
1

On Generating Virtual Worlds from Domain
Ontologies*

Olga De Troyer, Wesley Bille, Raül Romero, Peter Stuer
Research Group WISE, Department of Computer Science,
Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
OLGA.DETROYER@VUB.AC.BE, WBILLE@VUB.AC.BE, RAUL.ROMERO@VUB.AC.BE,
PSTUER@VUB.AC.BE

Abstract
Virtual Worlds are computer-hosted visual environments that create the effect of an
interactive three-dimensional world in which objects have a sense of spatial and
physical presence and can be manipulated by the user as such. Nowadays you need to
be skilled in Virtual Reality (VR) technology to be able to develop such an
environment. However, VR specialists are usually not experts in the domain for which
the Virtual World need to be developed and vice versa. In this paper, we propose an
approach that allows to generate a Virtual World from a domain ontology. A domain
ontology describes the objects, their characteristics and their relationships that exist in
the domain under consideration. In this way, a domain expert can specify the Virtual
World at a high level and the most of the code for the Virtual Word can be generated.
We believe that such an approach can open up the use of VR to a much broader
community than nowadays.

1 Introduction

Virtual Reality (VR) is used in lots of different applications and for solving different
problems. The filming industry, medical research and car industry all use some form
of VR in solving different problems. Another well-known type of VR is 3D Computer
games. 3D computer games have more or less become the standard in the gaming
world. Also on the World Wide Web VR is appearing.

Currently, there are quite a number of different ways to develop VR applications. The
available software can be divided into two major categories: toolkits and authoring
systems. Toolkits (e.g. Total Havok, Vortex) are programming libraries that provide a
set of functions with which a skilled programmer can create VR applications.
Authoring systems (e.g. trueSpace, VRCreator) are complete programs with graphical
interfaces for creating worlds without the need to resort to do detailed programming.
However, in both cases skilled people are needed to develop a VR application. The
authoring systems requires less programming skills but you still need to be skilled in
VR technology to be able to build advanced applications. For both approaches, the
problem is that the Virtual World you want to create must be expressed in terms of
(low level) building blocks of the VR technology. This means that objects in the
problem domain (e.g. a castle) need to be translated into a combination of VR

* This work was partially supported by the Institute for the Promotion of Innovation
by Science and Technology in Flanders (IWT) in the context of the project OntoBasis.

mailto:OLGA.DETROYER@VUB.AC.BE
mailto:WBILLE@VUB.AC.BE
mailto:RAUL.ROMERO@VUB.AC.BE
mailto:PSTUER@VUB.AC.BE

2

primitives (such as cylinders, spheres, textures, …). None of the available VR
development tools allow the developer to generate the Virtual World in terms of
concepts and objects of the problem domain.

In this paper we describe an approach to generate Virtual Worlds based on high-level
descriptions of the objects in the World to generate. These high level descriptions are
specified by means of an ontology. In general, an ontology allows to define concepts
(also called terms) as well as relationships between these concepts. The idea
underlying our approach is that the (domain) objects and their properties needed in the
Virtual World are defined and described in a (domain) ontology. From this domain
ontology the Virtual World can be generate in a number of steps. Such an approach
has several advantages. Firstly, the developer needs no longer to be an expert in VR
technology because the World is specified at a conceptual level (by the ontology) and
no longer at the implementation level. Secondly, the development time can be
shortened (most of the code can be generated). And thirdly, maintenance will become
easier because modification can be made at the conceptual level and propagated by
the tool to the implementation. We will illustrate the feasibility of our approach by
describing a first prototype. In this prototype DAML+OIL [Connolly et al., 2001] is
used for representing ontologies, and the Vortex 3D engine from Critical Mass Labs
[Critical Mass Labs, 2002] is used as the target VR software to generate code for.

The rest of the paper is structured as follows. In section 2 we explain our approach
into more detail and motivate the choices made to implement the prototype. In the
following section (section 3) we will introduce and explain the different ontologies
used in the system and in section 4 we describe into more detail the actual generation
process of the current prototype. In section 6 we discuss related work and in section 7
we present conclusion and discuss further work.

