
ATTAC-L: A Modeling Language for Educational
Virtual Scenarios in the Context of Preventing Cyber

Bullying

Frederik Van Broeckhoven
Dept. Computer Science - Web & Information Systems

Engineering
Vrije Universiteit Brussel

Brussels, Belgium
Frederik.Van.Broeckhoven@vub.ac.be

Olga De Troyer
Dept. Computer Science - Web & Information Systems

Engineering
Vrije Universiteit Brussel

Brussels, Belgium
Olga.DeTroyer@vub.ac.be

Abstract— Cyber bullying (bullying via electronic communication
tools) is a relatively recent phenomenon that especially occurs
among early adolescents. As cyber bullying may have a serious
impact on the mental (and physical) well-being of victims, it is
important to develop effective evidence-based interventions
against cyber bullying. The “Friendly ATTAC”-project has the
aim to develop so-called virtual interactive scenarios (i.e. digital
games) to modify behavior patterns associated with cyber
bullying among youngsters. The scenarios will be developed
during brainstorming sessions involving people from the
different disciplines and with different backgrounds, but
specialized in the domain of cyber bullying. To allow this non-
technical people to specify the virtual interactive scenarios that
should be developed, we have developed a domain specific
modeling language that allow them to do so in an intuitive and
close to natural language way. This paper presents this language
in an informal way.

Keywords—cyber bullying, domain specific modeling
languages, serious games

I. INTRODUCTION
Cyber bullying (bullying via electronic communication

tools [1]) is a relatively recent phenomenon that especially
occurs among early adolescents. As cyber bullying may have a
serious impact on the mental (and physical) well-being of
victims it is important to develop effective evidence-based
interventions against cyber bullying. The “Friendly ATTAC”-
project [2] has the aim to develop so-called virtual interactive
scenarios (i.e. digital games) to modify behavior patterns
associated with cyber bullying. The target audience consists of
early adolescents (10-15 year old). The games will allow
youngsters, through the use of the virtual scenarios, to
experience different roles (bully, victim, or bystander) in cyber
bullying incidents, to react to those experiences, and to get
adjusted feedback based on their individual reactions. In this
way, we hope to make youngsters more aware of the
consequences of certain behavior (as bully or as bystander) and
help them to prevent becoming a victim. Bullies could be
encouraged to cease bullying by increasing their empathy,
victims could be taught adequate coping strategies and
bystanders could be sensibilized to intervene. The scenarios

and interactions will be based on theoretical and empirical
knowledge regarding personal and contextual determinants of
cyber bullying that will be obtained by performing a well-
established intervention method from the field of health
psychology: Intervention Mapping (IM) [3]. To realize the
objectives of the Friendly ATTC project, an interdisciplinary
team is established consisting of social scientists, health
psychologists, computer scientists, and game designers.

One of the challenges of the project is to translate the
theoretical and empirical knowledge regarding personal and
contextual determinants and causes of cyber bullying into
attractive virtual experiences (scenarios) for young people. The
scenarios will be developed during brainstorming sessions
involving people from the different disciplines involved in the
project: social scientists, health psychologists, computer
scientists, people working in the field, and game designers.
Such an interdisciplinary collaboration requires tools and
methods that can be easily used and understood by all parties
involved, also non-technical users (i.e. domain-experts and
possible also end-users). Such tools are not only important in
the context of the project, but also later on (after the end of the
project) when new scenarios need to be developed for the same
or a related domain. Rather than resorting to natural language
to specify the scenarios, we prefer to use a more formal
approach, which has the advantage over natural language of not
being ambiguous and allows to a certain extent the semi-
automatically creation of the actual games. To achieve this,
we will develop a domain-specific modeling language to
accommodate domain experts in the design process of these
scenarios/games.

