually modified by
the designer.

Example. seq groups have to be added in entity types ORDER and CATALOG.

 220 A Generic Framework for Extracting XML Data From Legacy Databases

5 CASE Support

DB-MAIN is a graphical, general-purpose, programmable, CASE environment dedicated to Database
Application Engineering. Besides standard functions such as specification entry, examination and
management, it includes advanced processors such as transformation tool-boxes, reverse engineering
processors and schema analysis tools. In particular, DB-MAIN offers a rich set of transformational
operators that allow developers to carry out database structure exportation to XML Schema in a
systematic way. Another interesting feature of DB-MAIN is the Meta-CASE layer, which allows
method engineers to customize the tool and to add new concepts, functions, models and even new
methods. In particular, DB-MAIN offers a complete development language, Voyager 2 [14], through
which new functions and processors can be developed and seamlessly integrated into the tool. Further
details on DB-MAIN can be found in [15]. In the limited scope of this paper, we describe some of the
DB-MAIN assistants dedicated to database exportation in XML Schema only.

5.1 Extraction and Exportation Facilities

Database schemas can be extracted by a series of processors. These processors identify and parse the
declaration part of the source texts, or analyze catalog tables, and create corresponding abstractions in
the repository. Extractors have been developed for SQL, COBOL, CODASYL, IMS, RPG and XML
data structures, among others. Additional extractors can be developed easily thanks to the Voyager 2
environment. The GER PS schema is introduced in the DB-MAIN tool through such processors.

DB-MAIN includes code generators for various DDL standards. The XML Schema generator
automatically derives the XML Schema Code from a GER XS. This Voyager 2 program is based on the
specialization rules presented in Section 2.

5.2 Schema Transformation

The processes described in this paper heavily rely on transformation techniques. For some fine-grained
reasoning, precise transformations have to be carried out on individual constructs. This is a typical way
of working in conceptualization activities. In other cases, all the constructs that meet a definite
precondition have to be transformed (e.g., all the N-ary relationship types are transformed into entity
types). Finally, some heuristics can be identified and materialized into a transformation plan. More
precisely, the following three levels of transformation must be available.

• Elementary transformations. Transformation T is applied to object O. With these tools, the user
keeps full control of the schema transformation. Indeed, similar situations can often be solved by
different transformations; e.g., a multivalued attribute can be transformed in a dozen of ways.

• Global transformations. Transformation T is applied to all the objects of a schema that satisfy
predicate P. Such transformations can be carried out through a processor that allows the analyst to
define T and P independently. DB-MAIN offers some predefined global transformations, such as:
replace all many-to-many relationship types by attributes or replace all multivalued attributes by
entity types.

• Transformation plans. All the constructs of a schema that do not comply with a given model are
processed through a transformation plan (Section 3). DB-MAIN offers a dozen of predefined
model-based transformations including XML Schema (Section 4) translation and untranslation.

 Ph. Thiran, F. Estiévenart, J-L. Hainaut and G-J. Houben 221

5.3 Reverse Engineering

DB-MAIN offers functions and processors that are specific to database reverse engineering. Besides
the DDL code extractors mentioned above, two families of tools are available, addressing the main
steps of the reverse engineering process.

Implicit construct elicitation is supported by a collection of processors that help analyze program
code, schemas and data in order to find the intended semantics. Let us mention a dependency analyzer
that detects and displays the dependencies between the objects (variables, constants, records) of a
program, a program slicer and a foreign key discovery assistant. Data structure extraction can be
performed in a reliable way thanks to the semantics preserving transformation toolset. Transformation
scripts that implement specific heuristics can be quickly developed. A programmable schema analysis
processor can be used to detect structural patterns and problematic constructs to be further processed.

6 Related Work

XML has received much attention as a language for the exchange of information on the Internet and
there has been much work done on expressing XML data into a reference model and translating
structured data models into XML.

Considering first the issue of expressing XML data in terms of a reference model, a common
approach is to use the ER or UML models for representing XML or semi-structured data ([8] and [9]).
However, due to the differences between ER (or UML) and XML models, this approach is not able to
represent all the XML notions (e.g., ordering or built-in/derived data types and namespaces). Unlike
these approaches, we use a high-level data model (GER) that supports the most important constructs of
XML Schemas.

