

Keynote Talk – VS-Games 2017

Prof. dr. Olga De Troyer

WISE research group

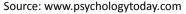
Vrije Universiteit Brussel

BELGIUM

http://we.vub.ac.be/nl/olga-de-troyer



Why do we need "serious games"?



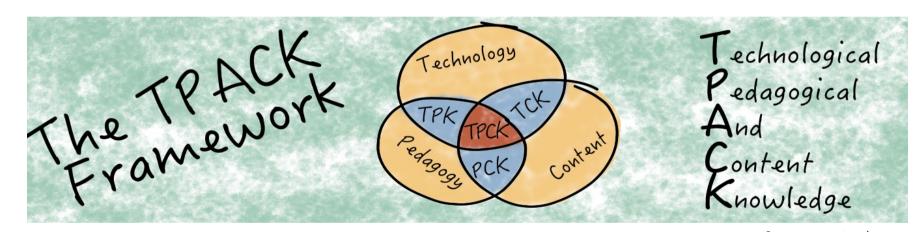
Traditional methods for learning and performing tasks are losing in effectiveness

Are Serious Games the Silver Bullet?

When could a serious games be successful and effective?

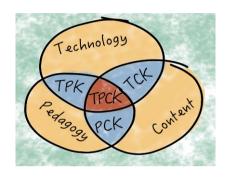
- Provide fun
- Achieve its purpose

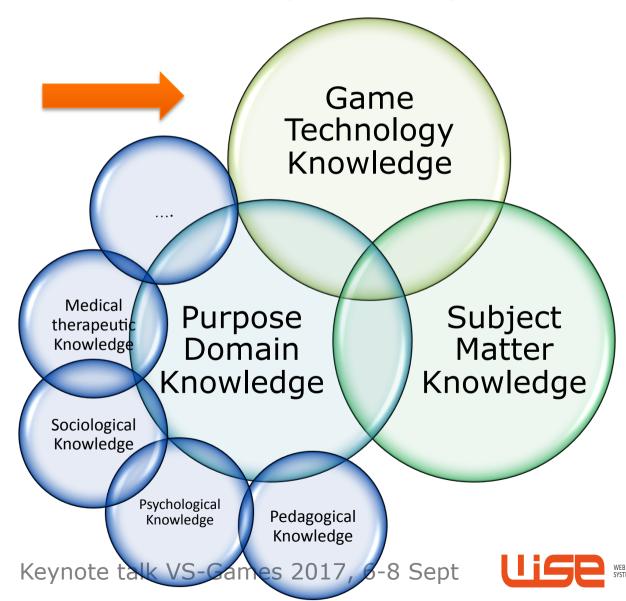
How do we ensure this?


- Requirements for the development process
- Requirements for the SGs themselves

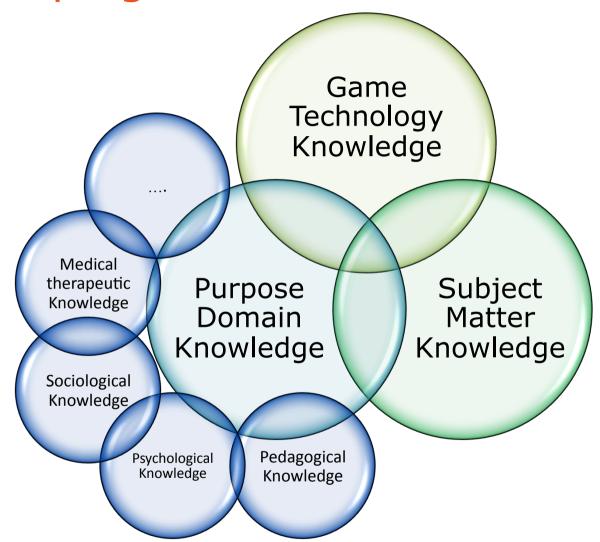
The process of Developing Serious Games

Developing technology-enhanced education


Source: www.tpack.org



Developing Effective Serious Games

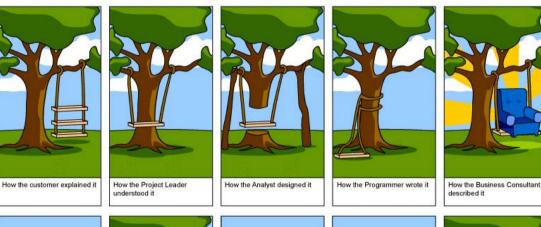

Applying TPACK for developing serious games

Developing Effective Serious Games

This calls for multidisciplinary development teams

Multidisciplinary Development Teams

- Different backgrounds
- Different terminologies
- Different concerns


https://n415son17.wordpress.com/category/uncategorized/

Multidisciplinary Teams

How to avoid communication problems?