A domain-specific modeling language [4] is a kind of
modeling language that uses a dedicated vocabulary and
provides abstractions that make the specifications of solutions
easier and more accessible for domain experts. In general,
domain-specific modeling languages are graphical (visual)
languages because graphical or visual specifications are easier
for the communication with non-technical people than textual
languages; they are also helpful for conveying complex models
and designs as they can help people to grasp large amounts of
information more quickly than large listings of text. Such a

This research is funded by the IWT (Institute for Science and
Technology) (www.iwt.be) as part of the Friendly ATTAC project

domain-specific modeling tool should not be confused with the
authoring tools that exist for games and also aim to make the
development process more accessible to a broader public (e.g.,
Thinking Worlds [5]). These tools try to avoid programming by
providing a graphical and easy-to-use interface (e.g., clicking,
dragging, and dropping) to compose a game. In this way, they
also try to deal with the “semantic gap” between the author of
the game (e.g., a domain expert or an end-user) and the game
developer who each talk their own language and have their
own concerns. Often, these authoring tools can generate an
implementation (and in this way actual remove the need for a
game implementation phase). However, in general, those tools
are often limited either in the type of applications that can be
specified or in the support that they provide (and often they
need to be combined with scripting languages).

To try to overcome the “semantic gap” problem, some
researchers ([6][7][8][9]) already proposed to consider domain-
specific modeling languages (DSML) for game development.
Although, DSMLs proposed for game development in general
can be used as a starting point for our DSML (a virtual
experience scenario can be considered as a kind of game), they
are not specific enough for our purpose. A domain-specific
modeling language for games against cyber-bullying should
not only consider the gaming aspects but also take into
consideration concepts specific to the domain of cyber-
bullying, such as bully, victim, bystander, friends, as well as
other objects, contexts, and behaviors specific for cyber-
bullying. Identifying and defining these concepts is a first
important task.

The purpose of the paper is to present our domain specific
modeling language developed in the context of developing
games to deal with the cyber bullying. The paper is structured
as follows. The second section deals with related work. The
next section discusses the requirements for the modeling
language. Section 4 presents the language, and section 5 discus
the limitations of the language, as well as future work.

II. RELEATED WORK
An approach close to our approach is presented in the

WEEV framework [10]. WEEV aims towards more
involvement of teachers and educators in the game
development process and provides capabilities to easily create
educational adventure games of the point-and-click genre. It is
built upon the <e-Adventure> which is an adventure game
development platform, mostly in an educational context.
WEEV uses different DSVLs for the modeling of different
aspects of an educational adventure game, such as the world,
actors and story. Story modeling is based on an explicit
representation of the interactions between the user (player) and
the virtual world by means of a state-transition diagram. To
reduce de overall complexity of abstractions of bigger story
models, WEEV introduces extra language constructs that helps
with organizing the structure. The main difference with our
approach is the use of state-transition diagram. Our approach is
using flow-based approach, which based on our research is
easier to understand by non-programmers.

The Storybricks1 framework is an interactive story design
system. It features an interesting user-centered approach
towards interactive story design. It provides a visual editing
language based on the language “scratch” design by MIT lab2.
Without any programming skills the users can edit the
characters in the game and the artificial intelligence of the
game that drives the characters. The users can setup characters
and then use so-called story bricks to give them emotions,
items and etc. In a similar way, Storybricks can be used to
specify what need to be done at certain points in the game. In
this way, an interactive scenario is modeled in an implicit way
by defining a set of rules expressing which events will be
evoked under what conditions. This enables the social
interaction between the characters in the game without the need
for it to be programmed explicitly by the designer. Our work
has adopted the concept of using bricks as basic building
blocks for the language from this framework.

The 80Days project3 aims to establish a theoretical basis for
generic and engaging immersive and plausible storytelling in
educational games. The project also considers cognitive and
motivational/emotional aspects of learning. In the context of
the 80days project, the StoryTec authoring tool [11] was
improved and extended to enable creating adaptation and
personalization for targeted digital educational games. Their
Story Editor tool is using a visual language, which consists of
story units (scene and complex scene) represented as rectangles
and transition between the different connected units
represented as arrows. There is a possibility to have scenes that
are not connected to each other. Such scenes will be selected
during the runtime depending on adaptation mechanism. The
author can define the expected time that the learner will stay in
a scene. Furthermore, the author could identify the skill, tasks
and goals to be achieved in the scene.