2 Overview of the Approach

Ontologies are very popular these days. They are considered as the solution for many
problems that are related with terminology. E.g. someone can use the term ‘zip code’
while somebody else uses ‘postal code’. As a human being we know that both terms
refer to the same concept but this is not obvious for a computer system. This kind of
confusion can now be resolved by means of ontologies. If there exist an ontology that
contains both terms and a relation that indicate that both terms are synonyms, then
this kind of problem can be solved in an automatic manner. In its most simple form,
we can say that an ontology is an abstraction of a computer-based lexicon, thesaurus,
glossary or some other type of structured vocabulary, suitably extended with
knowledge about a given domain. For more information about ontologies we refer to
[Guarino & Giaretta, 1995] and [Gruber, 1993].

In this research we will not use ontologies to solve terminology problems, but to make
software development, and more in particular the development of Virtual Worlds,
easier. The goal of our approach is to generate code for a Virtual World that is
described by means of a domain ontology (see figure 1). Ideally, the domain ontology
should contain all information needed to generate the code for the Virtual World.
Currently this is not yet the case, but we hope to reach this ideal situation after a
number of research cycles (see also section 5 on future work).

3

Figure 1: Generating a Virtual World from a Domain Ontology

The gap between the domain ontology and the current VR development software is
too big to be captured in one step. Therefore it is broken down into a number of steps.
First the Domain Ontology is converted into what we call a Representable Domain
Ontology. This Representable Domain Ontology will describe how the objects in the
Domain Ontology can be represented in the target VR development environment. In
fact it contains the mapping from the domain objects into the primitive VR objects of
the development software (Vortex objects in case of our prototype). In the next step,
the Representable Domain Ontology is translated into a working Virtual Environment
(C++ with Vortex objects in case of our prototype). See figure 2 for an illustration of
these two steps.

Figure 2: First decomposition of the generation process

The two steps are further described in section 4. But first, we define and describe the
different ontologies that we need during the generation process. This is done in
section 3. In the rest of this section we shortly describe the technologies chosen to
implement the prototype.

In the prototype that we developed, we used the DAML+OIL language [Connolly et
al., 2001] for representing the ontologies. DAML+OIL is a semantic markup language
for Web resources. It is a combination of two languages DAML and OIL. The DAML
language is being developed as an extension to XML ([XML, 1997], [Marchal, 1999])
and RDF ([Lassila & Swick, 1999], [RDF, 2002]). The latest release of the language
provides a rich set of constructs with which to create ontologies and to mark-up
information so that it is machine readable and understandable. The language has a
clean and well-defined semantics. Several tools and data are available.
OIL [OIL, 2002] is a language built on a long history of research in description logics.
Description Logic is a sub-field of knowledge representation and as such aims to
provide a vehicle for expressing structured information and for reasoning with the
information in a principled manner. OIL, which stands for Ontology Inference Layer,
is an effort to produce a well defined language for integrating ontologies with web
standards, in particular XML, XML Schema, RDF and RDF Schema. It is a web
based representation and inference layer for ontologies using the constructs found in
many frame languages and reasoning and formal semantics in description logics.
In December 2000, DAML and OIL were brought together as the DAML+OIL
language specification. A DAML+OIL knowledge base is a collection of RDF triples,
that is, a resource, a property and a literal. The relation between those three things is

4

as follows: the “literal” has “property” “resource”. As an example of this take the
following: lets say that the resource is ‘http://wise.vub.ac.be/WofSy/Head”, the
property is ‘is physical representation’ and the literal is ‘Cylinder’, then we can say:
“Cylinder is the physical representation of the resource
http://wise.vub.ac.be/WofSy/Head.
As VR development environment we opted for the Vortex 3D engine1 from Critical
Mass Labs [Critical Mass Labs, 2002]. This engine provides advanced physics,
rigid-body dynamics and collision detection. It delivers fast stable physics simulation
suitable for use in interactive 3D applications. It is possible to create sophisticated
environments using Vortex.