Multidisciplinary Tool Support

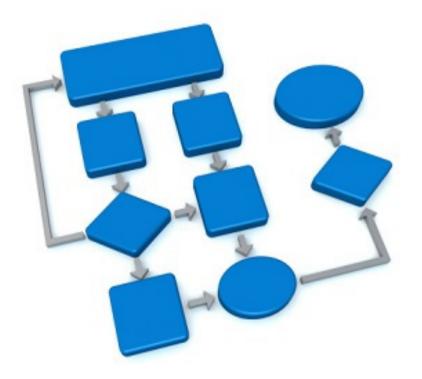
How to avoid communication problems?

Actively involve all experts But how?

Need for multidisciplinary tools to assist the development of serious games

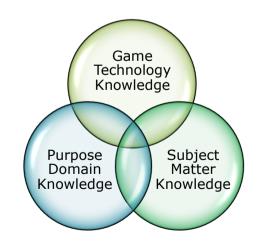
Multidisciplinary Tool Support Example Tool: GuideaMaps

Tablet app to support the requirement elicitation phase



But! Tools on their own do not guarantee success

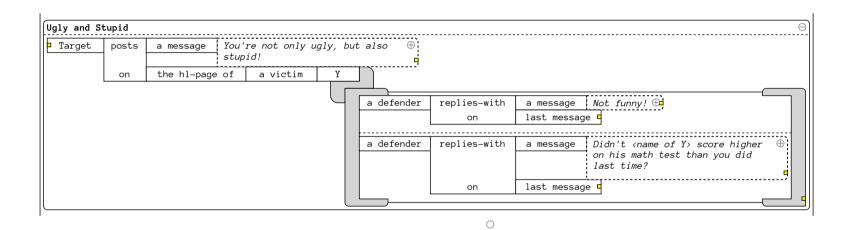
Methods


"An established, habitual, logical, or prescribed practice or systematic process of achieving certain ends with accuracy and efficiency, usually in an ordered sequence of fixed steps"

www.businessdictionary.com

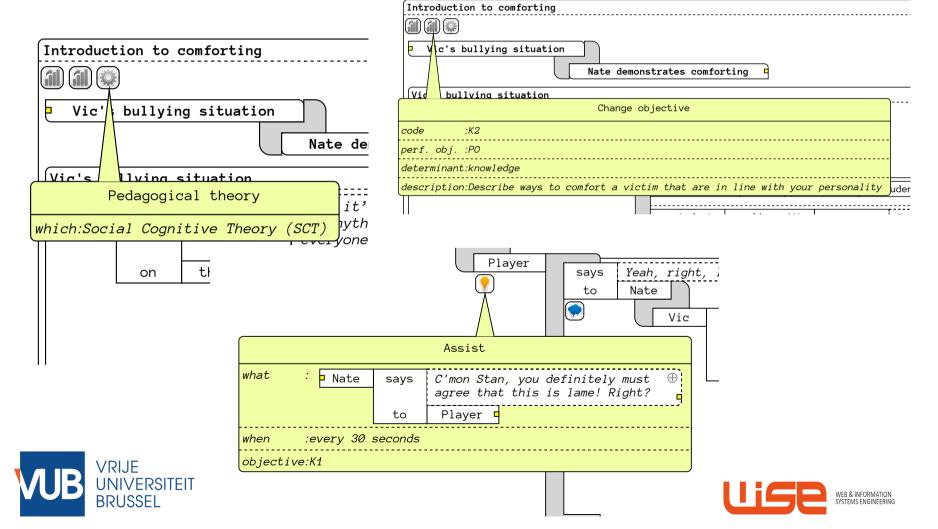
Source: Microsoft Dynamics 365

Methods that integrate methods or principles from the purpose domain are scarce



Integrating PD Knowledge Example: ATTAC-L

Domain-specific modeling language for narrativebased serious games


Integration of purpose domains through annotations

Integrating PD Knowledge Example: ATTAC-L

Annotations

Requirements for the development process: Dedicated, multidisciplinary Tools & Methods