III. REQUIREMENTS OF THE LANGUAGE
The DSML needs to be able to model (i.e. describe in a

formal way) a virtual experience scenario. A virtual
experience scenario can also be considered as a kind of
educational game, as the purpose of the virtual experience
scenarios is to try to change the behavior of youngsters
involved in cyber bullying using principles from serious
gaming. As the primary target users of the DSML are not the
game designers but the (non-technical) stakeholders involved
in defining the educational games, the DSML should be of a
high level of abstraction. This means that it should abstract
from technical and implementation details and other details that
are not relevant for the purpose of defining the main ideas for
the game. Therefore, based on characteristics of the target users
of the DSML, we can formulate the following requirements:

1) The language should be graphical because graphical or
visual specifications are easier for the communication with
non-technical people than textual languages.

2) The language should be easy to learn.
3) The language should be easy to use.

1 http://www.storybricks.com/
2 http://scratch.mit.edu/
3 http://www.eightydays.eu

4) The models created by the language should be intuitive
and easy to understand.

As we are designing a modeling language for games, we

also have the following requirements:

5) The language should be able to represent the main
concepts of the game: the overall story flow; the non-player
characters and objects involved in the game and their roles
and characteristics; the potential actions of the player and
their consequences as well as the time relationships between
these actions.

As we are designing a modeling language specific for the
domain of cyber bullying, we also have the following
requirement:

6) Concepts from the domain of cyber bullying should be
available as first class modeling primitieves.

In the next version of the language, additional requirements
will be taken into consideration that deals with integrating the
purpose of the games (i.e. the “educational” goal of the games
related to preventing cyber-bullying) into the language

Given the requirements 2, 3, and 4 we decided to use a
flow-based approach to structure the main flow of a virtual
experience scenario. This decision was based on a user
experiment carried out to determine which overall modeling
approach was more convenient for non-technical people.
However, we also decided to follow the principle of the
Storybricks application that allows specifying actions and
states by means of connecting bricks to form natural language
like sentences.

IV. LANGUAGE DESCRIPTION
The general idea behind the language is to express the story

of a game in a way as intuitive as possible. Therefore, we opted
for a combination of flowcharts and natural language like
syntax. The natural language like syntax will be used to specify
the individual game moves in the game, while the flowchart
approach will be used to express the chronological order
between the game moves. By a natural language like syntax,
we mean that the will use sentences that look/read like simple
natural language sentences but actually have a strict syntax (to
be “understandable” by the computer). Usually, our
“sentences” will be composed of a subject, a verb, and a
passive object. An example is “Claire talks to Tiffany”. It is
also possible to include an indirect object like in “Claire sends
an email to Tiffany”. Provided that an adequate amount of
vocabulary is available, this principle can give great flexibility
in defining game moves and can be understood by non-
technical users in a very intuitive way. Note that, as already
explained earlier, we will use a graphical representation. This
means that the sentences will not be expressed as text but by
means of a graphical notation.

To deal with the complexity and scalability of the models,
the principle of hierarchical decomposition is used. For this

purpose the concept of scenario is introduced that can be
considered as an abstraction mechanism.

A. Overall Structure
The overall diagram or model representing the interactive

game story is simply called story. Basically it consists of three
parts:

• The story flow: intuitively this is the sequence of
activities that make up the game story

• The definitions (optionally): intuitively this defines the
game entities that are involved in the story flow. This
basically comes down to describing concrete game
entities or classes of game entities in terms of ATTAC-
L, so they can be used in a proper way in the story
flow. Note that a predefined set of definitions will be
available in the language that define the entities
commonly occurring in the domain of cyber bullying,
e.g., a bully, a victim, a bystander, a friend.

• The scenarios (optionally): for a story, different
scenarios can be defined (to be used in the story flow).
Intuitively, a scenario defines a part of the story flow.

Furthermore, an elementary action or step in a story will be
called a game move. Intuitively, a game move can be an action
to be performed by the player or by a non-playable character,
but is can also represent a state change, e.g., a mood change of
a non-playable character.

B. Basic Building Blocks of the Langauge: Bricks
Regular bricks, or just plain bricks, are the basic building

blocks for specifying game moves, i.e. the actual steps that will
be performed in a game. The bricks are organized in different
categories that have correspondence to certain word categories
found in natural language (see Figure 1). The category of a
brick is indicated by mean of a colour. In addition they can be
connected to each other according to certain rules that are
influenced by the grammatical rules from the natural language
syntax (see Figure 2). The result is a construct that
unambiguously describes a game move, expressed in a human-
readable form.