3 The Ontologies

In the first step of the generation process, a Representable Domain Ontology is built
for the given Domain Ontology. This Representable Domain Ontology contains the
mapping of the domain objects into VR objects. In the case of our prototype this
means a mapping from DAML+OIL objects into Vortex objects. To be able to
describe this mapping we first need to describe which type of Vortex objects we can
have and which type of DAML+OIL objects we can have. To do this, we will use two
ontologies (also given in DAML+OIL syntax): the DAML Ontology, describing what
kind of object types you can have in DAML+OIL and their relationships; and the
Vortex Ontology , describing what kind of object types you can have in Vortex and
their relationships. These two ontologies are described into more detail in section 3.1
and 3.2 respectively. Also the mapping mechanism used to map DAML+OIL objects
into Vortex objects will be described using an ontology: the Mapping Ontology. This
ontology together with the DAML Ontology and the Vortex Ontology form a kind of
meta-level (see figure 3 – the arrows pointing from the Mapping Ontology to the
DAML Ontology and the Vortex Ontology indicate that the Mapping Ontology uses
concept defined in the two other ontologies). These ontologies are independent of the
domain that we consider for generating the Virtual World. They are created only
once. The DAML Ontology can be consider as the meta schema of DAML+OIL; the
Vortex Ontology as the meta schema of the Vortex Engine; and the Represented-By
Ontology as the meta schema of the mapping between DAML+OIL and Vortex.
Someone may wonder why we use ontologies for this and not e.g. classical Meta
schemas. The answer is simple. By using ontologies we have a single representation
formalism for all the knowledge representation in the system that in addition offers
the needed flexibility.

1 Although the engine is not free to use, Critical Mass Labs provided us a free license
for use in this project.

http://wise.vub.ac.be/WofSy

5

Figure 3: Ontologies representing the Meta level

To simplify the specification phase we will use a default representation (mapping)
that can be used for all kind of objects. This default mapping will be captured in the
DefaultMapping Ontology. This ontology can be seen as an instantiation of the
Mapping Ontology, only containing a default mapping. The complete mapping for the
target domain is given by the Representable Domain Ontology (introduced earlier and
described in section 3.6). An overview of the different ontologies and their
relationship to each other is given in figure 4 (also in this figure, an arrow indicates
that one ontology is using concepts from the other ontology).

Figure 4: Overview of the different ontologies

Now, the different ontologies are explained into more detail in the next subsections.

3.1 The DAML Ontology
The ontology describing DAML+OIL is an existing ontology developed to be the
normative reference on the precise syntax of the language constructs. In fact, it is the
machine-readable RDF Schema definition of DAML+OIL. In this ontology we can
for example see that a DAML class and a DAML data type are subclasses of the Class
concept in the RDF Schema. The following piece of code is a sample taken from the
DAML+OIL ontology, describing a DAML class.

<rdfs:Class rdf:ID="Class">

6

<rdfs:label>Class</rdfs:label>
<rdfs:comment>

The class of all "object" classes
</rdfs:comment>
<rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>

</rdfs:Class>

The complete specification of this ontology can be found on the website of DAML
[DAML+OIL Ontology, 2001].

3.2 The Vortex Ontology
As we mentioned before, the Vortex Ontology will give the entire description of the
object types available in the Vortex engine. It contains information like the primitive
object types that can be displayed using the 3D-engine and the different constraints
and connections that are possible. To be able to generate code in a later stage we also
need to know which parameters are needed in order to create instances of these object
types. For example if we need to generate a sphere we will need to provide the radius,
length and depth. We also need the type of the parameters in order to verify the input
given by the developer later on. As an example we show how a sphere (a Vortex
primitive) is described in the Vortex Ontology:

<daml:Class rdf:ID=”Sphere”>
<rdfs:subClassOf rdf:resource=”#Object”/>

</daml:Class>

So a sphere is described as being an Object. The definition of the class Object is also
given in the Vortex Ontology. All Objects are defined as being representable objects
in the Virtual World.

We also have definitions of attributes in the Vortex Ontology like in the following
example:

<daml:Class rdf:ID=”Xpos”>
<rdfs:subClassOf rdf:resource=”#Attributes”/>
<HasType

rdf:resource=”http://www.w3.org/2001/XMLSchema#nonNegativeInteger”/>
</daml:Class>

Here, Xpos is defined as an Attribute of type nonNegativeInteger.

Using these kinds of definitions we can define the attributes needed by the different
type of objects. As an example we give the description of an instance of a sphere.

<Sphere rdf:ID="SphereInstance">
<HasAttributes rdf:resource="#Xpos" />
<HasAttributes rdf:resource="#Ypos" />
<HasAttributes rdf:resource="#Zpos" />
<HasAttributes rdf:resource="#Color" />
<HasAttributes rdf:resource="#Radius" />
<HasAttributes rdf:resource="#Mass" />

</Sphere>

http://www.w3.org/2000/01/rdf-schema#Class

7

We see that an instance of a sphere has a position in a three dimensional space,
represented by the x-position, the y-position and the z-position. A sphere also has a
color, a radius and a mass.