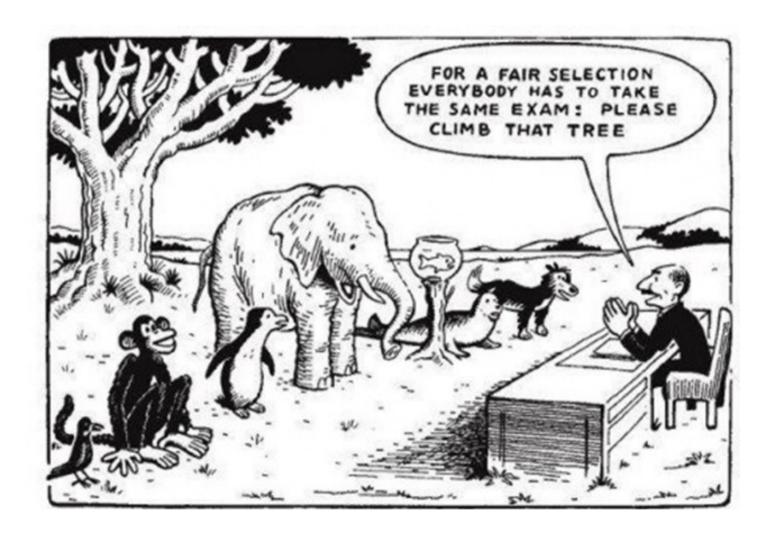
How do better ensure the success and effectiveness of SG?

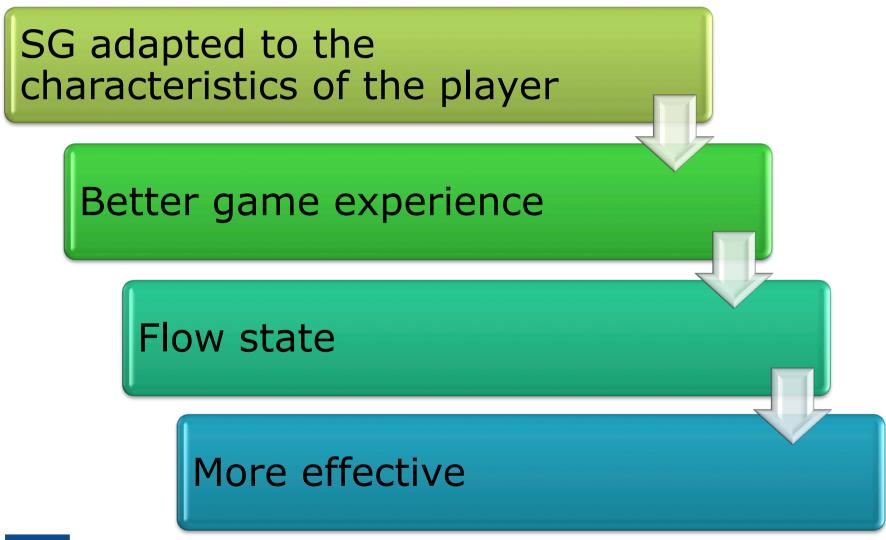
- Requirements for the development process
- Requirements for the SGs themselves

Everyone is Different

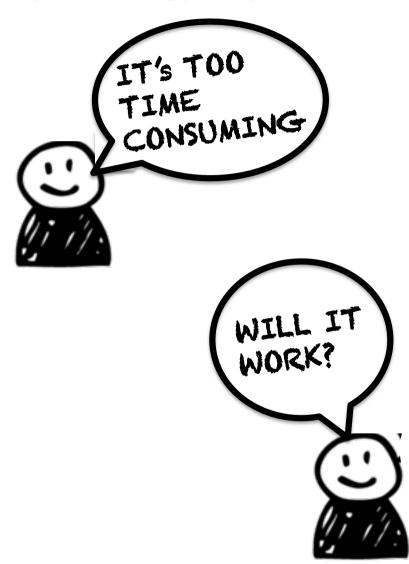
Source: http://vjic.lv/jauniesu-alternativas-izglitibas-iespejas/

- Different preferences
- Different abilities
- Different performance motivations
- Different personality treats


•


One size fits nobody!