The issue of translation between structured data models and XML has also received considerable
attention in the literature. SilkRoute [3] and XPERANTO [2] allow XML documents to be
materialized from relational databases by a simple transformation mechanism. For the reverse process
of translating XML into relational form, [4] considers the translation in both directions between XML
DTD and the relational model. Commercial tools with more limited capabilities also exist, such as
Oracle9i [16] or IBM DB2 [17].

The approach we have proposed in this paper is a general method for formally expressing
translation between structured schemas and XML Schema and is not limited to any specific structured
data model. Through the use of the GER model and the schema transformation operators, we have
provided a transformation path from any legacy structured data models to XML. The specification of
the legacy model and the XML model as GER specializations makes it possible to define mappings in
terms of sequences of primitive transformations on the GER. The reversed sequence can be used to
automatically translate query, data or updates posed on XML.

More generally, the transformational approach has long been proposed as a sound basis for
database engineering and in database design in particular [20]. Other processes, such as conceptual
normalization [21], optimization [22] and reverse engineering [23] have been modelled by
transformation plans, notably to ensure semantics preservation. Transformations can be used to
transform a schema from one model to another one, requiring specific operators for this couple of
models. The use of a pivot model, such as the GER, allows us to develop fewer mappings in a multi-
model environment, as well as to reuse operators from a model to others. The GER is a high level
model, since it encompasses the constructs of a large family of models. Another approach, illustrated

 222 A Generic Framework for Extracting XML Data From Legacy Databases

by [19], is based on low level models that comprise the intersection of such a family of models. Both
approaches are discussed and compared in [7].

Finally, the use of database reverse engineering techniques is new in database-to-XML extraction
domain. However this problem has been addressed in more traditional problems such as system
renovation and migration, for which most contributions tackle specific problems or legacy
technologies. The reader will find in [12] an in-depth bibliography for this domain.

7 Conclusion

Recent expansion of the Web has boosted the emergence of a new generation of applications,
combining data and functionalities from various data sources and publishing them coherently in the
Web. These applications generally rely on exchanging strongly structured data extracted from
databases. Converting from a database model to a semi-structured format often implies a semantic loss,
particularly when the meaning of the source data is not well understood, as is usual in legacy
databases. Hence, the importance of a rich and expressive model to translate the semantics of both
database and XML models.

The approach presented in this paper has put in light the non-deterministic aspect of the model
translation process. The same legacy database can lead to different conceptual schemas, according to
the precision required during the reverse engineering process. In addition, the same conceptual schema
can lead to a large set of equivalent XML structures. Hence the need for more complex methods that
take into account other, non-functional, criteria for target schema generation, and that have not been
addressed in this paper.

Thanks to the genericity of the approach, extending the methodology and the tools to other source
and target technologies is quite easy. Indeed, the new source model is described as a specialization of
the GER, and, if needed, heuristics specific to the technology are translated into the conceptualization
transformation plan. For new target models, such as other XML languages [24], the effort is quite
similar.

The paper leaves aside the problem of data generation, that is, the automatic production of XML
documents that comply with the XML Schema that has been computed. This process has been
developed and is now supported by the DB-MAIN CASE tool, thanks to the analysis of the history of
the transformations used to convert the database schema in XML Schema.

References
1. D. Florescu and D.Kossmann (1999), Storing and querying XML data using an RDBMS, IEEE Data

Engineering Bulletin, Vol. 22, pp. 27-34.
2. M.J. Carey, D. Florescu, Z.G. Ives, Y. Lu, J. Shanmugasundaram, E.J. Shekita and S.N. Subramanian (2000),

XPERANTO: Publishing object-relational data as XML, Proc. of WebDB, pp. 105-110.
3. M. Fernandez, Y. Kadiyska, D. Suciu, A. Morishima and W.-C. Tan (2002), SilkRoute: A framework for

publishing relational data in XML, ACM Transactions on Database Systems (TODS), Vol. 27.
4. D. Lee, M. Mani, F. Chiu and W. W. Chu (2002), NeT and CoT: Translating Relational Schemas to XML

Schemas using Semantic Constraints, Proc. of the ACM International Conference on Information and
Knowledge Management.