Further on the Vortex Ontology contains descriptions of the connection types that can
be use to connect primitive objects to each other to form composite objects. Vortex
provides lots of different connection types like for instance ‘a ball and socket joint’.

The Vortex Ontology also contains concepts that are not representable, like for
instance ‘gravity’ that has no direct physical representation in the Virtual World.
Therefore, the main concept in the Vortex Ontology is the class WorldConcept. All
things that can exist in a Virtual World, whether or not they are representable, will be
a subclass of the class WorldConcept.

3.3 The Mapping Ontology
As we mentioned before, this ontology describes the mapping between the two
formalisms used, namely between the DAML+OIL concepts and the Vortex concepts.
This ontology contains only one class describing the properties of this mapping. The
class is declared as follows:

<daml:Class rdf:ID=”Representation”>
<rdfs:subClassOf>

<daml:Restriction daml:mincardinality=”1” daml:maxcardinality=”1”>
<daml:onProperty rdf:resource=”#Source”/>

</daml:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>

<daml:Restriction daml:mincardinality=”1” daml:maxcardinality=”1”>
<daml:onProperty rdf:resource=”#Target”/>

</daml:Restriction>
</rdfs:subClassOf>

</daml:Class>

As we can see, a Representation has exactly one Source and exactly one Target
property. Source and Target are defined as follows:

<daml:ObjectProperty rdf:ID=”Source”>
<rdfs:range rdf:resource=”http://www.daml.org/2001/03/daml+oil#Thing”/>

</daml:ObjectProperty>
<daml:ObjectProperty rdf:ID=”Target”>

<rdfs:range
rdf:resource=”http://wise.vub.ac.be/WofSy/VortexOntology.daml#WorldConcept”/>
</daml:ObjectProperty>

Source is an ObjectProperty that has a Daml:thing as resource. Note that everything in
DAML is a Daml:thing. In this way, every DAML concept can be used as a value for
the Source property. On the other hand, the Target, which is also an ObjectProperty,
has as resource a WorldConcept from the Vortex Ontology. This allows us to use any
concept from the Vortex ontology as a value for the Target property. In this way, the

8

Representation class can be used to map any object from DAML onto any object from
Vortex.

3.4 The DefaultMapping Ontology
As explained earlier, it is handy to have a default representation. This default can be
used for fast prototyping the desired Virtual Word; the developer only needs to
specify presentations for the most important objects, for the others the default
representation will be used. Here, we have chosen to take a Sphere as default
representation, but this is only a matter of personal taste: a cone or a box is equally
good. During the generation of the Virtual World, the default representation will be
used for an object unless there is a representation specified by the developer in the
Representable Domain ontology.

The following definition defines a sphere as the default representation. Note that the
default representation is declared as an instance of the Representation class from the
Mapping Ontology (‘rprs’ is the prefix referring to the namespace declared as being
the Mapping Ontology):

<rprs:Representation rdf:ID="ClassRepresentation">
<rprs:Source rdf:resource="http://www.daml.org/2001/03/daml+oil#Class" />
<rprs:Target

rdf:resource="http://wendy.vub.ac.be/~wbille/VortexOntology.daml#Sphere"
/>
</rprs:Representation>

3.5 The Domain Ontology
The Domain ontology is the ontology describing the Virtual World someone wants to
generate. It is supposed to contain all domain objects that are required in the Virtual
World. For the moment, the developer needs to create this ontology. However, in the
future we like to consider the possibility to use existing ontologies that describe the
problem domain for which the Virtual World need to be created (more on this in
section 5 about further research).

To describe composite objects, the collection concept of DAML can be used. Suppose
we want to describe a personal computer as being a composition of a screen, a
keyboard, a mouse and a computer unit, we can do this the following way:

<daml:Class rdf:ID="PersonalComputer">
<daml:unionOf rdf:parseType="daml:collection">

<daml:Thing rdf:about="#Screen"/>
<daml:Thing rdf:about="#Keyboard"/>
<daml:Thing rdf:about="#Mouse"/>
<daml:Thing rdf:about="#ComputerUnit"/>

</daml:unionOf>
</daml:Class>

Note that there also has to be a description of the objects in a collection. So a
definition of Screen, Keyboard, Mouse and ComputerUnit is also needed (which may
be composition as well).

http://www.daml.org/2001/03/daml+oil#Class
http://wendy.vub.ac.be/~wbille/VortexOntology.daml#Sphere

9

3.6 The Representable Domain Ontology
As already explained the Representable Domain ontology describes the mapping from
domain objects into Vortex objects. Therefore it contains instances of the
Representation class described in the Mapping Ontology linking objects from the
Domain Ontology to objects from the Vortex Ontology. Note that it is not necessary
to have a representation for each object in the Domain Ontology as we have the
default representation that can be used defined in the DefaultMapping Ontology (see
section 3.4).