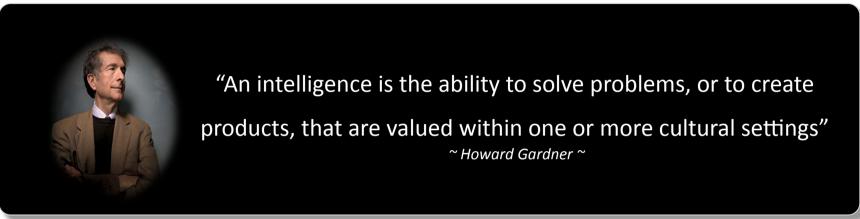
Adapting Serious Games to the Player



Personalization: Why not (yet)?



Personalization: Different Flavors



Adaptation to the Player Example: Theory of Multiple Intelligence (MI)

- 8 dimensions of intelligence
- Everyone possesses every intelligence but to different degrees
- All dimensions work together in an orchestrated way

Adaptation based on MI

Positive impact on

- game experience?
- learning outcome?

Survey study

Hypothesis: there exist correlations between players' strong MI intelligence dimensions and their preferences for games

308 participants


110

98

■ 18 to 24 years old

■ 25 to 34 years old

Personalization based on MI

47 game titles

5 games for each dimension

7 games more than one dimension

Result: Each MI dimension is correlated (negatively or positively) to one or more preferences for game titles

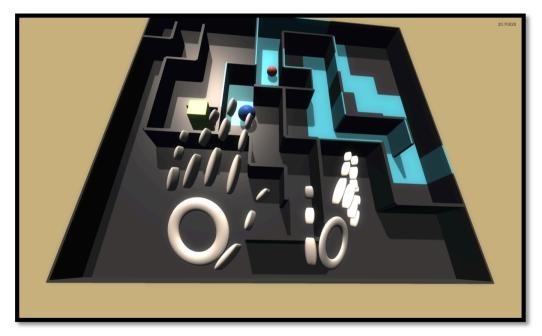
Why? Game genre?

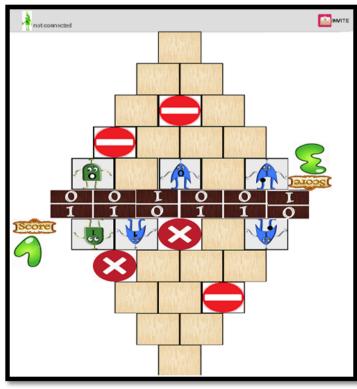
MI and Preference for Game Mechanics

 Further analysis of the 42 games based on 236 game mechanics

Logical-mathem	Logical-mathematical dimension			
Achievements	Dubious			
Bonuses	Positive			
Discovery	Positive			
Infinite Gameplay	Negative			
Epic Meaning	Dubious			
Levels	Positive			
Loss aversion	Positive			
Points	Dubious			
Reward Schedules	Positive			
•••				

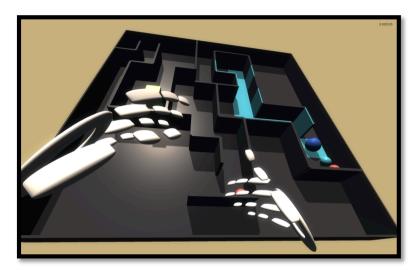
Decision	
<u>Positive</u>	Recommend
<u>Dubious</u>	Use with caution
<u>Negative</u>	Not recommend


Tool Support: wise.vub.ac.be/dpl



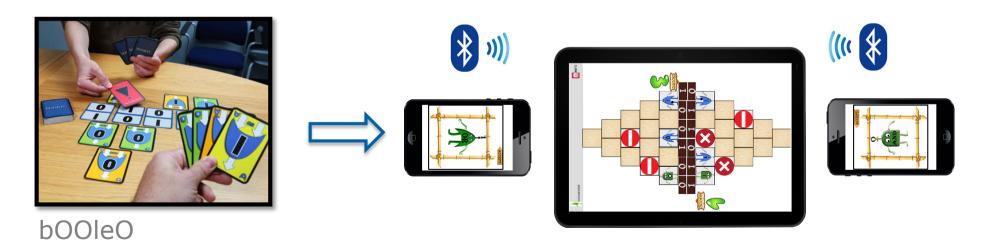
Does this work?