Figure 1: Bricks

Figure 2: Composing game moves

1) Objects
Objects represent the ‘tangible’ game entities. They are

used in a game move to refer to the game entities that are
involved in the move. An object typically denotes the player, a

NPC (Non-Playable Character) or (more generally) any
‘tangible’ game entity.

2) Object Classes
Objects belong to classes. These classes are either

predefined in the language (the classes typical used in a
scenario against cyber bullying) or can be defined by the
modeler in the definition part of the story. Examples of classes
are person, mail, and phone. Classes can have properties. The
purpose of giving the properties to classes is to be able to
assign values to those properties for individual objects of that
class. For instance the ‘mail’ class has the property ‘subject’. In
this way we can add a value (e.g., “Hello”) to the property
subject of a mail object. This is illustrated in Figure 3.

Figure 3: Example Class definition and the use of an object of this class

3) Active Vs. Passive Objects

In a game move, a distinction is made between active and
passive objects. The first type, called subject in natural
language, denotes the object that is responsible for the game
move’s action, that is, the object that performs the action
specified in the game move. A passive object is also involved
in the game move’s action, but plays a more passive role.
When the game move specifies a state change, the active object
indicates the object whose state will change.

For example, when a game moves specifies that player is
poking a NPC (Non Playable Character) named Claire, player
is the active object or the subject of the game move and Claire
is a passive object (see Figure 4).

Figure 4: Example demonstrating the placement of active (subjects) and

passive objects

Syntactically, subjects are always required in a game move
and always mark the beginning of a game move. The presence
of passive objects is dependent on the verb (see IV.B.5) that is
used and is placed at the end of a game move.

4) Defined Vs. Anonymous Objects
Normally an object should be defined to use it in a game

move (either it is predefined or it is defined in the definitions
part of the story). This roughly corresponds to identifying an
object and associating it with its meaning (class) and role in the
game world. For example, when an NPC in the game world is
involved in the game, an object should be defined that
identifies the NPC (usually using the name of the NPC) (more
on how to make object definitions in section IV.E.1). Named
objects refer to concrete instances of game entities in the game
world.

The player of the game is also considered as an object (note
that we focus on single user games). Therefore, ‘player’ is a
predefined object. It explicitly refers to the player of the game
(which is always an integral part of the game) and can be used
in the same way as any regular defined object. The availability
of this object is very important as it plays a vital role in
specifying interactivity.

In contrast to named objects, some objects can also be used
anonymously, which means that they can be used in a game
move definition without the need of their explicit definition. It
is typically used for objects that are used passively in only one
game move definition. These objects will typically belong to an
object class coming from the target domain (here the cyber-
bullying domain). An example of such an anonymous object
could be ‘a mail’ (see Figure 5). A mail is an unnamed instance
of the object class ‘mail’. Often some properties (defined for
the class) should be assigned to them, which can be done
directly in the game move (meaning ‘inline’) using one or more
value bricks.

Figure 5: Anonymous vs. defined object

5) Verbs
A verb can be used for two purposes. It can be used to

specify the action that a subject performs in a game move.
Then, it implicitly defines what should happen at runtime, how
it influences the game world. Examples are “Claire pokes Jill”
or “Claire sends a mail to player” (see Figure 4 and Figure 5).
A verb can also be used to indicate a state (change), e.g.,
“Claire is happy” (see Figure 2).

Syntactically, a verb always follows a subject. Depending
on the verb used, it is optionally followed by one or more
objects or adverbs (see IV.B.8).

6) Negation of Verbs
In some situations it must be possible to specify that a

subject is not in a certain state. This is done by putting a not-
brick between the verb and the adverb (e.g., to express “Claire
is not happy”) or by putting the not-brick between the subject

and the verb, e.g., to express “ Claire does not know player”.
Both examples are illustrated in Figure 6.