5. P. Rodriguez-Gianolli and J. Mylopoulos (2001), A Semantic Approach to XML-based Data Integration, in
Proc. of the ER Conference.

6. F. Yergeau, J. Cowan, T. Bray, J. Paoli, C. M. Sperberg-McQueen and E. Maler (2004), XML 1.1, W3C
Recommendation, Technical Report, W3C.

 Ph. Thiran, F. Estiévenart, J-L. Hainaut and G-J. Houben 223

7. J.-L. Hainaut (2005), Transformation-based Database Engineering, Chapter in Transformation of Knowledge,
Information and Data: Theory and Applications, P. van Bommel Editor, IDEA Group.

8. M.R. Jansen, Thomas H. Moller and T.B. Pedersen (2003), Converting XML DTDs to UML Diagrams for
Conceptual Data Integration, Data and Knowledge Engineering, Vol. 44, pp. 323-346.

9. R. Conrad, D. Scheffener and J.C. Freytag (2000), XML Conceptual Modeling Using UML, Proc. of ER
Conference, pp. 558-571.

10. W3C Working Group (2001), XML Schema, W3C Recommendation, Technical Report, W3C.
11. F. Estiévenart (2004), XML Specific Predicates and Transformations, Technical Paper, CETIC Research

Center, Gosselies.
12. J.-L. Hainaut (2002), Introduction to Database Reverse Engineering, Technical Report, CS Department,

University of Namur, http://www.info.fundp.ac.be/~dbm/publication/2002/DBRE-2002.pdf (last consult. Aug.
2005).

13. J-L. Hainaut, M. Chandelon, C. Tonneau and M. Joris (1993), Contribution to a Theory of Database Reverse
Engineering, in Proc. of the IEEE WCRE Conference, pp. 161-170.

14. V. Englebert (2002), Voyager 2 Manual, DB-MAIN Series, Institut d’Informatique, University of Namur,
http://www.db-main.be

15. J.-M. Hick, V. Englebert, J. Henrard, D. Roland and J.-L. Hainaut (2004), The DB-MAIN Database
Engineering CASE Tool (version 7) - Functions Overview, Technical Report, University of Namur,
http://www.db-main.be.

16. Oracle Corporation (2004), Oracle XML SQL Utility, Oracle Corporation, http://www.oracle.com (last
consult. Feb 2005).

17. J. Cheng and J. Xu (2000), IBM DB2 XML Extender, Proc. of ICDE.
18. Ph. Thiran, F. Estiévenart, J-L. Hainaut and G-J. Houben (2004), Exporting Databases in XML - A Conceptual

and Generic Approach, in Proc. of WISM (CAiSE'04).
19. P. McBrien and A. Poulovassilis (1998), A General Formal Framework for Schema Transformation, Data &

Knowledge Engineering, 28(1), 47-71.
20. A. Rosenthal and D. Reiner (1988), Theoretically sound transformations for practical database design, Proc.

of Entity-Relationship Approach.
21. O. Rauh and E. Stickel (1995), Standard Transformations for the Normalization of ER Schemata, Proc. of the

CAiSE•95 Conf., Jyväskylä, Finland, LNCS, Springer-Verlag.
22. H.A. Proper and T.A. Halpin (1998), Database Schema Transformation & Optimization, Proc. of the 14 th

International Conference on Conceptual Modeling, LNCS, 1021, 191-203, Springer.
23. J-L. Hainaut, M. Chandelon, C. Tonneau and M. Joris (1993b), Transformational techniques for database

reverse engineering, Proc. of the 12th Int. Conf. on ER Approach, Arlington-Dallas, ER Institute.
24. L. Dongwon and W. C. Wesley (2000), Comparative Analysis of Six XML Schema Languages,

http://www.cobase.cs.ucla.edu/tech-docs/dongwon/ucla-200008.html.