How this Representable Domain Ontology is created is explained in the next section.
In this section also a fragment of such a Representable Domain Ontology is given.

4 The Generation Process

As explained in section 2, the generation process is decomposed into two steps. In the
first step the Representable Domain Ontology is created for the given Domain
Ontology, and in the second step code is generated from this ontology for the target
VR environment. The first step is realized by the Domain Mapper, the second step by
the World Creator. In the next subsections, these two tools are explained into more
detail.

4.1 The Domain Mapper
The Domain Mapper is software that can be used by the developer to produce a
Representable Domain Ontology for a given Domain Ontology. Input is the Domain
Ontology and possible existing Representable Domain Ontologies that are suitable for
the given domain. In this way, existing representations (available in those
Representable Domain Ontologies) can be reused and adapted if desired. If no
suitable representation is available the developer can specify one in an interactive
way.

Below is a fragment of the possible output of the Domain Transformer for the
following small and simple Domain Ontology:

…
<daml:Class rdf:ID=”Wall”/>
<daml:Class rdf:ID=”Tower”/>
<daml:Class rdf:ID=”Planet”/>
<daml:Class rdf:ID=”Pyramid”/>
…

Fragment of the generated Representable Domain Ontology:
...
<RDFNsId1:Representation rdf:ID=‘TowerRepresentation'>
 <RDFNsId1:Source rdf:resource='http://sch472.vub.ac.be/domain.daml#Tower'/>
 <RDFNsId1:Target
rdf:resource='http://wise.vub.ac.be/WofSy/VortexOntology.daml#Cylinder'/></RDFNsId1:Re
presentation><RDFNsId1:Representation rdf:ID=‘WallRepresentation'>
 <RDFNsId1:Source rdf:resource='http://sch472.vub.ac.be/domain.daml#Wall'/>

http://sch472.vub.ac.be/domain.daml#Tower
http://wise.vub.ac.be/WofSy/VortexOntology.daml#Cylinder
http://sch472.vub.ac.be/domain.daml#Wall

10

 <RDFNsId1:Target
rdf:resource='http://wise.vub.ac.be/WofSy/VortexOntology.daml#Box'/></RDFNsId1:Repres
entation>
<RDFNsId1:Representation rdf:ID=‘PyramidRepresentation'>
 <RDFNsId1:Source rdf:resource='http://sch472.vub.ac.be/domain.daml#Pyramid'/>
 <RDFNsId1:Target
rdf:resource='http://wise.vub.ac.be/WofSy/VortexOntology.daml#Cone'/></RDFNsId1:Repre
sentation>
<RDFNsId1:Representation rdf:ID=‘PlanetRepresentation'>
 <RDFNsId1:Source rdf:resource='http://sch472.vub.ac.be/domain.daml#Planet'/>
 <RDFNsId1:Target
rdf:resource='http://wise.vub.ac.be/WofSy/VortexOntology.daml#Sphere'/></RDFNsId1:Rep
resentation>...
As you can see, for each object described in the Domain Ontology, we have an
instance of the Representation class. You can also see that each object is mapped onto
some (in this case, simple) physical representation in Vortex.

If a Representable Domain Ontology is generated, the next step is to generate the
Virtual World itself. The World Creator does this.

4.2 The World Creator
The World Creator software transforms the Representable Domain Ontology into a
working Virtual Environment. For the moment, we need to ask the developer to give
additional information about the objects in the domain during this generation process,
e.g. the value of attributes. We will eliminate this in the future as much as possible
(see section 5 on future research). However, the difference with the current authoring
tools is that the developer does not need to specify the attribute values in terms of
spheres, cylinders, boxes and so on, but in terms of domain objects; he will be asked
for the position of the tower, the color of the wall, and so on. In this way, the
developer really works in his knowledge domain and not in the domain of VR
technology.