7) Passive Voice of a Verb
It is also possible to use the passive voice of a verb. This

essentially means that it turns the verb into an adverb (see next
section). Note that the passive object of the active sentence
becomes the subject of the passive sentence. This is used when
the focus is on the action, and when it is not or less important
or not known, who or what is performing the action. For
instance, we may want to specify that “Claire is known by
somebody”. This can be done by using the passive voice of the
verb “know”. The use of the passive voice is illustrated in
Figure 7.

Figure 6: Negation of verbs

Figure 7: Passive voice of a verb

8) Adverb

Another category of bricks is the adverb. Adverbs are used
to express states, for example to express that “Claire is happy”.
The adverb can also be followed by an object, as in “Claire is
disappointed in player”, or by a verb, as in “Claire is
discouraged to bully”. An adverb is always placed after a verb.
Figure 8 gives some examples.

Figure 8: Examples of the use of adverbs

C. Control Structures
To express the chronological order between the game

moves, control structures are used. Game moves can be
sequential, or be executed in parallel, or the order can be
irrelevant. Furthermore, it must be possible to express a choice
and iteration. These correspond to control structures in classical
programming languages.

By using the control structures we can construct so-called
storylines. Two or more game moves that are connected by one
or more control structures are called a storyline. To simplify
the explanations in what follows, we will not make a
distinction between a single game move and a storyline if not
needed. A game move can be considered as a storyline
containing a single game move. To fit with the brick principle
used for the game moves, all control structures are also

represented as bricks. In this paper we will explain sequence,
choice, order independence, and concurrency. Because of space
limitations, we omit iteration and optionality. The principle
used to express them is the same as for the other control
structures.

1) Sequence
A sequence is used to indicate a sequential order between

game moves. It is graphically represented by a sequence brick.
A sequence brick is represented as a narrow an empty white
block connecting the ending and starting brick of the two
consecutive game moves. When the two connected bricks are
the same, the right one can be left out to get a more compact
representation of the sequence. The upper part of Figure 9
illustrates a sequence between two game moves. The lower part
of the figure shows how this is represented with the sequence-
bricks. Note the difference between the first sequence-brick
used and the second one. The first shape is the regular one. The
second shape is used to connect two game moves where the
beginning of the second game move (in the example “Jack”) is
equal to the end of the first game move (also “Jack”). In this
case we can use the compact representation of the sequence of
the sequence brick and the common part (in the example
“Jack” is only presented once).

Figure 9: Composing a sequence

2) Choice
A choice defines a point in a storyline where the storyline is

split into two or more alternative storylines and a decision has
to be made which storyline to follow. To indicate the choice, a
choice brick is used.

 Syntactically, representing a choice comes down to
building the different game moves around a choice brick (see
Figure 10 - upper part). To avoid repetitions in the alternatives,
first the common part of the alternative game moves could be
identified. For example, the common part for the game moves
“player pokes Claire” and “player follows Claire” is “player”.
However, the two game moves “player pokes Claire” and
“player pokes Lizzy” have a common part “player pokes”. To
this common part, a choice brick is connected to which all the
options are connected. The options are simply the differing
parts (remaining parts) of the game moves. In the first example
these are “pokes Claire” and “follows Claire”, in the latter
these are “Claire” and “Lizzy”. See Figure 10 - lower part for

the graphical representations. If no common part exists then the
complete game moves are added as options (see lower part of
Figure 11). Note that an option can be followed by other game
moves or in general be the start of a storyline.

Figure 10: The use of a choice control structure

Figure 11: Examples of choice control structure

Which storyline is to be followed at runtime is dependent
on the subject used in the common part. If this is the player, the
decision of which alternative will be taken is completely up to
the player (Figure 11 – upper left). If this is an NPC or there is
no common part, the game engine will make the decision
(which can be based on the current state of the game or made
by the AI built into the game; Figure 11 – upper right). To
accommodate the fact that it is not always possible to exactly
characterize all options, an otherwise-brick is available. This
allows specifying the option that needs to be followed when
none of the other options could be chosen. An example is given
in Figure 12.

Figure 12: Example of the use of an otherwise brick

To indicate that different storylines meet again a choice
join brick is used, which is a brick symmetrical to the choice
brick. Syntactically, a choice join brick is used in a similar
way as the choice brick, but here the different leading parts (if
any) are placed at the beginning of the brick and the common
trailing parts at the end. See Figure 13 for an example.