2 case studies



LeapBalancer: for bodily-kinesthetic players

Mechanic	Bodily-kinesthetic dimension
Motion Co ^{re}	✓ Positive
Timing	✓ Positive
Pavlovian interaction	✓ Positive
Tutorial / first run scenarios	✓ Dubious
Gravity	✓ Dubious
Directed exploration	-
Controlling Col [©]	-


Experiment

- Hypothesis: bodily-kinesthetic players intelligence will have a better game experience compare to non-bodily-kinesthetic players
- Result: Bodily-kinesthetically players experienced significantly more competence, less negative affect, more immersion, and less tension

TrueBiters: for logical-mathematical players

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
False	False	True	False	False	True	True
False	True	True	False	True	True	False
True	False	False	False	True	False	False
True	True	False	True	True	True	True

TrueBiters

Mechanic	Logical-mathematical Intelligence
Motion	-
Repeat Pattern	✓ dubious
Memorizing Co ^{Ce}	-
Submitting	-
Points Cole	✓ positive
Quick feedback	✓ positive
Modifier	✓ positive
Disincentives	✓ negative
Companion gaming	✓ positive
Tutorial/first run scenarios	✓ positive
Logical thinking Coxe Strategizing Coxe	✓ positive
Strategizing Conte	✓ positive
Browsing	✓ negative
Choosing	✓ negative

Hypothesis 1: The logically-mathematically players will have a higher learning outcome compared to the rest

Hypothesis 2: The logically-mathematically players will have a better game experience to the rest

TrueBiters: 2 Pilot Experiments

Experiment 1:

- Pre-test;
- Self-training; game sessions;
- Post-test

Result: Logically-mathematically exhibit higher learning outcome compared to the rest

Experiment 2:

- Self-training; 2 game sessions
- Game Experience Questionnaire (GEQ)

Result: Logically-mathematically experienced significantly more immersion compared to the rest

Requirements for the SG themselves:

Adaptation

Something else?

How to ensure transfer to reality?

Reflection on the in-game performance
 E.g., by a debriefing phase

http://cape.stanford.edu/programs/for-healthcare-instructors/advanced-debriefing.html

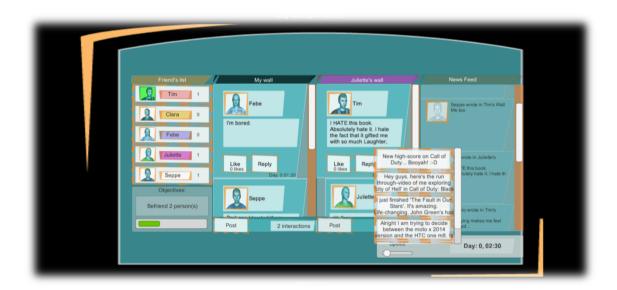
Debriefing

With human facilitator

- expensive,
- time consuming,
- not always possible

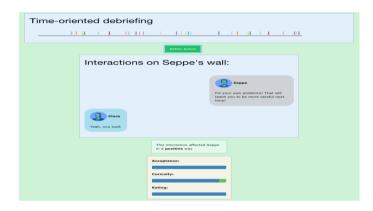
Need for automatic debriefing facility!

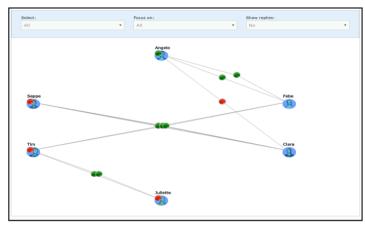
But How?