The World Creator not only creates the Virtual World, but also an ontology
containing a complete description of the generated World. In this way, the constructed
Virtual World can be reconstructed without the need to re-generate it. We only have
to take this ontology and the World Creator can re-generate the complete world
without having to ask the developer for the parameters needed for the objects.

During the implementation of the prototype we started with the generation of the
simplest case, those of a statical Virtual World with only non-composite objects.
Next, we experimented with adding dynamic behavior to the World. To have dynamic
behavior in a world (like moving objects in the world) the C++ code for the world has
to contain some procedures implementing that behavior. To be able to generate such
procedures, we needed extra information. Again, for the moment, the developer can
specify this in an interactive way during the generation process. At the moment of
writing, it is e.g. possible to attach an initial velocity and an initial angular velocity to
an object, and the developer can declare whether the behavior has to be simulated
continuous or if it has to be activated by pressing a key (even-driven). When there is
dynamics in a world, there can be some collisions. Therefore, the generated code also
takes care of collisions. Here we use the Vortex Collision detection.

http://wise.vub.ac.be/WofSy/VortexOntology.daml#Box
http://sch472.vub.ac.be/domain.daml#Pyramid
http://wise.vub.ac.be/WofSy/VortexOntology.daml#Cone
http://sch472.vub.ac.be/domain.daml#Planet
http://wise.vub.ac.be/WofSy/VortexOntology.daml#Sphere

11

Note that this is only a little part of possible dynamics in a world. Other things we can
do in future are e.g. to put forces on objects, and putting forces to a specific point of
an object. However, instead of elaborate on the dynamics, we preferred to first
concentrate on the issue of generating Composite Objects.

Composite objects are objects build up from other simple or composite objects.
Objects can be connected to each other by using some of the constructs that Vortex
provides us. When an object is described as composite in the Domain Ontology by
using the DAML collection construct, then the World Creator will take care that all
the representations of the components are connected to form the whole. The developer
will be asked for the type of connection he wants to use and for the properties of the
connection. Some examples of connections are ‘the ball and socket joint’, ‘the hinge
joint’, and ‘the spring joint’. For each of these joints, properties can be set.

Figure 5 shows a screenshot from the World Creator. Figure 6 give an example of a
generated Virtual World.

Figure 5: Screenshot taken from the World Creator

12

Figure 6: Example of a generated world

5 Related Work

The lack of high-level design methodologies for VR development has also been
addressed in [Tanriverdi & Jacob, 2001] with the presentation of VRID (Virtual
Reality Interface Design). In this paper, four key components are identified when
designing VR interfaces: object graphics, object behaviors, object interactions and
object communications. The VRID methodology divides the design process into a
high-level and a low-level phase and uses a set of steps to formally represent the
environment.

James Willans and Michael Harrison [Willans & Harrison, 2001] in the HCI group at
the York University (UK) have developed software that separates the process of
designing interaction techniques from the process of building a specific virtual
environment, making it easier for developers to design realistic interaction techniques
and try them out on users. The Marigold toolset is an attempt to find easier ways to
design virtual environments like flight simulators where it is important to make the
interaction between the user and the environment as realistic as possible. Abstract
models are constructed using the Flownet modeling formalism. The toolset provides a
means of automatically verifying the abstract model for desirable properties and
supports a transition between the abstract model(s) and an implementation prototype
of the model(s). The approach this group follows to support the modeling of
requirements for virtual environments is presented in [Smith & Duke, 2000] and
[Willans, Smith & Harrison, 2001]. Four important requirements are examined when
designing virtual environments: appearance, decomposition and behavior of the
objects and the user behavior through interaction techniques. Scenarios are used to

13

identify the requirements and the formalism stated is based on a requirements tree that
represents the different requirements identified.

6 Conclusions and Future Work

In this paper, we have proposed and described an approach to generate Virtual Worlds
from high-level descriptions given in the form of an ontology. We believe that such
an approach can open up the use of VR to a much broader community than nowadays.
The objects needed in the Virtual World, their relationships and their properties can
be described in term of the concepts used in the problem domain. Therefore, the main
specifications can be made by a domain expert and currently only some minor help
from a VR specialist is needed during the transformation process. We expect to be
able to reduce this input of the VR specialist to a minimal by refining the information
in the domain ontology and by using upper level ontologies, i.e. it must be possible to
derive from domain knowledge and general common sense knowledge a suitable
representation for an object in the Virtual World. E.g. if we know that a ball is round
and is a 3D object we can derive that a sphere might be a suitable representation.