Figure 13: The use of a choice join brick

At runtime, a join has no effect on the story. It is mainly

used as an organizational structure in the diagram to make the
overall model of the story less overwhelming and to avoid
duplications of common storylines.

3) Order Independence
An order independence structure encapsulates two or more

storylines that all have to be followed, but in any order. It can
be considered as a choice structure over all the possible
permutations of the encapsulated storyline sections, followed
by a join. The order independence brick used for the order
independence is given in the upper part of Figure 14. It also
shows the brick used for joining the storylines again, the order
independence join brick, which is symmetrical to the order
independence brick. The principles to use the brick are similar
to the principles used for the choice brick. An example is given
in the lower part of Figure 14. Note the use of the short hand
notation for the sequence brick to indicate that the end of the
first game move (“Claire”) is equal to the start of the common
part of the order independence structure.

Figure 14: The use of an order independence control structure

4) Concurrency

A concurrency structure encapsulates two or more
storylines that all can be followed at the same time
(concurrently). This means that it is not required that one
storyline must be completely finished before another one can

be started. The concurrency brick is shown in the upper part of
Figure 15. The principles to use the brick are similar to the
principles used for the choice brick. An example is given in the
lower part of the Figure 15.

Concurrency is mostly used to allow different distinct
storylines to be interwoven and to define storylines, usually
initiated by non-player game entities, which seem to start
‘spontaneously’. Also here the storylines can be joined again
using a brick symmetrical to the concurrency brick, the
concurrency join brick.

 Figure 15: The use of a concurrency control structure

D. Scenarios: Hierarchical Decomposition of the Story
In order to deal with complexity and scalability, the concept

of a scenario is used. It is an abstraction mechanism and allows
encapsulating a part of a story. A scenario is given a name that
can be used to refer to it. The name should refer to the activity
encapsulated by the scenario. A special brick, called a scenario
brick is used to refer to scenarios. In this way they can be used
in the story flow or used to define other scenarios, i.e. a
scenario brick with the name of an existing (or a still to be
defined) scenario can be used to define other scenarios or can
directly be used in the definition of the story flow.

Scenario bricks should be considered as placeholders for
the story that they encapsulate. Figure 16 contains three
scenarios: ‘sending an invitation to Lizzy’, ‘sending an
invitation to Claire’, and ‘sending some invitations’. The first
two scenarios encapsulate some game moves. The scenario
‘sending some invitations’ encapsulates a concurrency between
the two scenarios. This way, a hierarchy of scenarios is created
that makes the diagrams smaller and makes the understanding
of the diagrams easier.

A scenario is defined in the same way as a story, but it is
defined within the bounds of the main story or within another
scenario. This means that a scenario can also include
definitions and the definitions of other scenarios.

At playtime, when a scenario is reached in the story flow,
the scenario it refers to is then followed as if the scenario was

directly included in the story flow. Upon reaching the end of
the scenario, the story flow then continues from the scenario
brick on.

Figure 16: Hierarchical decomposition of a story by means of scenarios

E. Definitions
The definition part of a story (or a scenario) should contain

the definition of all objects and classes that are not predefined
in the language. In general, all predefined classes, verbs and
adverbs provided for a given domain (here cyber bullying)
should be sufficient to define a story for that domain.

1) Object Definition
Objects that will be used in the story should be defined, i.e.

the class to which they belong should be specified and possibly
also a characterization of their state. For instance, we could
specify that Claire is a person, that Claire is known by the
player, and that Claire is a bully. To make those specifications
the choice brick and the order independence brick are used.
The choice brick is used to specify alternative characteristics,
e.g., Claire is friend of player or Claire knows player (see
upper part of Figure 17). The order independence brick is used
to sum up all characteristics, e.g., Claire knows player, and
Claire is friend of player, and Claire is sad. This example is
given in the lower part of Figure 17.

2) Object Alias Definition
The definition part can also be used to define an alias for an

object or for a group of objects. For instance, we can define
‘stranger’ as a person that does not know the player or who is
not known by the player. This example is given in Figure 18.