Different types of games may require different approach

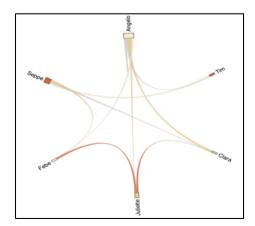
Debriefing Approach Example: The BullyBook case

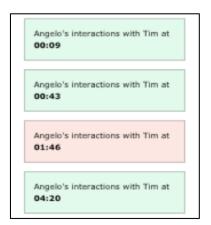
- A form of simulation;
- NPCs show realistic, non-predictable behaviors;
- Multiple possible paths to a solution





The BullyBook case Visual approach to debriefing


Time-Oriented Visualization



Interaction-Oriented Visualization

Character-Oriented Visualization

The BullyBook case Evaluation

Pilot Study

Aspects evaluated:

- Post-game and post-debriefing understanding
- Visualizations & overall usability

Results:

- Better understanding after debriefing
- Good scores for all visualizations; best score for the interaction-oriented debriefing
- Good overall usability

Conclusions

Serious Games: How to better ensure their effectiveness?

- 1. Development process:
 - ♦ Knowledge about
 - The subject matter,
 - Game development
 - The purpose domain (pedagogy, psychology, sociology, medicine...)
 - ♦ Multidisciplinary teams
 - ♦ Multidisciplinary tools
 - ♦ Dedicated methods
- 2. For the serious game itself:
 - ♦ Some form of personalization or adaptation to the target audience
 - An explicit debriefing phase

For more info:

ATTAC-L

- F. Van Broeckhoven and O. De Troyer, "ATTAC-L: A modeling language for educational virtual scenarios in the context of preventing cyber bullying," in SeGAH 2013 IEEE 2nd Intl Conf on Serious Games and Applications for Health, 2013.
- F. Van Broeckhoven and O. De Troyer, "Specifying the pedagogical aspects of narrative-based digital learning games using annotation," in *Proc of the 9th Intl Conf on the Foundations of Digital Games. Society for the Advancement of the Science of Digital Games*, 2014.
- F. Van Broeckhoven, J. Vlieghe, and O. De Troyer, "Mapping between Pedagogical Design Strategies and Serious Game Narratives," in *Games and Virtual Worlds for Serious Applications (VS-Games)*, pp. 123–130.
- O. De Troyer, F. Van Broeckhoven, and J. Vlieghe, "Linking serious game narratives with pedagogical theories and pedagogical design strategies," *J. Comput. High. Educ.*, pp. 1–25, 2017.

GuideaMaps:

- O. De Troyer and E. Janssens, "Supporting the requirement analysis phase for the development of serious games for children," *Int. J. Child-Computer Interact.*, Jun. 2014.
- O. De Troyer and E. Janssens, "A feature modeling approach for domain-specific requirement elicitation," in *Proc IEEE 4th Intl Workshop on Requirements Patterns, RePa 2014*, 2014, pp. 17–24.

Personalization

- P. Sajjadi, F. Van Broeckhoven, and O. De Troyer, "Dynamically adaptive educational games: A new perspective," in *Games for Training, Education, Health and Sports*, 2014, vol. 8395 LNCS, pp. 71–76.
- P. Sajjadi, J. Vlieghe, and O. De Troyer, "Evidence-based mapping between the theory of multiple intelligences and game mechanics for the purpose of player-centered serious game design," in *Games and Virtual Worlds for Serious Applications* (VS-Games), 2016, pp. 1–8.
- P. Sajjadi, E. El Sayed, and O. De Troyer, "On the Impact of the Dominant Intelligences of Players on Learning Outcome and Game Experience in Educational Games: The TrueBiters Case.," in *Games and Learning Alliance Alliance (GALA 2016)*, LNCS 10056, 2016, pp. 221–231.
- P. Sajjadi, A. Lo-A-Njoe, J. Vlieghe, and O. De Troyer, "Exploring the Relation Between Game Experience and Game Mechanics for Bodily-Kinesthetic Players", in *Games and Learning Alliance (GALA 2016)*, LNCS 10056, 2016, pp. 354–364.
- P. Sajjadi, "Individualizing Learning Games: Incorporating the Theory of Multiple Intelligences in Player-Centered Game Design," PhD thesis, Vrije Universiteit Brussel, 2017.

Debriefing

O. De Troyer, A. Helalouch, and C. Debruyne, "Towards Computer-Supported Self-debriefing of a Serious Game Against Cyber Bullying," in *Games and Learning Alliance (GALA), LNCS 10056*, 2016, pp. 374–384.