To prove the feasibility of our approach we implemented a prototype. The prototype
is still very simple and can improved in different ways:
− More information can be derived from ontologies:

In the current version, quite some information need to be specified interactively
during the generation process. In principle it must be possible to extract or derive
most of this from the Domain Ontology or from some upper level ontology. E.g.
the size and colour of an object can easily be specified as properties of the object
in the Domain Ontology; to a certain extent the same applies for the behaviour of
the objects. Also the way composite objects are composed of other objects can be
specified into more detail in the ontology such that less information needs to be
asked during generation.

− More advanced Virtual Worlds can be generated:
The worlds that can be generated for the moment are rather simple. Several
extensions are possible such as more sophisticated behaviour, more complex
objects, more sophisticated interaction possibilities, introduction of materials and
the consequences of this (when a ball of rubber collides with a wall this is
different than when the ball was made of glass), support for scaling, generation of
objects using some deviation (e.g. generating 100 people according to some
standard deviation such that we have thin, fat and normal persons, small and tall
persons, …), and so on.

Currently we start from a domain ontology that is designed especially for our tool.
Creating such an ontology for a domain may be a lot of work, therefore it may be
interesting to investigate if it is possible to extract the necessarily information from
one or more ontologies which are already in existence for the domain under
consideration.

14

7 References

[Berners et al., 2001] T. Berners Lee, J. Hendler and O. Lassila, “The Semantic Web:
A new form of Web content that is meaningful to computers will unleash a revolution
of new possibilities”, in ‘The Scientific American’, May 2001.

[Connolly et al., 2001] D. Connolly, F. van Harmelen, I. Horrock, D. McGuinness,
P.F. Patel-Schneider, L. A. Stein, ”Annotated DAML+OIL Ontology Markup”, W3C
Note 18 December 2001, http://www.w3.org/TR/daml+oil-walkthru/.

[Critical Mass Labs, 2002] http://www.cm-labs.com, CMLabs Simulations, Inc., 2002

[DAML+OIL Ontology, 2001] http://www.daml.org/2000/12/daml+oil.daml

[Guarino & Giaretta, 1995] N. Guarino and P. Giaretta, "Ontologies and knowledge
bases: towards a terminological clarification", in Towards Very Large Knowledge
Bases: Knowledge Building Knowledge Sharing (ION Press), 1995, pp. 25-32.

[Gruber, 1993] T. R. Gruber, “A translation approach to portable ontologies“,
Knowledge Acquisition, 5(2), 1993, pp. 199-220.

[Lassila & Swick, 1999] O. Lassila and R. Swick, “Resource Description Framework:
Model and Syntax Specification”, W3C Recommendation, World Wide Web
Consortium, Cambridge, 1999.

[Marchal, 1999] B. Marchal, “XML by example”, Que 1999 (ISBN 0-7897-2242-9).

[OIL, 2002] http://www.ontoknowledge.org/oil/, On-To-Knowledge, 2002.

[RDF, 2002] http://www.w3.org/RDF/, W3C, 2002.

[Smith & Duke, 2000] Shamus P. Smith, David J. Duke, “Binding Virtual
Environments to Toolkit Capabilities”, EUROGRAPHICS Volume 19 (2000), eds. M.
Gross and F.R.A. Hopgood

[Tanriverdi & Jacob, 2001] Vildan Tanriverdi and Robert J. K. Jacob, “VRID: A
Design Model and Methodology for Developing Virtual Reality Interfaces”, Proc.
ACM VRST 2001 Symposium on Virtual Reality Software and Technology, ACM
Press, Banff, Canada, 2001.

[Willans, Smith & Harrison, 2001] James S. Willans, Shamus P. Smith and Michael
D. Harrison, “Using scenarios to identify the design requirements of virtual
environments”, Technical Report YCS 333, University of York, 2001.

 [Willans & Harrison, 2001] James S. Willans and Michael D. Harrison, “A toolset
supported approach for designing and testing virtual environment interaction
techniques”, International Journal of Human-Computer Studies, 55(2), pp. 145-165,
2001.

[XML, 1997] http://www.w3.org/XML/, W3C, 1997-2002

http://www.w3.org/TR/daml+oil-walkthru/
http://www.cm-labs.com
http://www.daml.org/2000/12/daml+oil.daml
http://www.ontoknowledge.org/oil/
http://www.w3.org/RDF/
http://www.w3.org/XML/