Figure 17: The use of choice and order independence bricks to indicate
alternative and all-inclusive characteristics

Figure 18: An object alias definition

F. Story Flow
The story flow part of the story specifies the actual

sequence of game moves that make up the game story. In
practice, this will be done by linking scenarios using the
different control structures provided in the language. This will
give a high level view of the story flow: the main structure and
decomposition of the story flow into scenarios. To obtain more
details, the different scenarios need to be inspected. It would of
course also be possible to directly specify the complete story
flow in term of game moves and control structures. However,
in general, this will result in a very large diagram that is
difficult to understand and to maintain (see Figure 19).

Figure 19: A story flow example (in terms of scenario bricks)

V. LIMITATIONS AND FURTURE WORK
The current version of the ATTAC-L language has the

capability to express story-based games. However, it also has
still some limitations.

• There is not yet a way to refer in the game story to
events and actions that took place during the game
play, e.g., we cannot base a decision on past actions.
For instance, it could be useful to state what should
happen if a certain message has been send. We will

investigate if the past tense of the verbs can be used for
this.

• All objects are defined at design time. This means that
it is not possible for the player to define his own
objects at playtime, for instance his own friends. It is
not clear if this functionality will be required for the
kind of virtual experience scenarios that will be
developed in the context of Friendly ATTAC. It is also
not yet obvious how to add the functionality to the
language without complicating it considerably.

Our future work will focus on applying the language in the
context of the Friendly ATTAC project to actually define
the virtual scenarios that will be developed in the context of
the project. This will provide feedback on the
expressiveness and intuitiveness of the language and will
allow us to improve the language. To use the language in
practice, tool support is necessary. First we will develop a
graphical tool that allow to easily compose the scenarios
using ATTAC-L and that enforce the syntax of the
language. Next, we will investigate code generation for the
language to speed up the implementation process of the
actual scenarios.

REFERENCES
[1] Q. Li, “A cross-cultural comparison of adolescents’ experience related to

cyberbullying”, Educational Research, vol. 50, nr. 3, pp. 223–234, 2008
[2] “Friendly Attac”. Available: http://www.friendlyattac.be/en/.
[3] L. K. Bartholomew, G. S. Parcel, en G. Kok, “Intervention mapping: a

process for developing theory- and evidence-based health education
programs”, Health Educ Behav, vol. 25, nr. 5, pp. 545–563, okt. 1998.

[4] J. Luoma, S. Kelly, en J.-P. Tolvanen, “Defining Domain-Specific
Modeling Languages: Collected Experiences”, in Proceedings of the 4th
OOPSLA Workshop on Domain-Specific Modeling (DSM 04), 2004.

[5] Thinking Worlds | Rapid Sims & Games Creation. Available:
http://www.thinkingworlds.com

[6] J. Dobbe, “A Domain-Specific Language for Computer Games”, Delft
University of Technology, 2007.

[7] A. W. B. Furtado en A. L. M. Santos, “Using domain-specific modeling
towards computer games development industrialization”, in 6th
OOPSLA Workshop on Domain-Specific Modeling (DSM’06), 2006, p.
1.

[8] R. Guerreiro, A. Rosa, V. Sousa, V. Amaral, en N. Correia, “UbiLang?:
Towards a Domain Specific Modeling Language for Specification of
Ubiquitous Games”, pp. 449–460, 2010.

[9] E. J. Marchiori, J. Torrente, Á. Del Blanco, P. Moreno-Ger, en B.
Fernández-Manjón, “A Visual Domain Specific Language for the
Creation of Educational Video Games”, IEEE Learning Technology
Newsletter, vol. Vol. 12, nr. No. 1, pp. 36–39, 2010.

[10] E. J. Marchiori, Á. del Blanco, J. Torrente, I. Martinez-Ortiz, en B.
Fernández-Manjón, “A visual language for the creation of narrative
educational games”, Journal of Visual Languages & Computing, vol. 22,
nr. 6, pp. 443–452, dec. 2011.

[11] S. Gobel, L. Salvatore, en R. Konrad, “StoryTec: A Digital Storytelling
Platform for the Authoring and Experiencing of Interactive and Non-
Linear Stories”, in International Conference on Automated solutions for
Cross Media Content and Multi-channel Distribution, 2008. AXMEDIS
’08, 2008, pp. 103 –110

